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Abstract

Superpixel segmentation has become a popular pre-
processing step in computer vision with a great variety
of existing algorithms. Almost all algorithms claim to
compute compact superpixels, but no one showed how
to measure compactness and no one investigated the im-
plications. In this paper, we propose a novel metric to
measure superpixel compactness. With this metric, we
show that there is a trade-off between compactness and
boundary recall. In addition, we propose an algorithm
that allows to precicely control this trade-off and that
outperforms the current state-of-the-art. As a demon-
stration, we show the importance of considering com-
pactness with the help of an example application.

1. Introduction

The term superpixel was introduced by Ren and Ma-
lik [13] and describes the oversegmentation of an image
into homogeneous regions that align well with object
boundaries. This allows to represent an image with only
a couple of hundred segments that function as atomic
building blocks instead of tens of thousands of pixels.

There are many different approaches to segment
an image into superpixels, for example graph-based
approaches using normalized cuts [5, 14] or graph
cuts [15]. Other approaches utilize geometric flows [3],
geodesic distances [17], or pseudo-boolean optimiza-
tion [18]. Some algorithms also guarantee that the seg-
mentation conforms to a lattice structure [7, 8]. The cur-
rently best results are reported by an entropy rate based
approach [4]. One approach that excells with its ease
of use and efficiency is the k-means based SLIC algo-
rithm [1].

Does shape matter? Compactness means that each
superpixel has a regular shape and size with smooth
boundaries. Many authors claim compactness for their
superpixels or agree that it is a desirable property [1,
3, 4, 7, 15, 17, 18], but no one ever measured com-

pactness. With this work, we are the first to measure
and investigate compactness in the context of superpix-
els. Besides aesthetical considerations, compactness is
also appealing from a practical and theoretical point of
view. Compact superpixels better capture spatially co-
herent information and it is easier to extract informa-
tion from their boundaries. Non-compact superpixels
with irregular shapes, on the other hand, can be com-
pared to overfitting in machine learning: too much data
(i.e. boundary pixels) is used to represent the essential
information (i.e. object boundaries).

In this paper, we propose a novel metric that mea-
sures compactness and investigate its implications. We
also introduce an improvement of SLIC [1] to allow for
a precise and transparent compactness control.

2. Superpixel compactness

Measuring the compactness of a shape is a well-
known task in mathematics and one common measure
is the isoperimetric quotient. It is related to the isoperi-
metric problem: finding the two-dimensional shape
that has the largest possible area for a given boundary
length [12]. The solution to this problem is the circle
which is the most compact shape.

The isoperimetric quotient relates the area of a given
shape to the area of a circle that has the same perimeter
as this shape. It is 1 for a circle and decreases the less
compact the shape becomes. Let AS be the area and
LS be the perimeter of a shape, e.g. of a superpixel S.
The circle with the same perimeter as the superpixel has
the radius r = LS

2π . Let AC be the area of a circle with
radius r. Then the isoperimetric quotient is

QS =
AS
AC

=
4πAS
L2
S

. (1)

Based on the isoperimetric quotient, we propose a
metric to measure the compactness (CO) of a superpixel
segmentation. For a given segmentation, we compute
the sum over the isoperimetric quotients of each super-
pixel normalized by the fraction of the superpixels’ size
|S| compared to the whole image. Let S be the set of



(a) Oursα=0.98 (b) LATTICE [8] (c) ERS [4] (d) NC [9, 10]

(e) TP [3] (f) FH [2] (g) SLIC [1] (h) Oursα=0.0

Figure 1. Visual comparison of the evaluated superpixel algorithms. Note that (h) is only used
to demonstrate the importance of compactness. These images are best viewed in color.

all superpixels of a segmentation of the image I . The
compactness of the segmentation then is

CO =
∑
S∈S

QS ·
|S|
|I|
. (2)

The compactness is mostly influenced by the regu-
larity of the boundaries and orientation changes in the
boundaries have a severe impact on the overall compact-
ness. Therefore, compactness is a desirable property for
all applications that require smooth and regular bound-
aries.

3. Direct compactness control

We propose an improved version of SLIC that in-
tegrates a transparent compactness control. At its core,
SLIC is based on k-means clustering with distance mea-
sure DS consisting of a distance in Lab color space
(dlab) as well as a weighted Euclidean distance (dxy).
Please see [1] for all details. It is an efficient algorithm
with interesting properties, but it has one major draw-
back: the superpixels can be ripped apart during the k-
means clustering and, therefore, a postprocessing step
is required which bypasses the distance measure and,
thus, the compactness control.

We improve this by applying the distance measure
DS not to all image pixels, but only to pixels belong-
ing to superpixel boundaries. Thereby, only boundary
pixels are reassigned and we achieve a smooth iterative
boundary evolution guided by the distance measure DS

which guarantees that the superpixels remain intact. We
also improve the balancing of the two components of
DS by introducing a compactness parameter α (instead
of just weighting the Euclidean distance). As we will
see later, this results in a very transparent compactness
control. Let r be the inital side length of the superpixels,
then

DS = (1− α) · drgb + α · dxy
r
. (3)

In contrast to SLIC, we achieved slightly better re-
sults for RGB images. Also, the boundary evolution is
more sensitive to strong image gradients. This effect
can be reduced by low-pass filtering the images.

4. Evaluation

We compared our algorithm to five superpixel al-
gorithms that are all based on different principles:
the normalized cuts segmentation from [9, 10] (NC),
SLIC [1], TurboPixels [3] (TP), entropy rate super-
pixels [4] (ERS), and Superpixel Lattices [8] (LAT-
TICE). For SLIC, we also evaluated the weighting range
(SLIC min, SLIC max). We also compared our algo-
rithm with Felzenszwalb and Huttenlocher [2] (FH). FH
does not aim to compute compact superpixels, but its
high accuracy makes it interesting for comparison as a
baseline algorithm. We used code made available by the
authors and chose parameters as proposed by them.

We evaluated all algorithms on the full Berkeley seg-
mentation dataset (BSDS) [6] consisting of 300 natural
images and 1,633 human annotated groundtruth images.
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Figure 2. Boundary recall
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Figure 3. Undersegmentation error

We applied the proposed compactness metric CO (Sec-
tion 2) as well as the commonly used metrics:

Boundary recall (BR) measures the fraction of
groundtruth boundaries that overlap with the segmenta-
tion boundaries. It is well suited for superpixel segmen-
tations because it does not penalize oversegmentation
and is the most commonly used metric for superpixels.

Undersegmentation error (UE) was introduced by
Levinshtein et al. [3]. Figuratively speaking, it mea-
sures the ”bleeding out“ [3] of superpixels. The metric
was also adopted by [1, 4, 15, 16, 17].

Achievable segmentation accuracy (AA) gives the
highest accuracy possible for segmenting objects using
superpixels as building blocks [11]. It was also used
by [4].

5. Results

Figures 2, 3, 4, and 5 show results for all four met-
rics, both compared to (a) the current state-of-the-art as
well as (b) for different compactness parameters. Please
note that our compactness parameter α ∈ [0, 1] af-
fects the whole distance measure DS and operates on a
more well-defined intervall than the Euclidean distance
weight in SLIC (m ∈ [0, MAXINT]).

We will first discuss the results on the existing met-
rics before explaining the importance of compactness.
The proposed algorithm (with α = 0.9) outperforms the
current state-of-the-art for BR and achieves comparable
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Figure 4. Achievable accuracy
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Figure 5. Compactness

or better results for UE and AA. A comparison of the
full parameter range (b) also shows that the proposed
algorithm outperforms SLIC on all metrics.

We will now motivate the importance of a compact-
ness metric. When taking the extreme case of a non-
compact segmentation (α = 0, Figure 1h), it becomes
apparent that this is not desirable at all. Nevertheless, it
achieves the highest BR with good UE and AA results.
The reason is that the superpixel boundaries are ”over-
fitted” to capture the finest, but not necessarily mean-
ingful, details while ignoring the representation. This is
not sufficiently penalized by any of the current metrics
and no metric measures the shape of superpixels. This
is our motivation for the compactness metric.

When comparing Figures 2 and 5, there is a nega-
tive correlation between BR and CO meaning that al-
gorithms with higher BR have, in general, a lower CO.
This is true for all algorithms. The trade-off between
BR and CO is due to the fact that for a higher BR the
superpixel boundaries have to adjust more to the image
content which makes them less compact. This is also in
accordance with the visual observation (see Figure 1),
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Figure 7. Additional qualitative results of the proposed algorithm. The rows show results for
the recommended compactness parameters α = 0.9 and α = 0.98. The numbers of superpixels
from left to right are: 216, 481, 805, and 1107. These images are best viewed in color.

meaning that more irregular and wiggly superpixels are
less compact and vice versa.

To reflect the trade-off between shape and function,
we recommend to use a new graph: CO-over-BR (Fig-
ure 6a). It allows to compare algorithms with respect to
this trade-off to chose the best algorithm for a specific
application. Similar graphs are also possible for UE
(Figure 6b) and AA. However, because the UE and AA
metrics show similar results for all algorithms, the com-
bined graphs might not be as meaningful. Currently, the
best trade-off is achieved by the proposed algorithm.

Given these results, we recommend α = 0.9 for very
accurate and α = 0.98 for very compact superpixels.
Figure 7 shows qualitative results for these settings for
different superpixel resolutions.

6. Application

Superpixels are generally used as atomic primitives.
Depending on the application, different features are ex-
tracted from them. While for some the shape and, there-
fore, compactness is of no concern (e.g. when extract-
ing color histograms), others rely on spatial coherence
or use the boundaries directly. We will now give one ex-
ample application and point to other applications where
compactness is important.

Image representation (or compression) with super-
pixels has already been show in [3, 17], but with a fo-
cus on visual quality. However, when considering im-
age representation, not only the reconstruction quality,
but also the size of such a representation is important.

Let an image be represented by a set of superpixels.

The superpixel colors can be approximated by a poly-
nomial of nth order [3] with constant encoding size.
The encoding size of the shape, however, depends on
its regularity. The more compact and regular the shape,
the easier it is to encode. In this example application,
the encoding is directly represented by boundary pixels
leading to the encoding size being a (monotonic) func-
tion of the boundary length. While there are certainly
more sophisticated encodings, we expect that they will
also benefit from regularities in the boundaries.

Figures 8a and 8b show an example image and its re-
construction. Figure 8c shows the average reconstruc-
tion error per pixel over all images of the BSDS for a
superpixel resolution of 800 with a quadratic polyno-
mial for color representation. (FH is omitted because it
is not truly a superpixel algorithm and, thus, achieves
very bad results for this task.) As expected, the recon-
struction error increases with compactness because of
the trade-off with its accuracy. Figure 8d makes this
even more apparent. Depending on the compactness,
the boundary length changes, but the trade-off is not
linear. In fact, with a doubling of the boundary length
from 100 to 200 pixels, there is almost no change of the
reconstruction error. This illustrates the ”overfitting”
argument which says that a more accurate segmenta-
tion does not necessarily imply a better overall perfor-
mance. By controlling compactness, the (application-
dependent) optimal trade-off between error and encod-
ing size can be chosen. Here, no superpixel algorithm
achieves a better trade-off than the proposed one.

Besides this example application, we expect similar
results for applications that analyze the shape of super-



(a) Original (b) Reconstruction

10

20

30

40

R
e

c
o

n
s
t
r
u

c
t
io

n
 e

r
ro

r

ERS

LATTICE

NC

SLIC

SLIC_min

0

10

0 0.2 0.4 0.6 0.8 1

R
e

c
o

n
s
t
r
u

c
t
io

n
 e

r
ro

r

Compactness

SLIC_min

SLIC_max

TP

Ours

(c) Error over compactness

10

20

30

40

R
e

c
o

n
s
t
r
u

c
t
io

n
 e

r
ro

r

ERS

LATTICE

NC

SLIC

SLIC_min

0

10

0 100 200 300

R
e

c
o

n
s
t
r
u

c
t
io

n
 e

r
ro

r

Average boundary length

SLIC_min

SLIC_max

TP

Ours

(d) Error over boundary length

Figure 8. Image representation with superpixels.

pixels and that rely on smooth boundaries (e.g. [9, 10]).
We expect that algorithms that offer a direct compact-
ness control are likely to achieve better results.

7. Conclusion

Compactness is a desirable property of superpix-
els [1, 3, 4, 7, 15, 17, 18]. We introduced the first metric
measuring superpixel compactness and showed its im-
plications both in comparison with existing metrics as
well as for an example application. Further, we pre-
sented an algorithm that achieves best or comparable
results on all metrics compared to the current state-of-
the-art and that offers the best trade-off between recall
and compactness. This algorithm also allows to trans-
parently control compactness and, thereby, this trade-
off, thus making it a good choice for a wide range of
applications.
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