

Aluminum Foams - An overview of processing technologies

Dr.-Ing. Thomas Hipke Fraunhofer-Institute for Machine Tools and Forming Technologies Chemnitz, GERMANY

Technologies to produce a part!

IWU

Metfoam 2015 August 31st - September 2nd, 2015 Barcelona oth International Conference on Parous Metals and Metallic Foams

CUTTING

Cutting of Al-Foam and Al-Foam Pre-products

Separation Method						
Parameter	Sawing	Abrasive Waterjet Cutting	Laser Cutting	Plasma Cutting		
Process	Abrasion	Erosion process (Abrasive material in H ₂ O)	Melting process through concentrated laser beam	Flame-/Gas welding process with ionized gas		
Materials	All materials	All materials	Steel, stainless steel, Al	Steel, stainless steel, Al		
 Tolerance^(*) Sandwich-topside Sandwich-underside 	• 1/10-Millimeter • 1/10-Millimeter	 ≤ 10 mm ±0,1 - 0,2 mm ≤ 40 mm ±0,2 - 0,5 mm > 40 mm ±0,5 - 1,5 mm Millimeter range 	• 1/10-Millimeter • Millimeter range	• 3/10 • Millimeter range		
Cutting rate ^(*)	Cutting rate varies in dependence to the machine for SAS, AFS an Al-Foam	Company-specific	0,2 cm/min (SAS: 3 / 29 / 3)	80 cm/min (cutting test)		
Characteristics	 Rectangular cut with appropriate clamping and blade guidance possible finning 	 Widening of cutting gap with increasing cutting depth No finning Puncture necessary Following CAD design 	 Limited cutting depth (laser beam is diffusely reflected at cell wall, cutting efficiency decreases to ca. 10 mm) Molten material at the underside Following CAD design 	 Clear cut at top cover sheet Separation of plasma beam below upper cover sheet Bubble formation in Al- Foam 		
Picture ^(*) estimated	fins		underside			

Folie 4	
hf1	Stand auf Probe mit 3 / 29 / 3, Stahl hf; 18.11.2014
hf2	http://www.watercut-nw.de/Leistungen/Wasserstrahlschneiden/?gclid=CIiGve-6hMICFTLMtAodkw8Amw
hf3	http://www.aquacontour.com/?gclid=CJGy2ZC8hMICFanItAod6EMA7g hf; 18.11.2014
hf4	http://www.flowwaterjet.com/de-DE/waterjet-technology/comparative-cutting.aspx

Cutting of Al-Foam and Al-Foam Pre-products

Universal regulations for processing Aluminum Foam

- Dry processing should be preferred since cooling lubricant penetrates the pores of the cut
- Processing forces should be chosen appropriately
- Processing speed (e.g. sawing) can be higher in comparison to massive
 Aluminum
- Processing parameter of compounds (z. B. AFS, SAS) should be fitted to the material's strength/hardness of the cover sheet

Metfoam 2015 August 31st - September 2nd, 2015 Barcelona oth International Conference on Porous Metals and Metallic Foams

SAWING

Sawing

- Circular or band saw with rough saw blade, to avoid built-up effects at cutting geometry
- The harder the material, chose a less fast cutting speed (heat generation)
- When processing sandwiches, chose the cutting parameters appropriate to the cover sheet
- When sawing Al-Foam, cooling is mandatory to reduce the daubing of the pores

Parameter	Circular Saw (*)	Band Saw ^(*)
Cutting fluids Al-Foam AFS SAS Steel 	 Saw blade: Blade for Al / TF-tooth, 72 Teeth Blade for Al / TF-tooth, 72 Teeth Blade for Steel / Flat tooth, 36 Teeth Blade for Steel / Flat tooth, 36 Teeth 	Saw band: • rough band (Al) • Rough band (Al) • fine band (Steel, HSS) • fine Band (Steel, HSS)
 Rotation speed/Band speed Al-Foam AFS SAS Steel 	e.g. hand-held circular saw (Dm. 210) • 3500 min ⁻¹ • 3500 min ⁻¹ • 1500 min ⁻¹	decreasing V _{cut}

 $^{(*)}\dots$ general information, device specific

Carbide Circular Saw Blade TF-tooth for Al/plastics

© Fraunhofer IWU Prof. Dr.-Ing. Welf-Guntram Drossel

Carbide Circular Saw Blade Flat-tooth for Steel/Sandwich plates

Saw band

rough band

fine band

August 31st - September 2nd , 2015 Barcelona

ABRASIVE WATERJET CUTTING

© Fraunhofer IWU Prof. Dr.-Ing. Welf-Guntram Drossel

IWU

Cutting parameters are oriented on optimum figures for massive aluminum processing. Example:

- Pressure:
- Nozzle Diameter:
- Focus Diameter:
- Focus Length:
- Feed Rate:
- Working distance:
- Abrasive:

3000 bar 12 mm 0,9 mm 60 mm 30 till 400 mm/min (depends on material thickness) 2 mm Garnet sand HP 120

These materials can be processed with these parameters:

- Material thickness: 8 till 50 mm
- Alloy: AlSi12 und AlMgSi0,5
- Density: 0,4 till 1,0 g/cm³
- Surface: Sandwich structure with Aluminum and Steel cover sheets

August 31st - September 2nd , 2015 Barcelona

1 Water under high pressure 2 Pure Water Nozzle 3 Abrasive 4 Focusing Abrasive Nozzle 5 Guideway 6 Cutting Waterjet 7 Material

Quelle: http://waterjets.org/

Metfoam 2015

Abrasive Waterjet Cutting

- Suitable for foam plates sandwiches with straight or curved 2D <u>cut outlines</u>
- Cutting agent:
 - Water with Abrasive (e.g. <u>Garnet, Corundum...</u>)
 - The cutting quality can be influenced with the granulation of the blasting material and subjectively evaluated (e.g. fine = Rz10, middle = Rz40, rough = Rz80).

Attention

- Water causes oxidation on steel without alloy
- Water, abrasive and material rests deposit in pores It is to be recommended to blow out the material with compressed air followed by drying with approx. 110 °C
- The cutting jet widens with increasing thickness (critical from ca. 20 mm thickness).
- Jet widening results in the loss of accuracy on the leakage side

Abrasive Waterjet Cutting

Metfoam 2015 August 31st - September 2nd, 2015 Barcelona oth International Conference on Porous Metals and Metallic Foams

Density of ca. 0,4 g/cm3

Density of ca. 1,0 g/cm3

Distraction of the cutting jet of a AlMgSi foam sample against the <u>infeed direction</u>

Metfoam 2015 August 31st - September 2rd, 2015 Barcelona oth International Conference on Porous Metals and Metallic Foams

PLASMA CUTTING

Plasma Cutting Cutting test of SAS-Sandwich with h = 40 mm

Cutting parameter

- 440 A
- Plasma gas: argon + hydrogen
- Cutting speed: 800 mm/min

Result

- Cover sheet is cut very neatly
- Plasma arc divides
- Alu is partially rinsed into the saw kerf of the surface layer

Plasma Cutting

Conclusion

- Considerably faster than abrasive waterjet cutting
- Probably more cost-efficient than abrasive waterjet cutting

But:

Since there is no considerable improvement in the quality of the cut, it is momentarily no alternative to abrasive waterjet cutting.

August 31st - September 2nd , 2015 Barcelona

Metfoam 2015

Aluminum Foam with fine but also coarse bubbles, therefore changing results

Metfoam 2015 August 31st - September 2rd, 2015 Barcelona oth International Conference on Porous Metals and Metallic Foams

LASER CUTTING

Laser Cutting

- Optical/heat separation process with limited useability only (SAS and AFS with maximum 10 - 12 mm)
- Requirements: Laser direction is **vertically** oriented to the surface of the workpiece
- Outer skin of Al-Foam meets these requirements
- Laser beam hits lower positioned pore walls with randomly oriented surfaces under the casting skin, thereby it cannot provide the energy to the processing location entirely
- Laser beam is scattered and looses his energy and separating effect the faster the thicker the component. The laser beam cannot cut the lower cover sheet.

JOINING

- Non-Detachable Joining
 - Adhesive Bonding
 - Welding (AFS, SAS)
 - MIG/WIG-Welding
 - Laser Welding
 - Friction Stir Welding
- Detachable Joining
 - Fasteners (bolts, screws, nuts)

August 31[#] - September 2nd , 2015 Barcelona

NON-DETACHABLE JOINING Adhesive Bonding

Adhesive Bonding

Method	firmly bonded joining of materials with adhesive (organic material).		
Advantages	 unchanged surface and microstructure, no damage 		
	 in comparison to a welded, screwed or riveted joint, a glued joint features 		
	better vibration damping		
	• joining of different materials (glass-metal, wood-metal, aluminum-steel)		
	possible		
	 no heating of workpieces necessary (no thermal distortion, no tension) 		
Dis-	• Demanding implementation, i.e. adhesive and surface pretreatment need to be		
advantages	assimilated to the needs of the materials that are to be combined		
	 Limited creep strength of many adhesives 		
	• Aging		
	•Glue is limited to temperature		

Adhesive Bonding

Steps for Processing a Sandwich

10

5 + 6

8 + 9

- 2. First sheet is placed and fastened on gluing table
- 3. Sheet is coated with adhesive
- 4. Foam plates are placed on adhesive; edges between the plates are coated with adhesive as well
- Placed foam plates are coated with adhesive (edges especially)
- 6. Cover sheet is coated with adhesive
- 7. Cover sheet is placed and clamp fastened
- 8. Weights are positioned
- 9. Adhesive hardening
- 10. Finishing (cleaning, coating)

Metfoam 2015 August 31st - September 2nd, 2015 Barcelona oth International Conference on Porous Metals and Metallic Foams

Adhesive Bonding Examples

Adhesive bond: AFS with AFS [Karmann]

Adhesive bond: diverse top layers (CRP, GRP) with foam [IWU] (shown in Poster from Drebenstedt et.al.)

August 31st - September 2nd, 2015 Barcelona ference on Porous Metals and Metallic Foams

NON-DETACHABLE JOINING WELDING

August 31st - September 2nd , 2015 Barcelona

MIG/WIG-WELDING OF AFS

© Fraunhofer IWU Prof. Dr.-Ing. Welf-Guntram Drossel

IWU

9th International Conference on Porous Metals and Metallic Foams

MIG/WIG-Welding of AFS

Process Characteristics

- Gap bridging ability in all welding positions
- Sturdy process
- High productivity
- High penetration depth
- Only few splashes and slag formation
- Neat and clean surface (weld surface)
- Welding speed up to 1 m/min
- Welding by hand or automatic possible

Quality Optimization

- Process parameter
- Pressing of AFS to connect massive Aluminum pieces with AFS

MIG-weld seam AFS – AFS [Karmann]

WIG-weld seam AFS – AFS [Karmann]

Rivet compound of massive Al with pressed AFS

August 31st - September 2nd, 2015 Barcelona

MIG/MAG-WELDING OF SAS

m 2015 August 31st - September 2rd, 2015 Barcelona

MIG/MAG-Welding of SAS

- 1. CMT Welding Fa. Fronius
- 2. EWM-coldArc® Fa. EWM
- 3. Cold Process Fa. Cloos

MIG/MAG-Welding of SAS

Cold process – Fa. Cloos

- by hand or supported by a robot
- minimal component distortion
- good gap bridging ability
- very good for thin-walled sheets
- minimum heat effort up to 3,5 mm component thickness
- for steels of high strength, Aluminum, Stainless steel

splash-free

Metfoam 2015

August 31st - September 2nd , 2015 Barcelona

August 31st - September 2nd, 2015 Barcelona August 31st - September 2nd, 2015 Barcelona

Robot welding of a T-Joint (SAS on 10 mm-Steel sheet) Welding Robot Fronius; shielding gas: mixed gas 82 % Argon, 18 % CO₂ weld material: G3Si1

© Fraunhofer IWU Prof. Dr.-Ing. Welf-Guntram Drossel

015 August 31st - September 2nd, 2015 Barcelona

Filled weld of a T-Joint with microsection

© Fraunhofer IWU Prof. Dr.-Ing. Welf-Guntram Drossel

015 August 31st - September 2nd, 2015 Barcelona

Robot welding of a butt joint of compound SAS/SAS Welding Robot Fronius; shielding gas: mixed gas 82 % Argon, 18 % CO₂ weld material: G3Si1

© Fraunhofer IWU Prof. Dr.-Ing. Welf-Guntram Drossel

August 31st - September 2nd, 2015 Barcelona nference on Porous Metals and Metallic Foams

Butt joint with microsection

- Weldability of SAS-Sandwich for MIG/MAG-Welding with Fronius Cold-Metal-Transfer-Technic (CMT) attested
- From 0,3 mm sheet thickness on, hand and robot welding possible
- Very good weld seam quality and geometry attested
- Determined welding parameter
- Energy efficient
- damaging strength investigations show no weld seam malfunction until plastic deformation

Metfoam 2015 August 31st - September 2nd , 2015 Barcelona

LASER WELDING

Laser Welding

For Joining Aluminum Foam and SAS

Advantages

- Punctual heat input
- Flexible and fast process
- Connections are of excellent weld seam quality
- Especially enabled with cover sheets (weld seam preparation is needed)
- Welding and cutting on a device possible
- Welding speed up to 10 m/min

Disadvantages/Difficulties:

- Defocus in lower cover sheet area
- Exact positioning of welded plates

Metfoam 2015 August 31st - September 2nd, 2015 Barcelona oth International Conference on Porous Metals and Metallic Foams

Laser Welding For Joining AFS and SAS

Laser weld joint between two AFS

Laser weld joint AFS - AFS [Karmann]

Otto, A.: Fügen von Schaum. DGM-Fortbildungsseminar Zellulare Metalle 19./20.4. 2007. Erlangen

Laser Welding – Example SAS

Gear box foundation-demonstrator

- ca. 40 m (32 %) weld joint of
 125 m manufactured
- ca. 85 m (68 %) weld joint through
 gas shielded metal arc welding manufactured (SIAG)

Ship rudder-demonstrator

- ca. 17 m (28 %) weld joint of 60 m manufactured
- ca. 43 m (72 %) weld joint through gas shielded metal arc welding manufactured (LZH)

FAZIT: 185 m weld joint of which are 57 m (30 %) manufactured through laser welding

© Fraunhofer IWU Prof. Dr.-Ing. Welf-Guntram Drossel

Projekt MeschLas

Metfoam 2015 August 31st - September 2rd. 2015 Barcelona 9th International Conference on Porous Metals and Metallic Foams

Laser Welding – Rudder-Demonstrator

Welding of outer skin and weld seam result

- Process parameter:
 - Laser power (P_L): 5 kW
 - Feed speed (v_f): 1 m/min
 - Shielding gas
 - Focus diameter: 600 μm
- Penetration welding of 5 mm thick Steel sheets
- Without shielding gas → deposition of welding fumes
- Joint surface with slight exaltation

Metfoam 2015 August 31st - September 2nd , 2015 Barcelona

FRICTION STIR WELDING

2015 August 31st - September 2nd, 2015 Barcelona

Friction Stir Welding

Friction Stir Welding on 9 mm thick, foamable precursor material, weld seam is clearly visible (on top) and (below) connection after foaming

Horn, H.: Neue Entwicklungen bei Reibschweißverfahren; DVS Jahrbuch 2002

Friction Stir Welding

- Weld joint between conventional sheet (connected plate) and foamable preproduct possible
- Connection not separated by foaming process
- No interference during foaming process of the pre -product
- Tension tests show high strength fracture occurs in base material
- Foaming material with connected plate (conventional material) can be combined with other compounds (through an appropriate welding method, a conjunction of a magnesium sheet with Al-Foam (a foamable alloy with a low melting point is assumed) is also possible)

Horn, H.: Neue Entwicklungen bei Reibschweißverfahren; DVS Jahrbuch 2002

Friction Stir Welding

Metfoam 2015 August 31st - September 2nd, 2015 Barcelona oth International Conference on Porous Metals and Metallic Foams

Compound of a foamable pre-product and a solid AIMg3 sheet after the foaming process

Horn, H.: Neue Entwicklungen bei Reibschweißverfahren; DVS Jahrbuch 2002

Metfoam 2015 August 31st - September 2nd, 2015 Barcelona oth International Conference on Porous Metals and Metallic Foams

DETACHABLE JOINING

Screws and Inserts

Mechanical Joining of AFS

Sviridov, A.: Leichtbau mit Aluminiumschaumsandwich - Prozessketten zur Herstellung von Bauteilen; Dissertation, TU Cottbus, Oktober 2011

Mechanical Joining – Rivetting Nuts and Rivetting Bolts

Metfoam 2015

Rivetting bolts

- Drilling of cover sheet and core material equivalent to outer diameter of the rivet
- Inserting of bolt and clamping with rivetting pliers in drilled hole
- Rivetting pliers supports itself on upper cover sheet, tightens on the lower part of the rivetting bolt (it creates a clamp beading and seizes the cover sheet between the upper and lower part of the rivetting bolt).
- Here: galvanized steel-rivetting bolt, type: M8 x 3020

Rivetting nuts

- Manufacturing same as rivetting bolt
- Here: galvanized steel-rivetting nut; type M8 x 3020 with countersunk head
- Here: rivetting nut of Aluminum; type 336771 M 8 with flathead

Sviridov, A.: Leichtbau mit Aluminiumschaumsandwich - Prozessketten zur Herstellung von Bauteilen; Dissertation, TU Cottbus, Oktober 2011

August 31st - September 2nd , 2015 Barcelona

Mechanical Joining – Rivetting Nuts and Rivetting Bolts

Fundamental procedure for inserting rivetting nuts in AFS

Sviridov, A.: Leichtbau mit Aluminiumschaumsandwich - Prozessketten zur Herstellung von Bauteilen; Dissertation, TU Cottbus, Oktober 2011

Suitable Fasteners "FH FoamConnector"

- Universally applicable
- Easy installation and tools
- In all metric sizes and for any pre-product thickness available
- Strength category 8.8 for M8 thread → dependent on used cover sheet material
- economically manufacturable due to cold extrusion

Connection installation with positioning guide (a) or press-in tool (b)

Fasteners for AFS

Maximum extraction forces and tightening torques of chosen inserts (M8)

Fasteners for SAS

Maximum extraction forces and tightening torques of chosen inserts (M8)

Metfoam 2015 August 31st - September 2nd, 2015 Barcelona oth International Conference on Porous Metals and Metallic Foams

MILLING, FORMING

Milling, Turning

Applicable cutting angle geometries

Cutting Angle Parameter	Al-chipping massive	Al-chipping foam	
Angle of inclination λ	> 0° 1) , 20° 2)	15°	
Cutting angle γ	0° - 15°	15°	
Clearance angle α	12° - 18°	15 - 27°	
Comments	1) Cast alloys 2) Wrought alloys		

Cutting forces were only gathered during wet processing and an ideal cutting process.

As expected of solid Aluminum materials, the emerging cutting forces are low.

Milling, Turning

Cutting Forces

- AlSi12: F_c = 25 until 95 N (Cast alloy)
- AlMgSi: F_c = 20 until 80 N (hardenable wrought alloy)
- Densities: 0,5; 0,7; 1,0 g/cm³

Figures are valid under the following conditions:

Cutting Tool Material: uncoated hard metal

Cutting Parameter:

Cutting speed depends on:

- Possible RPM: $v_c = 500 \text{ bis } 2000 \text{ m/min}$
- feed: $f_z = 0,06 \text{ bis } 1,0$
- Cutting depth:
- Width of contact:

 $v_c = 500 \text{ bis } 2000 \text{ m/mi}$ $f_z = 0,06 \text{ bis } 1,0 \text{ mm}$ $a_p = 1,0 \text{ bis } 2,0 \text{ mm}$ $a_e = 50 \text{ mm}$

Cooling Agent: Dry and wet processing

Metfoam 2015 August 31st - September 2rd, 2015 Barcelona oth International Conference on Porous Metals and Metallic Foams

Forming

Depth 10 mm, Thickness 8 mm, T_{Room} Pressing of Aluminum Foam [IWU]

thickness10 mm, Dm. 300 mm, T_{Room}, 3-Roll-Rollframe Rolling of Al-Foam [IWU]

Forging AFS [Pohltec]

Metfoam 2015 August 31st - September 2rd, 2015 Barcelona oth International Conference on Porous Metals and Metallic Foams

APPLICATIONS

Quelle: www.siemens.com/press

* welding process TIG

Comparison

ICE 3 D - Siemens

- bodywork: frame + outer shells
- Aluminum sheet 10 mm
- time-consuming positioning
- high tool expenses

Demonstrator - BlueS

- bodywork: sandwich, selfsupporting
- Aluminum-Foam-Sandwich 30/2 mm
- reduced installation effort
- Iow tool expenses
- 20 % weight saving

Thank you for your attention!

