
Journal of Software Engineering and Applications, 2013, 6, 229-235
doi:10.4236/jsea.2013.65028 Published Online May 2013 (http://www.scirp.org/journal/jsea)

Copyright © 2013 SciRes. JSEA

229

Deploying Safety-Critical Applications on Complex
Avionics Hardware Architectures

Robert Hilbrich1, Laurent Dieudonné2

1Fraunhofer Institute for Open Communication Systems (FOKUS), Berlin, Germany; 2Liebherr-Aerospace Lindenberg GmbH, Lin-
denberg, Germany.
Email: robert.hilbrich@fokus.fraunhofer.de, laurent.dieudonne@liebherr.com

Received March 22nd, 2013; revised April 20th, 2013; accepted April 28th, 2013

Copyright © 2013 Robert Hilbrich, Laurent Dieudonné. This is an open access article distributed under the Creative Commons At-
tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

ABSTRACT

Aviation electronics (avionics) are sophisticated and distributed systems aboard an airplane. The complexity of these
systems is constantly growing as an increasing amount of functionalities is realized in software. Thanks to the perform-
ance increase, a hardware unit must no longer be dedicated to a single system function. Multicore processors for exam-
ple facilitate this trend as they are offering an increased system performance in a small power envelope. In avionics,
several system functions could now be integrated on a single hardware unit, if all safety requirements are still satisfied.
This approach allows for further optimizations of the system architecture and substantial reductions of the space, weight
and power (SWaP) footprint, and thus increases the transportation capacity. However, the complexity found in current
safety-critical systems requires an automated software deployment process in order to tap this potential for further
SWaP reductions. This article used a realistic flight control system as an example to present a new model-based meth-
odology to automate the software deployment process. This methodology is based on the correctness-by-construction
principle and is implemented as part of a systems engineering toolset. Furthermore, metrics and optimization criteria are
presented which further help in the automatic assessment and refinement of a generated deployment. A discussion re-
garding a tighter integration of this approach in the entire avionics systems engineering workflow concludes this article.

Keywords: Avionics; Systems Engineering; Software Deployment; Software Architecture; Safety-Critical Systems

1. Introduction

1.1. Current Trends in the Avionics Domain

In the last ten years, with the spreading of the Fly-by-
Wire technology, the infrastructure of modern aircrafts
has been significantly optimized by reducing the amount
of mechanical and hydraulic components. This engineer-
ing trend helped to decrease the weight and increase the
transportation volume. By helping to reducing the CO2-
footprint, it also contributed to reduce the impact on the
environment.

Today, the aviation electronics (avionics) in modern
aircrafts realizes more and more safety-critical functions
for pilot assistance, comfort and maintenance, like land-
ing facilitation, flawless coordination between flying
surfaces or centralized diagnostics. Due to this growing
complexity, today too many parameters must be consid-
ered to perform manually a real optimized deployment of
functions on the hardware architecture without taking the

risk of transgressing safety requirements. By “deploy-
ment”, we refer to the process of creating a mapping be-
tween software components and hardware components.
Due to the complexity of the avionics hardware architec-
tures and the variety of non-functional requirements af-
fecting a deployment, its construction is an intricate and
costly task.

Thus, the hardware architecture is deliberately over-
sized to ensure the coverage of all potential aspects. The
efficiency of this method is strongly influenced by the
experience and the intuition of the project engineers. This
has direct consequences to the size of the system archi-
tecture which makes growing the avionics infrastructure.
Moreover it increases the complexity of system design
and integration effort, thus directly impacting the time-
to-market of new products and the reusability of cur-
rently used components. Furthermore, this growing com-
plexity incommodes a validity assessment in an early
development phase of the chosen architecture as more

Deploying Safety-Critical Applications on Complex Avionics Hardware Architectures

Copyright © 2013 SciRes. JSEA

230

components must be analyzed under crucial aspects like
safety, timing and reusability.

In this article we describe an approach to address this
engineering complexity which was jointly developed
between Liebherr-Aerospace Lindenberg GmbH and
Fraunhofer FOKUS. It is based on the underlying prince-
ple, that hardware resources of an airplane can be used
more efficiently, if system functions are deployed in such
a way, that they use optimally the resources of single
devices, enabling these devices to provide its resources
for more than a single function. In this way, a noticeable
reduction of the hardware architecture is expected, which
will pursue the decrease of weight and energy needs and
consequently increase the transportation capacity of new
generation of aircrafts.

Here, we primarily focus on safety requirements along-
side other non-functional requirements, which are of par-
ticular importance for the avionics domain.

1.2. Research Objectives

In a research project, Fraunhofer FOKUS and Liebherr-
Aerospace addressed the challenge of automating and
optimizing the deployment of safety-critical avionics
software onto avionic hardware. A deployment in general
refers to the assignment of hardware resources, e.g. CPU
time, memory or I/O to software components. We dis-
tinguish between a spatial and a temporal deployment
(see Figure 1). The former focuses on the entire system
architecture and leads to a mapping from a software
component to a set of hardware resources, e.g. a proces-
sor or an electronic control unit. The latter concerns the
aspect of schedulability for each hardware resource. It
addresses the question of when to execute a software
component on the previously assigned hardware resource.
A deployment is correct, if the proper amount and proper
type of resources is assigned to all software components
at the right time. It is the job of the operating system to
properly perform the designed temporal deployment at
runtime.

Figure 1. Spatial and temporal deployment.

While a lot of current research deals with temporal de-
ployment and schedulability analysis [1-3], we focused
on a spatial deployment in a safety-critical domain. Fun-
damentally, a spatial deployment has to match available
hardware resources with resource requirements of soft-
ware components and satisfy external constraints, such as
safety. Additionally, it is also the starting point for ex-
tensive optimizations on the system level as it has a di-
rect impact on the cost and the performance of the sys-
tem. Determining an optimized deployment is not only
challenging as it is in the complexity class NP-complete.
It is also a very sensitive part of the engineering proc-
esses as it immediately affects real-time and safety prop-
erties of the entire system.

We set out to use a model-based approach to capture
key parameters and formalize this allocation problem in
order to automate the deployment and guarantee its cor-
rectness. In the avionics domain, an automated deploy-
ment is mainly beneficial during the design phase of sys-
tem and software architecture. A preliminary deployment
in early stages would help the engineer to explore the
available design space more efficiently by evaluating the
effect of each design decision on cost and performance,
and thus help to optimize the system architecture in con-
cordance with the safety requirements.

2. Methodology

2.1. Use-Case: The Development of a Complex
and Safety-Critical Flight Control System

Current aircrafts embed tens of computer systems to re-
alize safe and efficient flight control systems. Allocating
the computers to the system functions inside the flight
control system architecture is usually simply done manu-
ally. Several tries are often made to reduce the number of
devices, but the complexity, resulting from the diversity
of hardware-software combinations in association with
the safety requirements, also increases the cost of the
validation process of the optimized solutions. Thus it
represents too many engineering uncertainties in order to
be able to realize manually more than only superficial
optimizations.

The example bellow exposes the challenge based on a
“federated architecture” [4]. For certification aspects this
kind of architecture is still preferred for the realization of
flight control systems against centralized architecture
solutions. However, the underlying concepts of our me-
thodology and the specific challenges being addressed
apply to both avionic architecture types: to the federated
architectures and to the Integrated Modular Avionics
(IMA) architectures [5-7] as well.

The main challenge to optimize the system architec-
ture of complex systems resides in mastering the amount
of parameters affecting the deployment of the functions.

Deploying Safety-Critical Applications on Complex Avionics Hardware Architectures

Copyright © 2013 SciRes. JSEA

231

The architecture is influenced by the hardware resource
constraints and by the non-functional requirements of the
system functions like validation requirements and safety
constraints, e.g. redundancy or dissimilarity. With the
growing number of functions realized by the avionics, it
becomes increasingly challenging to design a safe system.
The safest solution is to dedicate one device per critical
function. This traditional design approach results in a
complex network of small embedded computers which
are partly independent to each other—hence its name
“Federated Architecture”.

In a system architecture like shown in Figure 2, two or
three actuators are associated to each flight control sur-
face, synchronized or switched by specific redundancy
management algorithms. Several surfaces are structurally
redundant and act as backup to each other, and must still
be redundant at the avionics level. The actuator alloca-
tion to the surfaces is derived from the safety require-
ments at the physical level. Each actuator will be driven
by a separate control-loop function. Additional synchro-
nization computers containing the main Flight Control
Laws coordinate the different surfaces to establish the
stability of the aircraft and to ensure the comfort for the
passengers. Both are key features brought along by the
Fly-by-Wire technology. Table 1 summarizes the amount

 Flight Spoiler Flap

Horizontal Stabilizer

Elevator

Rudder

Aileron

Ground Spoiler
Airbrake

Slat

Figure 2. Primary and secondary flight control surfaces to
be controlled by a flight control system.

Table 1. Realistic example of a flight control system device
infrastructure.

Function Amount of Devices

Rudder 3

Aileron 4

Elevator 4

Flight Spoiler 4

Ground Spoiler/Airbrake 4

Flaps 4

Slats 4

Horizontal Stabilizer 4

Flight Control Synchronisation 3

Total 34

of devices being required for the implementation of a
classical flight control system.

Traditionally, the well-known “Control Channel/Monitor
Channel” architecture is used to simplify the safety as-
sessment and certification for each flight control system
function. This architecture style results in having two
embedded computers within each device so that the total
amount of computers being required for a classical flight
control system may easily reach 60 and above. Moreover,
the consequence of several safety constraints (redun-
dancy, protection against common causes, independ-
ence…) induces that several boards and devices must be
designed differently, must be separated in different places
aboard an airplane and/or must be physically protected
from each other.

To reach a significant reduction in space, weight and
power requirements (SWaP), the challenge arises to re-
duce the number of devices of the today system infra-
structure. This can only be reached by grouping functions
or sub-functions and to mapping them “smartly” on a
smaller number of devices without violating any safety
requirement. A smart “multi-function-integration” is a
key element to reduce the SWaP footprint for airplanes in
the future.

2.2. Approach

The current practice in creating a spatial deployment in
the avionics industry for highest safety critical functions
is either by dedicating a device to a system function to
minimize the risks concerning the safety and the resource
limitation, whose result is not optimized, or by using an
initial deployment—often taken from previous projects
with sufficient similarities—with an iterative refinement
process. This refinement process is steered by the results
of an analysis regarding several criteria, for instance
safety, cost or corporate policy & strategy. Due to the
iterative nature and underlying complexity of the design
space, this methodology is inefficient and inflexible. Al-
though it may lead to a valid deployment satisfying all
requirements, it is often not the best one possible. It is
just the result of an initial deployment with an iterative
analysis-based refinement afterwards. Therefore, the
question whether this system could be built with less
hardware components cannot easily be answered.

In our research project, we wanted to improve the cur-
rent state of practice by applying the Correctness-by-
Construction principle. This engineering principle has
been pioneered by Chapman and Hall for the develop-
ment of “high integrity software” [8,9]. Although it ap-
plies originally to the lifecycle of software components,
we’ve extended this principle to the design of the system
architecture. One of the main consequences is to concen-
trate at the system level the formalization of the deciding
parameters which are traditionally not precisely ex-

Deploying Safety-Critical Applications on Complex Avionics Hardware Architectures

Copyright © 2013 SciRes. JSEA

232

pressed at this abstraction level and development phase.
Therefore, we wanted to approach this research challenge
with a model-based construction process in order to effi-
ciently capture these deciding parameters and create
valid and optimal deployments while significantly re-
ducing the amount of iterative refinement cycles.

As a first step, we developed a Domain Model [10] to
capture the relevant artifacts, entities and their relation-
ships for a spatial deployment in the avionics domain.
This model contained the following aspects:
 Relevant avionic hardware layers, their topology and

performance capabilities;
 Relevant system functions requirements in form of

avionic software application properties and their rela-
tionships;

 Safety and dependability requirements.
For the creation of the domain model, we discussed at

length which properties of complex avionics system ele-
ments influence in which manner the deployment chal-
lenge and how these aspects are judiciously reflected in a
model. For instance, some safety requirements refer to a
geometrical location in an airplane. But instead of in-
cluding an entire computer-aided design (CAD) model of
the plane containing the exact geometrical location of
each hardware node, we opted for simple string proper-
ties to annotate a location within an airplane. In order to
assess the completeness of the model, we focused on
“extreme” scenarios. Questions like “what would keep us
from deploying all applications on a single processor?”
quickly lead to missing pieces in our model.

A domain model also proved to be very helpful to de-
termine which parts of the entire system architecture are
assumed to be fixed, e.g. software components and hard-
ware nodes, and which parts are subject to the variability
of the deployment process, e.g. location of software
components or processor load. Furthermore, we distin-
guished between “valid” deployments, which satisfy all
given constraints and safety requirements, and “desired”
deployments, which are also valid, but optimal with re-
spect to given optimization criteria (see Figure 3). Here,
the domain model was very helpful in defining metrics
and heuristics for the construction of desired spatial de-
ployments.

2.3. Capturing Safety Requirements as Software
Deployment Properties

One of the key aspects to automate the deployment
computation is the possibility to express the safety re-
quirements and the deployment constraints in a simple,
computer-interpretable form. To perform this, we first
analyzed the human-understandable requirements from
[11-13] precisely in real contexts were they must apply
regarding a software deployment. Based on this analysis,
we started to add attributes to our domain model for

Figure 3. Valid vs desired deployments.

software applications. Table 2 contains these additional
domain model attributes and the corresponding safety
requirements.

This approach caused the addition of a specific “DAL”
attribute for the software and hardware components, as
well as a “Dislocality” and “Dissimilarity” relationship
property between software applications. The “DAL” at-
tribute annotates a quality level of development to hard-
ware and software components. Additionally, deploy-
ment rules have been specified similarly as for the prop-
erties and formalize the engineer expertise. For example,
during the deployment, the DAL requested by a software
component has to be matched by the assigned hardware
component which must offer the same or better DAL.
“Dislocality” requires two software components to be
deployed to two separate hardware components (different
identity, same kind) and at two separate places. “Dis-
similarity” on the other hand requires not only different
hardware components with regard to their identity, but
also different kinds of hardware (different identity, dif-
ferent kind) and different development teams. This can
also affects the entire hardware infrastructure, so that
dissimilar cabinets, boxes and boards can be required as
well.

3. Deployment Generation and Analysis

After a potential spatial deployment has been specified
either graphically or by using a domain specific language
we derived from the domain model via XText [14], the
engineer triggers the automatic deployment generation.
The search algorithm applies a brute force approach to
find all valid spatial deployment solutions deducted from
the deployment rules. While this approach may not be
suitable for larger problem sets due to the NP-complexity,
it was sufficient for the problem size we were currently
facing. Computing all valid deployments from about 15
applications onto six to eight different processor cores
was achieved on a regular desktop computer in less than
5 seconds. Individual results are presented graphically to
the engineer, so he can easily identify, which applica-
tions are assigned to which processor cores. Figure 4

Deploying Safety-Critical Applications on Complex Avionics Hardware Architectures

Copyright © 2013 SciRes. JSEA

233

Table 2. Example for expressing additional safety constraints in the domain model.

Requirement

Requirement Category
Original Human-Understandable Requirement

Domain model Attribute
(formalized expression of requirements)

Safety
(see [11-13])

“The Function Y shall be realized to prevent potential
failure of category [Catastrophic, Hazardous, Major,

Minor]…”

Solution: Corresponds a.o. to design assurance level (DAL)
for both Hardware and Software development processes

DAL: DALType

Example:
“DAL: A”

Safety
(see [11-13])

“For Function F, no single event shall lead to a
catastrophic failure”

Solution: independence of realization, localization and

execution of Sub-Functions realizing the Function F

DislocalityList: ExecutableComponentList

Example:
“FuncA, FuncB dislocal”

DissimilarityList: ExecutableComponentList

Example:

“FuncA, FuncB dissimilar”

Figure 4. Automated software deployment generation.

contains a generated deployment for a fictitious flight
control system.

We previously introduced the relevant distinction be-
tween all solutions, valid solutions and desired solutions
(see Figure 3). The tool we developed in our research
project follows a two-step approach. At first it generates
a set containing all valid solutions. Depending on the
constraints of the deployment problem, the result set may
contain none, few or plenty of valid solutions. As an en-
gineer is only able to manually seek through a small set
of valid solutions, we develop specialized rules to auto-
matically sort the result set and return a subset of desired
solutions in a second step. This allows the engineer to
quickly focus on the top ranking solutions among the set
of valid solutions. The sorting of valid solutions is based
on special deployment rules reflecting desired solutions.

These rules may refer to a wide range of deployment
properties, like system performance, component reus-
ability or a cost function.

As example, an easy to understand rule is the one fo-
cusing on the proximity of applications. In the deploy-
ment specification, the engineer may describe the inten-
sity of the data exchange between two applications as
“none”, “low”, “medium” or “high”. This reflects a de-
sired proximity between two applications and the need to
reduce communication latencies. Therefore, applications
which are communicating intensely should be deployed
as “close” to each other as possible, although in principle
a deployment of these applications to entirely different
boxes or different cabinets may satisfy all safety re-
quirements as well. In order to analyze all valid deploy-
ment solutions based on the communication intensity of

Deploying Safety-Critical Applications on Complex Avionics Hardware Architectures

Copyright © 2013 SciRes. JSEA

234

all applications, we added a “proximity penalty” to each
valid deployment. For each pair of applications in a de-
ployment solution, the proximity penalty accumulates the
product of the tree distance “d” between these two appli-
cations (see Figure 4) and their communication intensity
factor “i” (0 for “none”, 1 for “low”, 3 for “medium”
and 9 for “high”).

The penalty increases with the distance between two
applications. It gets even worse when these two applica-
tions are communicating intensely with each other.
Therefore, solutions with a minimal proximity penalty
can be expected to better reflect a desired spatial de-
ployment.

4. Discussion

This study was realized to explore our chosen principle
to optimize the architecture of avionics systems, and
these first results confirm our expectations. Further re-
search on improved heuristics, more accurate formaliza-
tion and enhanced search strategies are obviously still
necessary to better capture the experiences and design
preferences from the domain experts and tap the full po-
tential of an automated spatial deployment process. How-
ever, we believe the results obtained so far are suffi-
cient to focus on the next step: the integration of such a
novel approach to design the system architecture into the
current system engineering processes. The application of
this concept could be integrated at the equipment design
level, where the decision of the hardware architecture is
performed. Useful for complex systems, it will give the
equipment engineer the possibility to design and opti-
mize quickly the hardware architecture, and to pre-vali-
date its choices. Several different architectures could be
fast analyzed and compared, based on results from ex-
perimental spatial deployments.

Up to this point, we focus on the equipment architec-
ture and pursue an optimization under the premises, that
the hardware architecture components are fixed (already
existing or specified) but will be connected later, and that
the decomposition of system functions into software and
hardware components has been made relying on the sys-
tem non-functional requirements. This provides modular
software components that can be efficiently deployed.
However, the degrees of freedom for a deployment will
be restricted and its gains will be limited, if the system
design, among other the decomposition of functions into
logical (technology-neutral) components, has not been
correctly performed. Particularly the need to avoid a
premature hardware architecture decision at the system
design level is crucial: this is part of the equipment de-
sign level.

The integration of this concept into the system engi-
neering processes is therefore dependent on the quality of

the requirements at the system level. In particular, a
model-based approach at the system level with formal-
ized requirements will significantly improve the effec-
tiveness of our optimized deployment concepts.

5. Summary

The deployment of software components onto hardware
architectures is a decisive part in the engineering of a
software-intensive and safety-critical system. The de-
ployment affects the cost and performance of the entire
system while being subject to a variety of safety re-
quirements. On an abstract level, a deployment is bound
by hard constraints determining valid solutions and soft
optimization criteria determining desired solutions. We
showed how the deployment could be automated by
modeling and formalizing hard and soft constraints for
complex avionics systems.

6. Acknowledgements

This work was partially funded by the German Federal
Ministry of Education and Research (BMBF); grants
“SPES2020, 01IS08045J and 01IS08045P”, “SPES_XT,
01IS12005E and 01IS12005K” and “ARAMiS, 01IS-
11035T”.

REFERENCES
[1] J. Leung, L. Kelly and J. H. Anderson, “Handbook of

Scheduling: Algorithms, Models, and Performance Ana-
lysis,” CRC Press, Inc., 2004.

[2] G. C. Buttazzo, “Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications,”
Springer, Santa Clara, 2004.

[3] R. Hilbrich and H.-J. Goltz, “Model-Based Generation of
Static Schedules for Safety Critical Multi-Core Systems
in the Avionics Domain,” Proceeding of the 4th Interna-
tional Workshop on Multicore Software Engineering, Sea
Pearl, 21-28 May 2011, pp. 9-16.
doi:10.1145/1984693.1984695

[4] J. Rushby, “Partitioning for Avionics Architectures: Re-
quirements, Mechanisms, and Assurance,” NASA Lang-
ley Research Center, 1999.

[5] P. Prisaznuk, “ARINC 653 Role in Integrated Modular
Avionics (IMA),” 2008 IEEE/AIAA 27th Digital Avionics
Systems Conference, Saint Paul, 26-30 October 2008, pp.
1.E.5-1-1.E.5-10.

[6] C. B. Watkins and R. Walter, “Transitioning from Feder-
ated Avionics Architectures to Integrated Modular Avi-
onics,” Digital Avionics Systems Conference, 2007.
DASC’07. IEEE/AIAA 26th, 21-25 October 2007, pp.
2.A.1-1-2.A.1-10.

[7] R. Fuchsen, “How to Address Certification for Multi-
Core Based IMA Platforms: Current Status and Potential
Solutions,” DASC 2010: IEEE/AIAA 29th Digital Avion-
ics Systems Conference, Salt Lake City, 3-7 October 2010,

http://dx.doi.org/10.1145/1984693.1984695�

Deploying Safety-Critical Applications on Complex Avionics Hardware Architectures

Copyright © 2013 SciRes. JSEA

235

pp. 5.E.3-1-5.E.3-11. doi:10.1109/DASC.2010.5655461

[8] R. Chapman, “Correctness by Construction: A Manifesto
for High Integrity Software,” Proceedings of the 10th
Australian Workshop on Safety Critical Systems and Soft-
ware, Darlinghurst, 19-20 August 2005, pp. 43-46.
http://dl.acm.org/citation.cfm?id=1151820&CFID=32845
1450&CFTOKEN=34676492

[9] A. Hall und R. Chapmann, “Correctness by Construction:
Developing a Commercial Secure System,” IEEE Soft-
ware, Vol. 19, No. 1, 2002, pp. 18-25.
doi:10.1109/52.976937

[10] E. Evans, “Domain-Driven Design: Tackling Complexity
in the Heart of Software,” Addison-Wesley Professional,
Boston, 2004.

[11] RTCA, DO-178B, “Software Considerations in Airborne
Systems and Equipment Certification,” 1994.

[12] SAE/ARP4761, “Guidelines and Methods for Conducting
the Safety Assessment Process on Civil Airbone Systems
and Equipment,” 1996.

[13] SAE/ARP4654, “Certification Considerations for Highly-
Integrated or Complex Aircraft Systems,” 1996.

[14] M. Eysholdt and H. Behrens, “Xtext: Implement Your
Language Faster than the Quick and Dirty Way,”
SPLASH’10 Proceedings of the ACM International Con-
ference Companion on Object Oriented Programming
Systems Languages and Applications Companion, Reno/
Tahoe, 17-21 October 2010, pp. 307-309.
http://dl.acm.org/citation.cfm?id=1869542.1869625&coll
=DL&dl=ACM&CFID=328451450&CFTOKEN=34676
492

http://dx.doi.org/10.1109/DASC.2010.5655461�
http://dx.doi.org/10.1109/52.976937�

