
GMD –
Forschungszentrum
Informationstechnik
GmbH Frank Śmieja

Fast 3D Cube Vision
for Real- World Systems

March 1998

5
GMD Report

© GMD 1998

GMD –
Forschungszentrum Informationstechnik GmbH

Schloß Birlinghoven
D-53754 Sankt Augustin

Germany
Telefon +49 -2241 -14 -0

Telefax +49 -2241 -14 -2618
http://www.gmd.de

In der Reihe GMD Report werden Forschungs- und Entwicklungs-
ergebnisse aus der GMD zum wissenschaftlichen, nicht-

kommerziellen Gebrauch veröffentlicht. Jegliche Inhaltsänderung
des Dokuments sowie die entgeltliche Weitergabe sind verboten.

The purpose of the GMD Report is the dissemination of scientific

work for scientific non-commercial use. The commercial
distribution of this document is prohibited, as is any modification

of its content.

Anschrift des Verfassers/Address of the author:

Dr. Frank Śmieja

Institut für Systementwurfstechnik
GMD – Forschungszentrum Informationstechnik GmbH

D-53754 Sankt Augustin

This work has been carried out while the author

was a member of the
RWCP Theoretical Foundation GMD Laboratory

ISSN 1435-2702

iii

Abstract

The step from robot simulation to a real-world machine is a big one, and arguably
the most daunting aspect for anyone performing this step is the sudden need to intro-
duce real perception into their system. The most typical and enticing way to enrich
sensory information is to open the robot's eyes to the visual spectrum. The visual
world is however one of arbitrary complexity and to hope for a general method for
performing any particular aspect of visual recognition would be unrealistic. Therefore
one must introduce constraints in the form of assumptions about the scene interesting
to the robot and for the task to be performed. This requirement becomes most clear
when speed is of the essence, as it typically is for robotic applications. This paper
describes a method that makes a number of assumptions about the scene in order to
generate a fast cuboid model (around �ve cubes per second) of cuboids interesting for
our robot, JANUS. The 3D information is obtained through the use of two cameras
mounted on a commonmovable head. This paper concerns itself also with the embed-
ding and extension of such an algorithm in a reective team architecture.

Keywords: Edge detection, fast vision, 3D-synthesis, reection, teams.

iv

CONTENTS v

Contents

1 Introduction 1

2 Algorithm overview 1

2.1 Assumptions : 1

2.2 Advantages gained from the assumptions : 2

2.3 The detection process : 2

3 Blob extraction 3

4 Edge detection 4

4.1 Basic edge detection : 4

4.2 Line formation : 10

4.3 Finding vertices : 12

4.4 Guided edge detection : 14

5 3D-synthesis 16

5.1 Calibrated cameras : 16

5.2 Generating a 3D point : 17

5.3 Corresponding points : 17

5.4 Generating a 3D cube model : 18

6 Re�nements to the algorithm 20

6.1 Incomplete 2D projections : 20

6.2 Errors and estimates : 20

7 Performance tests 22

7.1 Measurement of correctness : 22

7.2 Standard cube results : 22

7.3 Dependence on orientation : 22

7.4 Dependence on lighting : 24

vi CONTENTS

7.5 Dependence on blob size : 24

7.6 Dependence on cube color : 24

7.7 Dependence on shadows : 28

8 Parameter estimation 28

8.1 General parameters : 28

8.2 Speci�c parameters : 29

9 Algorithm limitations and the concept of reective teams 29

9.1 Reective team architecture : 30

9.2 3D cube algorithm as a non-reective team : : : : : : : : : : : : : : : : : : 32

9.3 Introducing reection : 32

9.4 Self-assessment : 34

10 Conclusions 34

References 35

1

1 Introduction

Some way of perceiving the world is necessary for real robots operating in a 3D world,
especially if they are to possess a reasonable degree of autonomy. Unfortunately, one of the
most information-rich ways, vision, is a very compute-intensive and arbitrarily involved
procedure, which tends to make it typically and potentially very slow. For a robot that is to
work and react in the real world containing moving objects, a vision method must operate
at least at a rate of a few frames a second. Such methods are known as \fast vision" and
generally owe their speed to various assumptions that are made about the environment
and its contents, and to a rough but adequate processing of frame information.

The method described in this paper has no qualms about identifying its own limitations
and the assumptions necessary for its smooth operation. Indeed we are convinced of the
usefulness and reasonableness of developing algorithms that are capable of this kind of
self-assessment. In this way it is possible to reuse them for other tasks and as part of
teams [1].

The robot in our laboratory possesses two manipulators and a head with two cameras
attached. It needs to manipulate blocks (cuboids) on and above a workbench. In the
simulation phase of system development the information about the outside world (outside
of the robot control system) took the form of simple data modelling of cuboids. This
description was enough for us to be able to develop the main area of interest for us:
the motoric skills of the robot. It eventually became necessary to extend our simulated
investigations and methods to a real robotic system, in order to bring interesting dynamic
e�ects in to the system. Since we did not wish to spend too much time and e�ort in
developing complex visual recognition methods in order to extract the information we
require from the external world, we decided to limit our excursion in the visual world to
reproducing the information that the robot would normally receive from the simulation,
and allowed any scene constraints that were necessary.

The paper is organized in the following way. In the next section we give an overview of the
algorithm, from camera pixel images to the �nal 3D hypotheses. Sections 3 { 5 describe
the various steps in detail, and in section 7 we show some performance tests using the
method. Section 8 explains how the algorithm parameters are to be estimated. Section 9
introduces reective teams and shows how the algorithm may be represented as a team,
and also be improved upon by reection. In section 10 we provide our conclusions.

2 Algorithm overview

2.1 Assumptions

The following assumptions are made about the observed world of the robot:

� Color. The objects are all monochrome and have color belonging to a set of prede-
�ned cube colors. The background and all uninteresting objects are some shade of
grey (from white to black).

2 2 ALGORITHM OVERVIEW

� Form. The objects are all assumed to be cuboids of one of a few prede�ned sizes.

� Calibrated cameras.We assume the two cameras used have already been calibra-
ted. This is an assumption for this paper only, since it is not our goal here to describe
the calibration process, which can be found in another publication of our group [3].
The calibration of the cameras is necessary for generating 3D points from 2D image
plane points from each camera (see section 5.1).

2.2 Advantages gained from the assumptions

� Shadows. Given the colorful nature of the objects, detection methods can be deve-
loped that take advantage of this and thus shadows, which tend to be mainly grey,
no longer pose great problems (although see later for cases where they do disturb).

� Reections. Similarly, since reections onto grey objects also tend to have a high
grey content (although not completely), they also pose little problem.

� Lighting. As a result of the last two factors, the intensity and con�guration of the
lighting is no longer a critical factor. It must of course be bright enough, but we
found that we could get good results just by using normal room lighting. This is an
important gain, especially when the robot is expected to work in a normal working
environment.

� Background noise. Since detection is based heavily on the colorful nature and
cuboid form of the objects in question, other types of visual cues can be easily
ignored. Thus the background color and content is not of a critical nature. For
example, objects that are too small or too large will be ignored, even if they have
the right color; conversely, objects of the right size but non-cuboid color will also be
ignored (this helps us to �lter out the arms themselves, which have a yellow/orange
hue).

� 2D-shape. Since objects may only be cuboids, they will all have a typical 2D pro-
jection, which also helps to identify corresponding points in the two cameras, and to
make hypotheses about missing1 corners.

2.3 The detection process

Figure 1 shows the overall structure of the detection process. The input to the system
consists of two images of the current scene from the calibrated head cameras. Each image
is processed to produce two sets of 2D points representing the corners of the cubes identi�ed
in the images. This process consists of 4 stages:

1. Extract \blobs" from the image. A blob is a monochrome area with a minimum size,
whose main color belongs to the group of allowed cuboid colors.

2. Find edge points for each blob that de�ne the 2D projection of the cuboid.

1Information can be lacking when cube orientations are unfavorable (e.g. head on, or from above), or
when one cube hides part of another

3

right camera

left camera

blob
extraction

edge
detection

2D
points

blob
extraction

edge
detection

2D
points

3D
points

cube
iteration

Figure 1: Highest-level structure of the vision system: Images enter from the head came-
ras, are processed individually to produce 2D vertex information, combined with camera
model information to generate 3D points for the stereo synthesis, which generates a cuboid
hypothesis as output.

3. Fit a reduced set of lines to the edge points.

4. Find at most 6 intersection points from the set of lines. These should be at the
corners of the 2D projection of the cuboid.

Having obtained a set of corner points of the 2D-projection of each cuboid the next stage
is to match blobs from the two camera pictures and then �nd corresponding points of
the 2D projections. Once the corresponding points have been decided one has a set of 3D
points describing some corners of the cuboid. The �nal stage is an iteration of the possible
cuboid sizes within the set of points to get the best �t. The result is the 3D hypothesis of
the cuboid.

3 Blob extraction

The �rst process performed on an image takes advantage of the colored nature of the
objects. The image is scanned quickly for relatively large connected colored shapes, using
a coarse-grained grid. The colored shapes are called blobs, and are manipulated by their
enclosing box (xmin; ymin; xmax; ymax) de�ned in the pixel space of the image. Further
processing is performed solely within the boxes (see Figure 2).

The extraction is performed by splitting the image into a square grid of side �G pixels
(in our case �G = 30), reading the pixel RGB value �ij of the pixel (i; j) near the middle
of a grid square and checking the angle �(�ij ; �c), between the pixel RGB and the RGB
of a de�ned color c, where:

�(�1; �2) := arccos
�1 � �2
j�1jj�2j

: (1)

Each color c 2 C, where C is the set of prede�ned object colors, is compared until an angle
less than a threshold �blob (in our case �blob = 10�) is found, and the associated grid square
is said to be colorful. If no angle under this threshold is found the grid square is assumed
to contain background image only.

4 4 EDGE DETECTION

(a)

Extract blobs

(b)

Initial box

pixel i,j

(xmin, ymin)

(xmax, ymax)

Figure 2: (a) The blob extraction process (b) grid and initial blob construction

When a grid square is found to be colorful a new box (x0min; y
0

min; x
0
max; y

0
max) is de�ned as

the boundaries of the given grid square. This box is then immediately expanded to include
the nearest halves of all adjacent grid squares (Figure 2b).

Each initial box thus found is called an intermediate box. It is then checked against the set
of m current boxes B. If it overlaps with any other box associated with the same object
color it is subsumed into it, by generating a new bounding box enclosing both old box and
intermediate box. If it does not overlap with any box in B it forms a new box m+ 1 and
is added to B. Initially B forms the empty set.

Since boxes are only merged when the associated prede�ned object color is the same, it is
possible to have overlapping boxes of di�erent object colors.

Blob extraction requires order of 5 ms real time on a Pentium 2 PC.

4 Edge detection

We split this section into two related phases of the edge detection process. The �rst phase
(sections 4.1{4.3) starts with no information about possible location of edges, and the
second phase (section 4.4) uses information gained from the �rst phase to improve the
detection of the edges.

4.1 Basic edge detection

In order to speed up the edge detection process (we have no dedicated hardware for our
vision), no 2D image convolution procedures are employed, and a main requirement is to

4.1 Basic edge detection 5

(a) (b)

(c) (d)

Figure 3: Edge detection is carried out by running along the image in four scan directions
and along a number of scan lines in the search directions. The unbroken arrowed lines
indicate the scan line direction, and the broken arrowed lines the search direction. (a)
Search direction south, scan direction east (b) search direction east, scan direction north
(c) search direction north, scan direction west (d) search direction west, scan direction
south

keep the number of pixel value accesses to a minimum. The approximate size of an average
box is 80?80 = 6400 pixels, and if every RGB pixel value had to be accessed and processed
the time required per box would be too high for real-time processing.

4.1.1 Assumptions made by the algorithm

It is assumed that the 2D projection of the object on the image plane is a single topologi-
cally closed surface. It may be concave: this will later be used to determine whether a cube
is occluded by another. Furthermore we will be assuming that object edges are de�ned as
transitions between two more or less monochrome surfaces having a minimum size.

4.1.2 Four directions

Each box is processed along a number of scan lines separated by Nsample � 1 pixels in
the search direction in each of four scan directions NWSE from outer edge towards
the center (see Figure 3). An edge point is discovered by running along a particular scan
line and comparing pixel RGB values on the line. Thus, no comparison is made between
pixels in successive scan lines.

6 4 EDGE DETECTION

(a)

x

y

x

Angle to
grey

(b)

Figure 4: Illustration of how the angle to grey for each pixel may vary along a scan line

4.1.3 Edge location

Each pixel along a scan line has an RGB value. These values must be used to identify the
position of an edge. The de�nition of an edge determines the method used to detect it.
Thus, if an edge is de�ned as the position along a scan line with the maximum rate of
change of RGB intensity (however this may be de�ned), then it is found by de�ning an
appropriate discrete pixel interval for measuring di�erences, and checking all the values
of intensity rate along the scan line. One could also de�ne an edge at the point at which
the angle between pixel value and the RGB value for a shade of grey changes from a low
value to a high value. Figure 4 illustrates this. The disadvantage is of course that the value
can change over a number of pixels before becoming relatively stable again on the object
surface. Furthermore, de�nition as the point at which the rate of change of angle to grey
is highest may also not be terribly reliable when the edge becomes more smeared, which
is the case for some less vibrant colors and bad lighting conditions, or overlapping blobs
and shadows.

4.1.4 The two-surfaces method

We decided on the two-surfaces method for edge detection, which is de�ned in the following
way.

1. Scan line. A scan line l de�nes a sequence of pixel RGB values l = h�1; �2; : : : ; �Ni,
where N is the length of the line, and i indicates the pixel index along the line, which
is completely contained within the box.

4.1 Basic edge detection 7

2. Locate an object surface. A scan line is progressed, starting at pixel index 1,
until a point on the colored blob is found.

A pixel j in the line l is de�ned to be on a blob surface if the following condition
holds:

�(�j�D=2; �j+D=2) < �surface (2)

where D is a parameter de�ning the minimum pixel extent in one direction of a
surface, and could have a variable value depending on the overall size of the blob.
Thus a blob surface is only checked along the scan line (i.e. in a one dimensional
slice of the 2D surface).

A pixel j in the line l is part of a colored surface if it lies on a blob surface, and the
following also holds:

�(�1; �j) > �bg (3)

where �1 is the RGB value of the �rst pixel on the scan line, de�ned to be the
RGB value of the blob background (bg) for this scan line (we assume all blobs lie
completely within the borders of the camera image). The background of a blob is
de�ned as the areas in the box external to the colored surface of the blob. The
transitions from blob surface to background may not always indicate a cube edge
(see section 6.1).

A pixel j in the line l is part of an object surface if it is on a colored surface and the
following also holds for some c 2 C:

�(�c; �j) � �ocolor (4)

As soon as a pixel of a scan line is determined to be part of an object surface the
following tuple is recorded:

(josurface; �josurface);

where the subscript \osurface" denotes object surface, and josurface is the �rst
scanned pixel found on the surface.

3. Locate background surface.

The scan line is then progressed from josurface �D=2 in the (opposite) direction of
decreasing pixel index, until a background surface is found.

A pixel j in the line l is part of a background surface if it on a surface, and the
following also holds:

�(�josurface ; �j) > �ocolor (5)

The result is a tuple
(jbsurface; �jbsurface);

where the subscript \bsurface" denotes the background surface, and jbsurface is the
�rst pixel found on this surface.

4. Get edge point.

The pixel representing the part of the object edge lying on the scan line, we call the
edge point. It is to be found somewhere between jbsurface and josurface. Figure 5
shows an example of the progression of the angle with �josurface of the pixels between
a background surface and object surface (red).

8 4 EDGE DETECTION

test line

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

170 175 180 185 190 195 200

j

an
gl

e
to

 s
ur

fa
ce

 R
G

B

jbsurface

josurface

jedge

Figure 5: The heavy line in the top picture indicates part of the west{east scan line and
under the picture are shown the actual pixels in the line. Shown in the graph are the angles
with �josurface of the pixels along the line. The points josurface and jbsurface are marked
on the graph, as is the identi�ed edge point jedge.

It can be seen that even for this relatively good and clear edge transition it is not
obvious where to de�ne the edge point exactly. We present two hypotheses for the
edge point pixel jedge:

Using angle thresholding. The edge point is at the pixel jedge, where the angle bet-
ween �jedge and �josurface is nearest to half of that between �jbsurface and �josurface :

jedge : j�(�jedge; �ocolor)� �edgej = min
j
(j�(�j; �ocolor)� �edge j) (6)

where
�edge := �(�bcolor; �ocolor)=2 (7)

We show some examples of angle pro�les of edges around the test object in Figure 6.

Using intensity thresholding. The edge point is that point with intensity di�erence
to �josurface closest to a constant factor fedge of that between �josurface and �jbsurface:

jedge : jI(�jedge; �jocolor)��Ijedgej = min
j
(jI(�j; �jocolor)��Ijedgej) (8)

where
�Ijedge := I(�jbcolor ; �jocolor) � fjedge (9)

The intensity function is given by:

I(�i; �j) := j�i � �jj (10)

where the euclidean distance metric is used between the 3-component RGB vectors.
However, the value of fjedge is not necessarily (as in the angle method) the simple

4.1 Basic edge detection 9

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

170 175 180 185 190 195 200

j

an
gl

e
to

 s
ur

fa
ce

 R
G

B

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

255 260 265 270 275 280 285

j

an
gl

e
to

 s
ur

fa
ce

 R
G

B

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

260 265 270 275 280 285 290

j

an
gl

e
to

 s
ur

fa
ce

 R
G

B

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

260 265 270 275 280 285 290

j

an
gl

e
to

 s
ur

fa
ce

 R
G

B

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

340 345 350 355 360 365 370

j

an
gl

e
to

 s
ur

fa
ce

 R
G

B

-15 +15

Figure 6: Examples of edge pro�les around a test cube. The scan lines are marked as thick
black lines, and are matched by the arrows to their angle pro�les. The center of each scan
line is placed at the pixel judged to be at the edge point.

value 0.5. Because of shadows and reections the correct value can vary greatly.
Although variations of optimal value also occur in the angle method, we found the
latter more reliable, given our color assumptions.

Each search direction results in a sequence of edge points for the object edges. Some of
these object edges are present in more than one search direction. The four search sequences
are combined in the order south , east, north, west to form a further sequence hE1; : : : ; ENei
where Ei = (ui; vi). The resulting sequence is already partially ordered along the perimeter
of the blob. It is then re-ordered to produce a set of edge points that progressively mark
the outer perimeter of the blob. This is termed the edge point chain.

4.1.5 Construction of edge point chain

The edge point chain is a sequence of edge points ordered counter-clockwise along the
perimeter of the blob. An edge point chain C = h(u1; v1); : : : ; (uNC

; vNC
)i is constructed

from the sequence of Ne collected edge points in the following way:

1. Set i = 1

2. Tag point i

3. Find non-tagged point Ej with smallest euclidean distance to point Ei

4. Store Ej in C, set i = j

10 4 EDGE DETECTION

(a) (b)

Figure 7: Typical result of basic edge point detection. (a) Edge points are green, (b) the
edge lines (blue) resulting from the line formation algorithm.

5. Goto step 2

Built into this process is a mechanism for avoiding loops (this can occur when the edge
points are all close to each other), escaping from deadends (backtracking) and ignoring
points that are too far away.

4.1.6 Result of edge point detection

Figure 7a shows a typical sequence of edge points obtained from the detection process thus
described. The scan lines spacing Nsample = 7 pixels. Section 8 describes the automatic
determination of this and other parameters.

You may notice that some scan lines produced no edge point. This is the result of poor
surface identi�cation: rather than risk a highly erroneous edge point we skip it completely
when one or both surface pixels cannot be found reliably.

4.2 Line formation

Given the edge point chain a set of lines must be generated. This is done by repeated
application of a linear regression algorithm, which searches for sequences of points that lie
near to straight-line segments in IR2.

A full set of such edge lines L is constructed by invoking the recursive function
edge line set as follows:

L = edge line set (C; fg)

4.2 Line formation 11

edge line set (q; l) inserts straight-line segments into the set l. The segments are obtained
progressively from the sequence of points q in the continuous 2D space of the image (where
the base unit is de�ned by pixel separation) by application of function longest line chain.
The parameter Nmin determines the minimum number of points de�ning a line segment,
corrmin the minimum acceptable correlation of a segment with the set of points.

longest �t chain (q; len; nworse; corrmax) returns the initial sequence of points in
q which maximizes the line correlation corrmax and for which nworse < Nworse.
longest �t chain is a recursive function, and is repeatedly called increasing len by 1
each time. nworse counts the number of successive increases in len that resulted in a total
correlation lower than the last maximum.

edge line set (q; l) :=
if jqj < Nmin

then l
else if corr (subseq (q;Nmin)) < corrmin

then edge line set (remainder (q; subseq (q;Nmin)); l);
else edge line set (remainder (q; longest �t chain (q;Nmin; 0;�1));

l [fline (longest �t chain (q;Nmin; 0;�1))g)

longest �t chain (q; len; nworse; corrmax) :=
if len > jqj
then q

else if corr (subseq (q; len)) < corrmax

then if nworse = Nworse

then subseq (q; len� nworse)
else longest �t chain (q; len+ 1; nworse + 1; corrmax)

else longest �t chain (q; len+ 1; 0; corr (subseq (q; len)))

remainder (q; f) returns the sequence q minus the starting sub-sequence f . subseq (q; j)
returns the sub-sequence consisting of the �rst j elements of q. line (q) returns a line
(m (q); c (q); corr (q)) �t to the sequence of points q, where:

m (q) =
A (q)

D (q)
(11)

c (q) =

P
yk

jqj
�m (q)

P
xk
jqj

(12)

corr (q) =

s
A (q)2

B (q)D (q)
(13)

A (q) =
X

xkyk �

P
xk
P
yk

jqj
(14)

B (q) =
X

y2k �
(
P
yk)

2

jqj
(15)

D (q) =
X

x2k �
(
P
xk)2

jqj
(16)

12 4 EDGE DETECTION

In the above xk and yk denote respectively the x and y components of the kth element of
q.

An edge line tuple (m; c; corr) de�nes the locus

y = mx+ c (17)

in the continuous image space.

There are three parameters that control the edge line search procedure: the minimum

number of edge points per line, Nmin, the minimum overall line correlation, corrmin and
the maximum number of consecutive points acceptable whose addition does not improve

the correlation, Nworse. The �rst parameter sets a lower limit on de�nition points in a
line, the second determines when to start constructing a new line, and the third rejects
lines of bad correlation. The second is a very important parameter, because it inuences
the exact point of detection of corners in the blob outline. Figure 8 shows the e�ect of
variation of Nworse on the test picture using the edge points shown in Figure 7. It is a
di�cult parameter to set, since it will depend on the length of the edge in question, and
this can be arbitrarily small (e.g. a cuboid viewed from almost directly above). In order
to limit the number of arbitrary parameters we set

Nworse = Nmin (18)

so that this length now determines the minimum edge length in terms of edge points
one can reasonably hope to resolve. The resolution limit is, however, lower-bounded (as
indicated in Figure 8) and other measures must be utilized to handle di�cult cases (see
section 9 for a discussion of this and other algorithm limitations).

What we can deduce from the above parameters is a lower bound on the acceptable pixel
length of a line Lmin:

Lmin = (Nmin � 1) �Nsample (19)

For the typical parameter values we used this lay in the region of 15{30 pixels.

4.3 Finding vertices

Vertex formation proceeds in the following way:

1. Find intersections. The lines are used to �nd the corners of the cross-section of
the cube. This is done by considering initially an arbitrary line and intersecting
with all other lines (using their extensions if necessary). The intersection closest to
the nearest endpoint of the original line is chosen (Figure 9a). The next line to be
considered is the line that successfully intersected, and the endpoint in question is
then its other one. This process continues until all lines are used up. In this way
all lines will be intersected at both ends apart from the �rst one and the last one
(Figure 9b). These are then intersected with each other to produce a closed �gure
(Figure 9c).

2. Check angles: cuboid assumption. Now the resulting closed �gure is considered
and the angles of the corners are investigated. If an angle is too acute it either

4.3 Finding vertices 13

(a) (b) (c)

Figure 8: Inuence of the line search parameter Nworse on the line construction algorithm:
(a) 5, (b) 3, (c) 2. If the parameter is too low the edge is undershot. If the parameter is
too high this a�ects unsharp and short edges adversely (not in illustrated case).

L1 E1

I1

L1

I1

(a) (b)

I2

I3

I4

I5

Ln

(c)

L2 L2

Figure 9: (a) A line is chosen (L1) and extended in the direction of a chosen endpoint
(E1). All other lines (heavy) are extended (thin) in the direction that intersects with this
extension. The intersection (if any) nearest to E1 and the line it came from (L2) are then
stored. (b) This process is continued until either no intersection point is found (= failure)
or all lines are used up. The two dangling lines L1 and Ln are then intersected in the
dangling directions to close the �gure (c).

14 4 EDGE DETECTION

indicates that the intersection was false, or that the object is partly hidden by
another object. Discussion of the case of hidden objects is delayed to section 6.1. In
either case the corner in question is removed, and the two corners that were adjacent
to it are joined by a straight line. The angles of corners are checked in this way until
no more changes are made.

3. Reduce to 6 corners. The resulting form should be a 2D projection of a cube.
Thus if there are more than six corners present then the excess ones must be remo-
ved. This is ranked on the basis of their estimation error, calculated from the other
detection phases (see section 6.2 for a summary of errors gathered from the recogni-
tion process). If there are less than 6 corners remaining it may still be possible to
use some in a future 3D synthesis. Such cases occur when only four edges may be
identi�ed (view practically face-on). If only 5 corners remain it may be possible to
make a reasonably good guess at the missing one (see section 6.1).

The closed �gure is de�ned by the ordered set of vertices V = hV1; : : : ; VNvertsi where
Nverts is the number of corners and Vi indicates the 2D pixel position of corner i in the
continuous image plane.

4.4 Guided edge detection

The preceding method of generating closed �gures used what we term the \basic edge
detection" method for locating the edge points. This method can however be improved
upon, by allowing a further processing phase that uses the closed �gure generated above to
guide and focus the search for the edges in a particular region of the blob. The advantage
is that since the areas are smaller it is possible to use a lower value of Nsample to obtain
more candidate edge points per line, and also, since the approximate positions of the edges
are known, more di�cult edges may be better localized and the lines better �tted.

The process itself is quite simple. Instead of considering an entire blob, Nverts regions
R = fR1; : : : ; RNvertsg are chosen, de�ned by:

Ri = Rect(Vi; Vi+1) i 2 (1; Nverts � 1) (20)

Ri = Rect(Vi; V1) i = Nverts (21)

where Rect(Vi; Vj) de�nes a rectangle with 2 opposing corners at Vi and Vj respectively,
which is additionally blown up if necessary to have a minimum width and height of Drect.

Each region Ri is taken, as well as the �rst hypothesis of the line inside it, and the two-
surfaces scan line method is repeated (section 4.1.4) using a lower value of Nsample, and
taking the value of the �rst line hypothesis at the scan lines to concentrate the two-surfaces
search around the �rst hypothesis for the blob edge.

Figure 10 show a typical result of using this method to improve the closed �gure obtained
using the basic edge detection, and Figure 11 compares the two closed �gures generated
directly.

4.4 Guided edge detection 15

Figure 10: Edge detection using edge guides: The initial edge detect process produced
vertices connected by the white lines shown (middle picture). They are used to constrain
and guide the search for better edge points (inner ring of smaller pictures) and consequently
edge lines (outer ring) are produced.

16 5 3D-SYNTHESIS

(a) (b)

Figure 11: (a) closed �gure obtained using basic edge detection method, and (b) using
guided method with information from (a)

5 3D-synthesis

The next step in the processing is to take the 2D closed �gures of shapes from two cali-
brated cameras and combine them to form a 3D model of an object.

5.1 Calibrated cameras

In the following we refer to a point in the world coordinate system by (x; y; z)T , and the
continuous image coordinate system by (u; v).

Each head camera is fully calibrated relative to the world coordinate system within which
the workspace and robot arms are also de�ned. The cameras are taken to approximate to
the pinhole model, and the result of the calibration [2, 3] produces a matrix M decompo-
sable as a product of two further matrices I and E:

M = I �E (22)

I =

2
64 �u 0 u0 0

0 �v v0 0
0 0 1 0

3
75 (23)

E =

"
R T
0 1

#
(24)

I is the intrinsic parameters matrix: �u and �v are scaling factors in the two axes of the
camera CCD plane, and (u0; v0) are the coordinates of the image center. E is the extrinsic
parameters matrix: R is the 3�3 rotation matrix of the CCD plane and T is its translation
vector relative to world coordinates.

5.2 Generating a 3D point 17

The matrix M allows the following transformation to be made:

0
B@ u
v
1

1
CA =M

0
BBB@
sx

sy
sz

s

1
CCCA (25)

where the vector (sx; sy; sz; s)T represents all points on a line in world coordinates inter-
secting the image center.

5.2 Generating a 3D point

Given the continuous pixel coordinates of corresponding points on an object from two
cameras, (u1; v1) (from camera 1) and (u2; v2) (from camera 2), the 3D world coordinates
(x; y; z) of this object point can thus be calculated from the two camera matrices M1

(camera 1) and M2 (camera 2) by �nding the intersection of the respective lines.

This calculation is actually performed (see [2, 3]) by iteratively solving the linear system
of 4 equations with 3 unknowns obtained from the two sets of matrix equations similar to
eqn. (25).

The intersection is in general not going to be exact, and so there will also be an associated
error e generated, that gives the uncertainty in world units of the 3D point suggested.
Section 6.2 discusses the use for such a parameter.

5.3 Corresponding points

To generate a full 3D model a minimum number of points are required to constrain the
cube location. We do not assume any particular orientation of the cube, and therefore
need at least four non-planar points to specify a given cube.

The result of our detection process provides us with 2 sets of vertices, V1 and V2, containing
Nverts1 and Nverts2 vertices respectively. The task now is to match up points between the
sets that correspond to the same points on the actual object. Since we are locating the
corners of the cube with the detection method we shall assume that both sets contain at
least as many corresponding points as the set with the lower number of points. Thus every
point in the set containing less points should be matched up with a point in the other set.

The point clusters are shifted so that their centroids coincide. Matching points are located
using a distance metric in this relative space. Thus points closest in the superposed clusters
are assumed to correspond. This assumption is only approximately feasible and only then
for cases when the objects are su�ciently distant from the cameras.

A more rigorous way is to compare all points, and choose those pairs with the lowest values
of error e from the 3D point generation. However, since the �rst method su�ced for our
examples we used it for the experiments (and times) described in this paper.

18 5 3D-SYNTHESIS

5.4 Generating a 3D cube model

After the corresponding points have been found, a set of 3D points P = fP1; : : : ; PNcorners
g

can be generated as described in section 5.2. The �nal step in model generation is then to
�t a 3D description of a cuboid to the set P .

5.4.1 Cube iteration

A candidate cube is chosen by comparing the maximum extension of the set of points P
with the long diagonals of each cube in the set C that have the correct color. The best
match to P is then found using a simple iteration process. In the following the location
(position and orientation) of the candidate cube is represented by the tuple (p; r) where
p = (xc; yc; zc) de�nes the position of the cube center and r = (�; �;) the rotation of the
cube with respect to the world coordinate axes (x; y; z).

The candidate cube's position p is �rst set to coincide with the centroid of P . This results
in cube location (pcentroid; rstart), where rstart is some initial random cube orientation (we
set it to (0; 0; 0)).

The cube's location is then iterated to �t the point set:

�nal loc cube;D := (�nal pos (pcentroid; rstart; strans start);
�nal rot (�nal pos (pcentroid; rstart; strans start); rstart; srot start))

The recursive functions used above are de�ned as follows:

�nal pos returns the �nal position obtained with the smallest step size s � strans stop

starting from pfrom with a given initial step size s and a �xed orientation rconst.

best pos returns the best position pbest of the given cube with respect to P for a starting
position pfrom, a �xed step size s and a �xed rotation vector rconst.

Dall = f�1; 0; 1g3 is the set of (27) displacement vectors.

W =

0
B@ w1 0 0

0 w2 0
0 0 w3

1
CA where w1; w2; w3 are rotation angles about each world coordinate

axis.

�nal pos (pfrom; rconst; s) :=
if s < strans stop

then pfrom
else �nal pos (best pos (pfrom; rconst; Dall; s; 0;pfrom); rconst; s=2)

best pos (pfrom; rconst; D; s; best�t;pbest) :=
if D = fg

5.4 Generating a 3D cube model 19

then pbest
else if �tness (pfrom + s � sel (D); rconst) > best�t

then best pos (pfrom; rconst; D n fsel (D)g; s;
�tness (pfrom + s � sel (D); rconst);pfrom + s � sel (D))

else best pos (pfrom; rconst; D n fsel (D)g; s; best�t;pbest)

�nal rot returns the �nal rotation (orientation) obtained with the smallest step size
s � srot stop starting from rfrom with a given initial step size s and a �xed position pconst.

best rot returns the best rotation (orientation) rbest of the given cube with respect to
the set of points P for a starting rotation rfrom, a �xed step size s and a �xed position
vector pconst.

�nal rot (pconst; rfrom; s) :=
if s < srot stop

then rfrom
else �nal rot (pconst;best rot (pconst; rfrom; Dall; s; 0; rfrom); s=2)

best rot (pconst; rfrom; D; s; best�t; rbest) :=
if D = fg
then rbest
else if �tness (pconst; rfrom + s � sel (D) �W) > best�t

then best rot (pconst; rfrom; D n fsel (D)g; s;
�tness (pconst; rfrom + s � sel (D) �W); rfrom + s � sel (D) �W)

else best rot (pconst; rfrom; D n fsel (D)g; s; best�t; rbest)

sel denotes the selection function of set theory. The selection function de�ned on the set
of non-empty subsets of Dall returns an (arbitrary) element of an argument set D � Dall.

The function �tness (p; r) calculates the goodness of cube �t to the point set P in the
following way:

Each point in P is matched progressively to the nearest of the 8 corners of the cube de�ned
by the location (p; r) using a euclidean distance metric. \Progressively" means that the
pair (point, corner) that is nearest is paired o� �rst, removing the given corner from the
set of possibilities for the other points in P . The average euclidean distance of all the pairs
de�nes then the �t.

Thus �rst the cube is shifted over to the general region of the points, then it is iteratively
matched to the points using decreasing translational shifts along and then decreasing
rotational turns about three orthogonal world axes.

Four parameters control the iteration: strans start; strans stop; srot start, and srot stop. They
determine how large the iteration step is to be for both translation and rotation iteration,
and how small it can become before the iteration terminates. We introduce another para-
meter, fitgood, which is a lower bound for the cube �t. This allows the iteration procedure
to be interrupted at any time if the �t is good enough for our purposes. This is typically
only useful for saving time if the iteration has already reached a successful level.

20 6 REFINEMENTS TO THE ALGORITHM

6 Re�nements to the algorithm

6.1 Incomplete 2D projections

An incomplete projection is one that has less than 6 corners, and can arise in the following
situations:

� The object itself is partially obscured by another object, which made the edge iden-
ti�cation either impossible or simply leads to the generation of \false" corner points:

{ A true corner point is one formed from the intersection of two adjoining edges
that correspond to real edges of the cube.

{ A false corner point is one formed from the intersection of two edges where at
least one does not correspond to a real edge of the cube

Figure 12 illustrates this.

� The object is observed practically \head-on", so that the 2D projection is a 4{ or
5{sided polygon, instead of the general case of 6. In such cases the missing corner(s)
are normally not completely invisible { they have just very obtuse angles. We deal
with the 5{sided case in the following way:

{ perform basic edge detection as usual, generate the 5-point �gure

{ assume a symmetrical 2D projection

{ assume the missing point to lie somewhere between the points joining the cur-
rent longest side

{ use the assumed symmetry to generate the new point by construction

{ use the resulting 6-point �gure to continue with the guided edge detection

This worked very well for our cases. The error resulting from assuming a perfect
symmetry in the 2D projection is usually removed after the guided edge detection.
The 4{sided case can not be handled using the symmetrical construction, but we
found that for many cube positions, when the second camera can produce a 6-point
�gure, the 3D hypothesis is still quite good (only 4 non-planar 3D points are required
to de�ne the cube unambiguously).

6.2 Errors and estimates

At every stage of the processing, from blob generation to �nal 3D hypothesis, there is the
possibility of collecting errors and estimates to do with the accuracy of processing in a
particular stage. In this section we will list them and their meaning, and in section 9 show
how they may be used to construct a reective actor.

� Edge points. Each edge point generated using the two surfaces method has an
associated error. This error represents the uncertainty that an edge is at that point.

6.2 Errors and estimates 21

false corners

true corners

true cube edge

false cube edge

Figure 12: An object's closed �gure after edge detection, showing the di�erence between
a true corner point and a false corner point.

Thus if an edge is sharp there will be less uncertainty than if it is blurred. This
is typi�ed by the width of the edge, which in turn is given by the pixel distance
between the points representing the two surfaces. Thus the pro�les in Figure 6 are
characterized not only by their height, but also by their width.

� Edge lines. An edge line is calculated from the edge points using a simple least
squares �t method. The correlation of the line with the set of points is an indication
of the error associated with it. This value should be suitably converted to provide
an error for the line gradient (since that is the important indicator in this case).

� Vertices. A vertex is formed by the intersection between two lines. The uncertainty
in the gradient in the lines can be used to estimate the possible deviation of the
vertex from the value found using the best �t lines. This is done in the following
way: a line is tilted in the negative gradient direction from the best �t by the gradient
error, and intersected with the other line which is also tilted in the negative gradient
direction. The same is done for the other three intersection combinations, and the
average deviation of the four resulting intersection points from the original vertex
point calculated. This represents then the estimated error value for the vertex point.

� 3D points. The two sets of vertices from the two cameras are combined to form 3D
points using the calibrated camera models. There are two ways of calculating the
error of these points. One way is to calculate a hypothesis sample for a given 3D
point by randomly shifting the two corresponding vertex points within the vertex
error limits and then to estimate a mean error value from the variance of this sample.
Another way is to use the ideal vertex points and the value e from section 5.2 as the
error value. In section 9 we show how both may be used to provide di�erent types
of reection values for the hypothesis procedure.

� Cube �tting. The cube �tting procedure �ts a given cube into the set of 3D points.
As for the 3D points there are two indicators of the cube �t error. Firstly the 3D
point errors can be used to generate some sets of possible 3D points, cubes �tted
to these points and then the deviation between these hypotheses used to calculate
an overall error estimate. Secondly the error can be derived from the �t function
(section 5.4.1) value.

22 7 PERFORMANCE TESTS

7 Performance tests

7.1 Measurement of correctness

It is di�cult to determine how correct the �nal hypothesis really is, since we do not know
ourselves the exact location of the cuboid in world coordinates. The reason for this is
that the world coordinates are for JANUS e�ectively de�ned by the manipulators, and
the normal success criterion is the precision with which the robot can grasp the cuboid in
question. This is however also no real indication of the correctness of the visual processing,
because the precision of the manipulation is also a contributory factor.

For these reasons we used an indirect method for determining the correctness of the visual
processing. The method works by projecting the corners of the hypothesized cube back
through the two camera models, and comparing these with the original image. This can
only be done by hand. The correctness is then given by the average pixel di�erence between
all external vertices and their projections.

7.2 Standard cube results

In order to be able to compare di�erent situations we de�ne a \standard cube" as one that
presents an optimal image for both cameras. Our standard cube was de�ned as follows:

� Color: red

� Size: 70 mm

� Orientation: such that the projected blob has six edges with approximately the same
length

� Lighting: strong

This standard cube is like the one we have been using in this paper to illustrate various
stages of the edge detection process. In the case of a standard cube it su�ces to show a
single result. Figure 13 shows the 2D vertices obtained from the guided edge detection,
together with the projection of the hypothesis back onto the respective image planes
for the two cameras. The slight discrepancies between 2D vertices and corners of the
projected cubes can be traced both to the edge detection inaccuracy and also the camera
calibration inaccuracy. The result is very good, and the generated hypothesis is more than
accurate enough for our robot. The correctness value was calculated to be 1.5 units (pixel
separation). The location precision is e�ectively order of millimeters (although this claim
can only be derived from robot grasping experiments). This is however an ideal case, and
the following experiments investigate behavior for non-ideal cases.

7.3 Dependence on orientation

The orientation of the cube is the most critical factor for this algorithm. As shown in
Figure 14 there comes a point where the algorithm cannot produce useful hypotheses. This

7.3 Dependence on orientation 23

(a) (b)

(c) (d)

Figure 13: Result for a standard cube, left camera image: (a) 2D vertices, (b) hypothesized
cube projected onto image plane, right camera image: (c) 2D vertices, (d) hypothesized
cube projected onto image plane. The 2D vertices are black dots.

24 7 PERFORMANCE TESTS

is in general when the cube is turned less than about 20 degrees to one of the cameras
(although it may be possible to get usable hypotheses for hard cases too, as Figure 14d
shows). As we explain in section 9 one of the most important characteristics of a useful
algorithm is that such limiting cases can be recognized and appropriately handled.

7.4 Dependence on lighting

It was possible to produce three di�erent arti�cial lighting conditions in our lab|all
lights on, two-thirds of the lights on, and one third of the lights on. Results are shown
in Figure 15 for the left camera (right camera is similar). It can be seen that lighting
intensity is not terribly critical. Correctness for all three pictures is 1.5 (the bad point top
left is counterbalanced by very good points for the other corners). For the low lighting
condition it was however necessary to halve the surface parameters �ocolor and �bg. This
may however be automized (section 8).

7.5 Dependence on blob size

As is to be expected, the larger the blob is in the image plane the better its resolution
and the better too its edge detection. Figure 16 shows hypotheses for the standard cube
for increasing blob size. We varied the blob size by changing the distance of the cube from
the camera, which brings in another important e�ect.

As the cube nears the camera the camera model approximates less well the pin-hole model
of a camera. This has the e�ect of introducing distortion into the 3D points. The e�ect
is small but can be seen in the example. The last picture was for a distance of about 40
cm from the camera. The series of pictures also nicely tests the simple vertex matching
method. No problems were encountered with the approximation, although the two camera
images could become very di�erent (Figure 17). In this �gure can also be seen the di�erent
image quality obtained from the two cameras. The right camera was somewhat worse than
the left one.

The main e�ect of blob size is the time taken to process it. Figure 18 shows the processing
time as a function of box diagonal size. The time taken scales more or less linearly with
box diagonal size, and not exponentially, as one would expect. The reason for this is that
for the range of sizes considered the variable sample line spacing Nsample (to be described
in section 8) scaled down the amount of work to be done for bigger blobs.

7.6 Dependence on cube color

Figure 19 shows results for standard cubes of di�erent colors. We found that the only
parameters that needed to be adjusted to achieve these good results for all colors were
once again the surface parameters �ocolor and �bg.

7.6 Dependence on cube color 25

(a) (b) (c)

(d) (e) (f)

Figure 14: Examples of decreasing projection angle of cube on image plane. (a) and (b)
are still good, but (c) brings in errors due to the uncertainty of the middle vertices, which
sometimes goes well (picture (d) is the same cube with a di�erent cube �t iteration result).
The last cases (e) and (f) demonstrate the extreme where the middle vertices are invisible
to the algorithm, and the only 3D points to go on are the remaining four. Since these lie
on a plane, various almost equally valid hypotheses may be made. Correctness values: (a)
1.5, (b) 2.2, (c) 4.1, (d) 1.5, (e) 8, (f) 12.

26 7 PERFORMANCE TESTS

(a) (b) (c)

Figure 15: (a) full lighting, (b) two-thirds lighting, (c) one-third lighting. Shown are the
2D projections of the hypothesized cubes on the left camera image plane.

(a) (b) (c) (d)

(e) (f) (g)

Figure 16: Dependence of edge hypotheses on blob size.

7.6 Dependence on cube color 27

Figure 17: Left and right images for cube about 40cm distant.

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

300 350 400 450 500 550 600

Box diagonal (pixels)

P
ro

ce
ss

in
g

tim
e

(m
s)

Figure 18: Dependence of processing time on box diagonal

28 8 PARAMETER ESTIMATION

(a) (b) (c)

(d) (e)

Figure 19: Results for �ve standard cube colors: (a) red (b) light blue (c) dark blue (d)
green (e) yellow

7.7 Dependence on shadows

We found that the algorithm seems to be quite resistant to shadowy conditions (see Fi-
gure 20). The edges that overlap onto shadows may become more error-prone and broader,
but the overall e�ect is, due to the color surfaces method, not greatly disturbing. For the
overall position heavy shadows produce order of millimeter error.

8 Parameter estimation

The algorithm has a number of parameters, all of which must be determined in some way.
There are two types of parameter: general and speci�c. The general parameters may be
determined through trial and error and set for any type of picture that conforms to our
restrictions (or the restrictions set by the algorithm as its \con�dent area" (section 9)).
The speci�c parameters tend to have di�erent optimal values depending on the image
itself. These must be determined automatically during processing.

8.1 General parameters

Table 1 lists the general parameters and the values we used for all of our experiments.

8.2 Speci�c parameters 29

(a) (b)

Figure 20: Two examples of shadowy conditions. (a) correctness value 1.5, (b) correctness
value 3.0.

8.2 Speci�c parameters

The speci�c parameters are those that are sensitive to features of images, such as light
intensity, color and blob size. The surface parameters, �ocolor and �bg actually only took
on a few di�erent values, as shown in Table 2.

The values of these parameters can be set appropriately on determining general inten-
sity and color properties of a blob. The parameter Nsample determines most signi�cantly
the speed of the basic edge detection processing. The more scan lines that are used the
slower the processing. Furthermore, we discovered that if too many scan lines are used
the procedure is less sensitive to gradient changes and thus is less able to separate edge
characterized by large corner angles (see section 4.2). The parameter must also not be
too large, or there will be too few edge points to form lines. We set as minimum value
Nsample = Nsample min = 3, and maximum value Nsample = Nsample max = 7. For each
blob the maximum value is used �rst for all scan lines, and if too few (less than 4) vertices
are attained the process is repeated after setting Nsample = Nsample � 1, and so on until
enough vertices (at least 4) are found, or Nsample min is reached. This method is not opti-
mal, but allows good (clear or big) images to be processed quicker, while di�cult images
receive more concentrated attention.

9 Algorithm limitations and the concept of reective

teams

The algorithm described in this paper can be seen as one single global process of generating
a 3D hypothesis from two camera images of a cuboid. On the other hand it is also clear
that it is naturally decomposable into the processing levels described in the various secti-
ons, each level having its own set of parameters, extension possibilities and input/output

309 ALGORITHM LIMITATIONS AND THE CONCEPT OF REFLECTIVE TEAMS

Symbol Function Value

�G Grid size for blob extraction 30 pixels
�blob Threshold angle of blob color with a cube color 10 �

�surface De�nes a surface 4 �

D Minimal pixel extent of a surface 4 pixels
Nmin Minimum number of edge points per edge line 5
corrmin Minimum overall line correlation 0.8
strans start Initial step size for cube iteration (translational part) 20
strans stop Final step size for cube iteration (translational part) 0.5
srot start Initial step size for cube iteration (rotational part) 20
srot stop Final step size for cube iteration (rotational part) 0.2
fitgood Lower bound on cube iteration error 0.5

Table 1: The general parameters used in all experiments

Parameter Special case Value

�ocolor red, light blue, dark blue cubes; good lighting 20 �

�bg red, light blue cubes, dark blue; good lighting 10 �

�ocolor red, light blue, dark blue cubes; bad lighting 10 �

�bg red, light blue, dark blue cubes; bad lighting 5 �

�ocolor yellow/green cubes: all lighting 10 �

�bg yellow/green cubes; all lighting 5 �

Table 2: Values of speci�c parameters �ocolor and �bg

characteristics. In short, each level of this algorithm can be seen as an independent compo-

nent operating on a particular set of input values to produce a set of output values, using

certain assumptions, parameters, and methods, and which has limitations and accuracy

that depend on the input data.

The recognition of this fact, which applies to many algorithms, and is very often obvious
through the algorithm's hierarchical form, is the �rst step to converting an algorithm into
a building block for a larger system. Indeed we go further with this extension and convert
it into a reective actor in a reective team architecture.

9.1 Reective team architecture

More details about the reective team architecture are given in [1, 5] and thus here we
will only give a brief description. A reective team can be considered as a unit consisting
of a number of reective actors2 and acts itself as a reective actor. The purpose of a team
is to solve a problem at any given level by explicitly modelling the problem decomposition

and its later recombination. Decomposition is typi�ed by two major processes: sub-task

2Previously we used the word \agent" here, but due to overuse in and possible confusion with other
areas of AI we adopted the word \actor".

9.1 Reective team architecture 31

Problem space

Solution space

Reflective Team

sub-task
1

task decomposition

Actor/
Team

Actor/
Team

Actor/
Team

Actor/
Team

task space decomposition

task space recombination

task recombination

sub-task
2

sub-task
N

Figure 21: Illustration of a reective team architecture. A problem is decomposed into
sub-tasks, each of which is handled by an actor or a team. A team may itself perform task
decomposition, a task space decomposition or both. All actors are reective and may also
be teams. Decomposition must be complemented by a recombination stage.

decomposition and task space decomposition. The �rst performs a problem-speci�c decom-
position into sub-tasks which are then delegated to separate actors, and in the second
the problem space of a given sub-task is divided into (perhaps overlapping) areas that are
handled by di�erent actors with each one performing the same task (see also [4]). Figure 21
illustrates these mechanisms.

The reectiveness of each component of a team is important for the later recombination of
the resulting sub-solutions and suggestions produced into a complete solution. Section 9.3
discusses this issue.

Hierarchical and iterative task decomposition may also be incorporated into the archi-
tecture. In order to represent this we extend the sub-task decomposition to include a
shared-memory module (Figure 22). The actors that take part in the shared memory data
exchange must also be able to handle time-dependent and temporarily missing data. Such
a decomposition is in fact purely a parallel representation of the serial hierarchy using an
implicit time iteration to hide the sequential processing. This means that the \recombi-
nation" module actually does not require any form of reection in order to decide what
to output as team result. The answer is clear: the most recent data emerging from the
�nal stage of the hierarchy (actor N in this case) otherwise nothing. In this respect such
a team representation does not automatically constitute a reective team.

329 ALGORITHM LIMITATIONS AND THE CONCEPT OF REFLECTIVE TEAMS

sub-task
1

hierarchical task decomposition

sub-task
2

sub-task
N

shared memory

Actor/

Team 1

Actor/

Team 2

Actor/

Team N

task recombination

sub-task
1

Actor/

Team 1

sub-task
2

Actor/

Team 2

sub-task
N

Actor/

Team N

Figure 22: Incorporation of a serial hierarchical task decomposition into the reective team
architecture, through use of a shared memory module

9.2 3D cube algorithm as a non-reective team

The algorithm described in this paper is task decomposed as illustrated in Figure 23.
As can be seen, the inherently serial hierarchy is represented in a parallel architecture
consisting of one main cube hypothesis team with a shared memory module. This team
consists of two further 2D points teams for left and right images, and two actors that
deal with 3D point synthesis and cube �tting respectively. The 2D points teams also have
a shared memory module and actors dealing with various aspects of the edge detection
process described above.

9.3 Introducing reection

As mentioned in section 9.1 no reection is necessary to perform the recombination in
Figure 23. However each component of the system can itself be reective, in two di�erent
ways.

1. Output data reection. An actor can reect about the correctness or validity of
the data it is writing as output. For example the vertices generation actor can output
for each vertex in the set a corresponding estimate of the error associated with it
(see section 6.2).

2. Input data reection. An actor can process data that also have reection values
associated. These reection values can be used to inuence the weight or validity of
each data value in the actor processing. They may also be used to provide further

9.3 Introducing reection 33

blob
extract

basic
edge
detect

vertex
detect

guided
edge
detect

shared memory

2D points: right team

blob
extract

basic
edge
detect

vertex
detect

guided
edge
detect

shared memory

2D points: left team

le
ft

im
ag

e
rig

ht
 im

ag
e

recombination

sh
ar

ed
 m

em
or

y

cube
iteration

3D
points

re
co

m
bi

na
tio

n

C
ub

e
hy

po
th

es
is

cube hypothesis team

paste

recombinationpaste

Figure 23: Actor/team task decomposition of the cube hypothesis algorithm

estimates for output data reection. For example the vertices actor receives data
about the edge lines, and these may each have reection values about the accuracy
of gradient or o�set. Intersection jiggling using this information provides further
estimates of intersection con�dence.

But that is not all. Reection values may also actively be used in order to improve data

generation. An example: The 3D points actor has generated one point that has an unusually
high error. All other points have acceptable error values. This information could be used
to place more importance on the better points during the following cube iteration. It
could however also be used to trace the error source. Depending on the way in which such
information can be processed one could envisage the following:

� The 2D points used to generate the 3D points are jiggled within their error ranges
to produce better 3D synthesis. The vertices actors for the 2D point with greater
error is informed.

� The vertices actor informed locates the edge line with greater error used in its gene-
ration and demands analysis by the edge lines actor.

� The edge lines actor attempts to improve the line generation on the basis of the edge
points it has. If this is not possible the edge points actor is informed.

� The edge points actor checks the edge points concerned and either corrects them or
tries to improve generation of edge points for the given image area

This process only involved actors concerning themselves with things they knew about and
were able to control. There was a further reverse sense of the processing (in the original

34 10 CONCLUSIONS

hierarchy from bottom to top) which is hardly noticeable in the shared memory team
representation. Furthermore there emerges the exciting possibility of actively improving

the processing of any given actor, either by internal parameter adjustment or by situation
learning. In our example the edge points actor could learn when to use a particular set of
f�ocolor; �bgg through feedback from other actors and teams.

9.4 Self-assessment

There is one further aspect of reection that needs to be mentioned. Although each speci�c
actor/teammay provide information on the accuracy of any particular output it emits, it is
also useful for each actor to generate a con�dence value. Con�dence is to be understood as a
general expression of satisfaction3 by the actor that the generate output is a \good answer"
for the current input. Such general information is most useful for the team recombination
of information from actors that handle the same input and output data. It is also the basis
of recombination of data from teams that divide up the task space, as in the Pandemonium
team [4]. Thus there may be expert actors that really only know about the special case of
blue cubes on a green background, and can handle these very well. Such an actor should
have low con�dence when faced with a red cube on a white background, and if another
actor is present that can handle such cases it should be used instead.

In this way a multitude of di�erent processing methods and more or less constrained
expertness may be combined into a large hetereogenous system.

10 Conclusions

This paper was mainly concerned with the description of a fast 3D cube hypothesis algo-
rithm for use with a robot manipulation system. In order to speed up the processing we
made a number of assumptions about the nature of objects in the robot's world. Using
simple heuristic methods we were able to construct a exible and robust algorithm that
generated typical cube sizes at a rate of 5 per second. This is a nice rate (although still too
slow) for a real-time robot manipulator. The approximations we made along the way were
characterized by a number of parameters, most of which could be given �xed values. Some
parameters were however dependent on the input data (images), and so special cases had
to be introduced.

The paper was also concerned with outlining how such an algorithm could be embedded
into a reective team architecture. This was demonstrated not only to be a useful structural
simpli�cation but also one that allowed the insertion of (a) more intelligent forms of
processing the data in a complex hierarchy, and (b) extension to a large hetereogenous
system that may be improved to handle wider data variations and, notably, less explicit
assumptions.

3Excuse the anthropomorphism!

REFERENCES 35

Acknowledgements

The author would like to thank Gernot Richter for long, fruitful and patient reading and
re-reading of the manuscript, and for many useful comments and suggestions.

References

[1] U. Beyer and F. J. �Smieja. Learning from examples, agent teams and the concept of reection. Inter-
national Journal of Pattern Recognition and Arti�cial Intelligence, 10(3):251{272, 1996.

[2] F. Dornaika and C. Garcia. Robust camera calibration using 2d to 3d feature correspondences. In
Proceedings of the International Symposium SPIE { Optical Science Engineering and Instrumentation,

Videometrics V, Volume 3174, pages 123{133, San Diego, Ca., July 1997.

[3] Christophe Garcia. Complete calibration of the autonomous hand-eye robot janus. internal report,
GMD - German National Research Center for Information Technology, October 1997.

[4] F. J. �Smieja. The Pandemonium system of reective agents. IEEE Transactions on Neural Networks,
7(1):97{106, 1996.

[5] F. J. �Smieja and H. M�uhlenbein. Reective modular neural network systems. Technical Report 633,
GMD - German National Research Center for Information Technology, Sankt Augustin, Germany,
February 1992.

