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Abstract 

This report presents an exhaustive evaluation of knowledge and data gained from the DAIAD Trials, regarding 

both the operation of the DAIAD system, and the application of real -time water monitoring technologies for  

reducing water consumption and inducing sustainable changes in consumption behavior. Our analysis 

validates the success of the DAIAD system in terms technology, business relevance, and water savings. Our 

evaluation is based on data generated from the DAIAD Trial s and are available with an open license, allowing 

third parties to objectively validate our findings and apply them for research and innovation purposes. 
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Executive Summary 

This report presents an exhaustive evaluation of knowledge and data gained from the DAIAD Trials, regarding 

both the operation of the DAIAD system, and the application of real -time water monitoring technologies for  

reducing water consumption and inducing sustainable changes in consumption behavior. Our analysis 

validates the success of the DAIAD system in terms technology, business relevance, and water savings. Our 

evaluation is based on data generated from the DAIAD Trials and are available with an open license, allowing 

third parties to objectively validate our findings and apply them for research and innovation purposes.   

In the following, we summarize the major insights extracted from our real -world trials. 

• The average sustainable total water savings  in residential water consumption achieved by the DAIAD 

system in a top-down manner is 12%, following a period of 12 months; similar real -world systems 

only achieve 3-5%, while the vast majority of studies are limited to study periods of at most 6 months.  

• The average sustainable water savings  in residential shower consumption is 16%, with the 

corresponding energy savings 20.5%. For cases with no financial incentives, the average sustainable 

water savings is 13.5%, with the corresponding energy savings 12.5%.  

o In-situ real-time feedback is almost six times more effective than diagnostic feedback.  

o Social comparisons are effective towards maintaining  consumers engaged in sustainable 

consumption behavior over a prolonged time-frame. 

o The achieved savings are greatly influenced by local conditions and established behavioral 

norms; savings are not transferable  as-is to other locations and population groups.  

o Achieved water savings do not have a statistically significant correlation with household size, 

income, members, and ownership status; hence all households can benefit equally.  

o Different non-pricing incentives, as well as pricing incentives, do not have an additive effect; 

instead, they complement  each towards sustaining water savings over a prolonged time -frame. 

o We consider that the maximum achieved combined savings from non-pricing and pricing 

interventions have a real-world upper bound over a prolonged time-period (i.e., over a year) 

at ~15%; with up to two thirds of water use being inelastic ( depending on local conditions), we 

believe this number should serve as the ‘yard -stick’ for residential water efficiency services 

and products.  

o Water use is strongly dependent ( in descending order) from number of members, household 

size, and income; total water use increases by the squ are root of household members.  

o Water use is strongly dependent from location for residential areas (neighborhoods), with 

consumers in the same area having similar consumption patterns.  

• Consumer satisfaction  for DAIAD is positive for ~80% of consumers, which also characterize the system 

as ‘Useful’ and ‘Innovative’.  
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o More than 80% of consumers would use  the DAIAD system if it was provided for free from their 

water utility, while almost 90% of consumers consider ing that the DAIAD system should be 

provided for free from their water utilities.  

o More than 70% of consumers agree with a socially and financially optimal scheme for covering 

DAIAD costs, in which consumers that sustainably save  at least 5% on a year-on-year basis, 

enjoy free access.  

o Engagement via the DAIAD’s mobile application was extremely positive, with retention 

competing with the top 500 applications of mobile app stores . 

• Social innovation can be harnessed by select and appropriate means that do not antagonize water 

efficiency and pro-sustainability goals with mainstream social interactions  

o Social media is over-subscribed, with the attentional span and capacity of consumer s being 

extremely small; water-related issues should not compete in the attention economy, nor 

establish social-related activities as their prime focus 

o Consumers prefer physical interactions and word -of-mouth from their peers for receiving 

guidance for water efficiency and real -time water monitoring technologies.  

o Bottom-up social innovation cannot overcome the standard theory for the  diffusion of 

innovations; early- and pre-commercialization of ICT products for water efficiency demands 

direct support from governments and water utilities to reach a wider audience.  

o The top-down utility-driven/supported/sponsored engagement is an absolute necessity  for 

promoting real-time water monitoring technologies to the population at large; the natural 

monopoly of water, combined with low adoption of consumer -centric ICT technologies, as 

well as the comparatively low price of water, further at test to this priority.  

• The DAIAD system has achieved a high TRL status, with its individual components extensively tested 

and validated on a real-world setting. 

o The defect rate for amphiro b1 devices was 1.7%; the water monitoring accuracy is <4%; the 

device is extremely resistant to wear-and-tear, as well as water deposits/impurities.  

o The DAIAD@home application is practically compatible with all currently sold Android and iOS 

mobile devices, as well as web-browsers; its forward-compatibility has been extensively 

tested and validated in a real -world setting. 

o The DAIAD@utility system can efficiently scale over a cloud infrastructure at the city-level, with 

its availability, even on a non-commercial deployment, exceeding 97%. The underlying 

technologies (Big Data, ML, cloud) are abstracted from users to facilitate integration in existing 

business practices and technology infrastructures.  

o Real-time water monitoring technologies can have a sizeable impact  in water efficiency, 

consumer engagement, and water demand management; DAIAD can harness the untapped 

value from existing and planned smart water metering infrastructures, increasing ROI and 

assisting in their expansion.   
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Abbreviations and Acronyms 

 

API Application Programming Interface  

BLE Bluetooth Low Energy 

BT Bluetooth 

CC-BY Creative Commons - Attribution 

CET Central European Time 

CI Confidence Interval  

CRS Coordinate Reference System 

CSV Comma-separated values 

DTW Dynamic Time Warping 

FTP File Transfer Protocol  

GIS Geospatial Information System 

JSON JavaScript Object Notation 

KML Keyhole Markup Language 

KPI Key Performance Indicator 

kWh Kilowatt hour 

lt Liter 

NPS Net Promoter Score 

OGC Open Geospatial Consortium 

OS Operating System 

OWD OpenWaterDay 

QR Code Quick Response Code 

RF Radio Frequency 

ROI Return on Investment  

S/N Serial Number 

SWM Smart Water Meter 

TRL Technology Readiness Level  

UTC Coordinated Universal Time 
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VM Virtual Machine 

WFS Web Feature Service 

WMS Web Map Service 
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1. Introduction 

This report presents an exhaustive evaluation of knowledge and data gained from the DAIAD Trials, regarding 

both the operation of the DAIAD system, and the application of real -time water monitoring technologies for  

reducing water consumption and inducing sustainable changes in consumption behavior. Our analysis 

validates the success of the DAIAD system in terms technology, business relev ance, and water savings. Our 

evaluation is based on data generated from the DAIAD Trials and are available with an open license, allowing 

third parties to objectively validate our findings and apply them for research and innovation purposes . 

In Section 2 we present a summary of the scope and purpose of all experimental studies that supported the 

evaluation of the DAIAD system. Specifically, the DAIAD system has been extensively evaluated in a real -world 

setting in two (2) 12-month Trials in Alicante, Spain (Trial A) and St Albans, UK (Trial B) organized in the 

context of WP7, with the participation of 149 households (457 consumers). The experimental methodology, 

planning, issues, and KPIs of the Trials are detailed in the corresponding Report Deliverables D7 .1 ‘Trial A 

Report’ and D7.2 ‘Trial B Report’. In addition, we have collected data from additional experimental studies 

performed in the context of our exploitation activities, in which DAIAD technologies were evaluated under 

different perspectives. These include studies in Velserbroek, NL ( study with a Dutch water utility ; 637 households, 

~1.500 consumers, 3 months), Nuremberg, DE (study with a youth hostel ; 93 rooms, ~3.200 consumers , 3 months), 

Sant Joan, ES (study in the context of the Green Houses initiative; 15 households, 48 consumers , 3 months), and 

Alicante, ES (extended Trial A ; 82 households, 5 months). As a result, we have amassed a large collection of 

experimental data, across an additional population of  ~4.748 consumers , i.e., a ten-fold increase over the one 

supported by EC’s funding,  which allowed us to extensively study and evaluate the effect of  DAIAD. 

In Section 3, we present all datasets applied for our subsequent analysis and evaluation of the DAIAD system. 

For each dataset, we provide a high-level description, how it has been generated and/or collected, its 

structure and format, and an overview of its characteristics in terms of coverage and quality. A thorough 

discussion regarding the applied data-cleaning and pre-processing activities are provided in the 

corresponding Annexes at the end of this report. All datasets generated in the context of the project’s Trials 

(Trial A, Trial B) are provided with an open license  (CC-BY), allowing researchers and domain experts to freely 

reuse them to validate our findings and apply them for any research or innovation purpose.  

In Section 4, we document the effect of the DAIAD system for inducing changes in water consumption behavior, 

across all supported deployment modes and type of provided interve ntions for the experimental studies of 

Section 2 and corresponding experimental data of Section 3. Towards this, our focus lies exclusively  on 

reporting the effect in water consumption, i.e., quantify  the changes in consumption behavior of our panels 

when exposed to different types of interventions and deployment modes of the  DAIAD system.  

In Section 5, we present a thorough analysis, interpretation, and discussion of the results of our extensive 

analysis of all experimental data collected during the Trials, exploring the effect of the DAIAD system across 

various dimensions.  First, we analyze the effect of the DAIAD system on shower use, and the corresponding 

water, energy, and CO2 savings, while  also elaborating the on the shower habits of our panel. Next, we 

examine the correlation of water use and savings across household characteristics, time, and location. A 



DELIVERABLE 7.3            17 

thorough analysis follows exploring the user satisfaction from the DAIAD system, the acceptance of its various 

deployment schemes and corresponding price points, the implementation of the crowdfunding campaign 

organized in the context of the project, the engagement of our users with the mobile app, and our findings 

regarding the application of social innovation for promoting real -time water monitoring technologies. Next, 

we present and discuss the major technical issues and aspects of the DAIAD system across its major 

components, as identified and analyzed in the context of our Trials. Fina lly, we summarize, frame, and argue 

about potential new business models for water utilities and water stakeholders from the application of DAIAD 

technologies, and estimate the financial value of real -time water consumption data for the EU economy. 

In Section 6, we conclude the evaluation of the DAIAD system by revisiting our initial goals established during 

the project’s inception, evaluating their accomplishment, and summarizing the research and innovation 

pathways emerging from our work.  We summarize all insights generated from our real -world Trials detailed 

in the previous sections of this report, aiming to provide a concise overview of our technical, organizational, 

and methodological insights, as well as convey our collective experience from the design,  development, and 

testing of a novel ICT system for water efficiency. Finally, we provide several recommendations to researchers, 

innovators, water utilities, and policy -makers focusing on applying ICT for the water domain. These 

recommendations are targeted to a wide audience and cover a variety of issues, in an effort to highlight best 

practices, emerging challenges, and priority areas . 
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2. Experimental studies  

The DAIAD system has been extensively evaluated in  a real-world setting in two (2) 12-month Trials in Alicante, 

Spain (Trial A) and St Albans, UK (Trial B) organized in the context of WP7. The experimental methodology, 

planning, issues, and KPIs of the Trials are detailed in the corresponding Report Deliverables D7.1 ‘Trial A 

Report’ and D7.2 ‘Trial B  Report’. In addition, we have collected data from additional experimental studies 

performed in the context of our exploitation activities, in which DAIAD technologies were evaluated under 

different perspectives. As a result, we have amassed a large collec tion of experimental data, which allow us 

to study and evaluate the effect of DAIAD across its entire depth. In the following sub -sections, we briefly 

present the scope and purpose of each experimental study . 

2.1. Trial A 

The purpose of Trial A was to evaluate and validate DAIAD technologies in a top-down perspective , with DAIAD 

being offered as a service  from the local water utility (AMAEM), with consumers having access both to their 

SWM data, and one or more amphiro b1 devices. Consequently, in Trial A we atte mpted to replicate for 

consumers the experience of DAIAD being offered as a new service from their water utility, as well as enable 

AMAEM’s experts to use DAIAD for water demand management.  

The Trial comprised five (5) consecutive treatment phases for the participating population. Phase 1 focused 

on validating the proper installation of the DAIAD system and collecting adequate baseline water consumption 

data for all participants. Phase 2 compared the effectiveness of analytical vs. real -time feedback. In Phase 3, 

all participants gained access to entire DAIAD functionality, with the exception of social comparisons. In Phase 

4, we established a control group and provided the remaining consumers access to social comparisons. Finally, 

in Phase 5 all consumers gained complete access to the DAIAD system. A detailed presentation of Trial A is 

provided in Deliverable D7.1 “Trial A Report”.  

As such, the design of Trial A allows us to evaluate the following aspects of the DAIAD system:  

• Effect of diagnostic  interventions from SWM and b1 data (Phase 2)  

• Effect of real-time interventions from b1 data (Phase 2)  

• Effect of diagnostic  interventions applying social comparisons from SWM and b1 data (Phase 3 vs 

Phase 4) 

• Effect of complete DAIAD functionality from SWM and b1 data (Phase 5). 

 

2.2. Trial B 

The purpose of Trial B was to evaluate and validate DAIAD technologies in a bottom-up perspective, with DAIAD 

being offered directly to the community . Consequently, in Trial B we attempted to replicate for consumers the 
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experience  of DAIAD being offered as an actual off-the-shelf personal water monitoring product , with only the 

b1 being available to them ( i.e., no access to SWM data). Towards this, the system was provided to consumers 

packaged with clear installation, use, and trou bleshooting instructions, with support being provided 

exclusively remote and by electronic means (email, FAQ). The Trial comprised the same five (5) treatment 

phases with Trial A. A detailed presentation of Trial B is provided in Deliverable D7.2 “Trial B Report”. 

As such, the design of Trial B allows us to evaluate the following aspects of the DAIAD system:  

• Effect of diagnostic  interventions from b1 data (Phase 2)  

• Effect of real-time interventions from b1 data (Phase 2)  

• Effect of diagnostic  interventions applying social comparisons from b1 data (Phase 3 vs Phase 4)  

• Effect of complete DAIAD functionality from b1 data (Phase 5).  

 

2.3. Additional experimental evaluations 

2.3.1 . Velserbroek (NL) –  study with Dutch water uti l i ty  

2.3.1 .1 . Study Purpose  

The research goal of the study was to quantify and to better understand the effect of real -time feedback on 

shower behavior1,2,3. The real-time (and deferred) feedback was displayed with components of the DAIAD 

project: the DAIAD@feel sensor (amphiro b1) and a first prot otype of DAIAD@home/know, a mobile 

application). Both artifacts are presented in Figure 1 and Figure 2. We wanted to find out (1) how feedback 

changes the amount of hot water and thus the amount of energy consumed, (2) if the e ffects are stable over 

time, (3) if specific subgroups of the study participants save more than others , and (4) the adoption and 

continuance behavior for an additional app (a first DAIAD prototype) visualizing energy consum ption. 

The objectives have been addressed in a large -scale field study involving 637 Dutch households in 2015. The 

study was conducted by a research team located at the University of Bamberg, ETH Zurich, and the University 

of Bonn. PWN (the water utility) at Velserbroek financed the study devices and supported its implementation.  

 
                                                        
1 Kupfer A., Ableitner L., Schöb S., Tiefenbeck V. (2016): Technology Adoption vs. Continuous Usage  Intention: do Decision Criteria Change when Using a 

Technology? 22nd Americas Conference on Information Systems (AMCIS), San Diego, CA, USA, August 11 -13 

2 Ableitner L., Kupfer A., Tiefenbeck V., Schöb S., Staake T.  (2016): Resource Conservation with Green IS: A Field Experiment on Pecuniary and Non -pecuniary 

strategies, SIGGreen Pre-ICIS Workshop, Dublin, Ireland, December 10 -14 

3 Tiefenbeck V., Kupfer A., Ableitner L., Schöb S., Staake T. (2016): The Uncertain Path  from Good Intentions to Actual Behavior: A Field Study on Mobile App 

Usage, DIGIT Pre-ICIS Workshop, Dublin, Ireland, December 10 -14 
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Figure 1: DAIAD@feel sensor 

 

Figure 2: DAIAD@home/know component (mobile application for iOS and Android) 

 

2.3.1 .2. Timeframe  

The preparations of the study started in February 2015. They included the elaboration of the experimental 

design as well as the preparation of  surveys and the organization of further details (such as logistics, data 

collection, etc.). End of June 2015, we started with the recruitment or so -called registration phase in 

cooperation with PWN. See more details on the recruitment in the next section.  Our research partner gathered 

interested participants by communicating the link to a registration survey via intranet messages, emails, or 

social networks (Twitter, Facebook). The registration survey (see Annex 2) served as identification of potential 

participants (with adequate showers and mobile phones). Those potential participants were invited in August 

2015 to the pre-experimental survey (see Annex 5).  

With the completion of all pre-experimental surveys (see Annex 5) we could start with the configuration of 

the study devices (see 2.3.1.4) and start the field deployment for 3 months (September, October, November).  

During the last month, we started with the data collection mainly by asking the study participants to upload 

their consumption data with the help of the mobile application. As some participants had new smartphones 

or did not want to use the application we also offered them to send the d evices for manual readout to 

Bamberg. Due to technical constraints and inertia of the participants, this phase took almost two months.  

Finally, we started to invite the participants who had finished the data upload to participate in our post -

experimental survey (see Annex 5). 
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2.3.1 .3. Recruitment and Data Col lect ion  

637 households participated the study. They were recruited among PWN employees including subsidiaries, 

PWN customer panels, PWN volunteers, and a group referred to as nudge panel that was available for research 

purposes.  

The different recruitment groups were approached separately. First, PWN employees received an email with 

a flyer displaying more detail s about the study (Figure 4) as well as a reminder by project leaders. PWN 

approached volunteers from an own panel as well as customers by sending out emails ( Figure 6). As the PWN 

customers represented bigger sample, PWN also reminded them about ten days after the first email was sent 

out. The last recruitment group was accessed v ia the Dutch NGO Nudge who recruited interested individuals 

by a website, Facebook, and Twitter post. Reminder messages and emails to locals were included (see Figure 

5, Figure 7, Figure 8). 

Prior to the first questionnaire, a short online su rvey was conducted to identify households that anticipated 

to relocate or to be absent for longer periods during the study or who had head showers (where the feedback 

device could not have been installed). This was done to avoid distributing devices to hou seholds that could 

not complete the study. Participation was voluntarily (“opt -in”) and free of cost to the participants.  

Shower data was collected over a period of three months. Participants were asked to install a smartphone 

app that collected the shower data from the feedback devices and uploaded the retrieved data to a cloud 

server for subsequent analyses. These steps required a compatible smartphone with Bluetooth 4.0 

connectivity (iPhone > 4S and selected Android phones). In case of problems during data upload, the research 

team sent return envelopes and asked the participants to return the devices via mail. PWN employees also 

had the opportunity to drop the device off at the PWN headquarters. The research team then read out the 

devices, set them normal operation mode (so that control group participants received consumption feedback 

from then on) and retuned the devices to the households. The process steps are shown in Figure 3.  

Out of the 637 participating households, 503 provided data either by using the smartphone app or by shipping 

the device back for readout by the research team. The return rate of 80% can be considered as very good. In 

total, the datasets include 73’977 shower extractions. From these, 63'206 extractions could be used in the 

subsequent analysis. This makes the dataset one of the largest ones covering shower behavior in the wor ld. 

 

 

Figure 3: Complete Timeframe of the study 
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Figure 4: Flyer for participant recruitment (PWN internal) Figure 5: Email for participant recruitment (sent by Nudge) 

 

Figure 6: Invitation Email for PWN employees of subsidies 
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Figure 7: Facebook post for participant recruitment (sent by Nudge) Figure 8: Twitter post for participant recruitment (sent by Nudge) 

2.3.1 .4. Experimenta l  Design  

The study was organized as a field experiment in order to examine the effect of the feedback intervention in 

the real world (i.e., not in an artificial setting in a laboratory). Participants were random ly assigned to two 

different groups4, the so-called treatment and the control group, which received group -specific devices. The 

devices handed out to the control group displayed only information on water temperature (i.e., no feedback 

on water or energy use). The devices given to the treatment group also disp layed only water temperature 

during the first N*10 showers (referred to as baseline phase; N describes the number of household members 

using the shower), but thereafter automatically switched to feedback mode (the intervention phase). In the 

intervention phase, the devices provided the full set of real-time feedback on water and energy consumption .  

This design is referred to as randomized controlled trial with baseline phase. It allows us to investigate 

changes in consumption once the intervention of inter est (here: feedback on consumption) becomes active 

by observing the difference between baseline and intervention phase. Moreover, by observing the control 

group, the study design also allows us to subtract non -intervention related influences (such as chang es in 

outdoor temperature or changes in the behavior that stem from the feeling among the participants of being 

monitored in a study). The study design is illustrated in Figure 9. An online questionnaire was conducted both 

at the beginning and at the end of the study.  
                                                        
4 Randomization was performed while considering the target group size.  
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Figure 9: Experimental Design 

2.3.1 .5. Descript ion of the dataset  

Concerning basic demographics as well as general information asked in the pre- and post-experimental 

surveys, the following information is given: Gender distribution is almost equal (44% female respondents and 

56% male respondents). The majority of the respondents is aged between 30 and 59 years (73%) and half of 

the households gain between 36.001 and 84.000 € per year, however, only 17% gain more than 72.000€.  

Considering some technical and external information about the study participants, the majority of the survey 

respondents had Android and iOS based smartphones. Howe ver, an unusual high part of the survey 

respondents had Windows phones. This can be explained by the fact that PWN employees receive Windows 

phone based smartphones as business phones and these employees represent a great part of the complete 

sample. Another interesting aspect relates to the cost of water of a household. Actually, almost all participants 

have a pay per use tariff.  
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Figure 10: Gender of Survey Respondents from 

the Pre-Experimental Survey 

Figure 11: Age Group of Survey Respondents 

from the Pre-Experimental Survey 

Figure 12: A Household’s Yearly Income as 

Indicated by Survey Respondents from the Pre-

Experimental Survey 

 
 

 

Figure 13: Smartphone’s Operational System of 

Survey Respondents from the Post-Experimental 

Survey (*the relative high number of Windows 

users is due to the fact that employees receive 

Windows phones for work) 

Figure 14: A Household’s Cost of Water as 

Indicated by Survey Respondents from the 

Post-Experimental Survey 

 

 

2.3.2. Nuremberg (DE) –  study with a Youth Hostel  

2.3.2.1 . Study Purpose  

The research goal of the study was to quantify and to better understand the effect of real-time feedback on 

shower behavior for the specific case of consumers not directly paying for their water consumption, such as 

in youth hostels. The real-time (and deferred) feedback was displayed with components of the DAIAD project: 

the DAIAD@feel sensor (amphiro b1) and the mobile application “amphiro b1” . Both artifacts are presented 

in Figure 1 and Figure 2. We wanted to find out (1) how feedback changes the amount of hot water and thus 

the amount of energy consumed in special environment without financial incentives (e.g. , for hotels, dorms, 

social housing), (2) if the abatement of CO2-emissions leads to a behavioral change (3) and the willingness 

to download and use the deferred feedback (additional application).  

The objectives have been addressed in a large -scale field study involving 93 hotel rooms in a German youth 

hostel in 2017. We estimate that ~3,200 persons have been exposed to the experimental design. The study 

was conducted by a research team located at the University of Bamberg  and ETH Zurich.  DJH (Deutsches 

Jugendherbergswerk, German Youth Hostel Association)  financed the study devices and supported its 

implementation.  
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2.3.2.2. Timeframe  

The preparations of the study started in March 2017. They included the elaboration of the experimental design 

as well as the organization of further detail s (e.g., creation of QR codes and design of feedback stickers). In 

the mid of March 2017, we deployed the DAIAD@feel sensors in the youth hostel. Due to the limited storage 

of the sensors, we decided for a study length of two months. After this time period , we downloaded the data 

from the deployed sensors and set the devices to normal operation mode ( so that control group participants 

received consumption feedback from then on). Figure 15 summarizes the phases of this study.  

 

2.3.2.3. Recruitment and Data Col lect ion  

There was no actual recruitment, as we installed the devices in each hotel room of the youth hostel. The youth 

hostel has six different room types – each with a different number of beds. In total, the youth hostel had one 

single rooms, 15 rooms with two beds, 10 rooms with three beds, 52 rooms with four beds, 4 rooms with five 

beds and 11 rooms with six beds. We estimate that ~3,200 persons have stayed in the rooms during the 

experimental phase.  

Shower data was collected over a period of two months. Due to the fact that we planned a manual download 

of the data at the end of this period, we neither did require the participants nor the youth hostel to upload 

the data to the server.  Out of the 93 rooms which were equipped with a DAIAD@feel sensor, we collected data 

from 92 devices. Due to a malfunctioning Bluetooth module, the data of one sensor could not have been 

retrieved. 

In total, the datasets include 9,907 shower extractions. However, we had to exclude two devices from the data 

set because certain treatment conditions were violated during the data collection phase. Nevertheless, with 

data from 90 out of 93 rooms and the randomization of the groups, the data set might resemble the different 

aspects of the youth hotel very well ( e.g., different water flows at different floors). Finally, the data set 

comprises 9,762 extractions which were used in the subsequent analysis.  

2.3.2.4. Experimenta l  Design  

The study was organized as a field experiment to examine the effect of the feedback intervention in the real 

world (i.e., not in an artificial setting in a laboratory). The DAIAD@feel sensors were configured to operate in 

two different modes (treatment and control mode) which were assigned to two different sets of rooms.  

 

Figure 15: Complete Timeframe of the study 
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The devices belonging to the control group display  only information on water temperature (i.e., no feedback 

on water or energy use), the devices given to the treatment group provide the full set of real-time feedback 

on water and energy consumption. The rooms were further divided into two subgroups to evaluate the change 

in behavior when confronted with CO2-abatement. To this end, we designed two different types of stickers 

which we stuck to the individual shower cubicle of each room. Figure 16 shows the first sticker type (in German 

and English) which states that the youth hostel compensates for the shower related CO2 emissions. Moreover, 

it provides information on the energy intensity of water heating and it contains an QR code linking to the 

mobile applications for iOS and Android.  

 

 

Figure 16: Sticker type with information on CO2 compensation 

The second type of sticker comprises the same information as the first one but with exception of the CO2 

compensation. Thus, guests of the youth hostel which encounter these stickers, only get sensitized to the 

impact on energy consumption of showering. Figure 17 displays the sticker type without the CO2 

compensation. 

 

Figure 17: Sticker type without information on CO2 compensation 
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Consequently, the study comprises four groups of rooms differentiating either in the feedback mode of the 

DAIAD@feel sensor or in the type of sticker.  

In order to ensure valid results, randomization was of huge importance: Preliminary evaluations have shown 

that the water flow distinguishes between the floors of the youth hostel. Assigning more “control” devices to 

rooms with a high flow rate than the “treatment” devices, might have the effect that savings cannot be proven. 

As a consequence, we deliberately decided f or the following randomization method: To ensure an equal 

distribution of the groups across one floor, we first determine the number of rooms per group on each floor: 

In turn, we assign the rooms to the four groups. In case that groups have less rooms than  the others on one 

floor, this is considered on the next floor by starting the assignment procedure with these groups.  

After having determined the number of beds per group on each floor, the randomization of the four groups 

was conducted. However, standard  randomization does not ensure that the different room types (rooms with 

different numbers of beds) are distributed equally. Thus, we performed the randomization multiple times. To 

evaluate the quality of the different samples, we introduced an error funct ion taking the distribution of the 

room types into account:  

𝐸𝑟𝑟𝑜𝑟 = √∑ (∑ (𝑥𝑖𝑗 −
𝑟𝑖

4
)

2
4

𝑗=1

)

6

𝑖=1

 

, where 𝑥𝑖𝑗  denotes the number of rooms of with i beds assigned to group j and 𝑟𝑖  denotes the total number 

of rooms with i beds. To determine the final group affiliation of each room, we performed 1000 randomization 

runs and chose that sample which minimizes the error function. By doing so, we achieved an approximately 

uniform distribution of groups per floor as well as room types per group. 

Figure 18 shows the experimental setup in an exemplary shower cubicle of the youth hostel. We aimed for an 

equal placement of the stickers in every b athroom. However, due to different size variations and properties 

of the shower cubicles, the stickers were sometimes stuck differently to ensure consistent visibility.  

 

Figure 18: Experimental setup 
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The study design is illustrated in Figure 19.  

 

 

Figure 19: Experimental Design 

2.3.3. Sant Joan (expanded Trial  A)  

The experimental protocol of Trial A allowed us to evaluate multiple interventions, but did not provide us with 

an opportunity for assessing the production  roll-out of the DAIAD system. Specifically, in a real -world setting, 

the system will start directly with its full functionality available  (i.e., in Phase 5), since the interim phases are 

only relevant for our experimental study.  

Towards this, we decided to extend Trial A to 15 additional households  located outside the city of Alicante, thus 

approaching users not already familiar with DAIAD. All participants were provided with full access to the DAIAD 

system, i.e., being directly introduced to Phase 5 of other Trial A participants. AMAEM, with the cooperation 

of the city council of Sant Joan d’Alacant , recruited 15 households in Sant Joan, which gained full access to 

the DAIAD system (SWM/b1). This activity was supported by the “Green Houses” initiative, a scheme promoted 

by the MAGRAMA (Spanish Ministry of Agriculture, Food and Environment) , which is also associated with the 

European “Green in everyday life” project ( http://www.green4life.world/). In this manner, we also exploited 

local synergies, further increasing DAIAD’s visibility and reach.  

As such, the design of this study allows us to evaluate the following aspects of the DAIAD system:  

• Real-world effect of the complete DAIAD functionality from SWM and b1 data.  

2.3.4.  Al icante (extended Trial  A)  

Following the official end of our Trial A, we decided to maintain the operation of the DAIAD system till the end 

of the project, allowing our users to continue using the system, and enabling us to monitor the retention of 

the achieved changes in consumption behavior. Under this setting, we did not provide any support to  

consumers, and only continued the monitoring and analysis of their behavior, which we consider as an 

important aspect for our work.  

http://www.green4life.world/
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As such, the design of this study allows us to evaluate the following aspects of the DAIAD system:  

• Long-term retention of effects of the complete DAIAD system. 
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3. Experimental Data 

 

In this section, we briefly present all datasets applied for our subsequent analysis and evaluation of the DAIAD 

system. For each dataset, we provide a high-level description, how it has been generated and/or collected, 

its structure and format, and an overview of its characteristics in terms of coverage and quality. A thorough 

discussion regarding the applied data-cleaning and pre-processing activities are provided in the 

corresponding Annexes at the end of this report. The reader is invited to consult our Report Deliverables D7.1 

‘Trial A Report’ and D7.2 ‘Trial B Report’ where the experimental protocol and implementation of our Trials 

are presented. 

All datasets generated in the context of the project’s Trials (i.e., Trial A/B) are provided with an open license  

(CC-BY), allowing researchers and domain experts to freely  reuse them to validate our findings and apply them 

for any research or innovation purpose.  

3.1. SWM time-series (Trial A) 

This dataset contains SWM time-series for all households that participated in our Trial A. The time -series span 

the duration of Trial A. Next, we present a detailed description of the dataset.  

3.1.1. Characteristics  

The dataset has been generated in an incremental basis by AMAEM’s smart metering infrastructure. All smart 

water meter readings for our target population were automatically extracted daily and uploaded to the DAIAD 

system. In the following, the daily dataset  was imported in the system and collated with smart water meter 

readings from previous periods.  

The final dataset comprises time-series for 92 households from Alicante, out of the 102 that participated in 

Trial A; 10 households were removed due to smart water meter problems (SWM failure/replacement) . Each 

time series starts at 1/3/2016 00:00 and ends at 28/2/2017 23:59. Each time series contains hourly 

measurements of the water consumption of a single household, along with the exact time the measurement 

was taken. Each measurement contains the total volume of water consumed since the installation of the SWM, 

as well as the volume of water consumed since the last measurement. On average, there are 7,108 

measurements per user. The total number of measurements is 653,954.  

3.1.2. Format  

The dataset comprises a set of records, with each record consisting of four fields.  

The first field contains the ID of the SWM, a unique identifier of the specific SWM. The second field contains 

the timestamp the measurement was taken. The format of the timestamp is “dd/MM/yyyy HH :mm:ss”. The 

timestamps are stored in UTC time-zone in the database, but are exported in the time -zone of the utility in 

each case (CET in the case of AMAEM). The third field contains the total volume of water consumed in the 
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household from the time of installation of the SWM to the time of the specific measurement, in liters. The 

fourth column contains the volume of water consumption of the household since the time of the last 

measurement, in liters. Both fields containing volume measurements do not allow decimal digits, so the 

resolution of the measurement is one liter. An example of several records is the following:  

 

I14FA044052;19/05/2017 23:17:50;179015;2  
I14FA044052;19/05/2017 22:17:50;179013;7  
I14FA044052;19/05/2017 21:17:50;179006;0 
I14FA044052;19/05/2017 20:17:50;179006;4 
I14FA044052;19/05/2017 19:17:50;179002;9 

3.1.3. Evaluation  

After exploring and analyzing the dataset, we identified several quality issues that were attributed to factors 

external to the DAIAD system (e.g., third-party software managing the data produced by the SWM, transmission 

failures), which are categorized as follows. The reader is reminded that in general, SWM infrastructures are 

focused on accurate billing , rather than monitoring (see Section 6.3 for a discussion on SWM data veracity). 

• Missing measurements . The expected number of measurements for the period of the dataset is 8,760 

per household. In the dataset, every household  has missing measurements, with the minimum number 

of missing measurements for a household 355 (4%) and the maximum number 8,700 (99.3%). The 

average number of missing measurements per household is 1,652 (18.8%) and half of the households 

have 681 (7.7%) or more measurements missing.  The total number of missing records is 151,966 

(18.8%) out of the 805,920 expected records for the dataset. Missing measurements can either be 

scattered throughout the entire length of the time series, or span continuous large in tervals (e.g., 

several days or weeks). This can be attributed to several factors: a malfunctioning SWM, intermittent 

RF connectivity issues, third party SWM data software issues, etc.  

• Shifted measurements . The expected period of measurement is exactly one hour. However, it is 

common for measurements to be taken at intervals larger or smaller  than exactly one hour. Out of the 

653,954 records, 152,045 (23.2%) present such variations, with the average period of measurement 

for the dataset being 4,293 seconds (approximately 1 hour and 11 minutes). The possible causes for 

this issue are malfunctions of the SWM clock, or more frequently, the  intermittent losses of RF 

connectivity with the data concentrator (i.e., the antenna/device receiving SWM measurements from  

thousands of SWMs). Specifically, the SWM captures strictly hourly measurements (according to its 

internal clock), which are transmitted to the data concentrators  several  times (more than one data 

concentrators can wirelessly receive data from a single SW M, to ensure coverage) with an interval among 

repeated data packages to avoid interference. The recorded measurement time in the dataset is not  

the timestamp of the SWM, but the timestamp of the reception time  by each data concentrator that 

received the data packet. In the following, the system chooses only one of the available measurements 

(there are cases where the same measurement from a SWM was received from multiple data concentrators ), 

with the finally selected timestamp being that of the selected mea surement (i.e., reception time of 

the measurement from the selected data concentrator).  
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• Outliers. Outliers can be attributed to extreme and atypical behavior from the users ( e.g., festive 

preparations, gardening), water leaks or SWM malfunctions. Specifica lly, there exist 133 measurements 

with hourly consumption of more than 500 liters, and 16 measurements with consumption more than 

1000 liters. The maximum reported consumption is 248 ,502 liters. Further, there exist 189 records 

with a negative value for the volume of the consumption. Their range is from -1 to -248500 liters. The 

negative values can be attributed to SWM malfunctions, water theft, or an actual negative flow  (i.e., 

water momentarily flowing to the opposite direction), an evidently undesirable phenomenon, as it 

could potentially ( in very rare cases) lead to the pollution of the water network, which why negative 

flow alarms are implement into water monitoring infrastructures. In total, outliers amount to 322 out 

of the 653,954 records (0.05%). 

• Hourly difference inconsistencies . There are a few instances where the volume reported in a record as 

the consumption since the last measurement does no equal the aggregated consumption of said 

record minus the aggregate consumption of the last record.  These cases are a potential side-effect  of 

shifted measurements, appearing when interim data packages have not been successfully sent.  

3.1.4. Pre-processing  

The total consumption between successive measurements is recalculated by subtracting from the aggregated 

consumption of the each record the aggregated consumption of the record with the directly previous 

timestamp. This recalculation is performed to correct the inconsistencies between the hourly consumption 

and aggregated consumption fields of the record. In every case, the aggregated consumption is considered 

more reliable. The data are transformed in UTC time -zone, in order to be stored in the database, but are 

exported in the time-zone of the utility in each case (CET in the case of AMAEM).  

3.1.5. Anonymization  

This dataset contains no personal information about the participating households and users. However, the 

original SWM ID can potentially be applied for malevolent  purposes if combined with other public data sources 

and/or exploited in the context of social e ngineering. For these reasons, the SWM ID has been replaced with 

a unique surrogate key . 

3.1.6. Avai labi l i ty  

This dataset is available for download in two versions:  

• Original. This dataset contains the original SWM time -series as received from the DAIAD system, with 

no data cleaning and pre-processing applied: 

o https://github.com/DAIAD/data/blob/master/swm_trialA.zip   

• Cleaned. This dataset contains the SWM time-series after the data cleaning and pre-processing 

processes of 3.1.4 have been applied. 

o https://github.com/DAIAD/data/blob/master/swm_trialA_clean.zip   

 

https://github.com/DAIAD/data/blob/master/swm_trialA.zip
https://github.com/DAIAD/data/blob/master/swm_trialA_clean.zip
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3.2. SWM time-series (Trial A/Historical) 

This dataset contains SWM time-series for all households that participated in Trial A but for a time -period 

preceding the start of Trial A  (Jan 2015 – Feb 2016). Next, we present a detailed description of the dataset.  

3.2.1 . Characteristics  

The dataset was gathered by AMAEM’s SWM infrastructure and imported in the DAIAD system as a single batch 

at the beginning of the Trial.  

This dataset comprises time-series for the same 92 households that  comprise the Trial A dataset. Each time 

series starts at 01/01/2015 00:00 and ends at 29/2/2016 23:59. Each time series contains the information 

described in Section 3.1.1, i.e., hourly measurements of the water consumption of a household, along with 

the exact time the measurement was taken. Each measurement contains the total volume of water consumed 

since the installation of the SWM, as well as the volume of water  consumed since the last measurement was 

taken. On average, there are 7,737 measurements per user. The total number of measurements is 711,875. 

3.2.2. Format  

The format of the dataset is exactly as described in Section 3.1.2. 

3.2.3. Evaluation  

The Historical dataset presents the same issues as the Trial dataset, described in more detail in Section 3.1.3. 

Next, we only report the statistics that describe the issues in the Historical dataset.  

• Missing measurements . The expected number of measurements for the period of the dataset is 10,200 

per household. The minimum number of missing measureme nts for a household is 110 (1%). The 

maximum number of missing measurements is 10,200 (100%), which holds for 4 out of the 92 

households, for which there are no available measurements for the period of the dataset. The average 

number of missing measurements is 2,462 (24.1%) and half of the households have 898 (8.8%) or 

more measurements missing.  The total number of missing records is 226,525 (24.1%) out of the 

938,400 expected records. 

• Shifted measurements . Out of the 711,874 records 165,211 (23.2%) present time variations. The 

average period of measurement for the entire dataset is 4,304 seconds (approximately 1 hour and 11 

minutes). 

• Outliers. In the Historical dataset, there exist 84 measurements with hourly consumption of more than 

500 liters and 21 measurements with consumption more than 1,000 liters. The maximum reported 

consumption is 317,700 liters. Further, there exist 267 records with negative value for the volume of 

the consumption. Their range of the negative values is from -1 to -26,690 liters. In total, outliers 

amount to 351 out of the 711,874 records (0.05%) . 

3.2.4. Pre-processing  

The preprocessing is the same as in the Trial A dataset, described in Section 3.1.4. 
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3.2.5. Anonymization  

The anonymization is the same as in the Trial A dataset, described in Section 3.1.5. 

3.2.6. Avai labi l i ty  

This dataset is available for download in two v ersions: 

• Original. This dataset contains the original SWM time -series as received from the DAIAD system, with 

no data cleaning and pre-processing applied: 

o https://github.com/DAIAD/data/blob/master/swm_trialA_historical.zip   

• Cleaned. This dataset contains the SWM time-series after the data cleaning and pre-processing 

processes of 3.2.4 have been applied. 

o https://github.com/DAIAD/data/blob/master/swm_trialA_historical_clean.zip   

3.3. SWM time-series (Trial A/1K households) 

This dataset contains SWM time-series for 1,007 consumers of AMAEM located in Alicante, that did not 

participate in the Trial A, and were randomly  selected from the ~110,000 available SWMs in Alicante with only 

criteria their geospatial proximity  with our Trial A panel. Next, we present a detailed description of this dataset.  

3.3.1 . Characteristics  

The dataset comprises time-series for 1,007 randomly consumers of AMAEM located in Alicante, out of 

~110,000 available SWMs. The only constraint for their selection was their geospatial proximity to the Trial A 

panel ( i.e., within the same barrio, see 3.12.2). Each time series starts at 01/01/2015 at 00:00  and ends at 

19/05/2017 at 23:59. The data from 01/01/2015 00:00 until the beginning of the Trial were provided and 

uploaded in the DAIAD system in a single batch. The data after the beginning of the trial are p rovided by 

AMAEM incrementally, and are daily appended at the existing data. Each time series contains the same 

information as the time series described in Section  3.1.1, i.e., hourly measurements of the water consumption 

of a household, along with the exact time the measurement was taken. Each measurement contains the total 

volume of water consumed since the installation of the SWM as well as the volume of water consumed since 

the last measurement was taken. The dataset includes 16,857,056 measurements in total, which amounts to 

16,739 measurements per user.  

3.3.2. Format  

The format of the dataset is exactly as described in Section 3.1.2. 

3.3.3. Evaluation  

presents the same issues as the Trial dataset, described in more detail in Section 3.1.3. Next, we briefly report 

the statistics that describe the issues in this dataset .  

https://github.com/DAIAD/data/blob/master/swm_trialA_historical.zip
https://github.com/DAIAD/data/blob/master/swm_trialA_historical_clean.zip
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• Missing measurements . The expected number of measurements for the period of the dataset is 20,879 

per household. The minimum number of missing measurements for a household is 0 (0%). The 

maximum number of missing measurements is 20 ,880 (99.9%). The average number of missing 

measurements is 5663 (27.1%) and half of the households have 3570 (17.1%) or more measurements 

missing. The total number of missing records is 5,702,641 (27.1%) out of the 21,025,153 expected 

records. 

• Shifted measurements . Out of the 16,857,056 records 3,940,563 (23.3%) present time variations. The 

average period of measurement for the entire dataset is 4,491 seconds (approximately 1 hour and 15 

minutes). 

• Outliers. In the control population dataset, there exist 18 measurements with hourly consumption of 

more than 500 liters, and 18 measurements with consumption more than 1 ,000. The maximum 

reported hourly consumption is 201,300,000 liters. Further, there exist 4,239 records with negative 

values for the volume of the consumption.  The negative values are attributed to SWM malfunctions. 

Their range is from -1 to -490,600 liters. In total, outliers amount to 8397 out of the 15,342,743 

records (0.05%). 

3.3.4. Pre-processing  

The preprocessing is the same as in Trial A dataset, described in Section 3.1.4. 

3.3.5. Anonymization  

The anonymization is the same as in Trial A dataset, described in Sectio n 3.1.5. 

3.3.6. Avai labi l i ty  

This dataset is available for download in two versions:  

• Original. This dataset contains the original SWM time -series as received from the DAIAD system, with 

no data cleaning and pre-processing applied: 

o https://github.com/DAIAD/data/blob/master/swm_trialA_1K.zip   

• Cleaned. This dataset contains the SWM time-series after the data cleaning and pre-processing 

processes of 3.3.4 have been applied. 

o https://github.com/DAIAD/data/blob/master/swm_trialA_1k_clean.zip   

 

3.4. SWM readings (San Joan) 

This dataset contains SWM readings for all households that participated in the external trial in San Joan. Next, 

we present a detailed description of the dataset.  

https://github.com/DAIAD/data/blob/master/swm_trialA_1K.zip
https://github.com/DAIAD/data/blob/master/swm_trialA_1k_clean.zip
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3.4.1 . Characteristics  

The dataset contains quarterly readings from the SWM of 15 households, located in San Joan, Spain. The 

readings were gathered, either remotely or on location, for billing purposes, by AMAEM. Each reading contains 

the consumption of a household for a quarter of a year (three months), measured in cubic meters. The period 

of available measurements ranges from 10 to 25 years in the past, depending on the household. For all 

households, measurements end in the second quarter of 2017. Each measurem ent includes the exact reading 

of the SWM, the volume of water consumed since the last measurement, as well as the year and quarter it 

corresponds to. In total, the dataset comprises 1,275 measurements, which amount to 85 measurements per 

household, on average. 

3.4.2. Format  

Each record of the dataset comprises 10 fields that contain: the id of the SWM, a number that specifies the 

contract between the household and AMAEM, the year and quarter of the measurement, the exact date of the 

measurement, the value of the SWM reading (in cubic meters), the consumption since the last measurement 

(in cubic meters), a field indicating whether the measurement was performed remotely or manually, the days 

since the last measurement, the date of the last measurement, and a filed i ndicating whether the SWM 

functions correctly. 

3.4.3. Evaluation  

This dataset does not contain detailed time series for the consumption of each household. Since the data is 

collected for billing purposes, there are no missing or significantly shifted measurements . Unlike the other 

SWM datasets, the granularity of the data is not suitable for detailed analysis .  

3.4.4. Pre-processing  

No pre-processing has been performed for this dataset . 

3.4.5. Anonymization  

The anonymization is the same as in the Trial A dataset, described in S ection 3.1.5. 

3.4.6. Avai labi l i ty  

The dataset is not available for download due to data protection reasons.  

 

3.5. SWM time-series (Extended Trial A) 

This dataset contains SWM time-series for all households that participated in Trial A, for a period following 

the end of Trial A . Next, we present a detailed description of the dataset.  
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3.5.1 . Characteristics  

The dataset has been generated in the same way as the Trial A dataset described in Section 3.1.1.  

The dataset comprises time-series for the same 92 households from Alicante that participated in Trial A. Each 

time series starts at 01/03/2017 at 00:00, i.e. , after the end of the Trial, and ends at 19/05/2017 at 23:59. 

Each time series contains the same information as the time series described in Section  3.1.1, i.e., hourly 

measurements of the water consumption of a household, along with the exact time the measurement was 

taken. Each measurement contains the total volume of water consumed since the installation of the SWM as 

well as the volume of water consumed since the last measurement was taken. On average, there are 1,613 

measurements per user. The total number of measurements is 148,484.  

3.5.2. Format  

The format of the dataset is exactly as described in Section  3.1.2. 

3.5.3. Evaluation  

The same issues observed in Trial A dataset, described in more detail in Section  3.1.3, are also present in the 

Extended Trial A dataset.  Next, we only report the statistics that describe the issues in the specific dataset.  

• Missing measurements . The expected number of measurements for the period of the dataset is 1,919 

per household. The minimum number of missing measurements for a household is 0 (0%). The 

maximum number of missing measurements is 1,919 (100%), which holds for 3 out of the 92 

households. The average number of missing measurements is 305 (15.8%) and half  of the households 

have 102 (5.3%) or more measurements missing.  The total number of missing records is  28,064 

(15.8%) out of the 176548 expected records. 

• Shifted measurements . Out of the 148,484 records 34,921 (23.5%) present time variations. The average 

period of measurement for the entire dataset is 4 ,005 seconds (approximately 1 hour and 8 minutes).  

• Outliers. There exist 4 measurements with hourly consumption of more than 500 liters, and no 

measurements with consumption more than 1 ,000 liters. The maximum reported hourly consumption 

is 704 liters. Further, there exist 6 records with a negative value for the volume of the consumption.  

The negative values are attributed to SWM malfunctions. Their range is from -1 to -8 liters. In total, 

outliers amount to 10 out of the 148,484 records (0.006%). 

3.5.4. Pre-processing  

The preprocessing is the same as in the Trial A dataset, described in Section 3.1.4. 

3.5.5. Anonymization  

The anonymization is the same as in the Trial A dataset, described in Section 3.1.5. 

3.5.6. Avai labi l i ty  

This dataset is available for download in two versions:  
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• Original. This dataset contains the original SWM time -series as received from the DAIAD system, with 

no data cleaning and pre-processing applied: 

o https://github.com/DAIAD/data/blob/master/swm_trialA_extended.zip   

• Cleaned. This dataset contains the SWM time-series after the data cleaning and pre-processing 

processes of 3.5.4 have been applied. 

o https://github.com/DAIAD/data/blob/master/swm_trialA_extended_clean.zip   

 

3.6. Amphiro b1 (Trial A) 

This dataset contains shower consumption data from individuals participating in Trial A.  

3.6.1 . Characteristics  

The dataset has been generated by DAIAD@feel sensors used in households in Alicante, Spain. The data has 

been stored on the DAIAD@feel sensors and has been uploaded by the household members by using a mobile 

application.  

The final dataset comprises 10,729 shower events from 125 devices (39 households own two devices and two 

households own three devices) from Alicante Trial A participants. The first recorded shower event is from 

March, 15 2016 and the last one from February, 28 2017. There are historical and real -time shower events 

that were transferred while using the application. Real -time shower data represents aggregated information 

about an ongoing shower which is updated every second. Alternating with the real -time data transfer, 

historical data on previous showers is also transferred. Data transfer is initiated anytime when the mobile 

application is connected to the amphiro b1. In comparis on to the time series data, the event -based data set 

only represents. Each shower event contains the total volume and energy consumed, water temperature, of a 

shower. On average, there are 90 shower events per device. Real -time showers represent 32% of the  data set. 

3.6.2. Format  

The data set figures specific aggregated information about a shower. Each shower has an ID (integer) and it 

is allocated to device key (string/char) and user key (string/char). For each shower ID, the data set includes 

the volume in liters of consumed water (fixed-point data), the consumed energy in watt-hour (fixed-point 

data), the average water temperature in Celsius degree (integer), the average flow rate (fixed -point data), 

the designation if the shower was transferred to the mobile de vice as a real-time or historical shower (string), 

a local timestamp for the upload date of the shower (time format), and the operating system of the mobile 

device that was used for the data upload.  

3.6.3. Evaluation  

After exploring and analyzing the dataset, we identified several quality issues that are at tributes to factors 

external to the system 

https://github.com/DAIAD/data/blob/master/swm_trialA_extended.zip
https://github.com/DAIAD/data/blob/master/swm_trialA_extended_clean.zip


DELIVERABLE 7.3            40 

• Missing measurements. First, we have missing measurements concerning the sequential shower IDs. 

The amphiro b1 allocates sequential IDs for each new shower. Thus, it is  possible to identify the 

sequential arrangement for all shower events and if there are any showers missing in this sequence. 

Second, we also have a high variation of shower data per phase. For example, in Phase 1 we have 

2,104 shower events but in Phase 3  we have only 797 shower events. This can be explained by the 

fact that participants were not consistently transferring data during the trial ( i.e., bringing their mobile 

device near the amphiro b1 device during a shower event ). In some phases, they were much more 

motivated to transfer data.  

• Outliers. Outliers can be attributed to extreme and atypical behavior. For example, we found a shower 

with a volume over 300 liters, flow rates higher than 20l/min, or showers with a water temperature 

of more than 47°C. This might be due to defect devices or abnormal behavior ( e.g., using the shower 

head for filling up a bath tub, cleaning the shower ). Inexplicable data was filtered (we can assume that 

no one would take a shower with water at 50°C).  

• Double phase allocation. In Phase 4 we discovered that a few showers were allocated to several 

phases (that have been allocated beforehand to another phase) . 

3.6.4. Pre-processing  

In order to handle the problems mentioned above, we have to filter our data set accordingly (more 

information can be found in Annex 2). First, we removed all real -time showers as they contain identical 

aggregate information with their corresponding historical shower events. Then, we remove all showers with a 

volume less than 4.5 liters. Furthermore, showers with water temperature less than 27, or more than 47 Celsius 

degrees were removed, since this temperature range was found to reflect typical shower behavior the best. 

Also, showers with a flow rate over 20 liters per minute , or less than 2 liters per minute were removed. On 

the one hand, the measurement quality might be impacted with such flow rates. On the other hand, they 

represent extreme values.  Finally, the first shower of each device was removed since the  research team 

occasionally tested the devices during the deployment and in the case of a double allocation of a shower to 

several phases, we declared the first allocation as valid . After this filter step the number of showers are 

reduced by 6131 and 45 devices were removed. In a second filter step , we also excluded 24 devices (841 

showers) with no phase 1 or phase 2  (replacement devices or a households’ second device). The final filtered 

dataset has 3757 showers and 56 devices.  

3.6.5. Anonymization  

This dataset contains no personal information about the participating households and users . 

3.6.6. Avai labi l i ty  

This dataset is available for download in two versions:  

• Original. This dataset contains the original shower events as received from the DAIAD system, with no 

data cleaning and pre-processing applied: 

o https://github.com/DAIAD/data/blob/master/amphiro_trialA.zip   

https://github.com/DAIAD/data/blob/master/amphiro_trialA.zip
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• Cleaned. This dataset contains the shower events after the data cleaning and pre-processing processes 

of 3.6.4 have been applied. 

o https://github.com/DAIAD/data/blob/master/amphiro_trialA_clean.zip   

 

3.7. Amphiro b1 (Extended Trial A) 

The dataset has been generated by DAIAD@feel sensors used in households in Alicante, Spain. The data 

characteristics are the same as in Section 3.6.  

The final dataset comprises 602 shower events for 26 devices (4 households own two devices) from Alicante 

Extended Trial A participants. The first recorded shower event of the trial is from March, 1 2017 and the last 

one from June, 14 2017. On average, there are 32 shower events per device, with real -time showers represent 

21% of the data set.  

3.7.1. Format  

The format of the dataset is exactly as described in Section 3.6.2. 

3.7.2. Evaluation  

This dataset includes the same issues as identified in 3.6.3.  

3.7.3. Pre-processing  

The pre-processing steps are almost the same as in 3.6.4.  

3.7.4. Anonymization  

This dataset contains no personal information about the participating households and users.  

3.7.5. Avai labi l i ty  

This dataset is available for download in two versions:  

• Original. This dataset contains the original shower events as received from the DAIAD system, with no 

data cleaning and pre-processing applied: 

o https://github.com/DAIAD/data/blob/master/amphiro_trialA_extended.zip   

• Cleaned. This dataset contains the shower events after the data cleaning and pre -processing processes 

of 3.8.4 have been applied. 

o https://github.com/DAIAD/data/blob/master/amphiro_trialA_extended_clean.zip   

 

https://github.com/DAIAD/data/blob/master/amphiro_trialA_clean.zip
https://github.com/DAIAD/data/blob/master/amphiro_trialA_extended.zip
https://github.com/DAIAD/data/blob/master/amphiro_trialA_extended_clean.zip
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3.8. Amphiro b1 (Trial B) 

3.8.1 . Characteristics  

The dataset has been generated by DAIAD@feel sensors used in households in St Albans, UK. The data 

characteristics are generally the same as in Section 3.6. 

The final dataset comprises 2966 shower events for 31 devices from the St Albans Trial B participants. The 

first recorded shower event is from March, 24 2016 and the last one from February , 28 2017. On average, 

there are 96 shower events per device, with real -time showers representing 27% of the data set.  

3.8.2. Format  

The format of the dataset is exactly as described in Section 3.6.2. 

3.8.3. Evaluation  

 This dataset includes the same problems we identified in 3.6.3.  

3.8.4. Pre-processing  

The pre-processing steps are the same as in 3.6.4. The first filter reduced the data set by 1571 showers and 

12 devices. The second filter excluded 8 devices and 42 showers. The resulting final data set was reduce d 

from 2966 to 1353 showers. 

3.8.5. Anonymization  

This dataset contains no personal information about the participating households and users.  

3.8.6. Avai labi l i ty  

This dataset is available for download in two versions:  

• Original. This dataset contains the original shower events as received from the DAIAD system, with no 

data cleaning and pre-processing applied: 

o https://github.com/DAIAD/data/blob/master/amphiro_trialB.zip   

• Cleaned. This dataset contains the shower events after the data cleaning and pre-processing processes 

of 3.8.4 have been applied. 

o https://github.com/DAIAD/data/blob/master/amphiro_trialB_clean.zip   

 

3.9. Amphiro b1 (Velserbroek, NL) 

This dataset contains shower consumption data from individuals participating in a study in the Netherlands.  

https://github.com/DAIAD/data/blob/master/amphiro_trialB.zip
https://github.com/DAIAD/data/blob/master/amphiro_trialB_clean.zip
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3.9.1 . Characteristics  

The dataset has been generated by DAIAD@feel sensors used in households in the Netherlands. The data has 

been stored on the DAIAD@feel sensors and has been uploaded by the household members by using a mobile 

application or readout in Bamberg.  

The final dataset comprises 73’977 shower events for 637 households from PWN participants. The first 

uploaded shower event is from November , 17 2015 and the last one from January, 19 2016 . There are only 

historical shower events. Each shower event contains the total volume and energy consumed, water 

temperature, and the energy efficiency class of a shower.  

3.9.2. Format  

The format of the dataset is exactly as described in Section 3.6.2. Yet, some differences exist: There is no 

energy in kWh but the average water temperature in Celsius degree (integer), the average cold water 

temperature in Celsius (integer), and the average heating efficie ncy in % (integer). Additionally, instead of 

the user ID, an email-address from each participant exists.  

3.9.3. Evaluation  

After exploring and analyzing the dataset, we ide ntified several quality issues:  

• Missing measurements. The participants had the possibility to upload study data via a smartphone 

application or via a manual readout (where they sent the devices back to the research team).  The vast 

majority of data were ultimately retrieved manually, with a very small number of observations 

retrieved by participants themselves with the help of a mobile device. With the devices being used 

extensively, in certain households the data were not retrieved manually, or via the mobile app before 

the device reached its maximum storage capacity (249 shower extractions), resulting into loss of the 

shower data that had been overwritten.  

• Missing baselines.  At the beginning of the study, we programmed into each device an initial number 

of baseline showers (10 data points per household member). Only after the baseline phase had 

passed, households made it to the intervention period, during which they were exposed to the real -

time feedback. For the same reasons mentioned above, the baseline data for certain households had 

been overwritten, as showers are collected and stored sequentially. We therefore set up counters for 

baseline and intervention showers and check ed whether data was overwritten, removing households 

where an adequate baseline was not available.  

• Outliers. Outliers can be attributed to extreme and atypical behavior. For example, we found a shower 

with a volume over 500 liters, flow rates higher than 20l/min, or showers with a water temperature 

of more than 45°C. This might be due to defect devices or abnormal behavior ( e.g., using the shower 

head for filling up a bath tub). Inexplicable data was filtered (we can assume that no one would take 

a shower with water at 50°C).  
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3.9.4. Pre-processing  

First, we pseudonymized the Email -address with a PID (participant ID).  Second, we calculated for each shower 

the time (in min) and the used energy in kWh applying the standard formula for heat energy (E=m∗cp∗∆T/η, 

with heat energy E, mass of water m, heat capacity cp, ∆T the difference between the measured water 

temperature and cold water temperature, and η the coefficient of energy effici ency). Third, we filtered the 

data according to the insights from Section 3.9.3. As a result of the missing baselines, data of 29 households 

(6658 showers) had been removed from the final data set as they had less than 10 baseline measurements. 

In this context, we also needed to filter out treatment group’s households that had actually not made it to the 

intervention phase (e.g. , the household took less showers than the predefined baseline measurements, n=20) 

and control group’s households that had trespassed the predefined baseline measurements. Then, we 

identified extreme outliers and filtered them out. Consistent with previous work on shower datasets, we 

applied the following filters and excluded such data points: t emperature of the shower over 45C° (n=154)  

and flowrate of the shower more than 20 l/min (n=65) . 

3.9.5. Avai labi l i ty  

The data set is not available for download due to data protection reasons.  

 

3.10. Amphiro a1 (Nuremberg, DE) 

This dataset contains shower consumption data from individuals participating in an extensive trial in 

Nuremberg, Germany.  

3.10.1 . Characteristics  

The dataset has been generated by DAIAD@feel sensors used in a youth hostel in Nuremberg, Germany. The 

data has been stored on the DAIAD@feel sensors and read out by the research team in the hostel.  

The final dataset comprises 9’672 shower events of 90 rooms of the hostel. The first recorded shower event 

is from March, 15 2017 and the last one from May, 15 2017. There are only historical shower events.  

Each shower event contains the total volume and the water temperature of a shower. On average, there are 

107.5 shower events per device.  

3.10.2. Format  

The format of the dataset is exactly as described in Section 3.6.2. Yet, some differences exist: There is no 

energy in kWh but the average water temperature in Celsius degree (integer), the average cold water 

temperature in Celsius (integer), and the average heating efficiency in % (integer). Additionally, instead of 

the user ID, a room ID is given. Finally, the time format is slightly different.  

The data set figures specific information about a shower. Each shower has an ID (integer, 1-194) and is 

allocated to a room ID. For each shower ID, the data set includes the volume in liters of consumed water 

(fixed-point data, ranging from 0 to  343.2 liters), the average water temperature in Celsius degree (integer, 
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ranging from 14 to 52), the average flow rate (fixed-point data, ranging from 1.1 to 16.8), a timestamp for 

the download date from the DAIAD@feel sensors (time format, YYYY:MM:YY hh:mm:ss), a timestamp for the 

upload date to the server (time format, YYYY:MM:YY hh:mm:ss), a nd the operating system of the mobile device 

that was used for the data upload.  

3.10.3. Evaluation  

After exploring and analyzing the dataset, we ide ntified several quality issues:  

• Outliers. Outliers can be attributed to extreme and atypical behavior. For example, we found a shower 

with a volume over 500 liters, flow rates higher than 20l/min, or showers with a water temperature 

of more than 45°C. This might be due to defect devices or abnormal behavior (e.g., using the shower 

head for filling up a bath tub). Inexpl icable data was filtered (we can assume that no one would take 

a shower with water at 50°C).  

• Specificity of the study design: Each day, cleaning personnel also used the shower with the installed 

device. Consequently, we had a larger number of showers with a low water consumption (about less 

than 4.5 liters). For that reason, we chose to delete these showers because they are not relevant for 

the experiment. 

 

3.10.4. Pre-processing  

Considering the evaluation issues identified above,  we first removed all showers with a volume of less or 

equal than 4.5 liters. Second, showers with an average temperature of less than 27 or more than 47 Celsius 

degree were removed, since those should not stem from typical shower behavior. The same applies to the 

average flow rate of the shower. Showers with an average flow rate of less than 2 liters per minute or more 

than 20 liters per minute, were excluded. Lastly, the first shower of each device has been removed due to the 

fact that research team occasionally tested the devices during t he deployment.  Having applied the rules on 

the data, we obtain 8,886 out of the 9,672 shower records for the subsequent analysis.  

3.10.5. Avai labi l i ty  

The data set is not available for download due to data protection reasons.  

 

3.11. Treatment Phases (Trial A/B) 

All information concerning the transition between the treatment phases of Trials A and B is available in the 

corresponding datasets of Trial A and B in two different forms, denoting the start and end of each phase over 

the time dimension  (timestamp) and the data series of showers per device (shower ID).  

• Timestamps. For each phase, there exist 3 columns: an identifier of the phase, the time of start of the 

phase and the time of end of the phase. The identifier of the phase is used to indicate in which group 

the device participates for phases that the population is divided in two groups. The format of the 

timestamp is “dd/MM/yyyy HH:mm:ss”, in CET for Alicante and in GMT for St Albans.  
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• Shower IDs. For each phase, there exist 3 columns: an identifier of the phase, the shower ID of the 

start of the phase and the shower ID of the end of the phase. The identifier of the phase is used 

exactly as in the timestamped table, described above. The shower ID o f the start of the phase is the 

id of the first shower that the phase was active and the shower id of the end of the phase is the id of 

the last shower that the phase was active.  

 

3.12. Auxiliary data 

3.12.1 . Weather 

Meteorological data of hourly and daily granularity, for the region of Alicante, were harvested and imported 

in the DAIAD system. Hourly data consist of measurements for temperature, humidity, precipitation, wind speed 

and wind direction . Daily data consist of measurements for maximum and minimum temperature  during the day, 

maximum and minimum humidity  during the day, precipitation, wind speed and wind direction. The data were 

daily harvested from the Spanish State Meteorological Agency 5 (AEMET), and specifically, the following XML 

endpoint: 

• http://www.aemet.es/xml/municipios/localidad_03014.xml   

Due to the licensing constraints 6, this dataset cannot be redistributed, but instead must be downloaded 

directly from AEMET’s web site.  

3.12.2. Geospatial  

AMAEM provided us with the following geospatial datasets for the Trial A participants. All datasets were 

provided in shapefile format and followed the WGS84 CRS (EPSG 4326): 

• Location of each SWM of the Trial A panel ( point geometries derived from reverse geocoding the addresses 

of the participants). For privacy reasons, this data set cannot be provided with an open data license.  

• Administrative areas (barrios) for the city of Alicante (polygon geometries). This dataset cannot be 

provided with an open data license due to its proprietary nature prohibiting open publishing.  The 

open data version of this dataset however, can be extracted from the Spanish Open Data portal 7. 

3.12.3. Mobile analyt ics  

The DAIAD mobile application integrates a highly -granular facility for collecting usage analytics, allowing us to 

remotely monitor, analyze, and interpret how participants actually used  the mobile app during the Trial. Our 

approach is of course similar to how analytics for standard web sites are collected and assessed (e.g., Google 

Analytics). The critical differences, which perplex collection and processing, relate to the underlying technical 

foundations (e.g., simple JavaScript snippet to embed analytics  for web sites vs. complex trigger points for mobile 
                                                        
5 http://www.aemet.es/en/eltiempo/prediccion/munici pios/alacant-alicante-id03014 

6 http://www.aemet.es/es/nota_legal  

7 http://datos.gob.es/en/catalogo  

http://www.aemet.es/xml/municipios/localidad_03014.xml
http://datos.gob.es/en/catalogo
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applications), navigation patterns (e.g., clicks for web sites vs. swipes for mobile apps ), as well as the scope of 

our study (e.g., unique page-views for mobile apps vs. usage patterns per individual user ). 

All forms, buttons, and in general, interaction points  of the mobile app integrate custom trigger events  that 

collect and submit time-stamped information regarding the specific interaction of an individual user. These 

events are remotely transmitted and stored to the Keen.io service  (Annex 12 provides a brief overview of the 

service and its facilities), assembling a detailed log of all types of user interactions  (e.g., open ‘Dashboard’ view, 

select button ‘OK’, scroll down). This log is then retrieved and automatically processed to derive  among others, 

the following usage indicators per Trial participant: 

• App use time (how many times the mobile app was opened for a specific time interval ) 

• Full session time (how much time in total the user has spent using the app in a single session ) 

• Time per screen (how much in total the user has spent in one of the app screens in a single session ) 

The complete mobile analytics log is available for download from the following url. To protect user pr ivacy, 

the dataset has been aggregated on a weekly level, removing all user -related information that could directly 

or indirectly reveal a user’s identity, location, and mobile device . 

• https://github.com/DAIAD/data/blob/master/mobile -analytics.zip  

 

3.13. Surveys 

Several web surveys have been performed before and during Trials A/B, collecting critical information about 

our participants and their households, their satisfaction and obser vation regarding the DAIAD system, as well 

as their views regarding the real -world deployment and pricing of the system. The responses from each survey 

are linked to a specific household, thus allowing us to integrate in our evaluation accurate and detaile d data 

about each participant (e.g., household members, household size, family income ). 

The questions and responses for all surveys are available for download from the following url. To protect user 

privacy, the datasets have been anonymized by (a) replacing the user’s account ( i.e., email  address) with a 

unique surrogate key (pseudo-identifier), thus still allowing linking this dataset with other Trial A/B datasets, 

and (b) removing all private information (e.g., address, mobile/landline numbers) . 

3.13.1 . Recruitment  

The Recruitment survey aimed to ensure that the basic technical requirements for DAIAD were satisfied from 

interested volunteers (e.g., mobile phone, internet access), as well as facilitate the Consortium into selecting an 

unbiased and representative sample of the population during the final selection of volunteers.  The survey 

questions are provided in Report Deliverables D7.1 (Alicante, in Spanish) and D7.2 (St Albans, in English).  

The survey results are available at:  

• https://github.com/DAIAD/data/blob/master/registration -survey-a.zip 

• https://github.com/DAIAD/data/blob/master/regis tration-survey-b.zip  

https://github.com/DAIAD/data/blob/master/mobile-analytics.zip
https://github.com/DAIAD/data/blob/master/registration-survey-a.zip
https://github.com/DAIAD/data/blob/master/registration-survey-b.zip
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3.13.2. Pre-trial  

The Pre-Trial survey was sent by email to selected participants that have completed the Recruitment survey. 

Its purpose was to (a) confirm the contact details of the participant, and (b) collect additional information 

about the household and its water consumption behavior. The survey questions are provided in Report 

Deliverables D7.1 (Alicante, in Spanish) and D7.2 (St Albans, in English).  The survey results are available at:  

• https://github.com/DAIAD/data/blob/master/pre -trial-survey-a.zip 

• https://github.com/DAIAD/data/blob/master/pre -trial-survey-b.zip  

3.13.3. Satisfaction  

The Satisfaction survey was sent by email to Trial A/B participants twice during the Trial; first as a standalone 

survey (M32), and a second time integrated into the Post -Trial survey (see below, M38). Its purpose was to 

assess the satisfaction of all participants regarding the DAIAD system and its various aspects. The survey 

questions are provided in Report Deliverables D7.1 (Alicante, in Spanish) and D7.2 (St Albans, in English).  

The survey results are available at:  

• https://github.com/DAIAD/data/blob/master/satisfaction -survey-a.zip 

• https://github.com/DAIAD/data/blob/master/satisfaction -survey-b.zip  

3.13.4. Pricing 

The Pricing survey was distributed in M38 by email to all Trial participants, as well as other AMAEM consumers 

(participants were invited to share the survey with their friends and family). The survey included a series of 

questions exploring the potential pricing points  and purchase options  for the DAIAD system (e.g., one-time, fee 

integrated in the periodic utility bill ), which was communicated as a request for interest to purchase the DAIAD 

system. Our original intention was to advertise to sell the system to interested consumers  (one time 100 Euros 

purchase, or 2 Euros monthly fee), donating any profits to WaterAid, an NGO improving access to safe water, 

hygiene and sanitation in the world’s poorest economies . However, after an extensive discussion and 

consultation with AMAEM’s legal, marketing, and administration departments , as well as with its Board of 

Directors, this approach was evaluated as beyond the ethical envelope  of the company to its customers. 

Specifically, AMAEM is established as an empressa mixta , i.e., a mixed capital company with municipal/private 

funds (recognized by the World Bank as a model of successful PPP ; transferred as a best practice worldwide ). As 

such, it has an explicit legal mandate towards providing commercial services only for its area of focus ( i.e.,  water 

delivery, sewerage service) and at price points that safeguard the ‘right to water’. Under this setting, the 

commercial offering of DAIAD via AMAEM to its customers was deemed as not compatible  with its mandate, 

even if it was only part of a research study.  

Understandably, we had to respect this decision and implement our social experiment study via a 

questionnaire, which was however extrem ely fortunate, as it allowed us to significantly expand the proposed 

pricing schemes and price points compared to the ones originally planned, integrating feedback from 

AMAEM’s customers. Specifically: (a) during our video interviews participants insisted that the system should 

be available to all consumers  and priced similarly to a SWM ( i.e., 1-3 Euros/month), (b) the OpenWaterDays 

https://github.com/DAIAD/data/blob/master/pre-trial-survey-a.zip
https://github.com/DAIAD/data/blob/master/pre-trial-survey-b.zip
https://github.com/DAIAD/data/blob/master/satisfaction-survey-a.zip
https://github.com/DAIAD/data/blob/master/satisfaction-survey-b.zip
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Alicante Workshop winning proposal described a deployment scheme in which the system’s cost is offset  by 

water savings , and (c) the costs should be distinguished be tween its hardware and software components .  

The survey questions are provided in  Annex 3 – Pricing Survey. 

The survey results are available at:  

• https://github.com/DAIAD/data/blob/master/pricing -survey-a.zip  

3.13.5. Post-trial  

The Post-trial survey was distributed in M38 by email to all Trial participants, along with a notification 

regarding the official end of the Trials . The survey included several questions examining the usability of the 

system, the changes in attitudes and behaviors regarding conservation of our participants, and their overall 

satisfaction from the DAIAD system.  

The survey questions are provided in Annex 4 - Post-Trial Survey. 

The survey results are available at:  

• https://github.com/DAIAD/data/blob/master/post -trial-survey-a.zip  

 

 

https://github.com/DAIAD/data/blob/master/pricing-survey-a.zip
https://github.com/DAIAD/data/blob/master/post-trial-survey-a.zip
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4. Effect on water consumption 

 

In this section, we document the effect of the DAIAD system for inducing changes in water consumption 

behavior, across all supported deployment modes and type of provided interventions  for the experimental 

studies of Section 2 and corresponding experimental data of Section 3. Towards this, our focus lies exclusively  

on reporting the effect in water cons umption, i.e., quantify  the changes in consumption behavior of our panel s 

when exposed to different types of interventions and deployment modes of the DAIAD system. A thorough 

analysis, interpretation, and discussion of these findings, that considers all o ther aspects of the DAIAD system, 

is provided in Section 5.  

 

4.1. Trial A 

In this section, we present the effect of the DAIAD system on the total water consumption ( i.e., monitored via 

a SWM) and shower consumption ( i.e., monitored via amphiro b1) of the Trial A participants. In summary: 

• Total water consumption . We compare the total water consumption of Trial A participants against a 

group of households with similar  consumption behavior that have not participated  in Trial A selected 

from the Trial A/1K dataset  (see Section 3.3), following the methodology analyzed in Annex 1 . For each 

Phase and sub-Phases (where relevant), we report the total savings of our Trial A participants 

compared to the group of similar households for the duration of the specific Phase. 

• Shower consumption . We use the Phase 1 of the study, during which no interventions  were provided to 

participants, to establish a baseline of each household’s typical shower use. This is the only realistic  

method for establishing a shower consumption b aseline for large-scale trials, and has been applied 

in all past/ongoing Amphiro studies, which allows us to directly compare our results with previous 

works. 

Table 1 summarizes the savings in water consumption (total, shower) for all Trial participants and all phases 

of Trial A ( including Phase 6, i.e., the extended Trial A of section 4.3.4). 

In Figure 20 we present the changes in total water consumption for each individual Phase of Trial A, along 

with the corresponding confidence intervals. Further, Figure 21 presents the average household consumption 

of our Trial panel and the baseline for each individual phase of Trial A. In Figure 22 we present the changes 

in shower water use for each individual Phase of Trial A, along with the corresponding confidence intervals, 

while Figure 23 presents the average shower consumption of our Trial panel and the baseline for each 

individual phase of Trial A.  
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Phases Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 

% Savings in total 

water consumption 
2.0 -12.0 

(Real-time: 

-18.0 

Diagnostic: 

-5.9) 

-7.2 -4.4 

(Social ON: 

-13.1 / 

Social OFF: 

-0.2) 

-11.3 -12.0 

% Savings in shower 

consumption 
N/A 

(baseline) 

-8.2 

(Real-time: 

-16.2 

Diagnostic: 

-2.1) 

2.1 

 

4.7 

(limited 

data8) 

(Social ON: 

15.4 / 

Social OFF: 

11.8) 

12.5 

(limited 

data9) 

16.5 

(limited 

data10) 

# b1 devices used 

for analysis 
56 56 47 24 24 15 

Table 1: Water consumption savings in all Trial A Phases 

 

 

Figure 20: Change in total water consumption (%) for Trial A treatment phases 

                                                        
8 The pre-processing steps applied to amphiro b1 data (see 3.1.4) combined with the reduced frequency of data uploads from our particip ants during Phase 

4, do not provide us with adequate data to safely estimate the savings effect during this period. We pro vide the calculated savings only for completeness.  

9 The pre-processing steps applied to amphiro b1 data (see 3.1.4) combined with the reduced frequency of data uploads from our particip ants during the 

last period of the Trial A (Phase 5), do not provide u s with adequate data to safely estimate the savings effect during this period. We provide the calculated 

savings only for completeness.  

10 The pre-processing steps applied to amphiro b1 data (see 3.1.4) combined with the reduced frequency of data uploads fr om our participants after the 

official end of the Trial A (Phase 6), do not provide us with adequate data to safely estimate the savings effect during this  period. We provide the calculated 

savings only for completeness.  
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Figure 21: Average total water household consumption (in liters) for each Trial A treatment phase 

 

Figure 22: Change in total shower consumption (%) for Trial A treatment phases 

 

 

Figure 23: Average shower consumption (in liters) for each Trial A treatment phase 
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As it is apparent from Table 1, from Phase 3 and onwards, we report an increase  in the water used in the 

shower, which may seem counter-intuitive, especially considering the sustained total water savings, as well 

as the feedback from our Trial participants and amphiro b1 users. This is attributed to the integral practical 

constraints  of our experimental methodology regarding the definition of our baseline period, which prohibits 

the prolonged study  of shower use consumption. Given the importance of this observation for future prolonged 

studies of fixture-based water use ( to the best of our knowledge their vast majority is  framed within a maximum of 

3 months), we elaborate on this issue and potential means to address it  (see also Section 6.3). 

Specifically, the baseline used for calculating the established water savings in the shower considers a 

relatively small number of showers before the start of the treatment phase, i.e., Pha se 1 in our case, during 

which no interventions are provided (see Annex 2 for details). This approach is adequate for studies of small 

time-frames (at best 4 months), since the inherent evolution of water use (e.g., due to city-wide trends, 

meteorological conditions, household changes) has limited effect. This is the reason we can observe savings in 

shower use during Phase 2 of Trial A, in the small time -frame experimental evaluations in Velserbroek and 

Nuremberg (see 4.3.1, 4.3.2), as well as all past studies performed by Amphiro. However, for studies of larger 

time-frames, as is the case for Trials A/B (12 months), the change in water use trends becomes strong  during 

prolonged use, making the use of the specific baseline improper, and prohibiting the identification of 

potential rebound effects and sustained water savings.  

For the specific case of Trial A, we have depicted the approximate duration of each Phase over time ( the 

reader is reminded that participants entered Phases individually and not at the same timestamps, see D7.1 

for details). As we can observe, Phase 2 has ended roughly in October, i.e., including the high -water use 

period of the summer months, yet still managing to deliver savings compared to the lower water use period 

of Phase 1 (March-June). 

 

Figure 24: Approximate evolution of Trial A Phases  

When examining individual households, we can identify cases where the shower water savings, even using 

the Phase 1 baseline, were substantial and retained  throughout  the duration of the Trial  (e.g., Figure 25). 

However, for the majority of participants we observe an increase in the shower use during the last months of 

Trial (e.g., Figure 26). 
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Figure 25: Household with sustained savings of -21%, with max savings -38% 

(device id: 1eae7793-3b94-4bc9-822b-b15c4f69cfff); Y axis: shower volume 

(lt), X axis: shower ID 

 

Figure 26: Household influenced by seasonality, with shower use during the end of 

the Trial increasing versus the baseline (device id: 8443b689-89dd-482b-8dd0-

dbdbb5bf449d); Y axis: shower volume (lt), X axis: shower ID 

The selection of a different baseline that perfectly addresses the challenges of long-term studies for fixture-

based water use is impractical  and cost-ineffective  for reasons that will become apparent in the following. 

Overall, there are two approaches to this challenge, with the first focusing on assembling a control panel 

against which savings are calculated, and the second attempting to adjust for city-wide changes in water use 

by considering the total water consumption of a household.  

Regarding the first approach, it requires that once a panel of volunteers has been formed ( treatment group), 

a panel of volunteers with the same shower use behavior and household characteristics ( control group) must 

be formed. Obviously, this is not practically feasible  on a real-world setting. Assuming that we wish to form a 

treatment group with 100 households, we need to ensure that a volunteer group of at least an order of 

magnitude is available (1,000 households), which much complete online surveys to examine their household 

characteristics. Assuming we manage to identify 500 households with the same (or quite similar) household 

characteristics, we then need to ensure the shower consumption of this group is monitored over an adequate 

time-frame (at least a full year to account for seasonality). This demands the installation in 500 households 

and continuous use of the shower monitor by the household’s participants while no interventions  are provided 

(i.e., LCD completely off) . After this point, and assuming that no changes in the households  have taken place 

(e.g., new family members, change of job, moved to a new apartment , change of heart for participating in the study ), 

the actual study can begin, during which the treatment and control groups use the intelligent  shower monitor 

for at least for a year. As it is obvious from this discussion, and our own experiences, such an experimental 

protocol is absolutely impractical . Starting from the formation of the treatment panel itself ( e.g., in the case of 

Trial A we assembled ~240 households to select half that met technical requirements ), moving on to the formation 

of a control panel (e.g., what incentives would volunteers have for just installing a new device that provided no 

feedback), to the associated resources ( i.e., almost 2,5 years for the study to be completed, ten times the hardware 

cost), and then finally considering that all volunteers remain committed  (especially those not receiving feedback, 

and thus any benefits from their participation ) throughout this extended time-frame (highly unlikely given our 

experience in just 12 months). 

The second approach accommodates the practical considerations, but is not guaranteed  to be sound from a 

methodological standpoint , as it entails the adjustment  of the shower use during the treatment phase to 
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account for weather conditions, seasonality as well as all other external water use determinants (see D6.1 for 

an overview), which could be provided by examining the total water use  of the households (i.e., their smart 

water meter data). Understandably, this approach can be realistically applied, but assumes that shower use 

is strongly correlated  with total water use . From our analysis of the Trial A data (see Section 5.1.2), we have 

observed that this is not the case  for all households and all time-periods as the individual end-uses of water 

consumption are affected differently  by time and external conditions (e.g., more water used during the summer 

for showering). Moreover, another assumption made is that households with similar total water use have a 

similar shower use behavior, which also does not stand based on our experimental data. Consequently, this 

approach is not sound from a methodological perspective.  

A quite telling example of these challenges hindering the real -world study of personal energy and water 

monitoring devices comes from Nest (smart thermostat), which has been extensively studied over the p ast 8 

years, and with field studies (organized by Nest and third parties) fully exploring its savings potential both 

on a small-scale and large-scale setting. Specifically, the original field Trials organized by Nest (e.g., Summer 

2012 Savings White Paper11) reported savings of 20.1% in a 6-week Trial with 45 households. These results 

were widely advertised as the savings effect of the product, and were small -scale due to the early commercial 

status (low penetration, high price) which prohibited large -scale studies. In the subsequent years, and 

following the significant enlargement of the market base, in a large degree due to its active adoption from 

energy utilities, larger-scale studies became ultimately possible , overcoming practicality and cost concerns. One 

such study12 was organized in Indiana, USA, by two different gas and energy utilities (12 months, 700 homes), 

and reported savings of ~14%. The results of the large -scale study were ultimately positive, replicating to a 

large degree the small-scale study results.  

These problems and methodological constraints were fully known and considered by the Consortium when 

framing the concept, scope, and objectives of the project, with almost all previous studies on the effect of the 

amphiro a1 ( the version of the shower monitor before the start of the project ) explicit ly narrowed to at most 3 

months, and with only one longer-term study we performed 13 examining the retention of savings over a 

prolonged time-period, but in an entirely different scope: i.e., if average shower use achieved during a 2 

month treatment period remained the same in the following 12-month treatment (2-month average vs. 12-

month average). 

Despite this, our goal was to ensure the amphiro b1 device is validated in practice  (e.g., construction, operation, 

resilience) and over a prolonged time-frame that far exceeded previous studies, thus proving beyond doubt 

its technical maturity and application on a real-world setting. This is a challenge for most innov ations in a 

pre/early-commercialization status, and especially for real -time water monitoring technologies, an obstacle 

not even large multi -national companies have managed to address ( for details,  see D8.5.2 ‘Final exploitation 

report’).  

Based on the above, the reader should only consider the Phase 2 savings results for shower use of our study ; the 

shower savings effect for the subsequent phases are provided nevertheless for reasons of completeness and 

full transparency.  
                                                        
11 http://downloads.nest.com/summer_ 2012_savings_white_paper.pdf  

12 https://www.cadmusgroup.com/papers -reports/evaluation-2013-2014-programmable-smart-thermostat-program/ 

13 Tasic, V., Tiefenbeck, V., Schöb, S., & Staake, T. (2015, May). Short -term Spark or Sustained Impact? Investigating the Long-term Effect of Real -time 

Feedback. In ECIS 2015 Proceedings, Muenster, Germany  
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In the following sections, we present the achieved consumption reduction per  individual treatment phase in 

more detail. 

4.1.1 . Phase 1  

In Phase 1, during which no interventions  were provided, the total water consumption our Trial panel 

marginally increased by +2.0%, thus confirming  the accuracy of our approach for establishing the baseline 

described in Annex 1. The effect on shower consumption is not available, as Phase 1 serves to establish the 

shower use baseline, i.e., the usual participant behavior without any intervention  (see Annex 2 for details). 

 

Phase 1  All  

% Saving in water consumption  2.0 

% Savings in shower consumption  N/A 

 

 

 Trial Baseline 

Mean 12467 12219 

95% CI (9784, 15314) (9873, 14928) 

Figure 27: Phase 1 average total water consumption per household (Trial A vs. 

baseline) 

 

Difference 2,0% 

95% CI (-8.3%, 12.1%) 

 

Figure 28: Phase 1 difference (%) over baseline 

4.1.2. Phase 2 

In Phase 2, the total water consumption of the entire Trial population was reduced by -12.0%. For the group 

that was provided with real-time feedback, the reduction was -18.0%, while for the group that was provided 

with diagnostic feedback the reduction was -5.9%. In addition, shower consumption for the entire  Trial 

population was reduced by -8.2%. For the group that was provided with real-time feedback, the reduction 

was -16.2%, while for the group that was provided with diagnostic feedback the reduction was -2.1%.  

These results confirm that real-time feedback is significantly more effective  in inducing changes in water 

consumption behavior than diagnostic  feedback, and is in line with similar studies in the literature.  
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Phase 2 modes Real-time feedback Diagnostic feedback  All  

% Saving in water consumption -18.0 -5.9 -12.0 

% Savings in shower consumption  -16.2 -2.1 -8.2 

Table 2: Water consumption savings in Phase 2 

 

  Trial Baseline 

Mean 16451 18696 

95% CI (13401, 19901)  (14661, 2337) 

Figure 29: Phase 2 average total water consumption per household (Trial A vs. 

baseline) for the entire panel 

 

Difference -12,0% 

95% CI (-22.9%, 0.7%) 

 

Figure 30: Phase 2 difference (%) of total water consumption over baseline for the 

entire panel 

 

 
 Trial Baseline 

Mean 18919 23075 

95% CI (12115, 26253) (13676, 32589) 

Figure 31: Phase 2 average total water consumption per household (Trial A vs. 

baseline) for the panel receiving Real-time feedback interventions 

 

Difference -18,0% 

95% CI (-34.6%, 1.7%) 

 

Figure 32: Phase 2 difference (%) of total water consumption over baseline for the 

panel receiving Real-time feedback interventions 
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 Trial Baseline 

Mean 14754 15685 

95% CI (12125, 17691) (12506, 18908) 

Figure 33: Phase 2 average total water consumption per household (Trial A vs. 

baseline) for the panel receiving diagnostic feedback interventions 

 

Difference -5,9% 

95% CI  (-17.1%, 6.7%) 

 

Figure 34: Phase 2 difference (%) of total water consumption over baseline for the 

panel receiving diagnostic feedback interventions 

 

 
 Phase 2 – all groups Baseline 

Mean 26.67 31.89 

95% CI (22.15, 31.19) (26.09, 37.69) 
 

 

Difference -8.18 % 

95% CI (-17.18%, 0.82%) 
 

Figure 35: Phase 2 mean shower consumption per household (Trial A vs. baseline) for the entire panel  Figure 36: Phase 2 difference (%) of shower consumption over 

baseline for the entire panel  

 

 
 



DELIVERABLE 7.3            59 

 
 Phase 2 – b1 only Baseline 

Mean 23.65 33.63 

95% CI (17.44, 29.85) (22.38, 44.88) 
 

 

Difference -16.23 % 

95% CI (-31.34 %, -1.12%) 
 

Figure 37: Phase 2 mean shower consumption per household (Trial A vs. baseline) for the panel receiving 

real-time feedback interventions 
Figure 38: Phase 2 difference (%) of shower consumption over 

baseline for the panel receiving real-time feedback interventions 

 
 

 

 Phase 2 – mobile only Baseline 

Mean 28.94 30.58 

95% CI (22.36, 35.51) (24.32, 36.84) 
 

 

Difference -2.14 % 

95% CI  (-13.34%, 9.05%) 

 

 

Figure 39: Phase 2 mean shower consumption per household (Trial A vs. baseline) for the 

panel receiving diagnostic feedback interventions 
Figure 40: Phase 2 difference (%) of shower consumption over baseline for the 

panel receiving diagnostic feedback interventions 

 

4.1.3. Phase 3 

The total water consumption in Phase 3 was reduced by -7.2% We observe that the savings in this phase are 

smaller than the respective savings of Phase 2, which can be attributed to two independent factors. First, the 

effectiveness of the interventions may understandably wear off  after the initial period of deployment, which 

is in line with other studies. Second, Phase 3 largely coincides with the end of autumn, during which water 
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use is further reduced after the summer peak. This may suggest that saving effects are less pronounced  in time 

periods during which consumption is inherently  reduced due to external factors  ( i.e., smaller amount of elastic 

consumption available). 

In contrast, shower consumption during this Phase slightly  increased  by 2.1%. As it is evident, the variance of 

the results for shower use is very high ( the confidence interval includes 0 ), with a small number of observations. 

Thus, the reported effect should be interpreted with caution. From this phase, and for all subsequent phases 

(Phase 4, 5, 6), we are beginning to observe a reported increase  in shower use, which we attribute to the 

methodological challenges  described in Section 4.1 regarding the calculation of savings effect for fixture -based 

water consumption, and the low number of observations.  

 

Phase 3  All  

% Saving in water consumption  -7.2 

% Savings in shower consumption  2.1 

Table 3: Water consumption savings in Phase 3 

Specifically, during the last months of the Trial, our participants have reduced the usage frequency  of the mobile 

app (see Figure 128 regarding the number of visits) and hence the number of shower events transmitted . With 

fewer interactions with the app, and less shower events with the mobile device nearby, the number of sh owers 

received was smaller. Based on the results from the Satisfaction and Post -Trial surveys (see 5.2.1) and 

anecdotal feedback, we believe that the reduced interaction is due to the achieved familiarity  of participants 

with the DAIAD system and its integration in their everyday routines. Following the early months of the Trial, 

during which they were exploring and learning how the system works, they became accustomed to the system, 

using it when and where they needed, according to their personal preferences and routines. While this is an 

important achievement for the system, as demonstrated by the high satisfaction of our participants, its side -

effect was less shower use data received; the SWM data were n ot affected, as they were captured from 

AMAEM’s smart metering infrastructure. Throughout, and after the end of the Trial, we have sent select 

reminders to our participants nudging  them to bring their mobile devices with them in the shower, but avoiding 

to explicitly to increase the use of the system to avoid biasing the results. Unfortunately, this had very limited 

effect on the amount of data received. Further, it is worth pointing out that in the context of our External Trial 

in Velserbroek (see Sections 2.3.1, 3.9), its limited duration allowed us to manually  collect data from some of 

the devices deployed in the field ( i.e., the research team manually retrieved a part of devices and used the mobile 

app to get the data). However, this was not possible  for the case of Trials A/B, as their long timeframe (12 

months vs. 3 months) meant that the limited non -volatile memory of the amphiro b1 device would not suffice 

to store all showers without them being overwritten. Actually, this issue also appeared in the Velserbroek 

study, despite its much smal ler duration. 
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 Trial Baseline 

Mean 26889 28978 

High (22676, 31050) (24229, 34085) 

Figure 41: Phase 3 average total water consumption per household (Trial A vs. 

baseline) for the entire panel 

 

Difference -7,2% 

95% CI (-17.0%, 3.6%) 

 

Figure 42: Phase 3 difference (%) of total water consumption over baseline for the 

entire panel 

 

 
 Phase 3  Baseline 

Mean 30.79 33.36 

95% CI (25.33, 36.25) (26.68, 40.05) 
 

 

Difference 2.06 % 

95% CI (-8.49%, 12.6%) 

  

Figure 43: Phase 3 mean shower consumption per household (Trial A vs. baseline) for the entire 

panel  
Figure 44: Phase 3 difference (%) of shower consumption over baseline for 

the entire panel  

 
 

4.1.4. Phase 4  

The reduction in total water consumption for Phase 4 was -4.4% for the entire trial population. For the group 

that was provided with the social comparison intervention the reduction was -13.1%, while for the group that 

was not provided with social comparisons the reduction was -0.2%. This suggests that social comparison is an 

effective mode of intervention, successfully nudging users towards sustainable behaviors . Further, we observe 
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that the declining trend  in savings effect continues in this period, which we attribute to the same reasons 

mention as in Phase 3. The direct comparison with consumers that were not exposed to this intervention is 

especially interesting, as it reveals that this group practically returned to its pre -treatment behavior (rebound 

effect). However, when examining its behavior in the next phase, during which  social comparisons were 

available to all panel members, we observe that their total water savings increased and remained stable even 

after the end of the Trial A (Phase 6).  

Similarly to the previous phase, and for the reasons analyzed in the previous section, shower consumption 

increased by 12.5% for the entire trial population. Once again , we should note that the variance of the results 

is very high and the number observations is very low. Thus, the effect should be interpreted with caution . 

 

Phase 4 modes Social comparisons on Social comparisons off  All  

% Saving in water consumption  -13.1 -0.2 -4.4 

% Savings in shower 

consumption 
15.4 11.8 12.5 

Table 4: Water consumption savings in Phase 4 

 
 

 
 Trial Baseline 

Mean 10431 10908 

95% CI (9443, 11486) (9876, 12009) 

Figure 45: Phase 4 average total water consumption per household (Trial A vs. 

baseline) for the entire panel 

 

Difference -4,4% 

95% CI (-13.6%, 4.7%) 

 

Figure 46: Phase 4 difference (%) of total water consumption over baseline for the 

entire panel 
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 Trial Baseline 

Mean 11724 11189 

95% CI (7919, 9720) (8977, 13483) 

Figure 47: Phase 4 average total water consumption per household (Trial A vs. 

baseline) for the panel receiving the social comparison intervention 

 

Difference -13,1% 

95% CI (-27%, 5.3%) 

 

Figure 48: Phase 4 difference (%) of total water consumption over baseline for the 

panel not receiving the social comparison intervention 

 

 
 Trial Baseline 

Mean 10786 10767 

95% CI (9599, 12125) (9381, 12122) 

Figure 49: Phase 4 average total water consumption per household (Trial A vs. 

baseline) for the panel receiving diagnostic feedback interventions 

 
Difference -0,2% 

95% CI (-11.9%, 10.8%) 

 

Figure 50: Phase 4 difference (%) of total water consumption over baseline for the 

panel not receiving diagnostic feedback interventions 
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 Phase 4 Baseline 

Mean 30.49 29.14 

95% CI (24.24, 36.74) (22.61, 35.67) 
 

 

Difference 12.53 % 

95% CI (-4.63%, 29.68%) 

 

 

Figure 51: Phase 4 mean shower consumption per household (Trial A vs. baseline) for 

entire panel 
Figure 52: Phase 4 difference (%) of shower consumption over baseline for the 

entire panel 

 

4.1.5. Phase 5 

The reduction in total water consumption for Phase 5 was -11.3%, during which all interventions have been 

enabled for the entire Trial population. We observe that the previous trend in reduced water savings has 

ended, with the saving effect  returning to the levels observed in Phase 2 of the Trial. The sustainable  reduction 

in water consumption is further validated in Section 4.3.4 (Phase 6 - Extended Trial A), during which our Panel 

has reduced its water consumption by -12.0%. Similarly to the previous phase, and for the reasons analyzed 

in the previous section, shower consumption increased by 16.5% for the entire trial population. Once again, 

we should note that the variance of the results is very high and the number observations is very low. Thus , 

the effect should be interpreted with caution.   

 

Phase 5  All  

% Saving in water consumption -11.3 

% Savings in shower consumption  16.5 

 



DELIVERABLE 7.3            65 

 
 Trial Baseline 

Mean 7221 8138 

95% CI (6506, 7913) (7376, 8896) 

Figure 53: Phase 5 average total water consumption per household (Trial A vs. 

baseline) for the entire panel 

 
 

Difference -11,3% 

95% CI (-19.2%, -3.2%) 

Figure 54: Phase 5 difference (%) of total water consumption over baseline for the 

entire panel 

 

 
 Phase 5  Baseline 

Mean 31.4 28.74 

95% CI (22.7, 40.1) (20.29, 37.2) 
 

 

Difference 16.54% 

95% CI (-9.66%, 42.74%) 

  

Figure 55: Phase 5 mean shower consumption per household (Trial A vs. baseline) for the entire 

panel  
Figure 56: Phase 5 difference (%) of mean shower consumption over 

baseline for the entire panel 

4.2. Trial B 

In this section, we present the effect of the DAIAD system on the shower consumption ( i.e., monitored via 

amphiro b1) of the Trial B participants. In summary:  

• Shower consumption . We use the Phase 1 of the study, during which no interventions  were provided to 

participants, to establish a baseline of each household’s typical shower use. This is the only realistic  

method for establishing a shower consumption baseline for large -scale trials, given the practical 
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considerations analyzed in Section 4.1, and has been applied in all past/ongoing Amphiro studies, 

which allows us to directly compare our results with previous works.  

Table 5 summarizes the savings for all Trial participants and all phases of Trial B.  

 

Phases Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 

% Savings in 

shower 

consumption 

N/A (baseline) 5.2 

(Real-time: 5.4 

Diagnostic: 4.8) 

16.8 20.6 

(Social ON: 

20.6 / Social 

OFF: N/A) 

7.4 

 

# b1 devices used 

for analysis 
56 11 10 3 3 

Table 5: Water consumption savings in all Trial B Phases 

In Figure 57 we present the changes in shower water use for each individual Phase of Trial B, along with the 

corresponding confidence intervals, while Figure 58 presents the average shower consumption of our Trial 

panel and the baseline for each individual phase of Trial B.  

As it is apparent from Table 5, for all Phases we report an increase  in the water used in the shower, which 

may seem both counter-intuitive  and in contrast  to the water savings achieved in Phase 3 of Trial A and in our 

additional experimental evaluations which directly focused on the evaluation of our intelligent shower 

monitor. Following the end of Trial B (see Deliverable D7.2) and the subsequent evaluation of all factors 

related to the system’s operation, satisfaction, and adoption by participa nts (see Sections 5.2.1, 5.2.6, 5.3) 

we reached the conclusion that this discrepancy in the achieved results was caused by the local water flow 

problems  in the area of St Albans, which hindered the installation and operation of the amphiro b1 device, 

and consequently, our experimental evaluation. As analyzed in D7.2 and D2.4.2, this problem has been 

identified and addressed directly from our experience in Trial B, which in this respect proved extremely 

valuable, as similar problems have not been discovered in any of other studies were amphiro b1 devices were 

evaluated. However, it was also unfortunate as the tested version of the amphiro b1 device caused the 

following problems regarding the collected data from the Trial and their subsequent evaluation.  

Specifically, the low-water flow in St Albans resulted into intermittent  or sporadic complete  failure to power the 

integrated BT radio due to the reduced energy harvested from water ( the low water flow could power the micro -

generator and the integrated LCD, but not the most energy-intensive BT radio). This problem affected all Phases 

(see below), but specifically for Phase 1, during which the baseline was established for participants, resulted 

into the collection of multiple shower events with a lower than normal consumption ( flow-rate, duration) due 

to the participants attempting to pair the amphiro b1 with their mobile devices. Ultimately, the users were 

successful, but the number of such shower events randomly distributed during Phase 1 ( i.e., the user installed 

the b1, attempted to pair twice, abandoned the effort and took several showers till the next attempt ) contaminated 

the shower extractions comprising our baseline for the majority of users. Unfortunately, there is no 

systematically sound methodology to identify and remove these false shower events from the baseline of the 

users as there is no way of deducing which were normal showers and which were failed pairing attempts, and 

as such cannot be removed from our pre-processing steps. Further, due to the  lower than normal water use 
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of these showers, the baseline of the users is artificially lowered  than normal, which explains the reported 

increase in shower use in the subsequent phases.  

In addition, the challenges in BT operation affected the collection of shower data, with the low number of 

transmitted data during the Trial B being more pronounced  compared to Trial A. In Trial A, this was observed 

in the last stages of the study due to the users becoming less considerate with bringing their mobile devices 

with them, but in Trial B these problems were observed throughout  the study, with missing data from multiple 

users. With the amphiro b1 device having a non-volatile storage only for 249 showers, there were multiple 

cases were the internal historical data were not transmitted via the mobile app ( the user did not bring her 

mobile device or there was an intermittent BT problem due t o low water flow), and hence past showers were 

overwritten by new shower events.  As it is evident from the figures that follow in the next sub -sections, the 

variance of the results is very high  (the confidence interval includes 0 ) and the number observations is very small. 

As such, the reported effects should not be considered  to deduce any meaningful observations for the actual 

effect of the system.  

Overall, this outcome is unfortunate and not anticipated , especially considering that similar problems have not 

been discovered in any of the past studies of Amphiro’s intelligent shower monitor. On the other hand, the 

Trial B itself had been successful  and served its purpose, as it allowed us to identify and address a critical 

issue in an early commercialization setting, ensuring the amphiro b1 prototypes delivered by the project 

successfully address the real -world challenges of consumers throughout EU and worldwide. In addition, our 

early decision to perform real -world tests on EU areas with vastly different characteristics proved successful, 

as it allowed us to identify localized problems that had not been identified previously, nor considered as 

critical. Finally, the lack of credible shower data from Trial B has been more than mitigated through Trial A, 

as well as our through our extended and external studies (see Sections 4.3.1, 4.3.2, 4.3.3, 4.3.4), which 

combined produced more than 85K shower events , far surpassing the potential maximum output of Trial B. 

 

 

Figure 57: Change in total shower consumption (%) for Trial B treatment phases 
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Figure 58: Average shower consumption (in liters) for each Trial B treatment phase 

4.2.1 . Phase 1  

In Phase 1, the effect on shower consumption is not available, as Phase 1 serves to establish the shower use 

baseline, i.e., the usual participant behavior without any intervention  (see Annex 2 for details). 

 

Phase 1  All  

% Savings in shower consumption  N/A  

4.2.2. Phase 2 

In Phase 2, the shower consumption of the entire Trial population increased by 5.2%. For the group that was 

provided with real-time feedback, the increase was 5.4%, while for the group that was provided with 

diagnostic feedback the increase was 4.8%. We observe an inverse picture compared to Trial A ( i.e., water use 

actually increased), contrasting all of other results and past studies, with real -time feedback appearing to lead 

to more increased consumption compared to diagnostic feedback.  The reasons for the discrepancy of these 

findings have been analyzed previously and should not be considered to deduce any meaningful observations 

for the actual effect of the system.  

 

Phase 2 modes Real-time feedback Diagnostic feedback All  

% Savings in shower consumption  5.4 4.8 5.2 

Table 6: Shower consumption savings in Phase 2 

 



DELIVERABLE 7.3            69 

 

 Phase 2 – all 

groups 
Baseline 

Mean 42.49 39.14 

95% CI (24.87, 60.12) (25.35, 52.93) 
 

 

Difference 5.18% 

95% CI (-6.82%, 17.19%) 
 

Figure 59: Phase 2 average mean shower consumption per household (Trial B 

vs. baseline) for the entire panel  

Figure 60: Phase 2 difference (%) of shower consumption over 

baseline for the entire panel  

 
 Phase 2 –b1 only  Baseline 

Mean 35.81 32.08 

95% CI (12.61, 59.01) (17.14, 47.03) 
 

 

Difference 5.41% 

95% CI (-15.11%, 25.93%) 

  

Figure 61: Phase 2 average mean shower consumption per household (Trial B vs. baseline) 

for the panel receiving real-time feedback interventions 
Figure 62: Phase 2 difference (%) of shower consumption over baseline for the 

panel receiving real-time feedback interventions 
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 Phase 2 – mobile only Baseline 

Mean 54.19 51.48 

95% CI (10.62, 97.75) (13.72, 89.25) 
 

 

Difference 4.78% 

95% CI (-9.38%, 18.95%) 

  

Figure 63: Phase 2 average mean shower consumption per household (Trial A vs. 

baseline) for the panel receiving diagnostic feedback interventions 

Figure 64: Phase 2 difference (%) of shower consumption over baseline for the 

panel receiving diagnostic feedback interventions 

 

4.2.3. Phase 3 

In Phase 3, the shower consumption of the entire Trial population increased by 16.8%. The reasons for the 

discrepancy of these findings have been analyzed previously and thus should not be considered to deduce 

any meaningful observations for the actual effect of the  system. 

 

 

Phase 3  All  

% Savings in shower consumption  16.8  

Table 7: Water consumption savings in Phase 3 
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 Phase 3 Baseline 

Mean 47.75 40.36 

95% CI (24.62, 70.89) (25.18, 55.53) 

Figure 65: Phase 3 mean shower consumption per household (Trial A vs. baseline) for the 

entire panel  

 

Difference 16.82% 

95% CI (-7.65%, 41.29%) 

 Figure 66: Phase 3 difference (%) of shower consumption over baseline for the 

entire panel  

4.2.4. Phase 4  

In Phase 4, the shower consumption of the entire Trial population increased by 20.6%. The reasons for the 

discrepancy of these findings have been analyzed previously and thus should not be considered to deduce 

any meaningful observations for the actual eff ect of the system. 

 

Phase 4 modes Social comparisons on Social comparisons off  All  

% Savings in shower 

consumption 
20.6 N/A 

(no data14) 

20.6 

Table 8: Water consumption savings in Phase 4 

 
                                                        
14 The pre-processing steps applied to amphiro b1 data (see 3.1.4) combined with the reduced frequency of data uploads from our particip ants during Phase 

4, excluded all  shower events from consumers with social comparisons off.  
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 Phase 4 Baseline 

Mean 26.41 21.82 

95% CI (-1.84, 54.66) (9.96, 33.69) 
 

 

Difference 20.58% 

95% CI (-74.12%, 115.29%) 

  

Figure 67: Phase 4 mean shower consumption per household (Trial A vs. baseline) for the 

panel receiving social comparison interventions 

Figure 68: Phase 4 difference (%) of shower consumption over 

baseline for the panel receiving social comparison interventions 

4.2.5. Phase 5 

In Phase 4, the shower consumption of the entire Trial population increased by 7.4%. The reasons for the 

discrepancy of these findings have been analyzed previously and thus should not be considered to deduce 

any meaningful observations for the actual effect of the system . 

 

Phase 5  All  

% Savings in shower consumption  7.4%  
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 Baseline Phase 5 

Mean 21.83 22.05 

95% CI (9.95, 33.72) (13.11, 31) 
 

 

Difference 7.4% 

95% CI (-102.7%, 117.5%) 
 

Figure 69: Phase 5 average total shower consumption per household (Trial 

B vs. baseline) for the entire panel  

Figure 70: Phase 5 difference (%) of total shower consumption over baseline 

for the entire panel  

 

 

4.3. Additional experimental evaluations 

4.3.1 . Velserbroek, NL  

In the Netherlands study, several observations were observed concerning the water consumption. During the 

Baseline Phase both study groups (control and treatment group) used per shower on average the same 

amount of water. More specifically, the control group have used 52.12 liter and the treatment group have 

used 51.87 liters on average (see Figure 71 and Figure 73). This difference is so small that it is statistically 

not significant – thus positively providing a hint that the randomization procedure might have worked.  

During the intervention phase the water consumption of the treatment group decreases in average by 5.92%. 

Although this statistically significant saving effect appears rather small, one needs to compare the change of 

consumption of both groups to see the e ffect of the DAIAD@feel sensors: While the control group increases 

the consumption by around 10%, the treatment group decreases it by 6%. This leads to a total reduction of 

water consumption by -16.0%. This effect size is also confirmed when calculating th e difference between the 

average user consumption of both groups. Dividing this number by the average consumption of the control 

group, the effect size yields 14.1%.  

 

Velserbroek  All  

% Savings in shower consumption  -16.0  

# b1 devices used for analysis  431 

 

Phase 5
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 Baseline Intervention 

Mean 51.87 47.83 

95% CI (49.21, 54.52) (45.41, 50.25) 

Figure 71: Average User Consumption (liters) per Phase of the treatment group 

 
 

Difference -5.92% 

95% CI (-3.84%, 8.00%) 

Figure 72: Change in consumption between intervention and baseline phase of the 

treatment group  

During the intervention phase, the water consumption of the control group increases by around 10% (see 

Figure 74). This effect can be attributed to the Hawthorn effect: At  the beginning of the field study, participants 

“feel observed” and thus showering differently than usual. With the beginning of the trea tment phase 

participants relapse into their old habits.  

 

 
 Baseline Intervention 

Mean 52.12 55.67 

95% CI (47.96, 56.28) (51.54, 59.80) 

Figure 73: Average User Consumption (Liters) per Phase of the control group 

 
 

Difference 9.95% 

95% CI (6.25%, 13.64%) 

Figure 74: Change in consumption between intervention and baseline phase of the 

control group  
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4.3.2. Nuremberg, DE  

The analysis of the shower data reveals interesting effects of the DAIAD@feel sensors. Despite the low average 

consumption of both groups, the feedback enables water conservation. Showers of devices with the full set 

of real-time feedback led to an average water reduction of -13.5%. Figure 75 displays the 95% confidence 

interval of the water consumption for both groups – revealing that the effect is highly statistically significant.  

 

Nuremberg  All  

% Savings in shower consumption  -13.5  

# b1 devices used for analysis  90 

 

 
 Control Baseline 

Mean 22.71 19.65 

95% CI (22.18, 23.25) (19.24, 20.07) 

Figure 75: Average water consumption per group 

 

4.3.3. San Joan (expanded Trial  A)  

The reduction in water consumption observed in the external Trial in San Joan was 15.4%. The savings were 

calculated by comparing the total consumption of the trial panel during the first two quarters of 2017 ( i.e.,  the 

trial duration), to the corresponding quarters of 2016. The results confirm our findings from Trial A, with 

similar achieved total water consumption savings.  Figure 76 and Figure 77 present the results of expanded 

Trial A and the corresponding confidence intervals.  

 

San Joan  All  

% Savings in total water consumption  -15.4  



DELIVERABLE 7.3            76 

 

 

  
 Baseline Intervention 

Mean 95,133 80,497 

95% CI (71,467, 118,133) (56,467, 103,067) 

Figure 76: Total water consumption per household (baseline vs Expanded Trial A), for the 

entire panel 

 

 

 

Figure 77: Expanded Trial A difference (%) of total water consumption over 

baseline, for the entire panel 

 

Difference -15.4% 

95% CI (-32.7%, 1.2%) 

 

4.3.4. Alicante  (extended Trial  A) 

The reduction in total water consumption for the extended Trial A (called Phase 6), i.e., from March 1 st 2017 

( i.e., after the Trial A has officially ended ) and up to May 30 th 2017 ( i.e., for a 3-month period) was -12.0%. We 

observe that the achieved savings remained practically stable  compared to Phase 5 (see Section 4.1.5), so with 

high confidence, we can consider the -12% savings effect as the achieved sustainable changes induced in the 

consumption behavior of our Panel.  In total, our Panel has been engaged in the Trial for 15 months, with 

Phases 5 and 6 accounting on average for 5 full months  of uninterrupted and stable exposure  to the system for 

our Panel members.  

 

Phase 6  All  

% Saving in water consumption  -12.0 
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 Trial Baseline 

Mean 15800 17960 

95% CI (14144, 17420) (16236, 19856) 

Figure 78: Phase 6 average total water consumption per household (Trial A vs. 

baseline) for the entire panel 

 
 

Difference -12,0% 

95% CI (-5.3%, -18.5%) 

Figure 79: Phase 6 difference (%) of total water consumption over baseline for the 

entire panel 
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5. Analysis of Trial results 

In this section, we present the results of our extensive analysis of all experimental data collected during the 

Trials (see Section 3), exploring the effect of the DAIAD system across various dimensions.  First, we analyze 

the effect of the DAIAD system on shower use, and the corresponding water, energy, and CO2 savings, while 

also elaborating the on the shower habits of our panel ( water flow, temperature, duration). Next, we examine 

the correlation of water use and savings across household characteristics, time, and location. A thorough 

analysis follows exploring the user satisfaction from the DAIAD system, the acceptance of its various 

deployment schemes and corresponding pri ce points, the implementation of the crowdfunding campaign 

organized in the context of the project, the engagement of our users with the mobile app, and our findings 

regarding the application of social innovation for promoting real -time water monitoring technologies. Next, 

we present and discuss the major technical issues and aspects of the DAIAD system across its major 

components, as identified and analyzed in the context of our Trials. Finally, we summarize, frame, and argue 

about potential new business models for water utilities and water stakeholders from the application of DAIAD 

technologies, and establish the financial value of real -time water consumption data for the EU economy. 

5.1. Savings effect 

In the following, we summarize the findings of Section 4 a nd of the sub-sections that follow, establishing the 

validated savings effect  of the DAIAD system based on the experimental data from our Trials. We present the 

savings effect across deployment types, interventions, and consumer characteristics to provide a modest and 

accurate estimate to interested stakeholders regarding the real-world effect of the DAIAD system. 

• Deployment types 

o Top-down (SWM) . The average sustainable water savings  in residential water consumption is 

12%, following a period of 12 months (Trial A, Extended Trial A). 

o Bottom-up (amphiro b1) . The average sustainable water savings in residential shower 

consumption is 16% (Trial A, Velserbroek), with the corresponding energy savings 20.5%. For 

cases with no financial incentives ( Nuremburg), the average sustainable water savings is 

13.5%, with the corresponding energy savings 12.5%. 

• Interventions 

o In-situ real-time feedback is almost six times more effective than diagnostic feedback . 

o Social comparisons are effective towards maintaining  consumers engaged  in sustainable 

consumption behavior over a prolonged time-frame. 

o The average achieved savings are greatly influenced by local conditions and established 

behavioral norms; published savings results are not transferable  as-is to other locations and 

population groups.  
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o Different non-pricing incentives (interventions), as well as pricing incentives, do not have an 

additive effect; instead, they complement  each towards sustaining water savings over a 

prolonged time-frame. 

o We consider that the maximum achieved savings to have a real-world upper bound  over a 

prolonged time-frame (i.e., over a year) at ~15%; with up to two thirds of water use being 

inelastic (depending on local conditions), we believe this number should serve as the ‘yard -

stick’ for residential water efficiency services and products  

• Consumer groups 

o Achieved water savings have a very small correlation with household size, gross income, 

number of members, and ownership status; hence all households can benefit equally.  

o Water use is strongly dependent ( in descending order) from the number of members, 

household size, and income; total residential water consumption increases by the square root 

of household members.  

o Water use is strongly dependent from location for residential areas (neighborhoods), with 

consumers in the same area having similar consumption patterns.  

 

5.1.1. Analysis of  shower use and savings  

In the following, we present an analysis of the shower consumption  and savings achieved from all trials ( i.e., 

amphiro b1 data) aiming to provide further insights into the consumption behavior of our participants. 

Specifically, we first provide the average water savings by combining data across all Trials  in an effort to deliver 

a fair estimate of the anticipated savings across the popul ation at large. Furthermore, we present the 

associated energy and CO2 savings achieved in our Trials that stem from the reduction of hot water use. Finally, 

we examine and compare the shower use habits ( i.e., volume, duration, flow-rate, temperature) across all Trials.  

We would to remind the reader that the comparison between trials must be interpreted with caution, as each 

trial refers to entirely different panels and experimental protocols. However, our goal is to provide an 

informed estimate (or rule of thumb) of the water, energy, and CO 2 savings that can be anticipated from the 

amphiro b1 device in a real-world setting. Specifically, for Trial A and Velserbroek ( users are families that collect 

many showers per person), the savings in percent rely on an aggregation of the savings calculated per device 

(comparison between baseline and intervention phase ). For Nuremberg (shower of hotel guest, mostly one shower 

per person, but much larger number of participants ), we first aggregated the average consumption for the 

intervention group and the control group and then we determined the difference between these means in 

percent. Additionally, the studies are very different regarding sample size, experimental design, location, 

duration, timing, etc. This undoubtedl y increases  the validity of the results (amphiro b1 works in many different 

settings) but hampers the comparison.  
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5.1. 1 . 1 .  Average shower water savings  

All in all, we achieved savings of 16.0% of shower water use in the domestic applications of amphiro b1 ( Trial 

A in Alicante, Spain and Trail in Velserbroek in the Netherlands) and 13.5% on top of an extremely efficient, 

low flow setting without financial incentives ( water and heat included in hotel bill ) in a youth hostel (in 

Nuremberg, Germany). The following table draws the different results per study location:  

 

Savings per shower and study/trial  Trial A, Phase 2 Velserbroek Nuremberg 

% Savings in water consumption  -16.0 -16.0 -13.5 

# devices 56 431 90 

5.1. 1 .2 . Energy and CO 2  savings 

All in all, we achieved on average 20.5% of shower-related energy consumption savings in domestic settings 

(Trial A in Alicante and Trial in Velserbroek in the Ne therlands) and 12.6% in the low-flow, no financial 

incentives trial in the youth hostel (in Nuremberg, Germany). The following table summarizes the different 

results per study location:  

 

Savings per shower and study/trial  Trial A, Phase 2 Velserbroek Nuremberg 

% Savings in energy consumption  -20.21 -20.8 -12.6 

 Savings in energy consumption (kwh)  0.19 0.64 0.129 

% Savings in CO2  consumption -19.04 -20.8 -13.3 

 Savings in CO2  (kg) 0.04 0.14 0.03 

 

5.1 . 1 .2 . 1 .  Tr ia l  A  

To estimate the energy consumption savings as well as the CO 2 savings for the DAIAD trials, we focus on the 

intervention phase providing real -time and deferred feedback (Phase 2). In Trial A, a sufficiently large number 

of individuals actively participated at the trials; thus, we chose to calculate the energy and CO 2 savings 

especially for this phase.  

Figure 80 to Figure 83 show the average energy consumption as well as the CO 2 emissions of a shower. The 

plot with the change in energy consumption and CO 2 emissions shows that in comparison to the baseline the 

entire panel significantly decreased energy consumption and CO2 emissions of 11%.  
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 Trial Baseline 

Mean 0.75 0.94 

95% CI (0.61, 0.89) (0.75, 1.13) 

Change in mean 20.21% 

Figure 80: Phase 2 average total energy consumption per household (Trial A vs. baseline) for the 

entire panel 

 
 

Difference -11.0% 

95% CI (-1.1%, -20.7%) 

Figure 81: Phase 2 difference (%) of total energy consumption over baseline 

for the entire panel 

 

 
 Trial Baseline 

Mean 0.17 0.21 

95% CI (0.14, 0.2) (0.17, 0.25) 

Change in mean 19.04% 

Figure 82: Phase 2 average total CO2 consumption per household (Trial A vs. baseline) for the entire 

panel 

 
 

Difference -11,0% 

95% CI (-1.1%, -20.8%) 

Figure 83: Phase 2 difference (%) of total CO2 consumption over baseline 

for the entire panel 

5.1 . 1 .2 .2 .  Velserbroek,  N L  

In Figure 84 we illustrate the effect of real-time feedback on energy consumption and in Figure 85 we present 

the average energy savings per shower, which amount to -0.64kWh or -20.8%. 

The two lines in Figure 84 show the mean energy consumption per shower over the course of the study of the 

two groups (blue = control group, red = treatment group ). During the baseline phase (no feedback, from 0% to 10% 
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of study completion), the energy consumption of control and treatment groups is almost identical, showing us 

that the random distribution of the participants into the two groups worked well. This is an important indicator 

that the participants are similar regarding important characteristics, and it increases the level of confidence 

that the effects observed in the subsequent intervention phase can be attributed to the intervention and not 

to group-specific differences. The first data point is noticeably l ower than the rest. We assume that is because 

many participants who installed the feedback device and tried it out with a smaller water extraction, without 

actually taking a shower. 

During the intervention phase (between 10% and 100% of the study completio n), control group participants (blue 

dots) continue to see only water temperature . The consumption increases over time, as indicated by the upward 

slope of the blue line. We attribute this trend to the Hawthorn effect  ( i.e., observation bias). At the beginning, 

participants “ feel observed” and thus take shorter  showers than they usually would; over time, they get used to 

the device and return to their normal shower habits . This is not interfering with the study results, as the effect 

is present for both groups. With the onset of the intervention phase (feedback is shown for the first time, study 

completion rate 11%), treatment group participants immediately  reduce their energy consumption. This decrease 

is attributed to the feedback intervention. Savings are represented by the difference between the two trend 

lines, which are almost parallel. The treatment effect remains constant during the experiment. If there is a 

change, then the gap seems to widen; that would mean that the savings even increase the longer the 

participants receive feedback.  

 

Figure 84: Feedback effects on per-shower energy use 

In order to quantify the effect size, we calculated the changes in consumption with a difference-in-differences 

(DiD) analysis. A DiD analysis compares the mean energy use of the two groups (control and treatment) during 

baseline and during the intervention phase. This relatively simple approach has the advantage over more 

sophisticated regression models that it is more straightforward to understand and verify. For a DID analysis, 

one derives the difference between control and treatment group during the baseline phase and subtract from 

it the difference between control and treatment group du ring the intervention phase. In our case, this reveals 

average savings per shower of 0.64 kWh, or 20.8% (Figure 85). An alternative to DID analysis is to estimate a 

more complex regression model. Using a fixed effect regression model, we found the savings to be 0.55 kWh, 

or 19.6%. Given the inherent error margins of field studies, this virtually the same result as shown by the DID 

analysis. 
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Figure 85: Calculation of the effect size with a difference-in-differences approach (energy use per shower, 

no minimum threshold filter) 

Our analysis indicates that the energy savings almost completely result from a  reduction in shower duration. 

The treatment group only slightly reduced the flow-rate, and took their showers at almost the same temperature . 

This is not very surprising:  reducing the duration of a shower by a minute or two  is hardly noticeable given a 

human’s sense for time at these scales, while a reduction of the water temperature would result in a severe 

loss of comfort. 

Considering that the energy usage is the reason for CO2 emissions, we can easily transfer the 20.8% reductions 

in energy consumption to the savings in CO 2 emissions. This results in saved CO 2 emissions of 0,14 kg of CO2 

emissions per shower.  

5.1 . 1 .2 .3 .  Nuremberg ,  DE  

Due to the absence of a baseline phase, a calculation of the savings per group is not feasible. Instead, we rely 

on the energy consumption differences between both groups to estimate the impact of the intervention with 

DAIAD@feel sensor. Figure 105 displays the 95% confidence interval of the energy consumption for both 

groups. It reveals that the DAIAD@feel sensor leads to average energy savings of 0.129 kWh per shower, which 

amounts to 13.3%. 
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 Control Treatment 

Mean 1.039 0.910 

95% CI (1.013, 1.065) (0.890, 0.931) 

Figure 86: Energy consumption of both groups 

Due to the energy reduction, the CO 2 emissions decrease, too. Figure 87 displays the group-specific CO2 

emission – revealing that the DAIAD@feel sensors leads to a reduction of 0.03 kg CO 2 per shower, which 

amounts to 12.6% of savings. The permanent deployment of the feedback devices in the hotel would, thus, 

lead to an annual reduction of approximately 7500 kWh and 1.6 tons C O2.  

 

 
 Control Treatment 

Mean 0.239 0.209 

95% CI (0.233, 0.245) (0.204, 0.214) 

Figure 87: CO2 emission of both groups 
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5.1. 1 .3 . Shower habi ts  

The following figures describe the shower habits of the study participants in Alicante (Spain), Nuremberg 

(Germany), and the region of Velserbroek (Netherlands). To this end, we compare the duration of showers, 

the flow rate, the amount of water as well as the temperature of the recorded showers.  

First, we analyze the absolute occurrence of the duration of the showers of the different locations. For that 

reason, we create ranges of 50 seconds and count the number of occurrences. Figure 88, Figure 89, Figure 90 

show that the distributions of the duration for all trials is right ske wed. The mode of the duration of the study 

participants’ showers ranges from 3 minutes (Trial A, Alicante) to 4.5 minutes (Netherlands).  

 

  

Figure 88: Distribution of total shower duration per shower for Trial A 

participants (3 outliers were removed) 

Figure 89: Distribution of total shower duration per shower for Velserbroek 

participants (42 outliers were removed for visualization) 

 

 

Figure 90: Distribution of total shower duration per shower for Trial B 

participants 

Figure 91: Distribution of total shower duration per shower for Nuremberg 

participants (3 outliers were removed for visualization) 

 

Concerning the average water temperature per shower, there are no major differences for all three locations. 

The distribution is more or less symmetric (see Figure 92, Figure 93, Figure 94 showing the occurrence of bins 

of 1°C). German and Dutch participants tend to take showers with slightly hott er water than the Spanish – 
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one possible explanation might rely on the general temperature difference or just different personal 

preferences: In Alicante, the mode was 35°C, and the studies in Germany and the Netherlands revealed a 

mode of 37°C and 38°C, respectively.  

 

  

Figure 92: Distribution of water temperature for Trial A participants Figure 93: Distribution of water temperature for Velserbroek participants (624 

outliers were removed) 

 

 

Figure 94: Distribution of water temperature for Trial B participants Figure 95: Distribution of water temperature for Nuremberg participants 

 

The average flow rate (in liters per minute) differs considerably  between the three study locations (visualized 

in bins of 1l/min). Figure 96 and Figure 97 show a mode of 7 to 8 liters per minute for Spain and the 

Velserbroek. In Germany (see Figure 98), the mode was 4 liter per minute; please bear in mind that t he 

difference of the Nuremberg-study to the studies in Spain and the Netherlands stems from the fact that the 

study in Germany was conducted in a youth hostel where most of the rooms were equipped with the same 

shower heads (which in generally mainly influence the flow-rate). The “within-Nuremberg-differences” can 

be attributed to varying water pressure levels in different rooms of the building. For the Spanish and Dutch 

study locations, the variety in flow rate is much higher due to the unknown and possibl y much more diversified 

types of showerheads and water pressures.  
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Figure 96: Distribution of average water flow rate per shower for Trial A 

participants 

Figure 97: Distribution of average water flow rate per shower for 

Velserbroek participants (10 outliers were removed for visualization) 

 

 

Figure 98: Distribution of average water flow rate per shower for Trial B 

participants 

Figure 99: Distribution of average water flow rate per shower for Nuremberg 

participants 

 

Finally, analogous to the duration of showers, Figure 100, Figure 101, and Figure 102 show that the 

distributions for the water volume per shower are right skewed (five-liter-bins). The typical shower in Spain 

was 15 liters in volume and in the Netherlands 25 liters. As explained above, the shower habits described for 

the study in Germany is not directly comparable to the other studies as shower habits in the youth hostel 

might be quite different to shower habits at someone’s home; in the youth hostel (with exceptional low flow 

rates), the mode was the 10-liter-bin. 
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Figure 100: Distribution of total water volume used per shower by Trial A 

participants 

Figure 101: Distribution of total water volume used per shower by Velserbroek 

participants (67 outliers were removed) 

 

 

Figure 102: Distribution of total water volume used per shower by Trial B 

participants 

Figure 103: Distribution of total water volume used per shower by Nuremberg 

participants (2 outliers were removed) 

 

 

5.1.2. Analysis  of  total  water use and savings  

In the following, we present an analysis of the total water consumption  and savings  achieved in Trial A ( i.e., 

smart water meter data) aiming to provide further insights into the consumption behavior of our Trial panel . 

Specifically, we first examine the correlation  of the total achieved savings and total consumpt ion with several 

household characteristics (e.g., apartment size, income). Further, we present an autocorrelation  analysis of the 

total water consumption, indicating the relation of water use during an hour  or day with previous  hours or 

days. In addition, we assess the savings achieved per consumption classes and calculate the average peak 

water consumption hours, to compare with peak consumption hours before treatment. Finally, we examine 

whether the empirical rule of water use increasing approximately by the square root  of the number of family 

members was valid in our setting.  
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5.1.2 .1 . Correlat ion of water savings with household characterist ics  

In Figure 104 we present the correlation of the total water savings that were achieved during the Phase 5 and 

Phase 6 of our Trial A  ( i.e., the sustained water savings ), with the following dimensions ( features), which were 

provided from the participants themselves in our Recruitment (se e Section 3.13.1) and Pre-Trial surveys (see 

Section 3.13.2): 

• Apartment size 

• Total water consumption (SWM) 

• Total Income 

• Number of children in the household  

• Number of females in the household  

• Number of males in the household  

• Total number of household members  

• Number of showerheads in the household 

• Whether the residence is on rent or not 

As it is apparent in the figure, we do not observe a significant correlation of savings with any of the features. 

The highest correlation that can be noticed is with the household’s apartment size and number of shower-

heads. The former is a negative correlation (i.e., the larger  the household, the smaller  are its savings), which 

is intuitive, as larger in size households have higher inelastic consumption due to the fixed water usage for 

cleaning and sanitation. The latter correlation is positiv e (i.e., the larger the number of shower-heads, the 

larger are its savings), which indirectly confirms  from another approach the effect of the amphiro b1 device for 

inducing sustainable changes in consumption behavior. In Trial A, we have equipped all households with an 

amphiro b1 device for all of their showers ( typically in Alicante there are two showers, one for adults and one for 

children). With more showers being taken in these households, the total water savings were higher due to the 

savings achieved in showering. The water savings are also negatively correlated with the number of household 

members, possibly due to the fact that, it is more probable for the members of a less populated household 

to be collectively affected by the interventions of the system. Specifically, while the real -time interventions in 

the shower were available to all household members during their showers, the diagnostic interventions were 

only directly to typically one household member via her mobile device. It is also interesting that there is a 

rather larger negative correlation of the number of males in a household compared to the number of females, 

which possibly suggests that female members tend to be more prone to changing their consumption 

behaviour. Of course, the negative correlation with the household members ( total, female, male) is 

understandable, as more household members imply more inelastic consumption ( e.g., cleaning, cooking). 

Finally, it is important to point out that, due to the rather small number of the population (312 household 

members), the confidence intervals  (denoted with black vertical lines in the figure ) of the correlations with each 

dimension are rather large, which does not allow for safe conclusions.  
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Figure 104: Total savings correlation with household features 

In Figure 105 we present the total water savings after diving the households in 9 groups, depending on their 

total water consumption during Phase 5 and Phase 6 of Trial A. We can observe a negative trend that reaches 

its minimum in the 25,000-27,500lt range (typically a 3-person household), past which the trend seems to 

become positive again. This suggests that water savings are at their highest  for low-water consumers (typically 

with 1-2 members), are reduced for medium-water consumers (typically 3-4 members) and increase again as 

the water consumption increases. However, the large confidence intervals do not  allow for a more accurate 

estimation of the difference between the various consumption groups.  
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Figure 105: Savings per consumption range 

 

5.1.2 .2. Correlat ion of tota l  water consumption with household character ist ics  

In Figure 106 we present the correlation of the total water consumption  of our households during Phase 5 of 

our Trial A  ( i.e., the sustained water savings ), along the features presented in the previous section. It is apparent 

that the correlation of the total water consumption is significantly higher  in absolute values, with all features  

positively  correlated with the total consumption.  

The highest correlation is observed for the number of household members (0.55), which intuitively confirms 

that the higher the number of household members, the highe r its consumption will be. This is in line with 

current literature, where it is suggested that a household’s water use increases approximately  by the square 

root of the number of family members 15,16. Figure 107 depicts the expected  water consumption against the number 

of household members according to the afore mentioned empirical rule  (darker blue line), and the observed 

water consumption during our Trial (lighter blue line)  for the same household groups. Despite the rather 

small number of population (312 household members), it is apparent that the observed consumption tends to 

follow the expected one. 

 
                                                        
15 Schleich, J.,  Hil lenbrand, T., 2009, Determinants of Residential Water Demand in Germany. Ecological Economics 68: 1756 –1769 

16 Arbues, F., Vi l lanua, I., 2006, Potential for pricing policies in water resource management: estimation of urban residential water demand in Zaragoza, 

Spain. Urban Studies 43 (13): 2421–2442 
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Figure 106: Total water consumption correlation with household features 

A significantly high positive correlation with the household’s total consu mption is also noticed for the number 

of males in the household. This agrees with our observation in the previous section, where the higher  the 

number of males in the household, the less were the savings observed. The apartment’s size also has a rather 

high correlation with consumption (0.3), which is expected. The same stands for the total yearly income of 

the household, the number of children, the number of females and the number of showerheads in the 

household. On the other hand, whether the house is on  rent or not does not seem to affect the total 

consumption. Finally, it is worth noticing that, due to the higher correlation values, in most cases, the rather 

large confidence intervals do not  overlap the positive and negative quadrants, which leads us to  the conclusion 

that the positive correlation observed is statistically significant . 
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Figure 107: Household Members vs. total water consumption; the empirical rule of consumption increasing 

with the square root of a household’s members is validated 

5.1.2 .3. Correlat ion of water use and savings with temperature  

In Figure 108 we depict the correlation of the water consumption  and water savings  achieved during Trial A, 

with the outside temperature levels at Alicante . Specifically, we have examined the correlation o f daily water use 

with the average daily temperature  and the maximum daily temperature , and the achieved weekly water savings 

with the average weekly temperature  and the maximum weekly temperature .  

As we can observe, there is a positive correlation (0.29 - two bars on the left in Figure 108) of the total daily 

consumption both with the average and the maximum outside temperature , which suggests that during a day, 

the higher the temperature , the higher the total water consumption  is. This observation intuitively stands, as 

higher temperatures tend to magnify the need for water  (e.g., more water for drinking, more frequent showers, 

more water used for irrigation). Examining the correlation of the total weekly savings with the weekly average 

and maximum outside temperatures, we reach the same conclusion , but from another point of view. Contrary 

to water consumption, the correlation is negative in both cases (-0.22 - two bars on the right in Figure 108). 

This suggests that, as the outside temperature rises, the total water savings tend to decrease, which again 

confirms the intuition that higher temperatures  lead to reduce water savings due to the increased  water needs. For 

example, when it’s hot outside, people need to drink water, take showers etc. , and that’s not “negotiable"  

(i.e., their inelastic water consumption increases ). In addition, we have also examined the correlation of total 

water use and water savings with outside temperature for consumer grouping per household members, 

household size, and income. The small size of our panel does not allow for safe conclusions  regarding the 

analysis with income and household size; however, it does provide for some interesting findings for the 

number of household members.  As we can observe from Figure 109, the correlation of total water 

consumption with outside temperature decreases  as the number of household members increases. This is 

means that households with many members are much less sensitive to fluctuations of outside temperature, 

which can be attributed to the higher percentage of water used in activities not influenced by temperature 

(e.g., cooking, cleaning). Examining the correlation of water savings with temperature (Figure 110), a slightly 

more interesting picture emerges. Households with one (1) or five (5)  members are practically unaffected  by 
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outside temperature, with their savings marginally increasing. However, households with two (2), four (4), and 

especially three (5) members, are quite affected by temperature, with their savings reduced  as the temperature 

increases. 

 

 

Figure 108: Correlation of water use and water savings in Trial A with outside temperature 

 

 

Figure 109: Correlation between the per number of household members’ 

consumption and outside temperature 

 

 

Figure 110: Correlation between the per number of members’ savings and 

outside temperature 
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5.1.2 .4. Peak water consumption  

We have examined the changes in peak daily consumption  for our panel, by comparing the peak hour 

consumption for each day of months March and April, for 2016 (i.e., before the interventions were available) 

and 2017 (i.e., after the end of the Trial). As depicted in Figure 111, the average peak hour consumption was 

66.7 liters in 2016 and was decreased  to 64.8 liters in 2017, which constitutes a relative reduction of 2.7%. 

Given the width of the confidence intervals, the c hange is below the threshold of statistical significance, which 

suggests that this reduction could be coincidental . 
 

 

Figure 111: Average peak hour consumption 

5.1.2 .5. Hourly consumption autocorrelat ion  

In order to gain insights regarding how water consumption during each hour is correlated with past 

consumption, we calculated the hourly autocorrelation  of the total consumption of all participants during the 

Trial A. Figure 112 depicts the autocorrelation for a lag of 168 hours, which equals one week. A daily peak  is 

apparent, which leads us to the conclusion that the consumption during each hour depends on the 

consumption occurred during the exact same time  of the previous day . The highest correlation however, is 

observed for the immediately preceding  hour; the water consumption a household is going to spend during the 

next hour heavily depends  on the consumption during the current hour  (note that the correlation that equals to 1 

at the far left of the graph is the correlation of the water consumption during one hour with itself ).  

Moreover, a daily pattern  of hourly correlation is easily noticed, which locally peaks  every 12 th hour and then 

goes higher every 24 th hour. This pattern slowly decays  over time during the next days and slightly rises  again 

during the exact same hour of the next week, which suggests that there is a higher correlation  between the 

water consumption (e.g.,  during 14:00 of Tuesday and during 14:00 of the next Tuesday, than during 14:00 at 

Sunday). This suggests a steadily decreasing  pattern of the autocorrelation graph, that is slightly risen every 

168 hours (weekly). It should be noted that the level of statistical significance  (dashed lines near 0) is 

significantly high, due to the long period of our experiments, contrary to other works.  
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Figure 112: Hourly autocorrelation during the trial 

In order to assess the seasonality  of the above autocorrelation results, we repeat the experiment for four 

different months during the Trial A (May 2016, August 2016, December 2016, January 2017), which fall within 

spring, summer, autumn, and winter respectively. Figure 113 illustrates the results. The autocorrelation graphs 

of January and May are similar  to the autocorrelation graph during the whole Trial in Figure 112. However, 

this is not the case for August, where we can observe a higher  autocorrelation initially, that decays more quickly. 

Also, the weekly rise effect, as well as the every 12 th  hour local peaks  are absent, a fact which possibly denotes 

the more unstable way that people consumed water during the summer vacations, usually taking place during 

August. On the other hand, the hourly correlations during November are slightly lower  compared to the rest of 

the months, which also denotes a potential fluctuation  in water consumption behavior, which might be the 

result of the changing  and unpredictable  weather conditions during autumn.  
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5.1.2 .6. Correlat ion of water consumption with locat ion  

In the following, we examine the possible dependence of the consumption behavior from the location of our 

panel. Towards this, we calculated the correlation between the hourly water consumption of each household 

that resides in one of the three barrios of Alicante with the most trial participants (i.e., Playa De San Juan  - 7 

Figure 113: Hourly autocorrelation during January, May, August and November 
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participants, Albufereta  - 9 participants and Poligono San Blas  - 11 participants) and the average hourly 

consumption of the rest of the households within the same barrio. Figure 114 depicts the obtained results.  

 

Figure 114: Correlation of consumption within the three barrios with the highest number of trial users: Playa 

De San Juan, Albufereta and Poligono San Blas 

The correlations between the consumption of the households at Albufereta are significantly lower  compared 

to Poligono San Blas and Playa De San Juan. Poligono San Blas is the most densely  populated area of Alicante, 

where possibly most families reside. This is also the case for Playa De San Juan a residential area located at 

the eastern outskirts of Alicante. On the other hand, Albufereta is a less dense  area, where the population 

during summer is increased due to the touristic  period. We could therefore assume that  the participants that 

reside in this area do not tend to follow daily routinely schedules, especially during the touristic period. 

However, it should be noted that the documented differences in consumption correlation for t he various 

barrios could be coincidental  due to the rather small size of the Trial’s population  in these specific barrios and 

the corresponding high confidence intervals.  
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5.1.2 .7. Dai ly consumption autocorre lat ion  

A question that emerges from the hourly water consu mption autocorrelation graphs presented previously, is 

whether a repeating  pattern or other similar insights could be extracted for the participants’ water consumption 

for each day of the week, during the Trial A period.  In this evaluation, the level of statistical significance 

(dashed lines) is lower due to the rather small number of days (52 weeks per year).  
 

 

 

Figure 115: Daily consumption autocorrelation for Monday, Tuesday, Wednesday and Thursday 
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Figure 115 illustrates the autocorrelation graphs for the total water consumption of all the Mondays, Tuesdays, 

Wednesdays and Thursdays during the Trial, i.e., the correlation of the total consumption of the current day 

with the same day during the previous week, the week before that,  and so on. These four days are the purely 

working  days of the week, with Fridays possible affected by the weekend that follows.  

We observe that the highest correlations, which are also statistically significant, are between the current day 

consumption and the same day during the previous week  for Mondays, Tuesdays and Thursdays. In fact, 

Thursdays seems to be the most consistent day regarding water consumption, as there is correlation with up 

Figure 116: Daily consumption autocorrelation for Friday, Saturday and Sunday 
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to three weeks  earlier. Slightly lower  correlations are observed for Wednesdays, which could be due to  mid-

week activities  of the participants that do not  tend to repeat.  

The water consumption behavior is significantly less consistent  during the final days of the week (i.e., Friday, 

Saturday and Sunday), as il lustrated in Figure 116. This is due to the unpredictable  nature of activities during 

those days (e.g., people might leave for the weekend, or they might spend time outside their household during any 

hour of the day). There is a somewhat higher  correlation between a current and a previous Friday, due to it 

being a working day. Also, there is a statistically significant  correlation for Sundays, which suggests that people 

are might be preparing  for the week and tend to follow a pattern in water consumption. The phenomenon is 

mostly apparent between the water consumption during Saturdays, where the correlation is significantly less 

than all the rest days of the week.  

 

5.2. Consumer effect 

5.2.1 . User Satisfaction  

In this section, we examine the satisfaction of our Trial A and B panels and its evolution over time, as captured 

by our Satisfaction (section 3.13.3) and Post-Trial (section 3.13.5) surveys, delivered to users by M32 and 

M38 respectively ( i.e., during M8 of the Trial and 2 months after the Trial end ).  

Already from the participation results, we confirm the low local interest  of the St Albans vs. the Alicante 

population as identified during the first months of Trial B (see D7.2 ‘Trial B Report ’ for details). Specifically, 

while in Trial A on average almost one in two participants replied to our surveys (46%), in Trial B a verage 

survey participation was only 16%.  

Survey/Responses Trial A (Alicante) Trial B (St Albans) Total 

Satisfaction 54 (53%) 15 (32%) 69 (46%) 

Post-Trial 41 (40%) 0 (0%) 41 (28%) 

Average participation 46% 16%  

 

This antithesis is evident in the analysis of the responses that follows. In Trial A, user satisfaction from the 

DAIAD system, was extremely positive (~78% Very satisfied or somewhat satisfied). Further, participants have been 

extremely active, interested, and vocal regarding the DAIAD system, communicating their approval, as well as 

ideas for improvements, through multiple means. In contrast, in Trial B user satisfaction was moderate (~47% 

somewhat satisfied, ~30% somewhat dissatisfied or dissatisfied ), with participation being less active compared to 

Trial A, and several participants ultimately dropping out ( ~35%). 

In the following we present the responses of our Trial A and B participants for the available surveys. 

Specifically: 

• Trial A (1st). The responses of Trial A participants (Alicante) in the Satisfaction survey.  
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• Trial A (2nd). The responses of Trial A participants (Alicante) in the  ‘Satisfaction’ section of the  Post-

Trial survey 

• Trial B (1st). The responses of Trial B participants (St Albans) in the Sa tisfaction survey. Note that 

there are not Trial B (2nd) responses, since none of the Trial participants complete the survey.  

5.2.1 .1 . Overal l  user experience  

The first set of questions (Q1-3) focuses on examining the overall satisfaction of our Trial participants for the 

DAIAD system. 

Q1: How would you rate your experience using the DAIAD system so far?  

Trial A (1st) Trial A (2nd) Trial B (1st) Legend 

   

 

 

For the first survey, the majority of Trial A participants were very positive, with ~78% of the population 

characterizing their experience as ’Very satisfied’ or ‘Somewhat satisfied’. Further, only ~2% of users were 

dissatisfied with the system (‘Somewhat dissatisfied’ or ‘Very dissatisfied’). At the second survey, we observe 

two interesting findings. First, the percentage of users that were dissatisfied (‘Somewhat dissatisfied’ or ‘Very 

dissatisfied’) and neutral (‘Neither satisfied, not dissatisfied’) remained practically the same (~22%), which 

suggests that these users were negatively preoc cupied; their opinions remained the same, with the introduced 

improvements and the prolonged system use having no effect  to improving their experience. Second, ~9% of 

the users moved from the ‘Somewhat satisfied’ to the ‘Very satisfied’ category, with ~46% of Trial A participants 

declaring the very positive experience with the DAIAD system. 

For St Albans, the overall user experience was still positive, but at a lesser degree, with ~ 67% of the population 

characterizing their experience as ’Very satisfied’ or  ‘Somewhat satisfied’. However, the overall distribution of 

responses was more negative, with no users declaring ‘Very satisfied’ and ~33% of users being dissatisfied 

(vs. only ~2% for Trial A).  

Q2: Which of the following words would you use to describe th e DAIAD system? 

Trial A (1st) 
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Trial A (2nd) 

 

Trial B (1st) 

 

The responses to this question provide further insights to the perceived characteristics of the DAIAD system 

and the reasons behind their satisfaction.  For both Trial locations, we observe the two most popular words 

characterizing the system are ‘Useful’  and ‘Innovative’. While the later was expected (after all DAIAD’s 

technologies are novel for the water sector ), the clear perception of DAIAD as useful i s remarkable and confirms 

our innovation and exploitation aspirations for DAIAD: develop and deliver products missing from the water 

sector, that consumer themselves find useful in their everyday lives. Ultimately, in the second survey of Trial 

A, ~80% of participants characterize DAIAD as useful. Regarding the deficiencies of the DAIAD system, the 

negative associations are very low in Alicante during the first survey, and become practically zero (only one 

vote) for the second survey, thus confirming both t he overall positive perception of the system and the 

increase in satisfaction of our users over time. In Trial B, negative feelings are comparatively higher, but low 

on absolute terms, with ~26% of participants finding the system ‘Impractical’, which we at tribute the low-flow 

problems in St Albans documented in our D7.2 ‘Trial B Report’.  

Q3: How well does the DAIAD system meet your needs?  

Trial A (1st) Trial A (2nd) Trial B (1st) Legend 

   

 

 

This question evaluates a critical dimension of the DAIAD system, of how and if  it  addresses the needs of its 

users. Participants of Trial A after the end of the Trial, at a point where they were further acclimatized with 

the system and its improved version, by large find that the system addresses their needs well ( ~85% ‘Very 

well’ or ‘Rather well’). The comparison with the first survey is particularly striking, with absolutely no negative 

responses (‘Rather Poor’ or ‘Very Poor’), ‘Neither well nor poor’ re duced to ~15% from 39%, and ‘Very 

well’/’Rather well’ dominating responses.  For Trial B, responses are comparatively more negative compared 

to Trial A, splitting the population into three equal groups: positive (‘Rather well’), neutral (‘Neither well nor 

poor’) and negative (‘Rather poor’ or ‘Very poor’).  
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5.2.1 .2. DAIAD mobi le app  

Q4: According to your experience so far, how would you rate DAIAD’s mobile application?  

Trial A (1st) 

 

Trial A 

(2nd) 

 

Trial B (1st) 

 

Our participants have evaluated the DAIAD mobile application across six dimensions (Ease of Installation, 

Bluetooth connectivity, Ease of Use, Practicality, Usefulness, and Quality). Starting from ‘Ease of Installation’, 

we observe a similar distribution o f evaluations for the first survey in both Trials, with the second survey in 

Trial A clearly documenting a marked increase in the evaluation from our participants. The ‘Very good’ 

responses are more than the ‘Rather well’, with even less neutral and negati ve responses. For ‘Bluetooth 

connectivity’, which as documented in D7.1 and D7.2 had been a very common problem for our users during 

the first phases of the system, a similar picture emerges. We observe a significant shift of our users to positive 

responses in the second survey, but once again with more negative evaluations in Trial B compared to Trial A. 

Regarding ‘Ease of use’, the responses are almost similar with the previous dimensions, with users clearly 

being influenced again in their evaluation from the BT connection problems encountered at the beginning of 

the Trials. Finally, the responses in ‘Practicality’, ‘Usefulness’, and ‘Quality’ are practically the same for both 

Trial locations and all surveys. Once again, we observe clearly positive evaluat ions in Trial A which increase 

during the second survey, and a clear negative response from our Trial B participants.  

5.2.1 .3. Amphiro b1  

The second set of questions (Q5-7) focuses on examining the satisfaction of our users from the b1 device, as 

well as collecting feedback regarding its real -time interventions.  

Q5: According to your experience so far, how would you rate amphiro b1, DAIAD’s intelligent shower monitor?  
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Trial A (1st) 

 

Trial A (2nd) 

 

Trial B (1st) 

 

As clearly demonstrated from the responses, all Trial participants in both surveys are extremely positive for 

the b1 device, with extremely high positive responses for its ‘Ease of Installation’  and ‘Ease of use’ . In terms 

of ‘Practicality’ , ‘Usefulness’, and ‘Quality’ we observe that the few negative responses in the first surveys are 

almost non-existent in the second, with a clear shift of consumers to more positive responses becoming 

apparent. Considering that the b1 device has remained stable during the duration of the Trial, we can deduce 

that the shift in positive responses are entirely attributed to the participants being acclimatized  to its operation 

over time. This is a very interesting insight as it indirectly reveals a quite long learning curve fo r users for 

them to truly appreciate the benefits of this new technology.  

Q6: The smart shower meter shows different information. How easy was it to understand them?  

Trial A (1st) 
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Trial A (2nd) 

 

Trial B (1st) 

 

The responses in this question are quite interesting for two reasons. First, they reveal the clear preference of 

our users to ‘Temperature’  and ‘Water Consumption ’ information. In contrast, ‘Energy used’ and the ‘Polar 

Bear’ for children considered as relatively more difficult to understand. Second, this is the first time where 

we do not observe a shift of responses towards more positive evaluations in the second survey. This is of 

course expected as the b1 display remained stable during the Trial, but also  demonstrates that 

understandability of information can be evaluated from participants with much less exposure to the system  

despite the long learning/appreciation curve discussed in the previous question.  

Q7: Not all users are interested in the display elements in the same way. How much were you interested in 

the different elements on your smart shower meter?  

Trial A (1st) 

 

Trial A (2nd) 
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Trial B (1st) 

 

Responses in this question are remarkably similar to the previous one, signifying a clear correlation between 

understandability and user preferences, i.e., users preferred information they could easily grasp and 

understand. Upon further inspection, a few additional insights become apparent. First, participants clearly 

prefer information about ‘Water used’ , which is expected, since this is the primary objective of the b1 device: 

inform about water use. A clear second is ‘ Temperature’  in the shower, as again it assists in conserving energy 

during shower use. We find however, that the actual inform ation about ‘Energy used’ in Alicante is the least 

preferred by participants, with the ‘Polar bear’ being slightly preferred. This is inversed in St Albans, where 

‘Energy used’ is more preferred than the ‘Polar bear’. As we have examined in other locations , this change in 

preferences can be attributed to two reasons. First, energy  information is prioritized in locations with a high 

energy cost, as is the case when comparing Alicante with St Albans. Second, the ‘Polar Bear’ intervention 

focuses on conveying information to children, rather than adults. Given the higher number of children and 

large families in Alicante compared to St Albans, it is again understandable that parents give priority to means 

for educating their children about sustainable behaviors.  

5.2.1 .4. Recommend to fr iend/col leagues  

Q8: ‘How likely is it that you would recommend the DAIAD system to a friend or a colleague?’  

Trial A (1st) Trial A (2nd) Trial B (1st) Legend 

   

 

This final question is perhaps the most important of the survey, as it gauges the loyalty of customers, serving 

as an alternative to traditional satisfaction surveys, and correlates with revenue growth. Also known as Net 

Promoter Score (NPS), it splits consumers to segments in terms of how much they are likely to generate value 

for a product/service (e.g., buy more, remain customers for longer, make positive referrals to other potential 

customers). Within 5-scale answers, respondents in the ‘Very likely’ category are called Promoters (i.e., very 

likely to exhibit value-creating behaviors), those in the ‘Somewhat likely’ category are called Passives, and 

those in the ‘Very Unlikely’, ‘Somewhat unlikely’ and ‘Not sure’ category, called Detractors. The NPS score is 

expressed in a [-100,100] scale, in which -100 means that everybody is a Detractor and 100 means that 

everybody is a Promoter. A positive NPS is good, with and NPS larger than 50 considered as excellent.  
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According the second survey responses, the NPS for the DAIAD system is 58, i.e., above what is considered 

excellent. Even more striking, is the shift of our Trial A participants between the two surveys into the positive 

spectrum. The ‘Very Likely ’ responses increased from ~28% to ~58%, with this change attributed from 

participants that responded ‘Somewhat likely’ in th e first survey. As such, we significantly increased consumer 

loyalty, clearly demonstrating both the success of our efforts to improve the system and the large time -frame 

required for our participants to be acclimatized to these new technologies. Another i nteresting finding regards 

the 20% of consumers that are negatively disposed to the system, with their views not changing over time. We 

are not surprised by this behavior; a certain percentage of the population will always be negative to any new 

product/service despite. Finally, examining the first survey for St Albans we confirm our previous findings and 

the overall more negative feelings of the population towards the system.  

5.2.1 .5. Discussion  

As clearly portrayed from the survey results, and documented throughout the Trials, an important point we 

would like to discuss concerns the lower satisfaction scores achieved in Trial B (St Albans) compared to Trial 

A (Alicante). This has been an outcome anticipated even before the start  of the Trials, with the local popula tion 

in St Albans being remarkably less inclined to volunteer for the Trial, conform to the provided 

instructions/guidelines and time-frame, or respond to our few inquiries for participating in surveys. It is worth 

examining the various aspects of the behavior of our St Albans participants before, during, and after  the Trial 

B, as it will assist us in the identifying the cause of their comparatively low satisfaction. 

• Low interest for participation . As analyzed in D7.2 ‘Trial B Report’ ( also evident from the low number of 

responses in the satisfaction surveys ), the population in St Albans was originally much less inclined  to 

volunteer for our study. Compared to Trial A, the differences are especially vivid, with the number of 

volunteers being just a fifth of those in Trial B.  It required great effort from the Consortium through 

local communication campaigns (door-to-door, radio, printed adverts, participation in events ) 

documented in D7.2 ‘Trial B Report’ to achieve our participation goals. It is evident h owever, that 

even in the panel that ultimately volunteered and participated in our study, there was an underlying 

lack of true interest for cooperation.  

• Bottom-up Trial. We consider this as probably the leading cause of the issues we encountered with 

Trial B, which certainly strengthened the behavior of the local panel. Specifically, Trial B was organized 

in a bottom-up manner, with no participation from the local water utility. Hence, there was not a clear 

system owner, nor any direct links with the total water consumption of a given household (see also 

next bullet: ‘Shower-only’). In addition, the scope of the study required the provision of assistance to 

participants only through electronic means, i.e., similarly to any other off-the-self product . In contrast, 

in Trial A AMAEM was portrayed as the system owner, participants had a complete view of their water 

consumption (SWM and b1), while support was much more hands -on and personalized.  

• Lack of cooperation . Despite our clear communication regarding the sc ope, duration, and anticipated 

steps for both Trial locations, Trial B participants were much less inclined to respect these guidelines. 

Their feedback suggested they were very impatient and expected to start using their newly installed 

devices and mobile app immediately . While a similar feeling of anticipation  was observed in Trial A, 

the local population in St Albans was even more vocal in its critique regarding not having full access 

to the DAIAD system during the first phases (Phases 1 -3), with little room for understanding, despite 
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our best efforts to remind the planned phases and timeline of the Trial, for which the users provided 

their explicit consent during the recruiting process. We can only attribute this behavior in local 

attitudes and accept them as an important insight for organizing similar studies in the future.  

• Low-flow problems . As analyzed in D7.2 ‘Trial B Report’ , during the Trial the population in St Albans 

encountered issues with the operation of b1 device due to the low water flow  hindering the households 

of multiple participants. This was an unforeseen and highly localized issue (within the UK also), which 

however provided us with critical feedback towards further optimizing energy harvesting and fine -

tuning the accuracy of the amphiro b1. Unfortunately, it certainly did not assist us in changing their 

perceptions of the DAIAD system, but rather reinforced their already negative disposition.  

• Shower-only. We consider the narrower focus of the Trial B ( only shower analytics available) to be 

another important reason for the comparatively lower user satisfaction. Without access to smart water 

meter data (and thus their total water use), participants only received piecemeal  information about their 

water demand that covered part of their water use. The narrower focus in terms of information and 

stimuli introduces an upper limit  in user engagement  and thus reduces the potential market success of 

personal water monitoring devices as autonomous  products. 

Based on the above observations, and considering the almost inverse picture of Trial A, we reach the 

conclusion that there is a clear need for water utilities to be directly engaged  in the introduction of personal 

water monitoring technologies, at least at this early stage of their lifecycle. As elaborated in Section 6, where a 

more detailed discussion of our findings is provided, this approach can address the current ‘Innovation 

Potential’ of personal water monitoring products, thus facilitating their introduction to the population at large. 

Further, it addresses the concern of incomplete information when consumers only have access to fixture-based 

information. 

5.2.2. Psychological constructs  

Based on psychological theories of action ( see Deliverable D6.1 for a detailed discussion), the pre-trial survey 

also included sections on psychological constructs ( on the dimensions: behavior, response efficacy, social norm, 

perceived behavioral control as well as  personal norm). Based on the results from this pre-trial survey, the post-

trial survey included items which aggregated some of the initially posted questions to shorten the overall 

length of the questionnaire and thereby increase the likelihood of more re sponses. Questions of which the 

answers correlated highly were summarized into single questions. This concerned mainly specifications of 

similar questions, such as questions that were once asked with respect to water and again with respect to 

energy. Yet, while the pre-trial survey was answered by 184 respondents (112 in Trial A, 72 in Trial B), the 

post-trial survey was only answered by 41 respondents (all in Sample A).  

In the following, the two surveys will first be introduced and analyzed. Subsequently, the results will be briefly 

compared and the results will be discussed.  

5.2.2.1 . Pre-tria l  survey  

The pre-trial survey included 21 questions which can be divided into 5 groups. The following introduction and 

analysis will be guided by these groups. The first grou p of questions all relate to the respondents’ behavior. 

All emphasis in the questions is added just for illustrative purposes and to improve readability in this report. 
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The questions relate to a) talking about resource savings (QB1 + QB2), b) the usage of efficient devices and 

c) the attempt to reduce resource consumption. All questions were posted both for energy and water.  

Questions 1: Behavior  

• QB1: I often talk with others about saving energy  

• QB2: I often talk with others about saving water  

• QB3: I have energy efficient devices and appliances in order to reduce my energy  consumption 

• QB4: I have water efficient devices and appliances in order to reduce my water consumption 

• QB5: I am doing a lot to reduce my energy consumption  

• QB6: I am doing a lot to reduce my water consumption 

 

 

Figure 117: Responses to questions on behavior (in %) 

The histogram in Figure 117 shows the share of participan ts’ responses to the 6 questions on behavior. It is 

apparent that responses are very similar for the three topics , and differ only slightly between water and 

energy usage, which is also confirmed by a correlation analysis. Moreover, it seems that respondents are 

slightly more likely to talk about water/energy saving  or to “do a lot to reduce water/energy consumption ” than 

to possess energy efficient devices to achieve this end. Especially for the questions 1, 2, 5 and 6 , the share of 

respondents that agree is larger than 65%. The rate of agreement to questions 3 and 4 is at around 50%.  

Questions 2: Response Efficacy  

• QRE1: Changing my showering behavior could help reduce my energy consumption  

• QRE2: Changing my showering behavior could help reduce my water co nsumption 

• QRE3: If I reduce my water consumption while showering it will have an impact  on my overall 

energy consumption 
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• QRE4: If I reduce water consumption while showering it will have an impact on the environment  

• QRE5: If I reduce water consumption while showering it will have an impact on my household budget  

 

 

Figure 118: Responses to questions on response efficacy (in %) 

Figure 118 displays the share of responses on the different categories for the 5 questions related to response 

efficacy, as well as the respective cumulated responses . The agreement to this group of questions seems to 

be larger than in the behavior  category; the share of agreements ( as sum of agree and strongly agree) is between 

72% and 88%. Correlation is highest between QRE1 and QRE2. From this analysis , it seems that respondents 

agree that a) changing showering behavior could reduce energy & water consumption, b) that this also reduces 

overall water consumption and thereby c) have an impact  on the environment and the household budget. 

Agreement is highest on QRE4, i.e., the impact on the environment.  

Questions 3: Social Norm 

• QSN1: People who are important to me think that I should save energy  

• QSN2: People who are important to me think that I should save water  

• QSN3: People who are important to me do a lot to save energy  

• QSN4: People who are important to  me do a lot to save water 
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Figure 119: Responses to questions on Social Norm (in %) 

From Figure 119 it can be seen that, in comparison to the agreement displayed on the questions on behavior 

and self-efficacy (Figure 117 and Figure 118), agreement is much lower  with respect to the social norm. In 

fact, almost half of the people neither agree nor disagree. Agreement i s higher in the perceived behavior of 

the relevant peer-group (QSN3, QSN4) than in the perceived expectations of the relevant peer group (QSN1, 

QSN2). 

Questions 4: Perceived behavioral control  

• QPBC1: In my current living status, it is difficult for me to p ay attention on saving energy 

• QPBC2: In my current living status, it is difficult for me to pay attention on saving water 

Figure 120 shows that almost 70% of respondents do not find it difficult to pay attention on saving water and 

energy. Responses were almost perfectly correlated. About 10% of the respondents find it difficult to pay 

attention to these resource savings.  

 

 

Figure 120: Responses on questions on perceived behavioral control (in %) 
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Questions 5: Personal Norm 

• QPN1: No matter what other people do, I feel that I should reduce my energy consumption as much 

as possible 

• QPN2: No matter what other people do, I feel that I should reduce my water consumption as much 

as possible 

• QPN3: I would have a bad conscience if I showered for too long 

• QPN4: I would have a bad conscience if the shower was too hot 

 

 

Figure 121: Responses on questions on questions on personal norm (in %) 

Figure 121 displays that the respondents predominantly agree on the questions related to the personal norm, 

however the answers differ widely between the 4 questions, which is why the Figure also includes a cumulative 

scale to facilitate comparability. Agreement is highest on QPN1 and QPN2 which are, in addition, highly 

correlated. The results display that while respondents do have a personal norm o f a low / reduced energy and 

water consumption , a smaller portion of respondents has a bad conscience when showering too warm or too 

long. This bad conscience seems to be more prevalent with respect to the length , than with respect the 

temperature of the shower.  

5.2.2.2. Post-tr ia l  survey  

The post-trial survey was only answered by 41 respondents, all located in Alicante, which is less than 40% of 

the respondents of Trial A and less than 25% of the full sample of respondents. Therefore, the informative 

value is a lot lower than that of the pre-trial survey. In particular,  we cannot exclude that there is a selection 

bias in the respondents, i.e. , that non-response is not random but correlated to experiences in the trial or 

general environmental attitudes. As mentioned earlier, the number of items in the post -trial survey was 

reduced to shorten the overall length, with questions on which we observed a high correlation in the pre -trial 

survey summarized.  
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Questions 1: Behavior  

• PTQB1: I often talk with others about saving  water and/or energy (summarizing QB1& QB2 from the pre-

trial questionnaire) 

• PTQB2: During the trial, I have purchased water and/or energy efficient devices in order to reduce my 

energy and/or water consumption (new) 

• PTQB3: I am doing a lot to reduce my water and/or energy consumption (summarizing QB5 & QB6) 

• PTQB4: I have talked with people who are important to me about DAIAD  (new) 

 

 

Figure 122: Post-trial responses to questions on behavior (in %) 

Figure 122 displays the share of responses (in %) on the 4 behavior -related questions. For PTQB1 the trends 

seem to be similar to the pre-trial questionnaire: A large share of respondents’ claims to t alk a lot about 

saving energy and/or water. The agreement is possibly slightly higher than in the pre -trial questionnaire 

however due to different a) sample sizes, b) sample composition (only Spanish respondents) and c) question 

formulation; this difference cannot be attributed to the “experience” made in the trial. Moreover, similar 

trends like for PTQB1 can be observed for PTQB3.  While around 50% of the respondents stated in the pre -

trial questionnaire, that they own efficiency devices, about 30% of the 4 1 respondents in the post-trial 

questionnaire state that they have acquired efficiency devices during the trial (PTQB2). Finally, slightly more 

than half of the respondents indicate that they talked with people that are important to them about DAIAD.  

Questions 2: Response Efficacy  

• PTQRE1: If I reduce water consumption while showering it has an impact on my overall energy 

consumption (QRE3) 

• PTQRE2: If I reduce water consumption while showering it has an impact on the Environment  (QRRE4) 

• PTQRE3: If I reduce water consumption while showering it has an impact on my household budget  

(QRE5) 
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Figure 123: Post-trial responses to questions on response efficacy 

The three questions correspond to QRE3-5 of the pre-trial questionnaire. The answers display similar pattern 

as the answers in the pre-trial questionnaire. No difference is large enough to attribute it to the experience 

in the trial.  

Questions 3: Social Norm 

• PTQSN1: People who are important to me think that I should save energy and/or Water (QPN1 & QPN2) 

• PTQSN2: People who are important to me do a lot to save energy and/or water  (QPN3 & QPN4) 

 

Figure 124 Post-trial responses to question on social norm 

The agreement to these questions is higher the in the pre -trial questionnaire. However, this should not be 

overstressed. The answers to the two questions follow similar pattern. Thus, in general, the majority of 

respondents perceives a social norm to save energy and/or water.  
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Questions 4: Perceived behavioral control  

• PTQPBC1: In my current living status, it is difficult for me to pay attention on saving energy and/or 

water (QPBC1 & QPBC2) 

 

Figure 125: Post-trial responses to question on perceived behavioral control 

The answers on the summarized question on perceived behavioral control follows similar pattern like the 

answers in the pre-trial questionnaire. The agreement is slightly higher, indicating (i f one dares to interpret 

that far) slightly less perceived possibilities to save energy and/or water.  

Questions 5: Personal Norm 

• PTQPN1: I would have a bad conscience if I showered for too long.  (QPN3) 

• PTQPN2: I would have a bad conscience if the shower w as too hot. (QPN4) 

• PTQPN3: No matter what other people do, I feel that I should reduce my energy and/or  water 

consumption as much as possible  (QPN1 & QPN2) 

 

Figure 126: Post-trial responses to question on personal norm 
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The answers on PTQPN1 are shifted a bit to being more in agreement as compared to the corresponding 

question of the pre-trial questionnaire. The same is true for the answers on PTQPN2 and PTQPN3. So, the 

respondents appear to have developed a slightly stronger press ure of their conscience.  

5.2.2.3. Discussion  

In this section, we introduced the applied pre- and post-trial questionnaires, their individual results as well 

as an attempt of comparing the two. The explanatory power of the comparative analysis, especially of the 

post-trial questionnaire, is limited by a) the slightly  modified questionnaire design (which should not be the 

main limitation here) and b) the sample size and composition of the post -trial questionnaire respondents. 

The latter is perceived to be the greater problem here. In particular, we cannot exclude that there is a selection 

bias in the respondents, i.e. , that non-response is not random but correlated to experiences in the trial or 

general environmental attitudes. Consequently, possible differences between the two questionnaires can be 

noted, but should not be attributed unanimously to “experiencing” the t rial.  

It becomes apparent from the answers that people are aware that changing their showering behavior could 

have an effect on the environment , but with the share of people recognizing a direct link  to the household budget 

being lower. No significance tests were conducted here. Moreover, the answers on questions relating to water 

or energy are often highly correlated, which eased shortening the questionnaire from pre -trial to post-trial. 

Yet, the aim of the shortened questionnaire, to increase the number of responses, was not reached.  
 

5.2.3. System pricing  

In this section, we examine the various price points of the DAIAD system, as captured by our Pricing Survey 

(Section 3.13.4), delivered to Trial A users (Alicante) by M38 ( i.e., 2 months after the Trial end ). We have 

received 28 responses (27%), with participation being less compared to the Post-Trial survey for Trial A (40%). 

After communicating with select users that  have not responded in the survey, we reached the conclusion that 

participants were less inclined to share their views regarding the pricing of the system for one of two reasons: 

(a) they believed that it should be provided for free, and thus had the opinion that by not  responding they 

affirmed this position, and (b) they did not feel comfortable  to reply in questions related to pricing as it could 

indirectly reveal their financial state.  

5.2.3.1 . In i t ia l  system recept ion  

The first set of questions (Q1-3) focuses on examining the overall reception of the DAIAD system in terms of 

acceptance, perceived benefit, and availability, without delving into details about the various pricing schemes 

and price points. 

Q1: Imagine that your water utility provided the DAIAD system  for free. Would you use it ? 
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The responses correspond with the results of the Satisfaction survey and clearly demonstrate the widely 

positive acceptance of the DAIAD system. Almost 82% of respondents would use the DAIAD system if it was 

provided for free (‘Definitely Yes’ or ‘Yes’), with only 7.4% replying negative (‘No’) and absolutely no ‘Definitely 

No ’responses. The responses in this question will assist us in analyzing the price -specific questions that 

follow, and provide a clear direction for water utilities that wish to provide the DAIAD system in a production 

setting regardless of who and how pays for it: they would be providing a service that their customers actually 

want  to use. 

Q2: Do you believe that DAIAD would help you save water?  

 

This questions provides us an indication regarding the perceived usefulness  of the DAIAD system for its core 

objective: assist consumers in saving water.  The responses are similarly extremely pos itive, with 81.5% of 

respondents replying positively  (‘Definitely Yes’ or ‘Yes’), with the remaining 18.5% replying ‘Maybe’, and 

absolutely no negative responses . Consequently, participants in their clear majority (>80%) have not only 

replied that they would use the system, but that it could also help them save water.  

Q3: Should the system be provided as a free service of your water utility to all customers, or should only 

customers that are interested for it pay for its use? 

 
 

In this question, we introduce the notion of pricing and who pays for the system for the first time, preparing 

our participants for the questions that follow. The responses favor greatly the free provision  from the water 
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utility (~89%), which is expected. It is obvious that consumers cannot understand the complexity and costs 

involved for deploying and maintaining a new ICT system, nor are they expected to do so. Further, should they 

have the option, it is again obvious that they prefer that a new service o r product to be free; why pay for 

something if I can avoid it?  

5.2.3.2. DAIAD pr ic ing  

The next set of questions (Q4-Q3) focuses on examining specific pricing schemes and corresponding price 

points of the DAIAD software (i.e., DAIAD@home) as a standalone offering.  

Q3: DAIAD should be provided with a one-time purchase fee. This means that each household should pay 

once and have access to the DAIAD system forever! Do you a gree with this pricing scheme?  

 

This question essentially replicates the pricing schemes of most  mobile applications, in which a one-time 

purchase fee integrates the purchase and maintenance costs for a realistic estimate of the app’s lifecycle ( or 

TCO, typically 3-5 years). Further, the question does not specify whether the app is provided by the wa ter utility 

(i.e., white-labelled version available for purchase to all utility customers) or is a standalone app (i.e., DAIAD 

app having access to SWM data from the water utility through a ‘Green button’ -like scheme 17), hence it 

provides us with insights for both cases. The overall positive reception for such a scheme is good, with 37% 

of respondents replying that they would agree with such a pricing scheme (‘Definitely agree’ or ‘I agree’).  An 

almost equal part of the population ( ~41%) are negatively disposed (‘Completely disagree’ or ‘I disagree’), 

with the remaining ~22% neutral.  

Q4: How much money would you be willing to pay as a one -time purchase fee?  

 

In this question, we explicitly ask from our respondents to tell us exactly  how much they would be willing to 

pay  in this one-time purchase scheme. Almost 44% of participants explicitly state that they would not be willing 
                                                        
17 The Green Button initiative (http://www.greenbuttondata.org/ ) is an industry- led effort that responds to a 2012 White House call -to-action to provide 

uti l i ty customers with easy and secure access to their energy usage information in a consumer -friendly and computer-fr iendly format for electricity, natural 

gas, and water usage. See section 6.3 and our proposed ‘Blue Button’ init iative for EU -wide access to smart water meter data.  
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to pay, which is in line with the results of the previous question ( ~41% do not agree with the pricing schem e). Of 

the remaining ~66% willing to pay, 18.5% would pay 0.99 Euros ( typical price point for very simple mobile apps), 

7.4% would pay 4.99 (our preferred price-point before performing the survey ), 25.9% would pay 9.99 Euros (price 

point of the most complex mobile apps), and 3.7% would pay 24.99 Euros (an intentional high value). 

Consequently, ~37% of respondents are willing to pay more than 4.99 Euros to purchase the app.  

It is important to mention that  all consumers in Alicante served by a SWM pay 5 Euros annually to cover the 

maintenance costs of the metering infrastructure, but without having access to any service other than their 

periodic water bill. We have not reminded to our consumers this detail in the question, as the maintenance 

cost are simply added in their bill (essentially a cost-transfer) and is covered by the price scheme that follows. 

However, assuming a lifecycle time frame of 5 years for the DAIAD app ( i.e., till the end of life of the service ), 

real-world usage workloads for the DAIAD@hom e app extracted from the Trial, and assuming 30% of 

consumers opt-in and purchase the app at 4.99 Euros, the total revenue from Alicante would be ~180K Euros, 

or 36K Euros annually. With even more modest assumptions ( only 15% opt-in at 4.99 Euros), annual revenues 

are 18K Euros/100K customers or 180K Euros/1M customers ( again, 15% opt-in at 4.99 Euros), thus surpassing 

our target values for this model (~82K Euros/1M customers, see D8.5.2 ‘Final Exploitation Report ’  for details). 

Q5: DAIAD should be included in the periodic water utility bill. This means that each household pays a small 

additional fee in every bill to have access to the DAIAD system. Do you a gree with this pricing scheme?  

 

This question proposes a different pricing model to consumers, where the cost for the service is explicitly 

added in their periodic water bill , like the 5 Euros surcharge they pay for their smart meter. In this case, there 

is no option for opt-in; all consumers  will be explicitly  charged for the extra service. The respondents are clearly 

less inclined to support this scheme, with only ~22% being positive (‘Completely Agree’ or ‘Agree’), ~15% 

being neutral, and the remaining ~63% being negative (‘Completely disagree’ or ‘Disagree’) . The difference 

with the responses in the previous question are considerable, but completely expected. Consumers do not 

want to be burdened with an extra cost line  in their water utility bill. This does not mean however that the 

water utility cannot charge extra for only parts of the system’s cost (as the water savings achieved via consumers 

have a positive financial benefit for the utility ), and/or include in the total price of water (as it would be part of 

the complete water delivery infrastructure ). At all cases, this decision is part of the complete ROI estimation any 

utility must make before adopting the DAIAD system considering its specific cost, policy, and sustainability 

drivers the DAIAD deployment models available (see D8.5.2 ‘Final Exploitation R eport’ for details). 

Q6: How much money would you be willing to pay annually as an additional fee in your water utility bill?   
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In this question, we explicitly ask from our respondents to tell us exactly  how much they would be willing to 

pay  in this annual-fee scheme. The responses confirm the results of the previous question, with 63% of 

respondents not willing to pay, and 37% willing to pay at least 0.50 Euros per year, i.e., an extra 10% over 

their annual charge the smart water meter ( as mentioned before ~5 Euros annually). Upon further analysis, these 

results confirm our price points for the DAIAD system, which for the case of Alicante (120K meters) is 0.3 

Euros/meter, or 36K annually. Assuming 50% of respondents do actually pay 0.5 Euros annually (wit h the 

remaining refusing to pay), the total revenue rises at the same amount of 36 Euros annually. And as mentioned 

previously, this analysis implies that the complete cost for the DAIAD system is transferred to consumers, 

without any benefits from the water utilities being used to offset the surcharge.  

Q7: DAIAD costs should be covered from a household’s water savings. This means that if a household 

successfully reduces its annual water consumption, it should not pay for DAIAD! If, however the household 

does not maintain its reduced water use, then it should pay for the system! Do you agree with this pricing 

scheme? 

 

This question introduces a novel pricing scheme, in which the system is provided for free if the users 

successfully reduce their water consumption (compared to a period before they gained access), and maintain 

their reduced water use in the future. Essentially, consumers are rewarded ( bonus) for reducing their water 

consumption by gaining free access, and penalized ( bonus-malus) for otherwise not maintaining their reduced 

water use. The benefits of this pricing scheme are obvious if examine its two extremes. At the case where all 

consumers reduce their water use ( and hence do not pay for the system ) the benefits for the water utility are 

used to offset the system costs. In the other extreme, the users do not reduce their water use (and must pay 

for the system), hence the full costs are transferred to consumers rather than the utility. We believe that this 

is a win-win scenario as a utility is guaranteed to not lose any of its investment costs for DAIAD; in the worst -

case scenario, the consumers pay ( bonus-malus), and in the best-case the system has guaranteed savings 

which offset the system costs.  
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We consider this pricing scheme to be fair  for all involved stakeholders, and our respondents share this view, 

with ~63% agreeing with this proposition (‘Completely agree’ or ‘Agree’), ~15% being neutral, and only ~22% 

having a negative opinion (‘Completely disagree’ or ‘disagree’ ). 

Q8: How much water do you believe should be saved from each household in order to have free access to 

DAIAD? 

 

In this question, we explicitly ask from our respondents to tell us exactly  how much water they should 

sustainably save in order to have free access to the DAIAD system. Under the proposed ‘social contract’ with 

consumers, their failure to meet these numbers would be penalized by them having to pay for the system. 

The responses are quite interest ing, with ~30% of consumers not agreeing (slightly higher that the ~22% of the 

previous question), and the remaining 70% agreeing to savings of at least 5%, and ~40% agreeing to savings of 

at least 10%. These results are significant for several reasons. First, they demonstrate strong social acceptance 

and a vested interest from consumers. Second, they can lead to significant water savings through relatively 

small effort/investment from the water utility. Third, the savings preferred by the majority greatly surpass  

what has been documented in the literature (3 -5%) for large-scale trials. Consequently, we argue that this 

pricing scheme is both socially acceptable and economically sound for water utilities.  

5.2.3.3. Amphiro b1 pr ic ing  

The next set of questions (Q9-Q11) focuses on examining specific pricing schemes and corresponding price 

points of the amphiro b1 as a standalone offering . 

Q9: Knowing that the highest consumption for water and the second highest consumption for energy is 

attributed to showering, do you think the amphiro b1 would help you save?  

 

This questions provides us an indication regarding the perceived usefulness  of the amphiro b1 for its core 

objective: assist consumers in saving water  and energy in the shower. The responses are extremely positive, 

with ~92.5% of respondents replying positively (‘Definitely Yes’ or ‘Yes’), with the remaining ~7.5% replying 

‘Maybe’, and absolutely no negative responses . If we compare the responses in this question with Q3 (regarding 
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the DAIAD software), we see that respondents are even more enthusiastic (92.5% positive vs. 81.5%), which 

is not surprising; consumers historically prefer hardware rather than software as it embodies innovation in a 

physical representation they can clearly understand.  

Q10: How likely is it that you would purchase the amphiro b1 if it was available for:  

 

In this question, we explicitly request from our respondents to tell us how much they would be willing to pay 

for the amphiro b1 device, which currently retails for ~76 Euros (83.24 CHF). The resul ts clearly demonstrate 

that the current price is too high, with only ~10% of the population willing to pay more than 51 Euros, and 

~89% not willing to pay more than 50 Euros.  These results replicate Amphiro’s findings from previous studies 

and are a well-established goal for the company. However, the only means by which a lower price point can 

be achieved is via economies of scale, i.e., the production of b1 devices in much higher numbers (at least one 

order of magnitude greater). The challenge is that rais ing production requires a significant investment, which 

is too high for the company to take. According to our experience from studying the market of personal water 

monitoring devices, the same challenge ( high prices/low penetration due to low penetration/h igh costs) affects 

all other efforts in the field ( this is also why amphiro does not have any real competitors ). We argue that this 

status quo requires the positive intervention  of policy-makers and water stakeholders by supporting the scale -

up of personal water monitoring technologies ( e.g., rebates, large-scale deployments, scale-up funding). 

Q11: If the amphiro b1 was provided to you for free, would you use it?  

 

The results in this question speak volumes about the intent of our respondents to use the amphiro device, 

with ~85% answering a vocal ‘Definitely Yes’, ~15% ‘Maybe’, and absolutely no negative responses. If we 

compare the responses in this question with Q1  (regarding the DAIAD software), we see that respondents are 

enthusiastic in the same degree (~85% vs. ~82%).  

5.2.3.4. Part ic ipant characterist ics  

The final set of questions (Q12-Q16) focused on conforming the household characteristics we had already 

collected from our Recruitment (see Section 3.13.1) and Pre-trial (see Section 3.13.2) surveys, which did not 
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reveal any changes and thus do not warrant a discussion. For completeness, we provide the summary of the 

responses for each question.  

Q12: In comparison to other households, I 

consider my household to be a:  

 

Q13: What is your age? 

 

Q14: What is the highest degree or level of school 

you have completed? 

 

Q15: What is your total annual household income 

before taxes? 

 

Q16: How many members are there in your 

household including yourself?  

 

 

5.2.3.5. Discussion  

As analyzed in the previous section, both the DAIAD system and the amphiro b1 device enjoy an extremely 

positive acceptance from respondents, with the majority (>80%) clearly stating that (a) these technologies can 

help them save water , and (b) they would be willing to use  them if it was provided to them for free. These results 
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are extremely important, as they demonstrate the perceived usefulness  and real-world relevance of our work 

for its core objective, i.e., assist consumers in saving water. Such a posi tive reception for DAIAD’s novel 

technologies is not trivial , and especially for a research project. 

With this foundation in place, i.e., a population that clearly finds our output useful and attractive, we have 

examined the foundational question of ‘Who pays?’. Without perplexing our panel with economic and business 

terms, nor entangling them in a discussion regarding the direct and indirect financial benefits for their water 

utility that can complete or partly offset the costs of DAIAD, we have gradually exposed our participants to 

various pricing schemes to answer this question: ‘ How much would you be willing to pay? ’ 

• First, there is an almost universal  view (~90%) that the DAIAD system should be provided for free from 

the water utility, i.e., as an addit ional service provided to its customers. It is obvious that consumers 

cannot understand the complexity and costs involved for deploying and maintaining a new ICT system, 

nor are they expected to do so. Further, should they have the option, it is again obvi ous that they 

prefer that a new service or product to be free; why pay for something if I  can avoid it ? Regardless 

though, our finding is very clear, especially considering the perceived usefulness and acceptance of 

the DAIAD system: consumers prefer it is  available to them for free (or appears as free, see discussion 

that follows), and in the context of the standard services they receive from their water utility.  

• Examining the various price schemes and the specific price points of the DAIAD system from the  

consumer perceptive ( i.e., what and how much they are willing to pay ) we observe that by order of 

increasing popularity, the schemes are ‘Additional annual fee’, ‘One time purchase’, and ‘Free for 

savings’. There are several interesting observations we ca n make from these responses. First, the least 

popular scheme is the one currently  employed  for covering the SWM costs in Alicante ( ~5 Euros/year). 

As such, it would not be surprising for a business decision (annual DAIAD fee) to contradict popular 

opinion. Second, the one-time fee, with which the users are quite familiar  through their mobile 

devices ( typical monetization for mobile app stores ), is upon further inspection a very interesting 

proposition for DAIAD as a standalone Cleanweb product ( i.e., under a ‘Green-button’-like scheme). 

Third, it was extremely surprising that by far the most popular pricing scheme was the ‘Free for 

savings’, which we also prefer (but for different reasons). Consumers clearly understand its fairness 

(quid pro quo) as they receive for free a service only if they sustainably save, and pay only if they do 

not save. From our perspective, this scheme is also preferred as it practically guarantees the 

sustainable adoption of DAIAD. At the case where all consumers reduce their wat er use (and hence do 

not pay for the system) the benefits for the water utility are used to offset  the system costs. In the other 

extreme, the users do not reduce their water use (and must pay for the system), hence the full costs 

are transferred to consumers rather than the utility. We believe that this is a win -win scenario as a 

utility is guaranteed to not lose any of its investment costs for DAIAD; in the worst -case scenario, the 

consumers pay (bonus-malus), and in the best-case the system has guaranteed savings which offset 

the system costs. To summarize, it is characterized by strong social acceptance and a vested interest 

from consumers, it can lead to significant water savings through relatively small effort/investment 

from the water utility, and the savings preferred by the majority greatly surpass what has been 

documented in the literature (3-5%) for large-scale trials. Consequently, we argue that this pricing 

scheme is both socially acceptable and economically sound for water utilities .  
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• The amphiro b1 reception is even more positive, with ~92.5% of participants confirming its perceived 

usefulness  for its core objective: assist consumers in saving water and energy in the shower. The results 

for the proposed price-points clearly demonstrate that the current price of ~76 Euros (83.24 CHF) is 

too high, with only ~10% willing to pay more than 51 Euros, and ~89% not willing to pay more than 

50 Euros. These results replicate Amphiro’s findings from previous studies and are a well -established 

goal for the company. However, the only means by which a lower price point can be achieved is via 

economies of scale, i.e., the production of b1 devices in much higher numbers (at least one order of 

magnitude greater). The challenge is that raising production requires a  significant investment, which 

is too high for the company to take. According to our experience from studying the market of personal 

water monitoring devices, the same challenge ( high prices/low penetration due to low penetration/high 

costs) affects all other efforts in the field ( this is also why amphiro does not have any real competitors ). 

We argue that this status quo requires the positive intervention  of policy-makers and water 

stakeholders by supporting the scale-up of personal water monitoring technol ogies (e.g., rebates, 

large-scale deployments, scale-up funding). 

• Finally, it would be helpful to consider the role and mandate  of a water utility in the hypothetical 

scenario of opting to adopt DAIAD and decide on who pays  and how this is cost is transferred (or 

appears) to consumers. This discussion is of course not different from the one relating to the 

introduction of a smart metering infrastructure. A water utility has an obligation to provide safe, 

affordable water to its customers, ensuring future de mand is met. When evaluating whether to invest 

in a new technology, the utility estimates the total investment cost ( initial  purchase and maintenance) 

and its ROI, the direct and indirect benefits, as well as any policy -related mandates that must conform 

to. This is a unique informed decision  each water utility must take considering its specific characteristics 

and challenges. We must however repeat an important detail and outcome of our pricing study. Our 

price points assumed the worst -case scenario in which the entire system cost is paid by consumers  and 

not offset  (even a small part of it) from the direct and indirect  benefits water utilities have from using 

the system. As we elaborated in the previous sections, even at this worst -case scenario and according 

to our proposed pricing policies for the DAIAD system ( see D8.5.2 ‘Final Exploitation Report’ for details ), 

the revenues generated exceed our expectations. Obviously, this result is based only on a sample of 

the population of one EU city and should not be used for generalizing our findings. In any case, it is 

encouraging to validate even at this small scale, the realistic and sustainable nature of our proposed 

deployment option and price points.  

5.2.4. Crowdfunding  

The Trial B crowdfunding campaign was organized, planned, and performed in Kickstarter  during Y1 of the 

project (see http://daiad.eu/?p=2961). The campaign was closely coordinated with the accelerated 

development of the first working prototype of  the DAIAD system (MS4 reached on M7 instead of M18 ). This has 

been a conscious decision of the Consortium motivated by (a) technology and market advances that took place 

in the period from the proposal submission to actual project start ( i.e., BT4.0 availability, growth of the home 

monitoring ecosystem, planned Apple/Google integration of domestic resource monitoring ), and (b) the growing 

interest of researchers, utilities, and third parties for the planned technology outcome of DAIAD. As such, and 

in coordination with our PO, the Consortium identified a critical opportunity for harnessing the growing 

consumer and market interest, and decided to align its R&D efforts accordingly .  

http://daiad.eu/?p=2961
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Figure 127: Kickstarter campaign (staff pick, goal reached) 

The campaign was extremely successful  (Figure 127), attracted funding allowing Amphiro to produce the 

Amphiro b1 as a commercial product ( rather than a working prototype), and grafted DAIAD with publicity in 

several highly visible technology web sites and blogs . In the following, we provide more details about the 

campaign and summarize our insights regarding the potential application of crowdfunding to promote  real-

time water monitoring technologies : 

• Amphiro had already designed and implemented a similar crowdfunding campaign before the start of 

the project, which was however unsuccessful . Before initiating the design of our campaign, the past 

experience of and its failings were discussed and analyzed to avoid repeating them in DAIAD. In a 

nutshell:  

o The organization, monitoring, and successful closure of the campaign requires significant effort 

and resources , which most projects are not familiar with, and not pr epared for. At all steps of 

the process, the community needs to be engaged, motivated, and feel confident that the 

project they fund has a high possibility of success. Given the remote and digital interaction 

of the backers with the campaign through Kickst arter, this means that emphasis must be 

placed on the continuous interaction and motivation  of the community. The Kickstarter site is, 

for all intents and purposes, the only  face of the campaigner to the its pledgers, so all types 

of interaction via the crowdfunding web site must be of the outmost importance.  

o Realistic and lower  campaign goals have a much higher probability of being funded compared 

to higher and ambitious goals. The established public perception of crowdfunding is heavily 

influenced by the few extreme success stories managing to collect even millions of Euros for 

very ambitious projects, as well as few campaigns where funds were collected for seemingly 

meaningless goals (e.g., a trip of the world). The truth however, is that for the vast maj ority of 

projects, the old saying of ‘Under -promise; over-deliver’ is the golden rule. Lower goals have 

both a higher probability of success, as well as less probability of not delivering the promised 

output. Especially the latter (see next point) is criti cal for shaping a positive perception among 

the early adopters of Kickstarter and thus, the consumers that follow them.  
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o Crowdfunders are almost serial in nature, meaning that they typically fund several projects 

throughout a given period, and have thus an extensive experience (and higher expectations) 

for projects. Further, they are typically highly influential in social media and/or blogs/press, 

with their views (positive or negative) heavily influencing their peers and followers. Therefore, 

realistically and honestly managing their expectations, as well as delivering exactly what they 

have been promised, is extremely important. Simply stated, a crowdfunding campaign is not 

free money, nor is risk-free. Quite the opposite, the responsibility of the campaign  organizers 

to the community of pledgers is morally and legally significant, while the risk by exposing a 

new product to them is non-negligible; crowd-funders can make-or-break a product . 

• The crowdfunding service selected for the campaign was Kickstarter, which at that point in time, was 

the most successful and influential crowdfunding platform in the Web. Further, the campaign location 

was set as the UK (hence the British pounds that follow ) since the site was open for campaigns from the 

USA and the UK. For this reason, our UK-based partner Waterwise, was appointed as the organizer of 

the campaign, with Amphiro handling its organization and day -to-day management.  

• The design of the campaign involved the preparation of the engaging material clearly explaining  the 

scope of the campaign, the actions to be taken, the rewards of the pledgers, and a set of questions 

providing further details on the technologies. In addition, a short video was prepared and added in 

a prominent position of the campaign page as most p otential pledgers are initially engaged by video, 

rather than text.  

• Kickstarter selected our campaign as a ‘Staff Pick’, a title given to crowdfunding campaigns after an 

internal  selection process (not an advertising scheme to increase Kickstarter revenues ) to projects of very 

high novelty and interest. The ‘Staff Pick’ label is given to less than 1% of the advertised projects and 

provides more exposure to potential backers through prominent placement in the website.  

• Our campaign goal was set to £20K, which was reached within 14 calendar days . The campaign was 

extended for an extra 10 days with the goals stretched, ultimately reaching £30K in pledges from 232 

users. To the best of our knowledge, DAIAD is the first EU-funded R&I project that successfully harnessed 

crowdfunding  to complement and expand on EC’s financial support.  

• The campaign gained world-wide coverage  in prominent media and blogs (e.g., Cnet, PC-Welt, Digital 

Trends, Geeky Gadgets, Technology Tell, engadget, Ziare) and thus provided Amphiro, the project, and 

EU’s support for our work with high -value (and free) exposure.  

• After the end of the campaign, the period till the delivery of the promised devices to pledgers had 

been critical and quite resource-intensive to ensure the absolute satisfaction  of all backers.  Specifically, 

we had been daily interacting with the pledgers, responding to their que stions, and offering detailed 

updates about our progress. In addition, larger updates in the campaign’s web site presenting our 

progress and the achievement of specific milestones were added frequently to maintain momentum  

and convey a sense of responsibil ity towards the backers.  

 

Our experiences in applying crowdfunding in the context of our social experiments (T7.4) clearly demonstrate 

that crowdfunding is a viable option  for harnessing social innovation  in funding towards facilitating the growth  of 

http://www.cnet.com/products/amphiro-b1/
http://www.pcwelt.de/ratgeber/Wenn_das_Smartphone_mit_der_Dusche_spricht-Android_im_Bad-8954651.html
http://www.digitaltrends.com/home/amphiro-b1-shower-meter-kickstarter/
http://www.digitaltrends.com/home/amphiro-b1-shower-meter-kickstarter/
http://www.ziare.com/internet-si-tehnologie/gadget/amphiro-gadgetul-care-te-ajuta-sa-faci-economie-la-apa-si-energie-1334176
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novel water monitoring technologies. In addition, we believe that its application within R&I EU -funded projects 

should be expanded, especially for projects with an output closer to the end-user market  and the innovation-

side of the spectrum ( i.e., TRL 5 or higher). The obvious benefit of complementing EU funding is, according to 

our view, a mere side-effect  compared to (a) the critical review  of research ideas gained from the public, and 

(b) the potential for world-wide communication of research goals, and EU’s support. Such an extrovert and 

public exposure for R&I efforts is critical, both to ground their aspirations in the real world ( rewarding, or 

discarding them), and to ensure EU’s extensive support for research and innovation is communicated world -

wide. Especially for real-time water monitoring technologies, the limited funds for innovation and the largely 

archaic technologies available to everyday consumers for monitoring and improving their water use, establish 

crowdfunding as a critical component  of future R&I efforts.  

We must stress however, for one more time, that crowdfunding is not free money, nor risk-free. The 

responsibilities towards the community of backers, the level of interaction and maturity required to manage 

and address their expectations, as well as their highly influential status, are almost as complex and critical, as 

managing a funding contract with the EU. Further, the inherent risk  of being publicly exposed for the promised 

research and innovation output to hundreds or thousands of backers with a vested interested ( essentially 

investors), is much greater than the typical evaluation process of E U-funded projects, as well as potentially 

detriment  in case of failure to deliver. Finally, we should also emphasize that the crowdfunding landscape is 

much more mature currently compared to the time we implemented our campaign, with more platforms and 

backers available. A side-effect of this, is the disperse of funds , to many more potential projects, as well as the 

even higher expectations  of backers due to their increased experience in crowdfunding.  

5.2.5. Mobile app engagement  

The mobile analytics captured and delivered via the Keen IO service (see Section 3.12.3) have been examined 

for the last 20 weeks of the Trial (M7-M12), during which all Trial participants  had full access to the DAIAD 

system. In the subsequent analysis, the following terminology is applied:  

• Visit. Comprises a single visit from the user to the mobile application ( also called a user session), 

capturing the event starting when a user opens the applicat ion and ending when the application is 

put into the background (i.e., no longer visible/active). The number of visits over a specific time -

frame (e.g., weekly) is an industry used indicator for representing an application’s popularity.  

• User retention. Captures the evolution of the application’s usage over time. It is calculated by dividing 

the number of users that have visited the application at least once over a given time -frame (e.g., 

weekly) by the number of users that have initially used the application  at least one time. For example, 

if in Week 1 100 users have opened the application at least once, and in Week 3 and Week 5 the 

number of users that have open the application at least once is 50 and 30 respectively, the user 

retention for Week 3 is 50% and Week 5 30%. User retention is another industry used indicator for 

representing an application’s user loyalty and value, since it answers a critical question: ‘how many 

users still find the application useful?’  

• Application screens. The DAIAD mobile application is structured into five (5) major screens 

(Dashboard, Stats, Messages, Comparisons, Accounts), with each one focused on presenting a 

different level of information, interventions, and functionality to users. The Dashboard is the entry 

page of the mobile application ( i.e., the first screen when the app opens ), with the following screens 
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available via the bottom menu (‘buttons’) or the left -side expandable menu (‘hamburger’). It is 

important to highlight that when a user exits the mobile app and enters i t again, the app presents the 

last user-selected screen (i.e., not the Dashboard).  

• Views. Captures the number of times a user has viewed any of the individual five (5) Application 

screens of the DAIAD mobile application within a single visit. Consequently,  the lowest possible value 

is ‘1’ since in each visit the user views at least  one screen. This metric provides an indicator of the 

popularity of specific application screens ( i.e., what users prefer viewing ), as well as the evolution of 

the user’s experience over time as they become familiar with the app and integrate it in their everyday 

lives. 

In Figure 128, the Total number of Visits and the average number of Views per Visit is presented for the 

examined period. The line of Total Visits provides two interesting insights regarding the user behavior. As 

anticipated, the total visits follow a declining trend o ver time, as users have become accustomed to the 

application, learn its capabilities, and ultimately visit it less frequently when absolutely needed to be 

informed about their water use. Second, we observe a clear monthly  periodicity in the number of visit s ( i.e., 

visits increase at the beginning of the month ), which can be attributed to users wanting to examine the evolution 

of their water use at their cognitively preferred  monthly time-intervals. Such a natural user behavior is extremely 

interesting for multiple reasons. First, it essentially reveals the user -preferred balance between information 

frequency vs. information overload. Second, it provides guidance to mobile applications for energy/water 

efficiency in general, in terms of structuring over time the presentation of information, Finally, it can be 

applied to reduce/optimize unwanted backend processing to prioritize weekly/monthly-level analysis tasks.  

Examining the evolution of the average Views per visit provides two additional valuable insights.  First, we 

observe that on average, users view two (2) Application Screens in a single visit.  As we will examine below, 

the two preferred Views are the Dashboard and Stats, i.e., where the interventions are essentially framed. In 

addition, we observe two distinct peaks in the average views per visit (W7, W12) which are due to different 

reasons. The peak in W7 is because users discovered the Comparisons section of the app ( see Figure 129), 

which is updated monthly. While by W3 the screen was already available, on W7 the users where able to 

examine the evolution of their consumption compared to the last month, which they obviously found 

interesting. The peak in W14 is att ributed to the Christmas vacations, during which users have more time to 

spare and spend in numerous other activities.  
 

 

Figure 128: Number of visits and average Views per Visit 
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In Figure 129 we observe the break-down of the total number of Views per application screen for the specified 

time-frame, with several interesting findings becoming apparent. First, the vast majority views is captured b y 

the Dashboard screen, which as mentioned earlier, is a conscious  decision of our users. The Dashboard screen 

has been designed to provide at -a-glance information for most aspects of water consumption ( from historical 

water use, to messages), and is clearly the preferred interface for interacting with the application due to its 

brevity and completeness. The second most preferred screen is Statistics, which is anticipated, since it 

provides access to detailed information about water consumption. An interest ing observation regards the 

Messages section, which exhibits a very low number of views. We believe that this is caused by the replication 

of the messages ( in shorter versions) in the Dashboard. As such, users clearly prefer the most concise version 

of the information, with minimal interest for the dedicated screen. Further, we observe again the peak in M7, 

attributed to the users examining in the Comparisons screen the evolution of their water use for the first time. 

In addition, we observe a clear declining  trend for the number of views of all Screens, which confirms our 

earlier finding. With users becoming more accustomed to, and integrating the application in their everyday 

lives, they become more selective, visiting the application less fr equently to retrieve specific pieces of 

information they need.  

 

Figure 129: Total Views per Application Screen 

Finally, we examine User Retention of the DAIAD app, comparing it against industrial norms and data. As it 

extensively known in the mobile industry, users are extremely selective in the applications they continuously 

use over time, with a very narrow attention span, and increased mobility in terms of application preferences. 

The following figure prepared with data publishe d by ComScore (The US mobile app report 2015) vividly 

demonstrates that on average, almost 80% a mobile user’s time spent is dedicated in her 3 top apps, which 

rises to 90% for the top 5 apps. Considering that these top apps are typically messaging apps (e .g., instant 

messaging, email) and social media (e.g., Facebook, Twitter, Instagram), it is apparent that there is limited 

available room  for any new app to occupy a sizeable space in a user’s time. To put this data into perspective, 

assuming a user spends 8 hours with her mobile on a weekly basis (interaction, not using for phone calls), 

the means that all but the top 5 apps have ~45min of the user’s attention available. Considering an average 

user with 30 apps installed, 25 apps contest for 45min, or on a verage 30 seconds per app (typically one visit).  
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Figure 130: Time spend in user's personal top 10 mobile apps; Source: 

https://www.statista.com/chart/3835/top-10-app-usage/ 

After briefly visiting the extremely competitive space o f mobile apps, we now examine the actual user retention 

of the DAIAD application and compare it against the 2.8M mobile applications available in the Google Play 

store using the data published by the mobile intelligence company Quettra 18. Based on Quettra’s  data, we can 

see that the average app loses 77% of its users  within the first 3 days after the install. Within 30 days, it’s lost 

90% of its users, and within 90 days, it’s over  95%. 

 

Figure 131: Average retention rate of Android applications 

Based on this data, Figure 132 compares the retention curve of the DAIAD mobile application against the top 

10, next 50, next 100, next 5000, and averag e of the 2.8M applications of the Google Play store. The data 

points for the Google Play applications are comparatively sparse ( hence the addition of trendlines to assist 

readers), since the industry typically collects and publishes data at best for the fi rst 90 days of an app’s life, 

while mostly emphasizing the first 30 days.  
                                                        
18 http://andrewchen.co/new-data-shows-why-losing-80-of-your-mobile-users-is-normal-and-that-the-best-apps-do-much-better/  

http://andrewchen.co/new-data-shows-why-losing-80-of-your-mobile-users-is-normal-and-that-the-best-apps-do-much-better/
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Figure 132: Retention curve for DAIAD app vs. the top performers in the Google Play store 

As the figure portrays, the retention of the DAIAD app (orange line) is not only better than average (blue line), 

but also from the ‘Next 100 apps’ (Green line), or to frame it differently, the DAIAD app is in the top 0,0057% 

of the 2.8M apps of Google Play in terms of user retention. This is obviously an extremely satisfying result, 

but must again be placed into perspective. Our Trial users were volunteers and could stop using the app at 

any given time, but of course they were not  everyday users  simply discovering and downloading an app. As 

such, the comparison of retention is based on similar, but not identical user bases. Further, it is worth 

comparing the retention of DAIAD users for the mobile app and the b1 device. The b1 device has a practi cal 

retention of 100%, since users always view its interventions in the shower ( unless they physically remove the 

device), even if they do not intend to ( i.e., just a glance). In contrast, the mobile application ( as well as any 

other not in situ intervention) is accessed only because of intentional  user behavior. This insight is useful when 

examining the ROI of analytical vs. real -time interventions in terms of user retention.  

5.2.6. Social innovation  

Harnessing the potential of social participation , active consumers and community engagement  to promote water 

awareness, efficiency, and real-time water monitoring technologies  requires careful consideration, targeting, 

and effort . Throughout the project’s duration, we have applied and evaluated several aspects and instruments  

for applying social innovation in water, with varying levels of acceptance from consumers. Specifically:  
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• Social media is oversubscribed; Water should not compete in the  attention economy . The Attention Economy 

is a relatively recent term 19 coined to describe human attention as a scarce commodity , due to the 

abundance of timely content that competes  for a user’s attention. Social media (e.g., Facebook, Twitter, 

Instagram) are prime examples of the attention economy, with all of them competing for the  user’s 

attention to monetize it . As such, the current social media landscape provides ample communication 

opportunities, but not actual, deep, and meaningful engagement . Dominated by ephemeral  content and 

low-quality interactions, any thematic priority ( such as water) cannot sustainably claim  an adequate 

portion of the users’ limited attentional span . Furthermore, the means by which social media content 

is distributed via the user’s social network, is inherently biased  towards diffusing information that falls 

almost exclusively within the user’s interest, otherwise known as the ‘filter bubble’ 20. In this sense, 

the goal of informing and engaging consumers not already involved  in water efficiency for real-time 

water monitoring technologies is very difficult to achieve. The content may appear as popular, but in 

reality, it will be shared and consumed by users that already  treat water efficiency as an important 

issue. We have evaluated the Twitter activity ( followers, retweets, impressions) of our own official 

account (@DAIAD_EU) as well as those of select ICT4Water cluster projects ( followers), and reached 

the conclusion that (with few exceptions) the content generated was consumed by users directly or 

indirectly already engaged with water (e.g., utilities personnel, policy makers, activists, companies, 

researchers). There has been a well -documented case in California however, where social media 

successfully mobilized the community towards water efficiency . Drought-shaming21, as it was called, 

engaged citizens to publicly name offenders and high water users during the recent draconian water 

restrictions. This activity was also ephemeral  (water consumption has now increased again 22 ) and 

negatively disposed towards the famous and the wealthy. To summarize, we do not consider that 

social media for promoting real-time water monitoring technologies is misplaced or unneeded , but that 

they cannot lead  social engagement campaigns.  As we elaborate in the following, the current market 

status of real-time water monitoring technologies and the corresponding innovation potential of 

population make open participation ( i.e., physical interactions, word-of-mouth, and tangible experiences), 

much more effective in engaging active citizens.  

• Open Participation. Consumers in their clear majority prefer, commit to, and participate in, physical 

social interactions (word-of-mouth) for promoting water efficiency and real-time water monitoring 

technologies among their family, peers, and their social circ le. Especially consumers belonging in 

specific groups (18-25, large families) act as focal points for these types of interactions. The immense 

and unexpected  success of our OpenWaterDays, attest to this finding and reveals a great potential 

waiting to be harnessed. 

• The OpenWaterDays have been intentionally designed to explore multiple aspects of participatory 

innovation, enabling consumers to learn, experiment, test, and even develop new ideas and solutions 

for real-time water monitoring.  The first OWD organized in Athens (27/6/2015), included the 

complete array of thematic directions, participation opportunities, and experimentation we 
                                                        
19 https://readwrite.com/2007/03/01/attent ion_economy_overview/  

20 https://www.americanpressinstitute.org/publications/reports/survey -research/millennials-social-media/  

21 http://www.cbsnews.com/news/california -launches-drought-shaming-website/  

22 http://www.scpr.org/news/2017/01/04/67787/californians -water-use-up-despite-drought/ 

https://readwrite.com/2007/03/01/attention_economy_overview/
https://www.americanpressinstitute.org/publications/reports/survey-research/millennials-social-media/
http://www.cbsnews.com/news/california-launches-drought-shaming-website/
http://www.scpr.org/news/2017/01/04/67787/californians-water-use-up-despite-drought/
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envisaged23. Despite the unfortunate timing of the event with the enforcement of capital controls in 

Greece ( the early morning of the same day) and the understandable disturbance to the lives of the local 

population, the event was not affected. In contrast, participation, discussion, and interest far 

surpassed our expectations. Moreover, the chosen setting for the event ( the Athens Technopolis), which 

attracts lots of tourists, allowed us to engage people with absolutely no experience or agenda 

regarding water. Out of sheer curiosity they visited the premises, experimented with the devices, 

surprised themselves when understanding that they did not know how much water they used for simple 

everyday activities, and learned about water efficiency. Motivated from this success, we participated 

in the Athens Science Festival 2016 (http://daiad.eu/?p=3430), a 4-day open event celebrating 

science and technology in Greece, which attracted around 35,000 visitors. An exhibit booth allowed 

visitors to experiment  with DAIAD technologies and learn about water efficiency  and real-time water 

monitoring, while an interview to a national TV station (Alpha TV) presenting DAIAD and real-time 

water monitoring technologies to consumers was broadcasted during the following weekend’s prime -

time slot (10:00-13:00, ~500K viewers) . 

These experiences established a clear roadmap and directions for the subsequent OWDs in Alicante, 

St Albans, Bremen, and Madrid (the final celebratory OWD) with our emphasis on further exploring 

and highlighting the potential for these types of interactive and engaging  open participation events to 

promote real-time water monitoring.  Towards this, the OWD Alicante was organized as an interactive 

exhibit space  for real-time water monitoring and an innovation workshop. The exhibition introduced 

visitors to the global puzzle  of water sustainability in a p layful, visual way, offering consumers a 

chance to learn and interact with DAIAD technologies. Public of all ages attended the three days 

exhibition, including school groups, families and  experts. The Workshop “Open Water Days’ 

Challenge”, was aimed at students, professionals and inquiring minds. It trained participants to the 

methodologies of Design Thinking (Creative Problem Solving / Service & Business Design) and applied 

them in practice to the creative solution of challenges related with water and technology, in the 

context of DAIAD. The participants explored their ideas using rapid prototyping, and presented them 

in an “elevator pitch” formats . The number of ideas and proposals for improving the system, reusing 

its services, and building new value added services, was on par  with similar thematic priorities for 

CleanWeb, Fintech, and Open Data ( i.e., the currently dominant domains for open innovation ). To 

summarize, we believe that hands-on, interactive, and inclusive  events are the preferred option  for 

harnessing open participation to promote real -time water monitoring. At this stage of its life -cycle, 

real-time water monitoring is still a largely unknown technology that consumers need to see, grasp, 

and understand . Further, even for consumers that have some understanding, it is typically skewed due 

to the association of monitoring with billing  and the negative disposition 24  for changes in water 

metering.  

• Bottom-up innovation . One of our Trial evaluations (Trial B, see 2.2 and D7.2) was devoted to evaluating 

and studying real-time water monitoring technologies in a bottom -up perspective, with its underlying 

assumption and research query being that social innovation , by means of empowered consumers, 

could become a strong instrument  for the wider adoption of personal water monitoring technologies, 
                                                        
23 ht tp://daiad.eu/?p=3054 

24 http://www.telegraph.co.uk/finance/personalfinance/household -bil ls/11214845/Water-meter-rip-off-a-third-regret-decision-to-switch.html  

http://daiad.eu/?p=3054
http://www.telegraph.co.uk/finance/personalfinance/household-bills/11214845/Water-meter-rip-off-a-third-regret-decision-to-switch.html
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acting as a catalyst  for the population at large. To the best of our knowledge, this is the first ever 

attempt documented in the literature to study this potential, with all other past trials and studies 

organized and supported with the participation of local water utilities ( i.e., top-down, like Trial A, see 

2.1 and D7.1).  

Throughout the course of Trial B, we encountered evidence suggesting the contrary, and specifically 

that social innovation cannot overcome  the standard theory for ‘Diffusion of Innovations’. While 

volunteer-driven efforts and bottom-up innovation are important on a policy and social setting  (e.g., 

promote discussion, accountability, cohesion, transparency ), the reality  of product innovation is much 

more constrained in terms of real-world adoption. Specifically, with real-time water monitoring 

technologies still at a pre-production/early-production  setting, their market success is driven from 

innovators  and early adopters  rather than the general population. According to the well-known and 

validated throughout the industry ‘Diffusion of Innovations’ theory by Everett Rogers, the adopter 

categories for innovations comprise:  

o Innovators (2.5%), i.e., people willing to take risks, have the highest social status, have 

financial liquidity, are social and have closest contact to scientific sources and interaction 

with other innovators. Their risk tolerance allows them to adopt technologies that may 

ultimately fail.  

o Early adopters (13.5%), i.e., individuals have the highest deg ree of opinion leadership among 

the adopter categories. Early adopters have a higher social status, financial liquidity, 

advanced education and are more socially forward than late adopters. They are more discreet 

in adoption choices than innovators  

o Early majority (34%), i.e., individuals that adopt an innovation after a varying degree of time 

that is significantly longer than the innovators and early adopters. Early Majority have above 

average social status, contact with early adopters and seldom hold posit ions of opinion 

leadership. 

o Late majority (34%), i.e., individuals that adopt an innovation after the average participant. 

These individuals approach an innovation with a high degree of skepticism and after the 

majority of society has adopted the innovatio n. Late Majority are typically skeptical about an 

innovation, have below average social status, little financial liquidity, in contact with others 

in late majority and early majority and little opinion leadership.  

o Laggards (16%), i.e., individuals that are  the last to adopt an innovation. Unlike some of the 

previous categories, individuals in this category show little to no opinion leadership. These 

individuals typically have an aversion to change -agents. Laggards typically tend to be focused 

on "traditions", lowest social status, lowest financial l iquidity, oldest among adopters, and 

in contact with only family and close friends.  
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Figure 133: Product adoption curve 

As such, engaging consumers for adopting the project’s personal water monitoring technologies could 

realistically reach at most  15% of the total population ( i.e., before the chasm), and without taking into 

account any local socio-economic considerations.  In this setting, the goal of bottom-up innovation is 

to empower Innovators and Early adopters and establish them as catalysts  for large-scale adoption of 

new technologies, thus bridging  the chasm, with several cases in the literature where such an approach 

delivered meaningful results (e.g., open data, Arduino, micro-credits). 

The challenge of bridging the chasm through bottom-up innovation materialized throughout Trial B in 

multiple forms. Already from the initial preparations steps, we encountered relatively small interest 

for participation (compared to Trial A). However, according to our previous research (Waterwise, 

2012), even for utility-driven top-down projects in the UK, uptake rate among customers tended to be 

low if no home visits are involved . During the trial, the continued mix of anticipation and lack of 

cooperation regarding the timeline and phases of the Trial (see D7.2 for details) was particularly 

interesting, confirming our initial evaluation of the local population i n terms of its ‘innovation 

potential’, as well as the impact of bottom-up innovation for personal water monitoring technologies. 

The direct comparison with Trial A revealed  a large difference in consumer attitudes and expectations 

when the introduction of this innovation is managed by a water utility . An additional reason is attributed 

to the provision of piece-wise information ( i.e., only in the shower) about water use. Examining the 

satisfaction of our two Trial locations (see section 3.13.3) we observe that the satisfaction of consumers 

having access to feedback regarding their tota l household consumption (vs. only the shower) was much 

greater (~35%). Consumers treat the provision of only fixture -based information as incomplete, making 

it less attractive. As a result, fixture-based water monitoring services enjoy a lesser degree  of potential 

commercial success as an autonomous and self -contained product. 

Our view is that the early innovation status of water monitoring technologies is strongly alleviated  when 

water utilities ( i.e., established authority figures, stakeholders and water stewards) introduce them to 

their customers in the context of their standard business practices. Consequently, and at least until 

the critical Chasm is reached in term of adoption, we consider the direct engagement of water utilities 

in a top-down manner, as absolutely necessary  (see Section 6). 

• Privacy concerns . Real-time water monitoring services may have unwanted effects  in terms of privacy  at 

the household level . This issue has been raised during the Trial from certain participants, as well as 

Consortium members, and it relates to cases where water consumption patterns/events can reveal an 

http://www.waterwise.org.uk/data/resources/45/Improving-Uptake_final.pdf
http://www.waterwise.org.uk/data/resources/45/Improving-Uptake_final.pdf
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individual’s hidden activity . For example, a student may sk ip school and stay at home (not informing her 

parents). Even if she simply drinks a glass of water, or goes to the toilet, it will be apparent from the 

smart water meter data that she spent the day at home . A number of similar real -life situations can be 

identified, all resulting from the new highly granular  knowledge of water use.  

However, we consider that these effects should not concern water utilities, nor be  the focus of 

researchers, for two reasons. First, even though smart energy meters provide even greater temporal 

granularity (and for at least 2 orders of magnitude more households ), privacy among household members  

is a non-issue. Second, the rise of smart home products for automation and security ( e.g., motion 

sensors, smart thermostats) offer an even greater level of detail  in terms of monitoring user activity, but 

with similarly no reported privacy concerns.  

Finally, a very recent challenge may arise for water utilities and the provision of personalized novel 

water monitoring and analysis services , from the General Data Protection Regulation 25 (GDPR), which 

was ratified by Member States in April 2016, and will go into effect on May 25, 2018. The GDPR is an 

EU Regulation, which de jure applies to all Member States, as well as any organization  (regardless of 

their physical location), if they collect data for EU residents. The potential implications, constrains, 

and side-effects of GDPR are still too early to identify, but there is a growing concern from the research 

community regarding the potential constraints for data-intensive research, which is a crucial aspect 

of water monitoring and analysis services. Specifically, while there exist specific waivers for data 

collected for research purposes, these do not accommodate data science. The norm for scientists is 

to first collect data to analyze, and reach to conclusions, but data science works in an inverse manner : 

data need to be available first (also known as exhaust data), for challenges to be discovered and 

addressed. This is especially important for the EU, as data science is one of the pillars of EU’s Data 

Economy26, the leading source for EU’s growth in the next decades. Again, it is too early to predict if, 

how, and when GDPR will affect scientific research, and the Water domain in particular, but i t will 

definitely add artificial barriers for specific Data Economy innovation areas and potentially broaden 

the gap with innovators outside the EU.  

 

5.3. Technical issues 

In this section, we present and discuss the major technical issues and aspects of the DAIAD system across its 

major components, as identified and analyzed in the context of our Trials ( see D7.1 and D7.2 for a detailed 

enumeration of all issues). 

5.3.1 . Amphiro b1  

During the Trial, a total number of 231 amphiro b1 devices were distributed, installed, and used from our 

Trial participants in real -world conditions. Only 15 (6.5%) of these devices were characterized from our users 

as malfunctioning in some way  ( i.e., return rate), and after a laboratory inspection ( devices were shipped and 
                                                        
25 http://www.eugdpr.org/  

26 https://ec.europa.eu/digital -single-market/en/policies/building-european-data-economy 
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analyzed for defaults), 9 of them (3.9%) were confirmed as malfunctioning, and only 4 of them (1.7%) defective 

due to manufacturing problems, with the rest not working due to improper use ( e.g., wrong connection with 

shower-head). This is an excellent performance, in line with typical rates for CE-labeled products (return rate: 

3%-15%, defect rate: 0.5%-2%), and a true testament for the technical maturity of the amphiro b1 device. In the 

following, we examine the performance and oper ation of the amphiro b1 devices in more detail.  

• Stability and accuracy . The analysis of the measurements captured from the b1 devices ( water and 

temperature time-series) did not reveal any systematic or intermittent issues regarding the operation 

of the sensors (e.g., stuck sensor, drift). Further, the stability  of the device in a real-world setting was 

practically perfect, with no reported issues regarding the LCD and its operation. In terms of accuracy, 

the real-world nature of Trial A (1hour SWM readings) did not allow us to evaluate the monitoring 

accuracy in the field. Our extensive laboratory testing however (see D2.2.2) confirmed that the 

achieved monitoring accuracy is <4%, which is exceptional ( i.e., close to accuracy of water meters used 

for residential billing). 

• Bluetooth radio. At all cases of defective devices, the culprit was the integrated BT radio, which would 

not work, or operate intermittently, resulting into failure to complete the pairing process, dirty data, 

or complete failure to transmit real-time water consumption data. All these cases were examined, 

with the cause identified to be either faulty BT radio components ( DoA chipset) or soldering problems, 

which have been addressed by optimizing the testing and manufacturing protocols  in the assembly 

line. It is important to highlight that even for these cases, the device operated otherwise perfectly 

( i.e., monitor and inform water use via the LCD ). Further, our very early decision in the project’s lifetime 

(M6) to select BLE as our RF  protocol retrospectively proved excellent. In terms of penetration, 99% of 

new mobile devices are BLE-compatible, ensuring compatibility with the b1. Further, other competing 

protocols (e.g., ZigBee, custom RF implementations ) have failed to reach the status of a de facto standard, 

even in the smart home ecosystem. Instead, the market is rapidly moving towards embracing all 

IoT/smart home RF-standards under the umbrella of smart home gateways ( e.g., Samsung Smart Things, 

Amazon Echo, Wink Hub). 

• Low water f low. This issue was discovered, analyzed, and addressed due to feedback from Trial B 

participants, which were hindered from local low water flow problems (<6lt/min) , and had two effects: 

(a) reduce water flow, making showering uncomfortable, and (b) reduce  the energy harvested from 

the b1, making BT-radio operation impossible or highly unstable. These findings initiated a new round 

of work for the final version of the micro -generator employing static bypasses to successfully cope 

with exceptionally low flow-rates. Given however the trade-off between dynamic/static bypasses and 

accuracy (see D2.2.2 for details), a single version of the b1 addressing low -flow settings without 

compromising accuracy is technically impossible. It is however appropriate to conside r separate 

localized versions of the b1 device targeting low -flow consumers; these would be identical, except for 

the included bypass valve. Finally, it is worth highlighting that the same challenge  hinders even the 

water meters  deployed and used by water utilities, as it regards the inherent mechanical -based 

technologies for monitoring water flow. As document in the literature, mechanical water meters are 
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characterized by inherently low accuracy at low- flow settings27 by as much as 30%, resulting into 

unmetered water ( the long-tail of water metering). 

• Mean time between failures .  During the entire duration of the Trial A and B, none of the deployed 

devices malfunctioned, with all reported defective devices being DoA ( Dead on Arrival). Further, during 

the extended Trial A, this number did not increase, the current MTBF is infinite. The following statistics 

demonstrating the active use of the devices, put this performance into perspective. The 231 devices 

were operated by at least 457 individual users (of which 115 were minors) in 149 households, capturing 

~15K shower events (~5K real-time and ~10K historical shower ). 

• Device practicality. The b1 device is installed in-line with the shower-head, in a manner that ensures 

its integrated LCD is within the eye-sight of the user, thus constantly informing her about her water 

consumption during a shower. We had only one user complaining about the size/weight of the device, 

deeming it to be impractical for every -day use. There were no similar concerns from other users 

(especially households with young children or elderly), so we consider this comment as an outlier.  

• Wear and tear. The b1 device proved extremely resistant to prolonged use, exhibiting practically zero 

problems in terms of wear and tear. The only reported issues concerned the occasional appearance 

of moisture within the LCD, which disappeared a few minutes after the shower has ended. These 

problems were caused by the improper installation of the O -rings, did not cause any permanent 

damage to the device, and were easily addressed by re -attaching the device with the shower-head 

per the provided instructions. There were no reported issues regarding the device’s casing ( e.g., plastic 

peeling off, washed-out lettering) due to normal use or abrasive/intensive cleaning agents ( e.g., 

chlorine), nor any issues caused by water deposits/impurities/minerals.  

• Packaging and instructions. All Trial participants were provided with the b1 device packaged as on off-

the-shelf commercial product. The packaging presented the device’s key characteristics ( e.g., saving 

potential, compatibility/requirements, conformance markings ) and included the device itself with tis 

accessories (O-rings, filter) safely harnessed, as well as simple installation i nstructions. All issues 

relating to the installation of the device where not caused by missing parts ( e.g., O-rings) or the 

instructions themselves (e.g., missing steps, unclear), but rather from users not following the instructions . 

This is a very common issue for domestic electronics, which we cannot address in any manner. It is 

however another positive finding, as it implies consumers intuitively  understand how the device works, 

and do not consider it as alien piece of technology, which is extremely impo rtant as the device is 

completely novel and aims to blend itself into the every-day lives of consumers without causing any 

stress or intimidation in the shower.  

• Compatibility with water fixtures . The amphiro b1 is compatible with practically all domestic shower-

heads and hoses, with any issues (e.g., small leaks) appearing due to the manufacturing tolerances of 

the b1 device or the shower-heads/hoses. To address potential problems, the device ships with extra 

O-rings (standard industry practice) which can be installed in either of the two connection points. 

During the Trial, we had few user inquiries regarding small water leaks, but these were caused by the 

users not following the installation instructions and inserting the provided O -rings. 

                                                        
27 M. Sumrak, M. Johnson, S. Barfus. Comparing Low -flow Accuracy of Mechanical and Electronic meters. Journal of Amer ican Water Works Association, Vol 8 

(pp. 327-334), 2016 
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5.3.2. DAIAD@home 

During the Trial, the DAIAD@home mobile application was installed and used in at least 500 distinct mobile 

devices from our Trial participants in real -world conditions. The mobile application has been developed using 

the Apache Cordova cross-platform mobile development framework for iOS and Android mobile devices and 

published in the corresponding app stores (iTunes, Google Play) as a free download. During the Trial, 17 

application updates were published to address issues discovered from our users, improve the performance 

of the app, and deliver new interventions per our treatment protocol. The diverse characteristics of mobile 

devices needed to be supported in terms of form factor ( phone, tablet), operating systems (all iOS/Android 

versions delivered in 2013-2017), screen sizes (3’’-11’’), hardware (CPU, memory, BT chipsets), and manufacturers 

(from Apple to low-cost Chinese brands) demanded an intense effort in testing across hundreds of devices ( see 

D1.4. for details), with our app being compatible with over 9 5% of current mobile devices. Overall, our efforts 

to address all issues raised during the Trial, resulted to excellent engagement and satisfaction scores from 

our Trial participants, demonstrating the technical maturity and relevance of the app in a real -world setting. 

In the following, we examine the technical challenges and issues we addressed in more detail.  

• Android BT stack . The wireless transmission of real -time and historical water consumption data from 

the b1 device, as well as all other b1-specific operations (pairing, change settings) is based on BLE 

(Bluetooth 4.0), which is currently available in practically all mobile devices in the market. Despite this 

promised interoperability on a hardware level, one of the early issues we discovered concerne d the 

problematic Bluetooth operation  in high-volume/low-cost Android mobile devices (<120 Euros).  

Specifically, the implementation of the BT software stack from several device manufacturers was slow  

and even non-conformant  to the relevant standards due to the firmware/driver of the BT chipset, or 

even a proprietary version of the host OS with older BT libraries. In these cases, the user experienced 

a long delay to complete the initial pairing process ( e.g., 1-10 min instead of 5-10 sec) and very low 

throughput during a real-time shower event ( i.e., limited historical data retrieved in the background ). 

Given the relatively high penetration of such devices in Trial A ( as well as other EU locations), and the 

extremely limited support/updates they receive from their manufacturers ( typically receiving no OS 

updates after they are shipped) we devoted significant effort towards addressing all such issues by 

refactoring our BT connection stack and even developing proprietary libraries for specific devices . 

Similar challenges affect practically all mobile applications supporting BT -based connection with 

peripherals (e.g., fitness trackers, smart home products ). In most cases however, developers lay a line in 

the sand, explicitly not supporting older devices, or even solely focusing on the Apple devices alone. 

For the project, this was not a viable option, as it would greatly reduce the number of Trial participants 

and the potential target market for the DAIAD system.  

• Device compatibility . Our early technical decision to select Apache Cordova as our development 

framework for developing and delivering the mobile app in a cross -platform setting, proved extremely 

successful, even allowing us to port the app in a smartwatch device (Apple Watch Series 2/water -proof; 

Watch OS4/Core BT API available). We maximized the use of our resources by having a single codebase 

(rather than two; one for iOS and one for Android) and applying standard Web technologies ( HTML5, JS, 

CSS) which were also relevant for the DAIAD web applications ( thus also reusing source code and 

knowhow). The myriad of issues we encountered due to the diverse collection of the mobile devices 

used in the Trial would not have been avoided by opting for native apps; unfortunately, these types 
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problems are inherent in mobile app development. The majority of issues relating to the diverse 

nature of our target mobile devices was discovered and addressed in our extensive integration/testing 

(see D1.4 for details), i.e., before our Trial participants (see D7.1 and D7.2) and evaluation panels (see 

D3.1.2) had a chance to intercept them. Examples include UI inconsistencies ( e.g., buttons in wrong 

position and or size), visible loading screens (e.g., momentarily blank display), API delays (e.g., 

background data fetching taking  secs instead of msecs), data connection problems (e.g., intermittent 

transmission when BT and GSM/EDGE radio was on ). 

• Stability and performance. During the Trial, we have been proactively monitoring the real -world 

workloads of the app (e.g., historical/real-time showers, usage patterns), projecting these workloads 

into the future ( i.e., assume data/queries for up to 5 year s ahead) to evaluate and improve the app’s 

performance, responsiveness, and stability. This allowed us to identify and address multiple issues 

that were not to be raised in the 12-month duration of the Trial, but would appear during prolonged 

use. We have devoted significant efforts to refactor almost all aspects of the application, mostly 

focusing on isolating  UI elements from the underlying data store/data API, improving the internal 

database of the app, off-loading  resource-intensive queries to the cloud back -end while ensuring 

consistency (delivering new data API versions in the process ), and aggressively pre-aggregating data to 

minimize response times.  

• Ease of installation and use . The high level of user satisfaction from the mobile app, as well as its clear 

increase after the end of the Trial, during which the final version of the app was available to 

participants (see Section 5.2.1.2), clearly portray our success in delivering a simple and useful  app. It 

not however simple to reach this goal, with several problems appearing in the start of the Trial, and 

specifically, in the initial pairing process of the app with the b1 device.  These issues were either 

caused by the Android BT stack ( see above ‘Android BT stack ’) or by the specific Android/BT flavor of 

the device (see above ‘Device compatibility’) and resulted into long waiting times to complete the pairing 

process for the first, or subsequent ( in Trial A) b1 devices. All issues related to the usability of the app 

(e.g., inconsistent UI elements , delays) as mentioned previously (see above ‘Device compatibility’) were 

identified and addressed before our Trial participants and evaluation panels ( D3.1.2) had discovered 

them, with the corresponding changes published into later version of the app or published after the 

official end of the Trial in M37 ( in cases where the changes affected the studied interventions ). 

5.3.3. DAIAD@uti l i ty  

The DAIAD@utility application was deployed in our private IaaS cloud,  initialized, and extensively used in our 

real-world Trial to provide all data management and analysis aspects to experts, support the DAIAD@home 

applications, as well as the implementation and monitoring of the Trial  itself.  As such, the app is the 

cornerstone of the complete DAIAD system, ensuring its scalability, responsiveness, and fault tolerance. The 

application is the first  integrated system for residential water demand and consumer engagement, and 

integrates Big Data technologies (Hadoop, HBase, Flink) to successfully scale at the city -level, far surpassing in 

functionality and real-world relevance the competing research and business offerings.  During the Trial, there 

had been zero down-time caused from the app itself, with all down-time instances caused from scheduled 

maintenance activities for the app ( i.e., to deploy new version of the app or its libraries ) or the cloud 

infrastructure ( i.e., apply security patches and updates ). Including these events, the tota l uptime had been 97.2% 
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(i.e., almost ‘ two nines ’), which is exceptional ( large-scale web apps such as Google Maps have 99.9% availability ). 

Further, there had been no security incidents  (ranging from DDoS attacks to attempts for SQL injections ) due to our 

proactive approach for system security ( hardened versions of all software used/applied; rapid deployment of 

security patches/releases; SSO for users; software isolation ). In the following, we examine the technical challenges 

and issues we addressed in more detail. 

• Ease of installation/administration . DAIAD@utility is a very complex application, comprising multiple 

different components and libraries, employing state of the art technologies, and operating on a cloud 

infrastructure (see D1.4 for details). We were aware of this level of required complexity already from 

the initial system architecture, and acted proactively to minimize the effort both to install ( i.e., deploy, 

bootstrap) the app in a target cloud infrastructure, as well as for its day -to-day administration. With 

a first early beta available already from M12, we followed a simple approach : ‘eat your own dogfood ’, 

i.e., apply the installation facilities and administration facilities we develop ourselves, as users. This 

has allowed to identify and address multiple issues minimizing the overall complexity of the 

installation process (e.g., external libraries, VM roles/initialization, installation validation ), which is 

currently entirely automated via the Ansible scripts we have developed ( see D1.4 for details). In this 

manner, the administration needs only to provide the target VMs, with the scripts delivering the app 

installed after a few hours (depending on the underlying infrastructure ). Regarding bootstrapping ( i.e., 

data source initialization, localization), the administrator can use any of the provided facilities for 

importing data (also see below regarding interoperability ) or directly manipulate the underlying data 

sources ( though not suggested), and of course select the preferred language/local e for the application 

(EN/ES currently, localization in other languages is at most 1 person -day). The day-to-day administration 

of the system is founded on two dependent pillars: logging and automation . Following our experiences 

as users (e.g., need to debug missing SWM data, examine delays for a specific processing job ), we have 

introduced full logging capabilities across all system components ( verbosity controlled by the 

administration), simple UI facilities (e.g., scheduler log, consumer -level log), and automated facilities to 

address mission-critical problems (e.g., loss of VM). 

• Scaling and stability . The DAIAD@utility application is by design inherently scalable due to the conscious 

application of technologies and paradigms that ensure scalability, p erformance, and fault tolerance. 

During the Trial, we encountered absolutely no scalability problems , which was expected, since the 

application was designed, developed, deployed and benchmarked to scale at the city -level (1M smart 

water meters; 24 data points/day). All issues we identified and addressed were revealed from our 

internal benchmarking, which was performed during M18 -M34 ( i.e., starting 6 months before the start 

of the Trial) using synthetically generated data ( applying real-world data as a seed, see D1.2 for details), 

and replicating the real-world workloads of the system. Based on our findings, we introduced multiple 

improvements to increase both horizontal (scale out) and vertical scalability (scale up). In summary, we 

have optimized the VM al location, roles and resources per VM (see D1.4 for details), thus adding or 

removing resources as needed (down at the VM level). In addition, we have added a second VM cluster, 

identical in function and responsibilities with our first ( see D1.4 for details), a process which can be 

replicated in a simple manner to further increase the available resources for the app ( add 2nd,  3 rd 

cluster, etc.). Further, we have increased the isolation of the UI from the underlying Data API and 

introduced several automated caching/pre-aggregation policies to ensure responsiveness ( i.e., 

scalable visualization). Finally, we introduced several changes in the underlying data schemas and data 
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replication across the distributed processing frameworks to reduce response time and au tomatically 

manage the execution of all data-intensive (i.e., high latency) processing jobs ( see D1.4 for details). 

• Interoperability . DAIAD@utility is a completely novel application, which we aspire to find its way in the 

real-world, being deployed and used from water utilities worldwide to improve water demand 

management and increase consumer engagement. In this setting, three critical interoperability aspects  

of the system arise. First, the system needs to be able to import/harvest  water meter data from any 

existing metering infrastructure, as well as any other required data for the specific location/utility 

(e.g., weather, geospatial). Second, the system needs to be able to export its data and analysis output 

to third-party systems and applications, thus allowing domain experts to reuse and apply its output 

from the tools/methodologies they are already familiar with. Third, the system needs to respect and 

serve the critical existing systems deployed and used by water utilities ( smart metering/billing systems, 

GIS). Our approach to address these requirements entailed the application of open standards  and 

where not available, simple plain-text formats , with the outcome being zero interoperability problems  

encountered in the Trial. In summary, our three requir ements were addressed in the following 

manner. First, we implemented a reusable data import/harvesting service for water consumption data 

(available within the system, an FTPS end-point, and our Data API) which only requires the deposit from 

the water util ity (at arbitrary time-intervals) of a plain-text file with water measurements ( meter ID, 

time-stamp, value). The service also imports geospatial data (shapefiles, KML, etc.; software adapted 

from our work in github.com/PublicaMundi) and weather time -series (tested for Weather Underground, 

Yahoo Weather, and Spain’s national meteorological service ). Second, throughout the UI the user can 

export whatever data/analysis results available as plain text/CSV, or directly programmatically invoke 

our Data API (see D1.4 for details). Third, we have provided full support for several OGC standards 

(WMS, WFS), which allow the application both to integrate and provide geospatial data from and to 

respectively existing GIS and geospatial databases.  

• Robustness. One of the most important issues we had to address, as well as a finding we believe that 

researchers must especially consider (see Section 6.3), concerns the extremely low quality of SWM 

data (also known as low veracity in Big Data terminology ) compared to what it is documented or assumed 

in the literature ( i.e., the ‘perfect data assumption’ ). Our analysis of the SWM data quality, revealed 

several irregularities  in the data, which upon a closer inspection were attributed to missing data points 

from the SWM data extracted from AMAEM’s smart metering system  (see Section 3 for details). In 

general, these type of quality issues were expected ( e.g., data transmission problems, dirty reads ) and 

gracefully managed by the system and our analysis algorithms to ensure its robustness. The frequency 

however of these problems (~30% of the data points were affected ) led us to further increase robustness 

and delivered two important aspects related to the application of SWM data for Big Data and ML -

based analytics. First, smart metering infrastructures hav e been designed and operate to efficiently 

support billing, rather than complex household-level analytics. The corresponding compromises in 

data quality (necessary to reduce TCO of smart metering ) are quite often not even known  to water utilities, 

as data quality issues can only be discovered when applying the SWM data for complex analytics. 

Second, any system applying SWM data to extract complex analytics ( e.g., demand management, 

consumer engagement) must by-design assume that input data will be of low quality, inherently 

accommodate  the low veracity of data, and be extremely robust  to changes in data quality.  Therefore, 

we argue that emphasis should be placed on acute real-world challenges  (scalability, robustness) rather 
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than unrealistic  endeavors (e.g.,  increase forecasting precision by 5% ) that are completely irrelevant  for 

real-world smart water metering infrastructures.  

 

5.4. Business opportunities 

In this section, we attempt to summarize, frame, and argue about potential new business models for water 

utilities and water stakeholders from the application of DAIAD technologies. This presentation considers the 

achieved sustainable effect of the system for water efficiency, its detailed and personalized reach to 

consumers, emerging complementary domains and market areas, as well as non -typical revenue streams and 

shared investment opportunities which could be applied in the water sector to support the la rge-scale 

application of real-time water monitoring technologies. The discussion that follows is significantly broader 

and much less specialized than our exploitation plans regarding the project’s output ( see D8.5.2) since we 

attempt to generalize our findings and reach high-level policy and technology directions for promoting and 

harnessing new business models for the water sector.  

Before continuing, we will summarize the current landscape of real-time water monitoring technologies as a 

foundation for the discussion that follows. 

• Niche market. The market of personal water monitoring products is arguably a small niche, with only a 

handful  of products available worldwide, and a long history of products that failed to reach the market. 

Beyond the amphiro b1, most other related products come from the smart home domain and focus 

on domestic irrigation ( i.e., smart timers/sensors for garden/plants). The current market landscape 

confirms our findings regarding the innovation potential of these technologies. At this  point in their 

life-cycle, their growth and market success is hindered by the small segment of the population that is 

interested to adopt them (16% of ‘Innovators’ and ‘Early adopters’, see Section 5.2.6), which in turn limits 

their potential to further mature as products. Similar, yet less pronounced challenges ( due to the 

comparatively higher cost of energy and lower cost of energy monitoring produ cts, which means higher 

financial savings for consumers and smaller investment respectively, i.e., higher overall ROI ) affected almost 

a decade ago the market of personal energy  monitoring products. Their rapid growth resulted from 

several complementary initiatives which could be relevant for the water sector: co-financing from energy 

utilities, opening-up of energy consumption data, alignment with the smart home, increase in energy prices . 

• Low penetration of SWMs. Due to policy, cultural, and economic reasons, water consumption is metered 

less than energy. For example, less than 50% of water in the UK is metered, with several EU regions 

paying a fixed cost for water regardless the amount used. In this landscape, making the case for smart 

water metering is already difficult. Even for water stressed regions however, where water is metered 

and priced reflecting its heightened value, SWM penetration is still low due to the overall lower ROI 

compared to energy metering. The lower value of water compared to energy and the less options for 

harnessing smart meter data (energy demand/response is much more dynamic, and even automated , see 

also next point) means that SWMs may make limited financial sense  and their introduction is more 

dependent from policy initiatives . The same considerations apply even in the cases where SWMs have 

been deployed, with cost concerns limiting the value of SWM data. The TCO of SWM infrastructures 

(e.g., installation, communication, administration, maintenance) is kept low by limiting  the granularity and 
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frequency of the SWM data they provide (e.g.,  1d measurements, transmitted weekly ) and focusing of 

billing  rather than real-time monitoring . These compromises affect the quality of the produced data as 

well, since low veracity for time periods smaller than billing periods ( e.g., RF transmission problems, 

out of order data) are allowed to keep costs down. As a result, there is a clear lack of high -quality, 

detailed water consumption data compared to the ene rgy sector, and thus limited opportunities for 

extracting value from them to improve water demand management.  

• Underutilized SWM infrastructures . The lack of detailed and timely water consumption data from SWMs 

has a compounding effect for innovation, further strengthening the arguments against SWM 

deployments. The relatively few mature SWM infrastructures that produce potentially  useful data, do 

not make them available to researchers at large, thus hindering research on ways to harness the hidden 

value of SWM data. The providers of SWM infrastructure s follow a similar pathway guided by the 

requirements of their clients; why invest in research if t here is no commercial interest? And even in 

the few cases where detailed SWM become available, research typically lacks innovation and impact 

due to the ‘walled gardens’ of researchers in the water sector, with limited opportunities from other 

disciplines to contribute with knowhow and research objectives. The most frequent manifestation of 

this challenge is contributions that do not scale  due to unrealistic assumptions and technology 

foundations (e.g., ‘perfect data’ assumption, not treating SWM as Big Data, ML approaches that significantly 

increase the ‘technical debt of ML’ 28). Fortunately, harnessing value from Big Data in general, is not a 

challenge affecting the water sector alone, but practically all aspects of the EU Data Economy, and a 

core priority in H2020 and the Digital Agenda (see Section 6.3). With 254M smart energy meters 

planned to be deployed by 202029 at a total investment of 50 billion Euros, and real-world installations 

demonstrating best-case savings of 2-4%30, even smart energy meters are under doubt. The EC has 

challenged whether smart meters are “economically justified” and ordered a study 31 indicating that 

“consumer needs are underrepresented”, with “no study available that considers their diversity to assess the 

savings potential”. 

5.4.1 . Business models and revenue streams  

In this section, we enumerate potential business models for water utilities and stakeholders from the 

application of DAIAD technologies, identifying relevant revenue streams, with specific focus on shared -

investment opportunities (ad hoc or in the context of PPPs ) that can diversify the risk of investment for real -time 

water technologies, thus facilitating their introduc tion on a large-scale. The term ‘DAIAD technologies’ imply 

all individual software and hardware artefacts delivered by the project, knowhow, as well as the complete 

DAIAD system itself, which can support meaningful monetization schemes from water stakehold ers. 

• Bonus-malus pricing policies . One of the most popular pricing models for DAIAD per our panels, is the 

free provision of the system, if the household stays within a pre -defined water savings goal on the 

long-term. If the household’s consumption exceeds  this goal, then a bonus-malus is applied, with the 
                                                        
28 D. Sculley, G. Holt , D.l  Golovin, E. Davydov, T. Phil l ips, D. Ebner, V. Chaudhary,  M. Young. Machine Learning: The High Interest Credit Card of Technical 

Debt. SE4ML2014 

29 Smart Metering Deployment in the European Union. Joint Research Center. 2014  

30 Doubts cast over consumer benefits of smart meters. Euractiv, 2012 .  

31 Empowering consumers through smart metering. Bureau Europeen des Union des Consomateurs (BEUR), 2012  

https://research.google.com/pubs/author38217.html
https://research.google.com/pubs/GaryHolt.html
https://research.google.com/pubs/DanielGolovin.html
https://research.google.com/pubs/ToddPhillips.html
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consumer paying for the system through the periodic water bill. Essentially, consumers are rewarded 

(bonus) for reducing their water consumption by gaining free access, and penalized ( bonus-malus) for 

otherwise not maintaining their reduced water use. The benefits of this pricing scheme are obvious if 

examine its two extremes. At the case where all consumers reduce their water use ( and hence do not 

pay for the system) the benefits for the water utility are  used to offset  the system costs. In the other 

extreme, the users do not reduce their water use (and must pay for the system), hence the full costs 

are transferred to consumers rather than the utility. We believe that this is a win -win scenario as a 

utility is guaranteed to not lose any of its investment costs for DAIAD; in the worst -case scenario, the 

consumers pay (bonus-malus), and in the best-case the system has guaranteed savings which offset 

the system costs.  

We consider this pricing scheme to be fair  for all involved stakeholders (see Section 5.2.3.2), and our 

respondents share this view, with ~63% agreeing with this proposition, ~15% being neutral, and only 

~22% having a negative opinion (‘Completely disagree’ or ‘disagree’). In addition, more than 70% our 

panel agrees to savings of at least 5%,  and ~40% agreeing to savings of at least 10%.  As such, there is 

clear social acceptance  and a vested interest from consumers. Further, this scheme can lead to 

significant water savings through relatively small effort/investment  from the water utility. In addition, 

the savings preferred by the majority greatly surpass  what has been documented in the literature ( 3-

5%) for large-scale trials of SWM-based interventions, and well within the sustainably -12 reduction 

observed in our long-term trials.  

For these reasons, we believe that this pricing scheme is both socially acceptable  and economically 

sound for water utilities, and is perfectly suited to targeted government co -funding programs for 

sustainability, as well as co-investments with private sector stakeholders. Specifically, it ensures 

economic viability and eco-sustainability even in its two extremes, i.e., when no consumers save and 

when all consumers save, respectively. This level of guarantee is missing from investments in water 

efficiency and can attract private investments to augment or complete cover the system costs. Finally, 

this model can act as a value multiplier  for local/national sustainability programs with clear efficiency 

goals (e.g., 15% reduction in water use by 2020 ) and/or of urgent nature  (e.g., as response to droughts) by 

pooling  their financing and ensuring either satisfaction of goals (consumers save) or no loss of funds 

(consumers do not respond, funds are redirected to other actions ). 

• Abatement programs and (micro-)credits. Information-based carbon abatement programs can make use 

of b1 consumption data in two complementary ways. First, it allows the user to generate carbon 

credits from hot water conservation  as it precisely documents the amount of energy saved ( and thus 

generates income if the carbon credits are sold ), and – the other way around – it enables the user (or 

does do automatically) to determine the amount of resources used, which then can be made “carbon 

neutral” by purchasing carbon credits.  

The first approach can be applied for all consumers, but it is especially interesting for social housing 

operators, as well as hotels . The individual reduction in energy use from participating consumers can 

be incentivized financially, benefiting consumers themselves, the social housing operator, as well as 

third parties wishing to offset their carbon emissions. The second approach would work the other way 

around, as it allows hot water users to compensate  for their own environmental footprint. In this case, 

a service company (e.g., myClimate.com; already a business partner of Am phiro) can offset the exact 
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amount of emissions caused, e.g., by aggregating “carbon micro -credits” and investing in reforestation 

programs, distributing solar cookers in developing countries, providing financial support for 

improving insulation of buildings for low-income households, etc.   

Such abatement programs may also be extended to water donations. For only a few cents per shower, 

an equivalent to each liter used in the shower can be made available to families in regions that 

experience water stress. Such measures can lead to a large revenue stream for abatement service 

providers and increase the “peace of mind” of those who use water, especially for the customer 

segment of higher-income, environmentally aware users . 

• Market-place affiliates for water-related devices/fixtures . The analysis of real-time water consumption 

data produced on a large-scale and in a real-world setting can provide a crucial understanding  of 

consumption behavior, as well as efficiently target  eco-efficient water devices/fixtures to consumers. 

Specifically, the analysis of water consumption data can provide an estimate of the elastic  household’s 

water consumption ( i.e., the amount of water use that is perished ), as well as an indication of the major 

consumption points (e.g., shower, bath). This piece of information is missing both from consumers 

themselves ( i.e., they do not know where or how much they can save ), nor from eco-efficient product 

manufacturers to better market and align their products in response to local needs.  

In this setting, the system can include in the recommendations  it already provides (e.g., you use 20% 

more water in the shower than similar households ) links to specific eco-efficient products that correspond 

to the consumer’s needs ( in this case a new showerhead). This match-making is technically simple to 

provide and its monetization is supported via the affiliate programs  of most electronic marketplaces 

( i.e., a percentage of the sales are reserved for the affiliate ). This business model is extremely popular 

as it supports most blog-like sites (e.g., clothing, architecture, food ). In addition, the operation of 

marketplaces by utilities themselves ( e.g., Electric Ireland) is increasing in popularity, allowing utilities 

to directly market (and in certain cases subsidize 32) eco-efficient products. Our approach provides 

similar benefits (revenues, sustainability) without requiring the operation of an owned marketplace, 

and ensuring the targeting of products to consumers that do need them . Finally, such a scheme can 

natively be applied to support co-financing rebate/retrofit programs for eco -efficient devices, 

similarly maximizing ROI by targeting such interventions to consumers that can provide the greatest 

effect. 

• Eco-labeling schemes . There are manifold national and international schemes for labelling eco -efficient 

water devices and fixtures, but none of them is based on real-world studies. Instead, they are based 

on strict laboratory studies, which ensure repeatability, but lack any real -world relevance. The recent 

fiasco of emission testing (VW diesel-gate) demonstrated both the limits of similar laboratory regimes, 

as well as vocally demonstrated the need for real -world testing. With labelling for eco-efficient water 

products and fixtures lacking in uniform industry acceptance across the EU, there is a clear 

opportunity for introducing a real -world eco-efficient labelling program founded on the large -scale 

participation of actual consumers, with effect analyzed and validated via real -time water monitoring 

technologies. Such as a scheme could expand beyond devices and fixtures, and even move to personal 

hygiene products (e.g., shampoos). 

                                                        
32 https://www.electricireland.ie/residential/products/smarter -l iving/nest-thermostat   

https://www.electricireland.ie/residential/products/smarter-living/nest-thermostat
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The provision of such a scheme is inherently supported by the system, via its integrated piloting and 

testing facilities for large-scale panels (A-B, multi-variate). In such a setting, the product developer 

would cover the costs of both the testing and labelling scheme, generating revenue for the water 

utility, and in turn having access to real -world consumers, select population panels, and detailed for 

the water consumption evolution of its panel. One of the very attractive details of this business model 

concerns its native aversion against monopolies. With water use being highly localized and affected by 

different determinants across Europe, a labelling scheme cannot be established by a single water 

utility, but demands the collaboration of water utilities across the EU.  

5.4.2. Data value  

In this section, we attempt to establish the financial value of real-time water consumption data for the EU 

economy, following the methodologies and practices of similar efforts aiming to quantify the value of Open 

Data and Public Sector Information (PSI) re -use in Europe33,34. To the best of our knowledge, the only related 

work is the study of Frost &  Sullivan35, which estimates the market of value added services  based on smart 

meter data is expected to reach 60 billion Euros by 2020 . The challenge of our work lies within the lack of any 

published data regarding the direct and indirect  financial benefits of real-time water consumption data. The 

related studies regarding Open Data and PSI had been based on other real -world, well-documented, and 

quantified studies performed on a local or domain -specific level (e.g., 2006-2007 study on the aggregate 

economic impact of spatial data on the Australia economy ), with their findings adjusted (using GDP and market-

growth coefficients) on an EU level. And of course, it is important to stress that the estimated value indicated 

is only that: an estimate based on multiple assumptions, and should only be applied for high -level policy 

making, rather than business decisions.   

In this setting, we will apply the data we have available from our Trial in Alicante , and based on modest 

assumptions ( technical, policy, efficiency ), we will attempt to generalize and quantify the financial value of real -

time water consumption data ( in billion Euros, % of EU GDP). All following data concern fiscal year 2015, unless 

otherwise mentioned. Further, all financial data are in Euros.  The province of Alicante represents 3.36% 36 of 

Spanish GDP ( i.e., 36.2 billion Euros), with a population of 1.85 million37 ( i.e.,  3.98% of total Spanish population ), 

i.e., 0.247% of EU’s GDP, and 0.364% of EU’s population respectively  (EU GDP is 14.63 trillion38,  EU population 

is 508.2 million people 39). In addition, in the following we assume that the market  penetration  in EU for (a) 

highly-granular smart water metering ( i.e., measurement period <1hour ), and (b) personal water monitoring 

products ( i.e., non-smart meter devices that produce detailed water consumption data at the household level ), is 

70% and 10% respectively ( i.e., 70% of consumers in EU a served by a SWM  producing detailed consumption data , 

10% of consumers in EU own at least one water monitoring devic e).  

Next, we identify and estimate the major GDP -drivers of real-time water monitoring technologies.  
                                                        
33 Creating Value through Open Data: Study on the Impact of Re -use of Public  Data Resources. Available at: 

https://www.europeandataportal.eu/sites/default/fi les/edp_creating_value_through_open_data_0.pdf  

34 Review of Recent Studies on PSI Re-use and related market developments. Graham Vickery. Available at: ec.europa.eu/newsroom/do cument.cfm?doc_id=1093  

35 Frost & Sull ivan. Uti l i ties push the smart water metering market in Europe finds, 2011  

36 http://www.regionostergotland.se/PageFiles/13731/European%20Profi le_County%20Council%20Alicante%20Gen%20(2).pdf   

37 http://www.ine.es/jaxi/tabla.do?path=/t20/e260/a20 15/l1/&fi le=pro001.px&type=pcaxis&L=1   

38 http://ec.europa.eu/eurostat/statistics-explained/index.php/National_accounts_and_GDP  

39 http://ec.europa.eu/eurostat/statistics-explained/index.php/Population_and_population_change_statistics   

http://www.regionostergotland.se/PageFiles/13731/European%20Profile_County%20Council%20Alicante%20Gen%20(2).pdf
http://www.ine.es/jaxi/tabla.do?path=/t20/e260/a2015/l1/&file=pro001.px&type=pcaxis&L=1
http://ec.europa.eu/eurostat/statistics-explained/index.php/National_accounts_and_GDP
http://ec.europa.eu/eurostat/statistics-explained/index.php/Population_and_population_change_statistics
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• Water utility. The direct benefits from real -time water monitoring technologies for water utilities stem 

from the sustainable decrease in water consumption, which delivers savings across the water -energy 

nexus. Each water utility is unique, with high diversity amongst t heir cost drivers, and strategies for 

covering part or the entire cost of water ( e.g., not unusual for water to be subsidized ). At all cases, 

savings can be summarized as: decrease in water cost production/transfer and/or purchase price 

(e.g., from remote wells and reservoirs, desalination plants ), decrease in operating expenses ( e.g., 

reduced maintenance costs, longer MTBF for equipment ), optimized planning of infrastructure 

investments (e.g., replace pipes, new plants), increase in network efficiency ( e.g., metered water, 

fraudulent bills). A recent study40 has identified the annual financial benefits for AMAEM at 260K -290K 

Euros (0.5% increase in network efficiency: 80K, avoidance of fraudulent readings: 180 -210K). Following the 

same assumptions with this study regarding price and its evolution, and considering a modest 8% of 

sustainable water savings achieved from effective consumer engagement technologies ( typical: 4%, 

DAIAD: 12%), we can assume doubling of network efficiency to 1% and thus an extra 80K, bringing the 

total amount to 335K/year. Adjusting for EU GDP the financial benefits reach 135M/year  and for EU 

population 92M/year ( in the following we use the average of these values, i.e., 113.5M Euros ). Both 

estimates are understandably low due to the l ow price of water and its heavily subsidized nature. 

Further, we do not consider any effect on engagement, satisfaction, and general increase in 

sustainability, as we cannot make any safe estimates.  

• Market expansion . The growth of the personal water monitoring market can generate value both from 

the purchases of these new products, as well as from the availability of Cleanweb value added 

services. Our assumption regarding a 10% penetration in the EU population means th at ~21M devices 

are sold (1 device per household,  2.3 household members on average). Considering an average market 

value per device of 40 Euros, the revenue generated is in the order of 840M Euros alone ( we do not 

expand our analysis with sales outside EU ). With an estimate lifespan of ~5 years per device  ( i.e., half of 

the typical SWM life-cycle and in line with the typical lifecycle of ICT products 41), the annual revenue is 

~168M Euros. Regarding value added services, we can safely identify three types: ( a) individual 

services for water efficiency, (b) integrated smart home services, and (c) targeted advertising /retrofit 

services for domestic devices/products ( e.g., dishwashers, fridges). We avoid assuming completely 

novel services and applications as we cannot make any informed assumptions for their financial 

impact. For each of the three types, we assume that per EU household with a personal water 

monitoring device ( i.e., 21.7M) the annual revenue generated is 0.5 Euros ( one 1 Euro app purchase 

every two years), 0.2 Euros ( increase in smart home product price due to water metering), and 0.1 Euros 

(very modest ARPU42), which amount to 17.3M Euros.  

• Water security. The final parameter we consider relates to the direct and indirect GDP losses because 

of water insecurity  (e.g., scarcity droughts). Real-time water monitoring technologies cannot completely 

alleviate this risk, but they can reduce its frequency and implications. The recent well-documented 

drought in California is highly relevant for our discussion, as most other documented cases of GDP 
                                                        
40 H. March, A. Morote, A. Rico, D. Sauri. Household sma rt water metering in Spain: Insights from the experience of remote meter reading in Alicante. Vol. 9, 

Issue 4. Sustainabil ity 2017. 
41 T. Okrasinski, J.  Malian. A framework for estimating Life Cycle Eco -Impact of ICT products. INEMI. Available at:  

http://www.inemi.org/sites/default/fi les/images/lca_framework.pdf   

42 https://www.forbes.com/sites/mikeozanian/2017/06/15/podcast -alejandro-agags-vision-for-electric-car-racing/#7746450a3630  

http://www.inemi.org/sites/default/files/images/lca_framework.pdf
https://www.forbes.com/sites/mikeozanian/2017/06/15/podcast-alejandro-agags-vision-for-electric-car-racing/#7746450a3630
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effect from water drought focus on developing African countries with a much lower GDP per capita 

compared to EU. The State of California, USA, reached a decision on December 2014 to cut its water 

use by 25% compared to 2013, due to a 4-year drought emergency. The conservation targets were 

ultimately reached after massive awareness campaigns, draconic water restrictions, anonymous 

water-waste tipsters, a tangible reduction in quality of life, and public shaming of high w ater 

offenders (wealthy, celebrities). However, the drought had already costed California $2.7 billion 

annually (1% of GDP) and 21,000 jobs 43  (California population: 39M). Another interesting insight 

concerns the zero effect of these measures towards sustai nably curbing water use; as soon as the 

restrictions lifted, water use rapidly increased 44. With ~11% of EU population affected by water 

scarcity, and the cost of droughts in Europe reaching 100 billion Euros over the past 30 years 45, we 

can assume that the annual GDP effect is ~3.3 billion Euros. If we assume that the increased demand 

/response capabilities of real -time water monitoring technologies (e.g., forecasting, consumer targeting, 

personalized prices, engagement ) can reduce lost GDP by a modest 5%, this represents annual financial 

value of 165M for EU.  

Based on the above assumptions and GDP-drivers, we can estimate the annual financial value of real -time 

water monitoring data is 295.8M Euros, or 2.9 billion Euros over the next decade . Our estimate is much more 

conservative  than the one published from Frost & Sullivan ( 60 billion Euros by 2020 for value added services alone ) 

and very small fraction of the 2.9 trillion USD estimated by McKinsey 46 as the potential market size for software 

and services managing the demand of energy, food, and water. It is important in this respect to emphasize 

once again that we have applied very modest assumption due to the lack of real -world large studies regarding 

the financial effect of real -time water monitoring technologies. 

5.4.3. ROI Calculator  

We have developed a simple web-based ROI calculator available in daiad.eu/calculator, which provides an 

estimate of the costs and benefits from invest ing in DAIAD’s real-time water monitoring technologies. The 

calculator applies the sustainable savings validated from our large -scale Trial, the proposed DAIAD pricing 

models ( ‘Pre-purchase contract, One-time fee ’, see D8.5.2), and values provided by the user ( number of 

households, average water consumption per household , average cost of water per cubic meter) to project the cost 

and savings over a 10-year period. 

 
                                                        
43 http://www.sacbee.com/news/state/california/water -and-drought/article31396805.html  

44 http://www.scpr.org/news/2017/01/04/67787/californians -water-use-up-despite-drought/  

45 http://ec.europa.eu/environment/water/quantity/scarcity_en.htm   

46 http://fortune.com/2015/09/25/google-nest-opower-cleanweb-revolution-sustainabil ity/  

http://www.sacbee.com/news/state/california/water-and-drought/article31396805.html
http://www.scpr.org/news/2017/01/04/67787/californians-water-use-up-despite-drought/
http://ec.europa.eu/environment/water/quantity/scarcity_en.htm
http://fortune.com/2015/09/25/google-nest-opower-cleanweb-revolution-sustainability/
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6. Summary and Recommendations 

In this section, we conclude the evaluation of the DAIAD system by revisiting our initial goals established 

during the project’s inception (mid-2012), evaluating their accomplishment, and summarizing the research 

and innovation pathways emerging from our work. In the following, we summarize all insights generated from 

our real-world Trials, which were presented in detail in the previous sections of thi s report. This summary 

aims to provide a concise overview of our technical, organizational, and methodological insights, as well as 

convey our collective experience from the design, development, and testing of a novel ICT system for water 

efficiency. Final ly, we provide several recommendations to researchers, innovators, water utilities, and policy -

makers focusing on applying ICT for the water domain. These recommendations are targeted to a wide 

audience and cover a variety of issues, in an effort to highli ght best practices, emerging challenges, and 

priority areas.  

6.1. Accomplishment of goals 

In this section, we revisit our original goals defined for the DAIAD system during the project’s inception, as 

established in our original proposal (Description of Work), elaborating on their accomplishment, and 

summarizing the research and innovation pathways emerging from our work. First, we discuss the expected  

and final outcome of the project, linking with the corresponding output of our work. In the following, we 

evaluate the satisfaction of our success criteria, establishing their verification means, the state -of-the-art 

before the project end, the planned and actual output of the project.  

6.1.1. Expected outcome  

In the following we compare the expected  outcome of the DAIAD project as established in our DoW (Section 

B1.1.9) vs. the final output of our work.  

• Low-cost monitoring sensors for residential settings, providing real -time and highly detailed water 

consumption data. 

Accomplished. We have successfully designed, developed , prototyped, tested, and introduced as a 

commercial product (amphiro b1), a novel energy -autarkic, accurate, and wireless domestic water 

sensor that monitors, stores, and transmits water consumption.  Amphiro b1 is the first, and still the 

only, personal water monitoring product available in the market. During the project, several 

competing products have been announced, but failed to reach the market, speaking volumes for the 

significance, technical maturity, and exploitation potential of our work.   

• Effective feedback interfaces to accurately and timely inform consumers for their water consumption, 

inducing sustainable behavioural changes.  

Accomplished. We have successfully designed, developed, and tested in a real-world setting effective 

interfaces (real-time, diagnostic) that inform consumers about their water use and induce sustainable 

changes in their consumption behavior.  Our interventions have successfully led to sustainable water 
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savings of ~12% on average, clearly surpassing the 3-5% documented in the literature for large-scale 

water efficiency interventions.  

• Software providing novel analysis and recommendation services for residences based on real-time 

water consumption data.  

Accomplished. We have successfully designed and developed a complete system (DAIAD@home) 

available as a mobile (iOS/Android, phone/tablet) and a Web application , that provides analysis and 

recommendation services on a household level from real -time and historical water consumption data.  

The mobile application receives water -consumption data directly from a personal water monitoring 

device (amphiro b1) via Bluetooth 4.0 (BLE), employing an open API which can be reused, extended, 

and adapted to support real -time data extraction from other personal water monitoring devices. In 

addition, it receives smart water meter data directly from the underlying smart water metering 

infrastructure via an open API, which can be similarly reused, extended, and adapted to cater for 

smart metering infrastructures of different characteristics ( e.g., resolution, transmission frequency ). 

Water consumption data are analyzed to deliver a plethora of analysis and recommendation services 

to consumers through effective interventions, catering for different user needs. The software is 

available with an open source license, allowing any third -party to contribute, extend, and apply it in, 

thus contributing to the democratization of personal water monitoring technologies.  

• Software providing novel aggregation, analysis and recommendation services for groups of consumers 

based on real-time water consumption data.  

Accomplished. We have successfully designed and developed a complete system (DAIAD@commons) 

available as a Web application that provides aggregation, analysis, and recommendations services to 

groups of consumers based on real-time and historical water consumption data.  The system is a subs-

et and extension of DAIAD@utility and DAIAD@home, enabling consumers to freely create, participate 

in, opt out, and manage groups ad hoc groups of consumers that share their water consumption data. 

The collective and individual water consumption information and insights are framed and delivered 

through appropriate interventions, allowing consumers to compare their water efficiency against their 

peers and evaluate its evolution over time. The software is available with an open source license, 

allowing any third-party to contribute, extend, and apply it in, thus contributing to the 

democratization of personal water monitoring technologies.  

• Software providing novel and scalable management, integration, and analysis services for real -time 

water consumption data, enabling their correlation with relevant Big Data sources (demographics, 

weather, GIS) towards exploring, designing and validating Water Demand Management  strategies. 

Accomplished. We have successfully designed and developed a complete system (DAIAD@utility) 

providing scalable management, integration, and analysis services for real -time and historical water 

consumption data. The system comprises a Big Data engine addressing the scalability, performance, 

and fault-tolerance requirements of water demand management at the city -level, combining detailed 

water consumption data from smart metering infrastructures, personal water monitoring products, 

and external data sources (demographics, meteorological, geospatial ). The software allows demand 

experts, as well as other water utility personnel ( e.g., marketing, helpdesk, smart metering, executives ) 

to freely explore, analyze, adapt, and share the analysis results of water  consumption data across 
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multiple dimensions through scalable visualizations ( charts, maps), pre-configured reports, and ad 

hoc consumer groupings. Further, it provides highly granular forecasting services from the household 

to the city-level, allows experts to drill-down at the household level, setup and manage experimental 

studies for water efficiency, localize and update water efficiency guidelines, and push arbitrary 

messages and information to ad hoc consumer groups. In addition, it provides services f or estimating 

the water savings potential of arbitrary consumer groups (from the city to the household level) 

considering past water consumption behavior, estimate personalized water consumption goals under 

various water restriction scenarios, and enables experts to enforce these personalized goals for ad 

hoc consumer groups via the DAIAD@home software, as well as to monitor the collective and individual 

conformance of consumers to these goals. The software is available with an open source license, 

allowing any third-party to contribute, extend, and apply it in, thus contributing to the 

democratization of personal water monitoring technologies.  

• Extensive real-world user trials to test and validate the project’s technologies and to generate data 

offering novel insight concerning the parameters influencing water demand.  

Accomplished. We have successfully designed, prepared, implemented, and analyzed two (2) extensive 

user Trials that tested and validated the project’s technologies on a real -world setting. The Trials 

involved the participation of 149 households (457 participants), had a 12month duration, and focused 

on evaluating the two deployment modes of DAIAD (bottom -up, top-down). Further, the extended and 

external experimental evaluations organized by the p artners in the context of their exploitation 

activities, have provided further opportunities for testing and validating the project’s output  to over 

2.3K additional participants. All data generated in the DAIAD Trials are available with an open license, 

allowing any third party both to validate our work and apply it for research and innovation purposes.  

• Improved understanding of the parameters influencing water demand in residential settings.  

Accomplished. We have extensively studied, analyzed, and interpreted the parameters influencing 

residential water consumption exploiting the highly-detailed water use data collected in the context 

of our Trials. Our analysis had an extensive coverage, considering all endogenous and exogenous 

determinants of water consumption identified in the relevant literature ( e.g., demographics, pricing, 

location, weather), resulting into the formulation of a concrete model for representing and anticipating 

water use, applied and evaluated for the city of Alicante.  

• Quantified and validated benefits regarding the reduction in water consumption and its sustainability 

as a result of the project’s technologies.  

Accomplished. We have extensively analyzed, validated, and quantified the ef fects of the DAIAD system 

in terms of sustainably reducing water consumption in this report, exploiting real -world water 

consumption data generated from our Trials. Our analysis has examined and compared the various 

deployment modes and interventions of the system, as well as the retention of water savings over a 

prolonged time-frame, thus assisting stakeholders of the water sector to take informed decisions over 

the introduction, adoption, roll -out, and critical evaluation of ICT technologies to support re sidential 

water efficiency and large-scale water demand management.  

• Novel Water Demand Management and pricing strategies based on the knowledge acquired from 

monitoring and understanding real -time water consumption. 
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Accomplished. We have successfully applied the knowledge and insights extracted from  the analysis of 

real-time water consumption data generated in the context of  our real-world Trials to formulate and 

propose novel water demand and pricing strategies for the city of Alicante, which consider  the 

capabilities of increased consumer engagement, economic factors, the local economy and socio-

demographics, as well as eco-sustainability priorities.  

Finally, in terms of TRL status, the two major technology outputs of the project ( amphiro b1, DAIAD system 

software) have both reached a TRL 9. Specifically: 

• Amphiro b1. During the start of the project, the energy autarkic RF -enabled smart water sensor was 

at a TRL 2 (technology concept formulated) . We reached TRL 3 (experimental proof of concept) already 

in M7 (first Arduino-based hardware prototype monitoring and transmitting wirelessly water use ) and TRL 

4 (technology validated in lab) by M12. In the following, we have successfully reached TRL 7 at the 

start of the Trials (system prototype demonstration in operation environment) and TRL 9 by the end 

of the Trials (actual system proven in operational environment).  

• DAIAD system. During the start of the project, the DAIAD system as a whole ( i.e., all software artefacts 

comprising DAIAD) was at a TRL 2 (technology concept formulated), with individual components (e.g., 

libraries, data processing frameworks) at TRLs 7-9. We reached TRL 4 by M12 (technology validated 

in lab) with the availability of the first prototype successfully receiving, managing, and analyz ing water 

consumption data from SWMs and the Arduino -based hardware prototype. After an intense period of 

development, the beta DAIAD system was delivered by M24, supporting the start of the Trials. By M36, 

with the end of the Trials and the manifold impro vements introduced, the system had reached TRL 9 

(actual system proven in operational environment).  

6.1.2. Success criteria  

In the following table, we examine the satisfaction of the success criteria of the project established during the 

project inception ( i.e., DoW), following the corresponding means of verification. Overall, we have successfully 

met all our initial goals, thus maximizing the adoption, relevance, impact, and success of the project.  
 

 Means of verification Current State After DAIAD 

G1 - 

Residential 

water 

sensing 

Compare with existing water 

sensing technologies (smart water 

meters, commercial devices) 

Measure accuracy through real-

world user trials 

High-cost smart water meters, 

specialized single-fixture, 

difficult installation (water pipes, 

fixtures, power demands) 

Low cost, battery-less, easy to install, 

accurately sense consumption across an 

entire residence and fixtures 

 Accomplished 

We have successfully designed, developed, prototyped, tested, and introduced as a commercial product (amphiro 

b1), a novel energy-autarkic, accurate, and wireless domestic water sensor that monitors, stores, and transmits water 

consumption. Amphiro b1 is the first, and still the only, personal water monitoring product available in the market. In 

addition, its internal components (micro-generator, RF) are available in an OEM version (i.e., without LCD and b1-

packaging), enabling their integration in third-party water fixtures and devices to accurately monitor and wirelessly 

transmit detailed water consumption data across an entire residence. During the project, several competing products 
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(personal water monitoring devices) have been announced (e.g., Belkin WeMo Water, BWaterIT, TheArkLabs), but failed to 

reach the market, speaking volumes for the significance, technical maturity, and exploitation potential of our work. 

The closest competing product comes in the form of self-powered shower heads with colour-changing LEDs (according 

to water use and/or temperature) which do not contain LCD for interventions, RF-capabilities, internal memory for 

storing events, nor companion mobile apps. Being extremely simple in their design/technology, they have already 

been copied and mass produced in low-cost versions (7-18 Euros) as novelty products. Finally, the water monitoring 

accuracy of the b1 device has been significantly improved during the project, currently reaching ~4% (i.e., near billing 

accuracy levels). 

G2 - Water 

con-

sumption 

data 

Measure size and complexity of 

produced data, compare with 

existing water sensing technologies 

(smart water meters, commercial 

devices) 

Low volume, highly aggregated, 

small temporal granularity, 

limited disambiguation per 

fixture, type of use 

Real-time data, big data, highly granular, 

per fixture and type of use, associated with 

various dimensions affecting consumption 

 Accomplished 

We have successfully collected, managed, and analyzed Big Data for residential water consumption, far surpassing 

the capabilities of current water demand management systems. Specifically, the DAIAD system generates, collects, 

and analyses data from the following data sources, covering the entire multi-dimensional determinant space of 

residential water consumption: smart water meter (1min-1h; depending on SWM deployment mode; 1h in Trial A), shower 

events (real-time and historical time-series of water and temperature; 35/65 real-time/historical as captured in our Trials), 

socio-demographics/household members (e.g., family members, age, income, household size), profiles/preferences (e.g., 

personal consumption goals, labelled consumption data), meteorological (time-series for temperature and precipitation), 

geospatial (administrative areas, neighbourhood units, SWM locations). Assuming average values established from Trial A, 

this data reaches ~400K data points (depending on the underlying data engine this is ~8MB-24MB/household), and for the 

city level (1M SWMs; ~2.3M consumers) it reaches annually 400 billion data points (~7.6TB-22.8TB/year) or 2 trillion data 

points over a 5-year period (~38TB-11TB). To put this data size into perspective, AMAEM’s current smart 

metering/billing infrastructure (i.e., only 1h SWM time-series) is not sufficient for efficiently managing and analyzing the 

generated SWM data for ~100K SWMs (older data are purged into high latency storage and/or highly aggregated). To the 

best of our knowledge, DAIAD is the only integrated system for consumer engagement and demand management 

scalable at the city-scale without compromises in terms of data size, granularity, and performance. 

G3 - 

Feedback 

interfaces 

User study with A/B testing on ease 

of use, efficient information 

delivery, produced water savings 

Evaluation and validation through 

real-world user trials 

Highly aggregated information, 

impossible for consumers to 

relate consumption with 

activities, extremely limited 

knowledge, no feedback per 

fixture 

Affective and informative feedback 

displays, multimodal visualization and 

analysis providing actionable knowledge, 

rewarding and soliciting sustainable 

behaviour 

 Accomplished 

We have successfully designed, implemented, evaluated, and validated in the context of our real-world user Trials, as 

well as laboratory studies, several interventions providing actionable knowledge about water use to induce 

sustainable changes in consumption behaviour. The interventions include affective and informative feedback displays 

providing real-time (in situ) and diagnostic (analytical) information to consumers via multimodal interfaces (LCD, 

mobile, web app), offering a plethora of actionable information (from at a glance feedback, to detailed data). The 



DELIVERABLE 7.3            157 

interventions have been evaluated in terms of ease of use, efficiency, and effectiveness in the context of our real-

world user Trials (A/B testing for real-time/diagnostic and social), enabling us to comparatively and objectively assess 

their performance. In summary, the real-time interventions are more effective than diagnostic, while social 

comparisons have a clear positive impact of curbing water use. Further, consumers mostly prefer concise information 

delivered at a single glance, but also value the option for more detailed information. Our interfaces have also been 

evaluated on a laboratory setting (surveys and hands-on), confirming the real-world findings regarding the necessity 

for adaptive coverage to address the cognitive requirements and workloads of users. 

G4 - Water 

data 

analysis 

Compare with existing systems 

regarding (a) supported data size, 

scalability, complexity, granularity, 

(b) automation of analysis services  

 

Non-scalable, mostly standard 

relational systems dealing with 

low-volume aggregate data of 

limited dimensions and 

complexity 

Available to water utilities, no 

analysis services for consumers 

Scalable big data management and 

knowledge extraction capabilities 

supporting big complex data, increased 

integration with relevant data sources, 

novel analysis and exploration 

Personalized analysis and 

recommendation services for consumers 

and consumer groups 

 Accomplished 

We have successfully designed, developed, tested, and validated a complete integrated system offering scalable Big 

Data management and knowledge extraction facilities for large-scale residential demand management, comprising 

two major loosely coupled but highly complementary components (DAIAD@home, DAIAD@utility) that focus on 

consumer efficiency/engagement and demand management respectively. The DAIAD system manages the entire 

lifecycle of detailed water consumption data and the multi-dimensional determinant space, harvests external data 

sources via highly robust and extensible ETL processes, provides large-scale analysis services for water consumption 

through its integrated Big Data engine and algorithms, allows water utility personnel to explore and analyze water 

consumption, and provides to consumers personalized analysis and recommendation services for their water use. 

The comparison with the current state of the art in large-scale systems for residential demand management is telling 

regarding the novelty, technical maturity, and exploitation potential of our work. Standard demand management 

systems still employ non-scalable data engines, thus resulting into high data aggregation as a compromise for 

performance (e.g., AMAEM’s current system purges data into high latency storage and/or aggregates them due to their 

increased size), while providing at best monthly web-versions of printed bills and email-based alerts for potential 

leaks (i.e., water use over a static threshold). Currently, there are only two commercially available systems that are 

considered as DAIAD competitors (both USA-based), but do not provide the extensive range and depth of services. 

Dropcountr is a mobile/web app reusing SWM data from water utilities to inform and induce changes in 

consumption behaviour; it does not however provide any services for large-scale demand management. Watersmart 

is a very similar system offering a web-service to water utilities for monitoring engagement in targeted campaigns 

(e.g., email, retrofit, rebates), i.e., still missing detailed large-scale data analysis facilities. On a research setting, 

practically all efforts in consumer engagement and demand management demonstrate similar deficiencies in terms 

of technology and real-world relevance (e.g., mostly RDBMS, not actual Big Data, perfect data assumption, non-scalable), 

especially comparing them with efforts for the energy sector (Energy is one of the leading Big Data domains in EU’s Data 

Economy and Big Data agenda; see BDVA.eu for more information). In contrast, the DAIAD system is scalable at the city 

scale, supporting highly detailed data covering the entire space of residential water consumption, including: smart 

water meter (1min-1h; depending on SWM deployment mode), shower events (real-time and historical time-series of water 
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and temperature), socio-demographics/household members (e.g., family members, age, income, household size), 

profiles/preferences (e.g., personal consumption goals, labelled consumption data), meteorological (time-series for 

temperature and precipitation), geospatial (administrative areas, neighbourhood units, SWM locations). In addition, its 

analysis services do not require any expert assistance beyond the initial deployment stage, being automated and 

managed via the system’s integrated scheduler component (implicitly invoked through the UI), which coordinates and 

optimizes the execution of all analysis workloads. 

G5 - Water 

savings 

Measure savings and their 

sustainability over time through 

real-world user trials, evaluate 

social, location, and demographic 

parameters 

At best 5% through online billing 

information based on smart 

water meters 

From 12% to 20% through 

experimental per fixture 

techniques 

Not evaluated for sustainability 

(i.e., retention of savings) 

At least 20% on average, with a retention 

of over 80% after a 12month period 

 Accomplished 

We have successfully evaluated and validated the water savings achieved through DAIAD in the context of our 

extensive 12-month real-world Trials, while also applying additional real-world evaluation data from extended and 

external studies performed in the context of our exploitation activities. The average water savings reached a 

maximum of 16.4% (diagnostic feedback) and reached 12% after a 12-month period, demonstrating the retention of 

our results in terms inducing sustainable changes in consumption behaviour. Consequently, we have almost attained 

our initial goal in terms of maximum average savings (16.4% vs. 20%), with our retention slightly lower than 

anticipated (73% vs. 80% of maximum average), yet still well above competing systems. Comparing our results with 

those of the external studies performed by Amphiro in other EU locations and even larger population groups, we 

reach similar findings, with the average saving effect reaching ~16%.  

Overall, we believe that we have experimentally discovered and achieved the realistically sustainable maximum of 

achieved total water savings via non-pricing interventions (~12%). We believe that this finding is extremely important 

for two reasons. First, to the best of our knowledge, we have exceeded (12% for DAIAD vs. 3-5%) all large-studies and 

real-world published in the literature exploiting SWM data to deliver interventions that induce changes in 

consumption behaviour. Second, we have demonstrated the shortcomings of research efforts focusing on evaluating 

water saving effects in small time-frames and panels. Our analysis of achieved savings over the trial participants 

revealed a very small correlation with the household’s characteristics (e.g., income, size, members), which implies that 

all households can benefit for real-time water monitoring technologies. Finally, we have observed that location, which 

implicitly (dependent variables) encapsulates income and social stratification, is a good determinant of a household’s 

water use patterns. Households in neighbouring locations had similar consumption patterns throughout the duration of 

our Trial, which can have interesting implications in a real-world setting. For example, a carefully selected panel of 

consumers based on location alone, can be monitored in extreme detail (e.g., 1min, which is unrealistic for the entire 

population) to deliver insights that can safely generalized for larger population groups (also known as the ‘cork swimming 

in the river’ approach, e.g., floating car data for estimating traffic). 

G6 - Water 

demand 

Compare with current approaches 

applied by governments and water 

utilities 

Based on highly aggregated 

water consumption data  

Application of real-time, highly granular 

water consumption data 
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manage-

ment 

Limited exploitation of 

demographic, social, local, 

weather, and other data 

influencing demand 

Slow, labour-intensive process 

to collect, integrate and analyze 

data 

Integration and analysis of relevant data 

sources to explore and identify 

correlations 

New models for water demand, taking into 

account additional data sources 

Fast, mostly automated process, requiring 

less data-preparation work 

 Accomplished 

We have successfully introduced, tested, and validated new water demand management strategies that apply real-

time highly granular water consumption data, detail socio-demographics, meteorological, and geospatial data 

sources to deliver new models for water demand. Water demand entails the design and implementation of strategies 

that aim to influence and optimize resource demand from consumers, comprising all possible technical, 

communication, and policy instruments to effectively influence consumption (e.g., pricing policies, efficiency labelling, 

consumer engagement, retrofits, rebates, education), and is typically performed using highly-aggregated data, small-

scale and resource-intense studies (e.g., water audits), and gross assumptions regarding the parameters influencing 

consumption (a detailed overview of the state of the art is available in our Report Deliverable D1.1). In DAIAD we have 

delivered new technological and methodological instruments for improving water demand management across its 

multi-faceted areas of focus, taking advantage of the highly-detailed water use and determinant data, simplifying and 

automating the work of demand experts. We have developed a new model for residential water demand after 

extensively studying and analysing the entire determinant-space of water use, and applied it to deliver new pricing 

policies for the city of Alicante that integrate eco-sustainability and economic criteria (see G7 for details). Further, we 

have delivered automated facilities for estimating the water efficiency of a residential consumer (WaterIQ score) and 

communicating it (and its progress) via the system’s interventions, estimating the maximum savings potential for each 

individual household at the city level by combining past consumption behaviour and socio-demographic/geospatial 

data, as well as exploring and implementing water restriction scenarios (i.e., personalized goals per customer) that 

distribute a city-wide water savings goal in a fair manner across consumers. Finally, the DAIAD system as a whole has 

been validated to significantly increase consumer engagement and satisfaction, and delivered sustainable effects in 

water efficiency, thus successfully altering consumption behaviours. 

G7 - Pricing 

strategies 

Compare with current approaches 

applied by governments and water 

utilities 

Explore novel pricing schemes 

through real-world user trials 

Uniform rate or block rate 

strategies based on aggregate 

consumption 

Novel pricing based highly detailed 

consumption, taking into account social, 

temporal, spatial, and other parameters 

influencing demand 

Bonus-malus pricing to induce and sustain 

efficient consumption 

 Accomplished 

We have successfully designed a pricing strategy for the water supplier in Alicante (AMAEM) by applying a method 

that could also be applied in other cities or regions. In order to do so, we have analysed the actual pricing scheme of 

AMAEM with respect to its components and their effect on the economic, ecological and social sustainability of water 

supply in Alicante. After identifying some deficits, we made proposals as to how certain components may be changed 

(e.g., relation between the prices in different blocks) or where components may be replaced or newly introduced. 

With respect to the latter, the actual water tariff was found, among other things, not to respond to periods of water 
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scarcity occurring regularly in the region around Alicante. As a more adequate response to this challenge, we 

proposed peak tariffs, where the price level in one or several price blocks is adjusted to account for the respective 

water availability and supply cost. We also showed that the DAIAD system can play an important role in 

complementing such peak tariffs. For first, DAIAD enables and thus facilitates the direct communication between 

water utility and water user, which is a precondition for the implementation of a peak tariff. Second, the application 

of DAIAD in households leads to immediate water savings, which tend to temper the challenge right from the 

beginning. An important precondition for the case-specific adaptation of the DAIAD system and the water tariff to the 

conditions in Alicante was our knowledge of the relevant factors influencing the water consumption by those 

households, which was drawn from Section 5.1.2.2 in this deliverable and from Section 4.1 in Deliverable D6.2. 

 

 

6.2. Summary of insights 

In the following, we provide a summary of all insights extracted from our real -world trials and analyzed in all 

other sections of this document , as well as Deliverables D6.2-4. Therefore, the following list serves to 

communicate the output of our work in a concise manner, introduce interested parties to the detailed 

evaluation of our findings, and assist stakeholder decision-making. 

• The average sustainable total water savings  in residential water consumption achieved by the DAIAD 

system in a top-down manner is 12%, following a period of 12 months; similar real -world systems 

only achieve 3-5%, while the vast majority of studies are limited to study periods of at most 6 months.  

• The average sustainable water savings  in residential shower consumption is  16%, with the 

corresponding energy savings 20.5%. For cases with no financial incentives, the average sustainable 

water savings is 13.5%, with the corresponding energy savings 12.5%.  

o In-situ real-time feedback is almost six times more effective than diagn ostic feedback. 

o Social comparisons are effective towards maintaining  consumers engaged in sustainable 

consumption behavior over a prolonged time-frame. 

o The achieved savings are greatly influenced by local conditions and established behavioral 

norms; savings are not transferable  as-is to other locations and population groups.  

o Achieved water savings do not have a statistically significant correlation with household size, 

income, members, and ownership status; hence all households can benefit equally.  

o Different non-pricing incentives, as well as pricing incentives, do not have an additive effect; 

instead, they complement  each towards sustaining water savings over a prolonged time -frame. 

o We consider that the maximum achieved combined savings from non-pricing and pricing 

interventions have a real-world upper bound over a prolonged time-period (i.e., over a year) 

at ~15%; with up to two thirds of water use being inelastic ( depending on local conditions), we 

believe this number should serve as the ‘yard -stick’ for residential water efficiency services 

and products.  
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o Water use is strongly dependent ( in descending order) from number of members, household 

size, and income; total water use increases by the square root of household members.  

o Water use is strongly dependent  from location for residential areas (neighborhoods), with 

consumers in the same area having similar consumption patterns.  

• Consumer satisfaction  for DAIAD is positive for ~80% of consumers, which also characterize the system 

as ‘Useful’ and ‘Innovative’.  

o More than 80% of consumers would use  the DAIAD system if it was provided for free from their 

water utility, while almost 90% of consumers considering that the DAIAD system should be 

provided for free  from their water utilities.  

o More than 70% of consumers agree with a socially and financially optimal scheme for covering 

DAIAD costs, in which consumers that sustainably save  at least 5% on a year-on-year basis, 

enjoy free access.  

o Engagement via the DAIAD’s mobile application was extremely positive, with retent ion 

competing with the top 500 applications of mobile app stores.  

• Social innovation can be harnessed by select and appropriate means that do not antagonize water 

efficiency and pro-sustainability goals with mainstream social interactions  

o Social media is over-subscribed, with the attentional span and capacity of consumers being 

extremely small; water-related issues should not compete in the attention economy, nor 

establish social-related activities as their prime focus  

o Consumers prefer physical interactions and word-of-mouth from their peers for receiving 

guidance for water efficiency and real -time water monitoring technologies.  

o Bottom-up social innovation cannot overcome the standard theory for the diffusion of 

innovations; early- and pre-commercialization of ICT products for water efficiency demands 

direct support from governments and water utilities to reach a wider audience.  

o The top-down utility-driven/supported/sponsored engagement is an absolute necessity  for 

promoting real-time water monitoring technologies to the population at large; the natural 

monopoly of water, combined with low adoption of consumer -centric ICT technologies, as 

well as the comparatively low price of water, further attest to this priority.  

• The DAIAD system has achieved a high TRL stat us, with its individual components extensively tested 

and validated on a real-world setting. 

o The defect rate for amphiro b1 devices was 1.7%; the water monitoring accuracy is <4%; the 

device is extremely resistant to wear-and-tear, as well as water deposits/impurities. 

o The DAIAD@home application is practically compatible with all currently sold Android and iOS 

mobile devices, as well as web-browsers; its forward-compatibility has been extensively 

tested and validated in a real -world setting. 

o The DAIAD@utili ty system can efficiently scale over a cloud infrastructure at the city-level, with 

its availability, even on a non-commercial deployment, exceeding 97%. The underlying 
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technologies (Big Data, ML, cloud) are abstracted from users to facilitate integration in existing 

business practices and technology infrastructures.  

o Real-time water monitoring technologies can have a sizeable impact  in water efficiency, 

consumer engagement, and water demand management; DAIAD can harness the untapped 

value from existing and planned smart water metering infrastructures, increasing ROI and 

assisting in their expansion. 

6.3. Recommendations 

The potential waiting to be harnessed from smart water meter data, especially under the scope of the Big 

Data, Smart City, IoT, and Cleanweb domains, is especially high. There is clear untapped value from the large -

scale novel analysis of SWM data across all aspects of the water life -cycle, from increasing consumer 

engagement and sustainability, to reducing the operating costs of water utilities.  

With significant investments in smart metering infrastructures implemented and planned for the near future 

across the EU, there is a pressing need regarding the return of this investment . To date, more than 50M smart 

meters have been deployed in the EU with member states committed to rolling out at least 254M smart meters 

by 2020 at a total investment of 50 billion Euros47. Also, the market of value added services based on smart 

meter data is expected to reach 60 billion Euros by 202048, signifying it as one of the leading Data Economy 

and Cleanweb business areas. Smart meter deployments have facilitated billing and certain aspects of water 

and energy management, but have failed to deliver their promised impact in terms of resource savings (3-

5%). The EU-mandated rollout of smart metering is under scrutiny, with the EC challenging whether smart 

meters are “economically justified” and ordered a study 49  indicating that “consumer needs are 

underrepresented”, with “no study available that considers their diversity to assess the savings potential”.  

Our experiences in the DAIAD project towards developing, rolling-out, evaluating, communicating, and 

exploiting a system that harnesses smart meter data to deliver its missing potential well above and beyond 

what was previously possible (12%-16% vs. 3-5%), have provided us with several insights which we consider 

as critical for researchers, innovators, utilities, and policy -making stakeholders. These go beyond the strict 

scientific and technical domain, expanding to business practices and cultural clashes across the involved 

stakeholders.  

In the following, we summarize our recommendations, which are directed to stakeholders involved in the 

broader area of ICT for Water. We would like to remind the reader that all content in this document reflects 

only  the views of the authors and not those of the EC. Further, our points aim to promote a constructive 

discussion, rather than a polemic  with stakeholders that do not share our views.  

• Cultural clash  and limited  technical know-how. The very nature of the challenges hindering the water 

sector, requires the cooperation of researchers and stakeholders from diverse scientific and business  

disciplines. From Big Data and ML, to UI/UX experts and social scientists, water stakeholders must  

interact and engage under a cross-disciplinary perspective to document, analyze, and deliver novel 
                                                        
47 Smart Metering Deployment in the European Union. Joint Research Center. 2014 

48 Frost & Sull ivan. Uti l i ties push the smart water metering mar ket in Europe finds, 2011 

49 Empowering consumers through smart metering. Bureau Europeen des Union des Consomateurs (BEUR), 2012  
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solutions transferring and/or extending scientific output  from other research fields. This expansive 

type of collaboration is certainly not easy, as demonstrated in several other areas of cross -disciplinary 

research aiming to capitalize on ICT ( e.g., biology, medicine, space, earth observation ), and requires 

conscious effort  from domain experts. Notions of surrendering control, resistance to change, and 

disputes on fundamental new propositions are the norm for domain experts, as they are exposed to 

researchers that (quite literally) challenge the way they have been performing their work for decades.  

Our experiences indicate that this issue is more pronounced  in the water sector compared to other 

domains. Understandably, the water sector had been much less exposed in modern ICT, typically 

lagging in adopting new technologies and standards, so there is more ground  to cover. In addition, the 

low revenue  nature of water means that investment on new technologies is much more difficult and 

infrequent. Finally, there is a prevalent high inertia  in the water sector in terms of changes (‘ if it ain’t 

broke, don’t fix it ’), limited opportunities, and interest for research. All these factors amount to the 

water domain being introvert  at large, with most stakeholders opting to raise and maintain a walled-

garden around it, to control future research directions and trends.  The end-result is a focus on 

research priorities of low ambition and impact , typically under a setting significantly below the state -

of-the-art in other domains, and that ultimately does not address the acute ICT-related challenges of 

water. This of course means that the few available resources for research in ICT for water are not well 

spent, and typically just replicating  research results obtained 5-10 years ago.  

There has recently been a conscious effort of se lect water utilities worldwide to change this landscape 

by actively joining international initiatives and fora (e.g. , ISLE) aiming to bridge the gap between 

water and other research fields, bring innovation results closer to water utilities, and honestly d iscuss 

future research directions with real -world relevance. These activities should be further supported by 

encouraging all water stakeholders ( domain researchers, utilities, policy -makers) to participate, receive 

critique, and update their research and innovation priorities. In addition, more effort is required to 

open-up the research challenges to external ( and more well-funded) thematic priorities (e.g., Big Data, 

IoT, FIRE) by disseminating the problems  of the water sector, rather than the proposed  solutions. This 

bottom-up approach is critical, as it establishes a level -playing field for researchers from other 

domains, allows the water domain to directly benefit from novel research results, and indirectly  

increase its pool of funding. In addition, the cross-pollination of water and ICT should be actively 

encouraged with targeted specific purpose instruments ( e.g., Marie Curie ITNs, co-funded positions and 

fellowships, twinnings) to mobilize personnel from the ICT sector to water utilities, with emphasis  on 

Data Science and IoT/Digital Cities.  

• Realistic assumptions, solutions, and experimental protocols . We consider as one of our most important 

and pertinent observations, the need for framing  research and innovation directions, implementing  

and integrating software output, as well as organizing and performing experimental evaluations  under 

a real-world setting. Our own experiences in designing and developing DAIAD, as well as the direct 

comparisons with neighboring research efforts, were revealing regarding the all too often unrealistic 

assumptions, proposed solutions, and experimental evaluations of past efforts. Most research works 

are framed and evaluated against the assumption of high quality  data (also known as the ‘perfect data’ 

assumption), unrepresentative and small treatment samples ( e.g., a handful of households, biased 

participants), small and favorable time periods ( e.g., 2 months, baselines in high consumption periods, no 
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control groups), as well as false implicit assumptions ( e.g., increasing precision in forecasting accuracy 

can increase the effectiveness of interventions  for inducing behavioral changes in consumption). The 

unfortunate result is that many research findings and efforts have extremely limited real-world 

relevance and value . In the following we examine the specific areas of divergence.  

o Data quality. Smart meter data in real-world deployments are characterized by low quality and 

frequent errors, commonly referred as low veracity  (e.g., missing, inconsistent, out of order ). 

Thankfully, there is not something inherently flawed with smart metering technologies; they 

work as intended, producing timely data, which then feed billing/CRM systems, identify 

network imbalances, potential faults, etc . By design, smart metering infrastructures for 

residential consumers have been designed and operate to efficiently support billing, rather 

than complex household-level analytics. The corresponding compromises  in data quality and 

data granularity (e.g., increase lifetime of integrated batter y by limiting data frequency), which are 

necessary to reduce TCO of smart metering , result into data quality issues and constraints that 

appear only when applying SWM data for complex analytics . Our empirical evaluation on 

AMAEM’s data demonstrate that at 20%-30% of all data points are affected. While these issues 

have no effect on billing, they pose a significant challenge in the application of real -time 

water monitoring to induce sustainable changes in consumption behavior . Moreover, since 

we cannot realistically expect SWM infrastructures to be altered and improve data quality for 

business reasons (as it would increase TCO), we need to accommodate the inherent low quality 

of this data (also known as ‘exhaust data’50). Towards this:  

▪ Smart meters included in studies should be selected from real -world smart metering 

deployments, and not be in any case altered, improved, or replaced (sensor, data 

granularity, data transmission frequency, RF capabilities ). 

▪ Researchers should not assume, require, or apply ‘perfect  data ’ in their studies but 

instead embrace the low data quality of real-world data at all aspects of their work.  

All assumptions and processes implemented for data cleaning, establishing baselines 

a control panels, as well as evaluating savings mu st be openly available (Open Access, 

Open Data) to ensure repeatability of results.  

▪ The low data quality, combined with the inherent variability, seasonality, and 

heterogeneity ( in terms of determinants) of residential water consumption demands 

experimental studies of larger-scale, and hence more resources.  

o Experimental protocols . With water consumption being highly seasonal, as well as 

heterogeneously influenced by determinants at the household level, it is very simple for 

researchers to unintentionally  or intentionally manipulate their experimental protocols  towards 

(mostly positively) influencing the observed effects on consumers.  For example, it is very 

common to form and study treatment panels of small size (e.g., <50 members) which increases 

variability and thus lowers confidence. Even more frequent, is the design and implementation 

of studies in a very short time-frame (e.g., 2-4 months), which does not allow researchers to 

capture and study the retention of interventions as their effect naturally wears-off. Further, 
                                                        
50 http://www.datasciencecentral.com/profi les/blogs/what -is-data-exhaust-and-what-can-you-do-with-it   

http://www.datasciencecentral.com/profiles/blogs/what-is-data-exhaust-and-what-can-you-do-with-it
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several studies initiate their baseline and treatment periods during high and water use 

periods respectively (e.g., baseline in the summer, treatment in the winter ), thus ignoring the 

seasonal effect of water consumption. Further, the actual location  of the studies is typically 

constrained in 1-2 areas, which limits the transferability of results to other population groups. 

In addition, treatment panels are most often inherently biased  towards pro-sustainability, 

which is somewhat understandable since participation in studies is on a volunteer basis. 

Finally, the systems studied quite often have no relevance to a real -world setting for several  

reasons (e.g., unable to scale, reliance on proprietary hardware), thus significantly limiting the 

usefulness of any extracted insights.  Towards this:  

▪ Experimental protocols should strive to replicate real-world experiences  for the 

participating treatment population across all aspects of participation, system 

operation, and support. 

▪ Treatment populations should be of adequate size (e.g., >200) and representative of 

the entire population (e.g., age, household members, size, income, education ), with 

special attention on avoiding pro-sustainability bias . 

▪ Treatment studies should cover a time-period of at least one full year ; where not 

possible, the seasonal  effects of consumption, as well as any other external  influence 

on water use, must explicitly considered and reported.  

▪ Experimental studies for water efficiency require manif old resources  to ensure the 

real-world relevance of their findings. Water utilities should be encouraged to 

contribute in-kind (PMs, data) to large-scale studies as part of their corporate social 

responsibility programs. 

o Robustness and scalability by design. Systems and approaches focused on influencing water use 

and inducing sustainable changes in consumption behavior, by definition  aim to address a 

real-world challenge and deliver solutions that can be realistically transferred on a real -world 

setting. While this is true for any research topic founded on need rather than scientific curiosity , 

it is often neglected in ICT research for the water sector. Such problems can occur at the 

scientific , technical, and business  levels of research agendas, absorb ing resources towards 

inherently flawed solutions. Specifically, the multitude, complexity, and inter -dependence of 

real-world challenge of the water sector analyzed in this report ( e.g., data quality, SWM 

infrastructures, seasonality, population heterogeneity), prioritize robustness and scalability  as the 

foundational themes of research efforts.  For example, efforts to increase forecasting accuracy 

for residential water consumption ignore the actual objective this endeavor ( i.e., induce 

savings), the low data veracity ( i.e., frequent missing/wrong data points ), and real-world 

transferability ( i.e., scaling for millions of consumers ). On another example, disaggregation 

approaches rely on unrealistically highly -granular data (e.g., 1min) and/or extensive labelled 

data, which are well outside any real-world setting. Towards this:   

▪ Research topics should clearly define, state, and validate their contributions  towards 

addressing real-world challenges , as well as all assumptions and issues potentially 

distancing them from large-scale adoption. 
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▪ Proposed solutions should be based on inherently scalable  technologies  and/or with 

a very clear and realistic technical roadmap  towards ensuring scalability on a real -

world setting ( i.e., >100K users). 

▪ Robustness  on low data quality should be prioritized  and be established as an integral 

focus of research efforts, with solutions validated against real-world data across their 

entire scope. 

• Open water data. Research activities on ICT for water are heavily compromised  by the lack of detailed 

open water consumption data. A direct comparison with the energy sector  is extremely helpful for 

revealing this significant deficiency. In general, energy consumption has always been more extensively 

studied due to the high revenue/impact nature of the energy market, with highly detailed open data 

becoming available for researchers directly  from energy utilities and/or regulatory organizations. The 

energy sector had long understood the need to share data to researchers and innovator s as they are 

critical for all aspects of demand management/response, energy efficiency/labelling, and consumer 

engagement. The availability of this open data led to important advances in understanding energy 

use, delivering new pricing policies and demand  response strategies, introducing new energy efficient 

products that respond to real -world consumer workloads, and promoting all aspects of energy 

demand management. The side-effects of open data publishing were equally important. A typical 

argument open data opponents have is ‘Why publish this data? How are there going to be used ?’ And the 

honest response of open data advocates is ‘ I do not know, but we will find out together! ’ In the case of 

the energy sector, open data were applied by researchers in Big Data, Machine Learning, and Social 

Sciences in novel means, delivering breakthroughs in their respective fields. On a business setting, 

they spurred the development of new products  and services, contributing to the expansive growth and 

convergence of the smart home/energy monitoring and Cleanweb markets.  

We argue that the availability of open water consumption data can assist the water sector in harnessing 

similar benefits  with highly networked and complementary  effects for research, innovation, and business. 

Moreover, it will enable the water sector to bridge the current technology and cultural gap , by opening 

up to external  research communities, inviting them to examine the challenges of water with new 

perspectives and ideas. This will facilitate the de facto abolishment of the introvert walled-gardens 

hindering ICT for water research, addressing the false sense of ownership and entitlement of domain 

researchers, and deliver areas of novel research and innovation with a diverse and meaningful impact. 

Finally, it will provide opportunities for improving the use of the limited resources and funding for 

water-related ICT R&I activities by enabling the transfer  of solutions developed in neighboring fields 

and pooling  resources with other domains. Open data publi shing should be promoted in the context 

of EU-wide existing Open Data/Open Access initiatives ( e.g., OpenAIRE/H2020, Digital Agenda 51) to 

maximize effect and minimize effort, as special -interest activities for open data publishing typically 

fail. A limited number of high-value/exposure ‘lighthouse’ open data publications (e.g., in 

cooperation with EU Digital City leaders, water utilities) spread across Europe (to ensure adequate 

coverage of the diverse water use profiles) is encourage to establish a best pra ctice and a momentum 

for others to follow. 

                                                        
51 Creating Value through Open Data: Study on the Impact of Re -use of Public Data Resources, available at: 

https://www.europeandataportal.eu/sites/default/fi les/edp_creating_value_through_open_data_0.pdf   

https://www.europeandataportal.eu/sites/default/files/edp_creating_value_through_open_data_0.pdf
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• Blue Button. The ‘Green Button’ initiative 52 is a relatively recent industry-led effort that responds to a 

2012 White House call -to-action ( in the context of a broader open data policy for the energy sector 53) to 

provide utility customers with easy and secure access to their energy usage information in a consumer -

friendly and computer-friendly format for electricity, natural gas, and water usage . Its purpose was 

to open-up the Cleanweb and eco-innovation market; remove the constraint of utilities as the sole 

providers of resource-efficiency instruments to consumers; explore and generate value from resource 

consumption data; actively promote innovation in the energy and water monitoring market. In 

principle, it is a very simple concept to a very challenging problem: utilities had been the owners of 

use data, having a de facto monopoly over its application to promote eco -innovation and demand 

management. This natural monopoly proved extremely restrictive for innovation  and business, as new 

products and services could only be introduced exclusively via utilities . The response therefore, was to 

ensure that any third-party, after having the end-user’s consent  (opt-in), could gain access to 

consumption data, and apply it to  deliver any type of Cleanweb application/service t o the user, 

generating significant financial value 54. In this setting, a utility need not invest in new forms of 

consumer engagement platforms to promote consumer engagement and demand management. In 

contrast, it can allow third parties to provide state -of -the-art competing services and harness all the 

associated benefits, with the minimum amount effort. A very similar example was the open availability 

of transit data in EU, which are currently harvested an d applied in free routing applications ( e.g., 

Google Maps/Transit , Apple Maps) to all residents, visitors, and professionals in Europe. Before open 

transit data was mainstream, each transit provider ( city, local, national levels) had to design, support, 

market, and provide a separate system for routing. Economies of scale were nowhere to be found, the 

quality of service was at most cases abysmal, while consumers themselves did not have access to a 

single Digital Market for transit.  

A similar technical and policy initiative in Europe for water consumption data coined ‘Blue Button’ 

could have similar far-reaching effects for establishing a Single Digital Market for Water . The stagnant 

market for water, the low penetration of smart metering technologies, the relatively lack of knowhow 

for digital services of water stakeholders, and the massively fragmented nature of the water services, 

establish this option as a true catalytic instrument  for innovation and business. It can decouple water 

metering from water monitoring, invite funding and build synergies with Digital Cities and the 

Cleanweb markets, minimize the dependence from water utilities  to promote innovation,  and break 

the guardian knot hindering the growth of personal water monitoring products and services . We 

consider this policy intervention especially relevant and timely, given the recent publication of the 

‘My Energy Data Report 55’ of the Smart Grid Task Force EG1,  which aims to explore ‘at EU level the 

potential for, and a scope of, a possible industrial initiative on a common format for energy data interchange ’ 

• Labelled Water Consumption data . Inducing sustainable changes to water consumption from individual 

consumers strongly depends on the timeliness, accuracy, and locality of the provided interventions. 
                                                        
52 https://energy.gov/data/green-button  

53 https://energy.gov/data/open-energy-data  

54 Got Data? The Value of Energy Data Access to Consumers. Mission Data 2016. Available at: 

https://static1.squarespace.com/static/52d5c817e4b062861277ea97/t/56b2ba9e356fb0b4c8559b7d/1454553838241/Got+Data+ -

+value+of+energy+data+access+to+consumers.pdf   

55 https://ec.europa.eu/energy/sites/ener/fi les/documents/report_final_eg1_my_energy_data_15_november_2016.pdf   

https://energy.gov/data/green-button
https://energy.gov/data/open-energy-data
https://static1.squarespace.com/static/52d5c817e4b062861277ea97/t/56b2ba9e356fb0b4c8559b7d/1454553838241/Got+Data+-+value+of+energy+data+access+to+consumers.pdf
https://static1.squarespace.com/static/52d5c817e4b062861277ea97/t/56b2ba9e356fb0b4c8559b7d/1454553838241/Got+Data+-+value+of+energy+data+access+to+consumers.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/report_final_eg1_my_energy_data_15_november_2016.pdf
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Real-time feedback offered at the point of consumption, as well as diagnostic information after a 

specific consumption event has ended, require knowledge about who, when, and where  consumed 

water, i.e., access to detailed data per water fixture. Smart water meters only provide a piece of the 

missing data, monitoring aggregated consumption at the household level and transmitting this 

information at periodic intervals. Given the real-world constraints of increasing the data monitoring 

and transmission granularity of smart water meters ( i.e., reduction in battery life and significantly 

increased operation costs), the missing information on a household level can only b e produced by 

disaggregating  the total water consumption.  

The challenge of devising effective disaggregation algorithms and thus more powerful interventions 

for water efficiency, lies within the difficulty of collecting labeled water consumption  data at the fixture 

level. These would allow researchers to train, improve, and validate disaggregation approaches that 

fill-in the missing data on a household setting. Labelled water consumption data have been produced 

in the context of international R&I projects,  at a significant effort and cost. However, these studies 

and data are not transferable in an EU setting, as the characteristics of water consumption ( e.g., 

habits, types of water fixtures, water monitoring equipment) are extremely location -sensitive. A 

concentrated effort should be performed to develop a study protocol, as well as produce a 

representative collection of EU-wide labelled open water consumption data , spanning a significant 

period (18-24 months), population, water fixtures and markets.  DAIAD, contributing to this goal, has 

provided all data produced in the context of its Trials with an open license. To the best of our 

knowledge, the ~22K shower time-series offered consist the single largest dataset for residential 

water and shower use.  

• EU-wide domestic water audits . Water demand management from water utilities strongly depends on 

the availability of detailed water consumption data, which allow accurate forecasting and thus 

effective management of water resources to ensure demand is met within sp ecific cost, quality, and 

security constraints. With only one in two water consumers metered in Europe, and at best with an 

aggregated knowledge of total water demand (ranging from 3months to 1day), water demand 

management is based on crude assumptions abo ut consumers and their typical water uses. On an 

international setting, this missing knowledge is partly provided from Water Audits, i.e., in-situ studies 

of consumers, water fixtures, and typical water uses. Such studies provide data needed from water 

utilities, as well as goods manufacturers ( e.g., faucets, washing machines) for anticipating demand 

and the parameters that influence it, the provision of water calculators, the targeting of retrofit and 

rebate programs for water efficiency, the tuning and ca libration of water-related products for 

different markets, etc. Unfortunately, the results of international water audits cannot be transferred 

in EU, and not even between different countries in EU. This is a result of the highly localized and 

evolving water use profiles across different populations.  

The challenge of increasing water efficiency in EU and minimizing water -stress risks, demands 

accurate, detailed, and periodic Water Audits across EU, emphasizing current and future water -

stressed regions. A jointly agreed protocol and process for designin g, implementing, analyzing, and 

sharing expert-based and crowdsourced  ( i.e., performed by consumers themselves ) Water Audits should 

be established on an EU level. The protocol should be tested and validated for heterogeneous 

populations groups in EU, geographical areas, as well as water utilities. A concentrated effort is also 
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required to establish a clear pathway on how this data are applied in water demand management, as 

well as the relevant industrial sectors . DAIAD, contributing to this goal, has integr ated within its 

mobile application a dedicated Water Calculator facil ity that not only serves to provide consumers 

with an estimate of their consumption, but also collects detailed water audit -level data at the 

household level. 
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7. Annex 1 – Savings Calculation for total water 
consumption 

In this Annex, we detail the process we applied to extract a comparative consumption baseline  for evaluating the 

water savings for the total water consumption ( i.e., SWM data) of our Trial A panel.  

The goal of our analysis was to establish a baseline consumption  for each Trial A  user that estimates as accurately 

as possible the anticipated consumption of the user during Trial A should the user had not participated in the Trial . 

In this manner, we effectively address the methodological shortcomings typically associated with large-scale and 

real-world studies of water consumption behavior. Specifically:  

• Extracting a baseline from the treatment panel . This is the typical approach for most studies, in which a short  

time-period (e.g., 1-2 months) arbitrarily situated  within a year’s period (e.g.,  September - October) during 

which no interventions are provided to the treatment panel is applied as a baseline for its consumption. 

As we demonstrate in the following sections, this approach is inherently flawed due to the high seasonality 

of water consumption, as well as the diversity of determinants that may influence the consumption of 

users in such small time-frames. As a result, the calculation of consumption effect is either strongly biased 

towards high savings  (baseline period typically capturing h igh water consumption periods) or of extremely low 

confidence due to multitude of external events that influence water consumption.  

• Extracting a baseline from an arbitrary control panel . In this approach, a large external control panel ( 1-2 

orders of magnitude greater) is assembled from a larger population group not participating in the treatment 

studies ( i.e., all utility consumers served by a SWM ). In large-scale and real-world trials, the members of 

the control panel are selected randomly  and with no knowledge of their household characteristics ( e.g., 

size, members, age) since a water utility does not hold relevant information, nor is it feasible to receive 

such information from actual consumers in a real -world setting. Consequently, applying the consumpt ion 

of the control panel as a baseline is inherently flawed , as it comprises consumers with vastly different 

household  characteristics ( in many cases even non-households) that behave differently from the members 

of the treatment group.  

• Recruiting a fully representative control group.  This is the most methodologically sound  approach, and is 

typically applied in a laboratory setting, in which the members of both the treatment and control panel 

have been carefully selected to have similar characteristics in te rms consumption behavior ( i.e., household, 

socio-economic, historical consumption). Unfortunately, this approach is infeasible on real-world large-scale 

trials due to the practical considerations of assembling a representative control group. Specifically, the 

control group must be formed after the treatment group has been established ( e.g., 100 households) for 

which we have full knowledge of their characteristics and past consumption behavior. In the following, 
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one needs to recruit ( i.e., contact consumers,  receive responses) the control panel from a large consumer 

group (which will not actually participate in the Trial, and thus has limited incentives ) and receive responses 

from a population at least an order of magnitude greater ( in our example 1,000 households) to ensure a 

good probability of finding similar consumers between the treatment and control groups. 

Understandably, this approach is not applied in large scale studies due to its complexity and reliance on 

consumer engagement.  

Our approach towards addressing these challenges and introducing a methodology that can cost-effectively and 

reliably scale to support large-scale studies, is founded on the automated selection  of a control panel with similar 

consumption behavior with the treatment panel, based  on their historical water consumption behavior  over a large 

time frame. In this manner, and without requiring any additional knowledge about the control panel beyond its 

water consumption behavior (which is always known), we explicitly assemble its members to ensure their similar 

behavior with the treatment group. As such, we can assume with a high level of confidence that the consumption 

behavior of the control panel during the treatment period, accurately depicts the consumption behavior of the 

treatment panel should had they not be exposed to any interventions . 

For the specific case of Trial A , we exploited the large group of randomly selected 1K consumers not participating 

in Trial A (see Section 3.3) to derive from it consumers whose consumption behavior was similar to each and every 

one of our Trial A participants for a period of 14 months before the start of the Trial . In this manner, we assembled 

a control group of consumers not participating in Tr ial A, whose water consumption behavior before the start of 

the Trial A accurately resembled the consumption of our treatment group, and applied the water consumption of 

the control panel to adjust for the seasonal effect  in water use for our Trial A panel  during the treatment period. 

Finally, we validated our approach during Phase 1 of Trial ( see Section 2.1) during which no interventions were 

provided to our treatment panel. The savings effect for this phase based on our baseline method were +2% ( i.e., 

slight increase in water use of Trial A,  see Section 4.2.1) thus confirming the accuracy of our approach for establishing 

a consumption baseline.  

In the following, we elaborate on our methodology by first presenting an overview of the performed processes, 

describing their rationale, the issues we addressed, and the data assets we exploited. In the following, we present 

the two independent steps of our methodology for establishing the consumption baseline applied, with the first 

focused on data pre-processing, and the second on the actual formation of the control panel and its application 

to calculate the effect on water consumption.  

7.1. Overview 

Evaluating the effects of the DAIAD system on the consumption behavior of our Trial A panel presented an 

important challenge. In general, the water consumption behavior of a household typically changes through time, 

with the most dominant type of change being seasonal fluctuations  throughout the year (e.g., high water use in the 

summer). However, other types of changes might also exist, like a constant trend  (e.g., year-on-year increases of 

city-wide consumption), or even abrupt random changes (e.g., long vacancies, change of household members ). Further, 

there exist outlier consumption behaviors (attributed to real-life events or unknown data issues) as well as missing 
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data points that affect individual time series in a random manner ( both in frequency and significance). The extent 

to which these factors influence the observed consumption  varies for each household, significantly perplexing the 

challenge of establishing the true effect  of our interventions in terms of water savings.  

In order to evaluate the effects of DAIAD during Trial A, we needed to obtain an estimation of what the 

consumption of a Trial A participant would be, during the treatment phase, if she was not being influenced by our 

system, and apply this as a comparison baseline.  

Specifically, we exploited two datasets containing hourly SWM measurements on water consumption that 

complemented each other. The first one ( see Section 3.1), denoted as dataset TP (treatment panel), includes the 

hourly water consumption time series for 92 households that participated in Trial A (called Trial users) during the 

12-month period of the Trial  ( i.e., 1/3/2016-28/2/2017). The second dataset (see Section 3.2), denoted as dataset 

RP (random panel), includes hourly water consumption time series for 1,087 AMAEM consumers ( including the Trial 

users) for a period of 26 months ( i.e., 1/1/2015-3/3/2017), which included the period of the Trial, as well as 14 

months before its start . The large number of 1,005 non-Trial users ( i.e., the users of dataset RP not included in dataset 

TP) allowed us to establish solid baseline consumption behaviors, exploiting i ndividuals that were, by no means, 

affected by the Trial or the DAIAD system in general. In addition, the long time -span of the dataset (over two years, 

including the Trial period) allowed us to effectively handle seasonality and behavior -drift issues. 

In this manner, we assembled a control group of consumers not participating in Trial A, whose water consumption 

behavior before the start of the Trial A accurately resembled the consumption of our treatment group, and applied 

the water consumption of the control panel to adjust for the seasonal effect  in water use for our Trial A panel 

during the treatment period.  

The process we followed comprised three consecutive steps:  

• Data cleaning/pre-processing. In this step, we performed several data cleaning and pr e-processing tasks to 

remove outlier user behaviors and compensate for missing values for datasets TP and CP . These included 

identifying and interpolating missing values , removing outliers, and discarding time series for which many 

values were missing. 

• Identification of similar consumers . In the second step, we identified for each member for our Trial A 

treatment panel (dataset TP) the non-Trial A consumers with the most similar water consumption behavior 

(dataset CP) for the 14 months preceding the start o f Trial A ( i.e., 1/1/2015-28/2/2016). From this, we 

calculated an adjustment factor to compensate for seasonal fluctuations and drifts.  

• Comparison baseline . Finally, in the third step, we defined the metric for calculating the water savings of 

Trial A participants during the treatment phases, against the baseline consumption derived from the 

previous step. 

 

In the following sections, we describe in detail the process we followed.  All source code (in R) developed to 

implement our methodology is available wit h an open source license from the following URL, allowing any 

interested third party to apply it, extend it, and of course replicate our findings.  
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• https://github.com/DAIAD/data-analytics-scripts/blob/master/savings.R  

7.2. Data pre-processing 

By exploring and analyzing the available datasets, we identified that most of the included time series were missing 

measurements, contained shifted measurements, or included abnormal/outli er measurement values. Specifically, 

missing measurements amount for 18.8% and 27.1% of the expected measurements of datasets TP and RP. 

Further, approximately 23% of measurements present shifts in time from the regular 1 hour measurement 

interval, for both TP and RP datasets. On top of that, as expected by the nature of the data, water consumption 

time series demonstrate large variance. To handle the above issues, we applied the following pre -processing 

steps. 

7.2.1. Temporal aggregation  

Water consumption on the household level comprises patterns with very low canonicity. For example, the same 

individual may have her daily shower on different parts of the day  and with different volumes of water spent 

depending on her schedule or external factors. Similarly, washing clothes may be delayed for a few days in case 

of bad weather that makes drying difficult, and ad hoc gatherings (e.g., festive events) and/or extra guests in a 

household (even long-term) may affect consumption. Such factors create large variance on the h ourly values of a 

household consumption time series. Therefore, the application of similarity matching functions and algorithms in 

hourly time series data is severely hindered, leading to results of low accuracy. Further, the dimensionality of the 

data increases substantially when we consider time series with hourly granularity that span large periods (e.g., 

several months). For example, a one year time series with hourly granularity has 8,760 dimensions, while the 

same time series with weekly granularit y has only 52. The large dimensionality , combined with the very noisy 

nature of water consumption, make identifying similar instances of households quite challenging. 

To handle the above issues, as a first processing step we perform temporal aggregation on  our data, reducing 

their granularity from hourly, to weekly. To achieve this, we scan the time series with a weekly step, and calculate 

the consumption during each week . Specifically: 

We denote each time series of measurements as a sequence  𝑧𝑗 , 1 ≤ 𝑗 ≤ 𝑚. Each measurement consists of four 

fields, as described in Section 3.1:  

𝑧𝑗 = {𝑧𝑖𝑑𝑗
, 𝑧𝑡𝑠𝑗

, 𝑧𝑎𝑔𝑔𝑟𝑗
, 𝑧𝑙𝑎𝑠𝑡} 

where 𝑧𝑖𝑑 is the id of the meter, 𝑧𝑡𝑠is the timestamp of the measurement, 𝑧𝑎𝑔𝑔𝑟 is the aggregate consumption 

from the installation of the SWM until 𝑧𝑡𝑠 and 𝑧𝑙𝑎𝑠𝑡  is the consumption since the last measurement. We also 

define the sequence 𝑧′, which will contain the weekly  measurements, and is initially empty.  

We perform the following algorithm:  

• We start with an index 𝐼 at the timestamp of the time series (01/01/2015, 03:00) 

https://github.com/DAIAD/data-analytics-scripts/blob/master/savings.R
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• We select the measurement  𝑧𝑠, with timestamp closest to the index 𝐼, 𝑧𝑠:  |𝑧𝑡𝑠𝑠
− 𝐼| < |𝑧𝑡𝑠𝑙

− 𝐼|∀𝑙, 𝑙 ≠

𝑠 

o We form the element 𝑧ℎ
′ = {𝑧𝑎g𝑔𝑟𝑠

, 𝑧𝑣𝑎𝑙𝑖𝑑ℎ
}, where 𝑧𝑣𝑎𝑙𝑖𝑑ℎ

= 1 if  |𝑧𝑡𝑠𝑠
− 𝐼| ≤ 2 ℎ𝑜𝑢𝑟𝑠 and 

𝑧𝑣𝑎𝑙𝑖𝑑𝑠
= 0 otherwise, and append it to the sequence 𝑧′.  

• We increment index 𝐼 by exactly 7 days and repeat step 2 until we reach the end of the measurement 

period, which is 03/03/2017 23:59 

After we have obtained the weekly measurements 𝑧′, we can calculate the weekly consumption 𝑦𝑖, of week 𝑖, from  

𝑧𝑎𝑔𝑔𝑟𝑖+1
, 𝑧𝑎𝑔𝑔𝑟𝑖

: 
𝑦𝑖 = 𝑧𝑎𝑔𝑔𝑟𝑖+1

− 𝑧𝑎𝑔𝑔r𝑖
 

If 𝑧𝑣𝑎𝑙𝑖𝑑𝑖+1
= 0 or 𝑧𝑣𝑎𝑙𝑖𝑑𝑖

= 0 we consider 𝑦𝑖  invalid and mark it as 𝑦𝑖 = 𝑁𝐴. After the end of the process we 

have time-series 𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 = 53. 

In Figure 1 (a), we see an example time-series of an individual household with 2 weeks of hourly measurements. 

We can observe that it has large variations between the measurements and no visible pattern.  In Figure 1 (b) we 

can see the hourly time series of the same household for the whole 26-month period that we have available, 

which consists of 18,001 measurements. This is undoubtedly a very large dimensionality which, in combination 

with the noisy nature of the time series, renders the problem of finding similar time series very difficult. In Figure 

1 (c) we see the same time series, for the entire 26 -month period, with a weekly level of aggregation. The time 

series consists only of 113 measurements, thus with a significantly reduced dimensionality, while it is also 

characterized by significantly less variance. Those characteristics make the weekly level of aggregation more 

suitable for finding households with similar consumption.  

   

(a) 2 weeks of hourly 

measurements 

(b) 26 months of hourly 

measurements 

(c) 26 months of weekly 

measurements 

Figure 1: Consumption time series for different levels of granularity 

7.2.2. Missing data points  

After transforming the time series to weekly granularity, we discard time series that have many missing data points 

(see Figure 2 for an example). Specifically, we discard a time series if more than 60%  of its measurements are 

missing, because we cannot reliably assess the consumption p atterns from the remaining 40% of the 

measurements. Formally, we discard a time series y if:  



DELIVERABLE 7.3            175 

|{𝑦𝑖: 𝑦𝑖 = 𝑁𝐴}| > 0.6 ∗ 𝑛 

 

Figure 2: Example of a discarded time series with multiple data points (~61%) missing 

In addition, we perform the same process, individually for periods denoting full years ( i.e., 2015, 2016) within a 

time series, setting the threshold to 80% instead of 60%. We perform this extra cleaning step because we want to 

be able to assess the seasonal drift  between consecutive years, which would not be possible if a large part of 

measurements of any of those individual periods is missing  (see Figure 3). Formally, we discard a time series if:  

|{𝑦𝑖: 𝑦𝑖 = 𝑁𝐴 , 1 ≤ 𝑖 ≤ 52}| > 0.8 ∗ 52 𝑜𝑟 |{𝑦𝑖: 𝑦𝑖 = 𝑁𝐴 , 53 ≤ 𝑖 ≤ 104}| > 

 

Figure 3: Example of a discarded time series with multiple data points missing before the start of the Trial (weeks 1 

to 52) 
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7.2.3. Outl iers  

Within each time series, we consider values of very high and very low  consumption as outliers. Specifically, values 

that exceed twice the average weekly consumption of a household, or are beneath 0.3 times  the average weekly 

consumption of a household are marked as outliers. Such outlier values are considered as not representative  of 

the typical consumption behavior of a household , and can result from several issues, ranging from long vacant 

periods  (e.g., part or all household members on vacation ), to unknown SWM data problems ( e.g., stuck SWM), and 

abnormally high consumption periods ( e.g., long-stay guests). In the following figures, we provide two examples 

of high and low outlier values respectively, in which he dashed line represents the threshold of twice and 0.3 

times the average weekly consumption of the household respectively . Formally, we consider 𝑦𝑖  an outlier and set 

𝑦𝑖 = 𝑁𝐴 if: 

𝑦𝑖 > 2 ∗ 𝑚𝑒𝑎𝑛(𝑦)  𝑜𝑟  𝑦𝑖 < 0.3 ∗ 𝑚𝑒𝑎𝑛(𝑦) 

 

Figure 4: Example time series with data points (marked as red 

outliers) higher than twice the average weekly consumption 

 

Figure 5: Example time series with data points (marked as red outliers) 

lower than 0.3 of the average weekly consumption 

In addition, we discard a time series if its average weekly consumption for the entire period we examine ( i.e., 26 

months) is less than 280 liters. The average per capita consumption in Alicante is 110 liters per day, so assuming 

a typical household (2.3 persons), its average weekly consumption is 1,771 liters. Consequently, we consider that 

households with average daily consumption less than 40 liters (which translates to 2-3 flushes, or one short shower,  

or even a slow water leak), represent either households with sporadic occupancy ( e.g., rented apartment), or outliers 

in which water consumption behavior is abnormal ( e.g., empty flat).  

7.3. Savings calculation 

In order to estimate the savings of a household for a period within Trial’s duration,  we need an estimate of the 

household’s consumption had the household not being influenced by our system . Towards this, we introduced a 

methodology that cost-effectively and reliably scales to support large -scale studies, founded on the automated 

selection  of a control panel with similar  consumption behavior with the treatment panel, based on their historical 
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water consumption behavior  over a large time frame. In this manner, and without requiring any additional 

knowledge about the control panel beyond its water consumption behavior (which is always known), we explicitly 

assemble its members to ensure their similar behavior with the treatment group.  As such, we can assume with a 

high level of confidence that the consumption behavior of the control panel during the treatment period, 

accurately depicts the consumption behavior of the treatment panel should had they not be exposed to any 

interventions . In summary, we select an appropriate control panel of households , with each control panel member 

having similar  water consumption behavior with one treatment panel member for a time-period preceding 

treatment. In the following, for each participant of the treatment panel we calculate a seasonal adjustment factor 

calculated by comparing the consumption of her similar CP member between consecutive years (e.g., 2016 vs. 

2015). The baseline for a given period of the study ( i.e., the expected consumption if the treatment did not take place ) 

is calculated by adding the seasonal adjustment factor to the consumption of our treatment panel member for 

the same period of the previous year. Next, we analytically describe our methodology. 

7.3.1. Dataset notation  

We have a set of users 𝑈 , 𝑢 ∈ 𝑈. For each user 𝑢, there is an associated time series 𝑦𝑢 of n values, with each 

value denoted as 𝑦𝑖
𝑢 , 1 ≤ 𝑖 ≤ 𝑛, that is created as described in Sec tion 7.2. Value 𝑦𝑖

𝑢, corresponds to the 

measured consumption of user 𝑢 during week 𝑖. If measurement 𝑖 of user 𝑢 is missing or is an outlier, then 𝑦𝑖
𝑢 =

𝑁𝐴. There also exists a time series 𝑡, 𝑡𝑖 1 ≤ 𝑖 ≤ 𝑛  with the timestamps of the measurements 𝑦𝑢. The first value, 

𝑡1 is 8/1/2015 00:00 and it proceeds by 7-day steps until 18/5/2017 00:00. 

7.3.2. Extreme value smoothing  

Before searching for similar households, we apply another filtering procedure to further smooth the time -series 

from outliers that would hinder the identification of actual similarities between the users. However, since this 

filtering can significantly affect the level of total consumption, w e would not like to generalize it to the calculation 

of the savings, so we only apply it in the distance function used to find similar users .  

To perform this filtering, we scan the time series, using a sliding window, and smooth very large and abrupt 

changes. We start for 𝑖 = 𝑏 + 1, we calculate the average value 𝑚𝑖 from 𝑖 − 𝑏 to 𝑖 − 1: 

𝑚𝑖 =
1

𝑏
∑ 𝑦𝑗

𝑢

𝑖−1

𝑗=𝑖−𝑏

 

 

Then if 𝑦𝑖
𝑢 > (1 + 𝜃)𝑚𝑖  we set 𝑦𝑖

𝑢 = (1 + 𝜃)𝑚𝑖. If 𝑦𝑖
𝑢 < (1 − 𝜃)𝑚𝑖  we set 𝑦𝑖

𝑢 = (1 − 𝜃)𝑚𝑖. We set 𝑏 =

4 and 𝜃 = 0.3. If, for some 𝑖, all 𝑦𝑖
𝑢 = 𝑁𝐴, 𝑖 − 𝑏 ≤ 𝑗 ≤ 𝑖 − 1 , then for the calculation of the corresponding 

𝑚𝑖  we increase 𝑏 until at least one 𝑦𝑖
𝑢 ≠ 𝑁𝐴, 𝑖 − 𝑏 ≤ 𝑗 ≤ 𝑖 − 1. If no such b exists we ignore this 𝑖.  

To evaluate the distance between 𝑦𝑢1 , 𝑦𝑢2  we consider the measurements 𝑦𝑢1 , 𝑦𝑢2 , 21 ≤ 𝑖 ≤ 60, which 

corresponds to period 28/5/2015-28/2/2016. We select this period because it is long enough to effectively 

capture similarities between the users, for all seasons of the year and it is as recent as possible to the start of the 

trial period. 
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7.3.3. Distance calculation  

The similarity of the water consumption time series between two households ( 𝑦𝑢1 , 𝑦𝑢2) is measured by the 

distance function 𝐷(𝑦𝑢1 , 𝑦𝑢2), which returns the Dynamic Time Warping distance (DTW) between 𝑦𝑢1 , 𝑦𝑢2  ( i.e., 

more similar the time series, the smaller the distance). DTW is a widely-used algorithm for time series 

distance/similarity that attempts to align the time-series before calculating the Euclidean distance. The algorithm 

finds a warping sequence for each of the two vectors and then calculates their Euclidean distance based on that. A 

warping sequence is a sequence of indices, in the order that they are used to calculate the distance. This means 

that each point of one vector can be matched with any point of the  other vector. The only constrains are that a 

warping sequence needs to be increasing, i.e., if a point with index 𝑖 of the first vector is being compared to a 

point with index 𝑗 of the second vector, then point i+1 can be compared only with points 𝑗′ ≥ 𝑗, and that a 

warping sequence must contain all the indices of a vector. The warping sequence is calculated so that the distance 

between the vectors is minimized. The algorithm is illustrated in Figure 6, where the lines between the time series 

show which points of the two vectors are compared.  

 

Figure 6: An illustration of Dynamic Time Warping algorithm. The lines between the time series show the matching 

between each point of one to one point of the other 

We selected DTW because it can recover similar time series, even if their values are shifted in time. For example, 

if two households have the same consumption shifted by a few weeks, the algo rithm will identify them as similar. 

We use the Dynamic Time Warping implementation of the dtw library of R language.   

Further, before calculating the distance function and the corresponding savings, we fill data points for which 𝑦𝑖 =

𝑁𝐴 using linear interpolation. This step is necessary before calculating the total consumption of a period from a 

time series that includes NA values. Specifically:  

We find the first valid value 𝑣1 prior to 𝑦𝑖
𝑢:  

𝑣1 = 𝑦𝑗1

𝑢 : 𝑦𝑗1

𝑢 ≠ 𝑁𝐴 , 𝑦𝑙
𝑢 = 𝑁𝐴 ∀𝑗1 < 𝑙 ≤ 𝑖 , 

and its index 𝑗1. If all measurements prior to 𝑖 are invalid, then 𝑣1 = 𝑚𝑒𝑎𝑛(𝑦𝑖
𝑢) and 𝑗1 = 1. Then, we find the 

last valid value 𝑣2 after 𝑦𝑖
𝑢 : 

𝑣2 = 𝑦𝑗2

𝑢 : 𝑦𝑗2

𝑢 ≠ 𝑁𝐴 , 𝑦𝑙
𝑢 = 𝑁𝐴 ∀𝑖 ≤ 𝑙 < 𝑗2  



DELIVERABLE 7.3            179 

If all measurements after 𝑖 are invalid, then 𝑣2 = 𝑚𝑒𝑎𝑛(𝑦𝑖
𝑢) and 𝑗1 = 𝑛. Then we interpolate 𝑦𝑖

𝑢 as: 

 

𝑦𝑖
𝑢 = 𝑣1 + (𝑖 − 𝑗1)

𝑣2 − 𝑣1

𝑗2 − 𝑗1
 

The assumption behind interpolating missing values in this way is that the consumption changes smoothly, which 

in the level of weekly aggregated consumption is, generally, valid. For example, if one measurement is missing, 

we can assume that its value would be the average of its previous and its next.  

 

Figure 7: Water consumption time series for a trial household and its most similar non-trial household, during 

1/1/2016-18/6/2017 

Figure 7 depicts the water consumption time series of a trial household ( i.e., from dataset TP) and its most similar 

non-trial household ( i.e., from dataset RP), as retrieved by our method. The cleaning and filtering procedures 

described in the previous subsections have all been performed in both time series. We can observe that the time 

series are very similar in their total v olume of consumption and show fairly similar seasonal behavior, especially 

during the first months of 2016 (weeks 1 -20), which corresponds to the time before the start of the trial and 

during Phase 1, when no interventions were active.  

7.3.4. Baseline formulation 

The set of users 𝑈 is divided in two disjoint subsets, 𝐴, 𝑢𝑎 ∈ 𝐴, which comprises the households of the TP 

dataset, and 𝐵, 𝑢𝑏 ∈ 𝐵, which comprises the households of the RP dataset .  

We denote a period in time as 𝑃𝑡. 𝑃𝑡 is a vector that contains the start 𝑠 and end 𝑒 of the period: 𝑃𝑡 = (𝑠, 𝑒). 

For each period 𝑃𝑡, we define period 𝑃𝑡′, which is the same period of the previous year. For example, if 𝑃𝑡 

corresponds to 1/1/2016-1/2/2016, then 𝑃𝑡′ corresponds to 1/1/2015-1/2/2015. 
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Then for each user 𝑢𝑎 of TP, we find the user 𝑢𝑎,𝑛𝑛 from the set of RP households, that has the minimum distance 

with 𝑢𝑎:  

 
𝑢𝑎,𝑛𝑛: 𝐷(𝑦𝑢𝑎 , 𝑦𝑢𝑎,𝑛𝑛) ≤ 𝐷(𝑦𝑢𝑎 , 𝑦𝑢𝑏), ∀𝑢𝑏 ∈ 𝐵 

 

User 𝑢𝑎,𝑛𝑛 is selected so that she is similar  to user 𝑢𝑎. This means that we can assume that 𝑢𝑎 would have similar 

behavior to 𝑢𝑎,𝑛𝑛, if she was not participating in the trial.  

We define function 𝐶 so that 𝐶(𝑦𝑢, 𝑃𝑡) is the consumption of user 𝑢, in period 𝑃𝑡. 

If the period 𝑃𝑡 = (𝑠, 𝑒) does not align exactly with measurement times 𝑡, then we take only a part of the 

corresponding measurement, again using linear interpolation. The assumption in this case is that the consumption 

measured consumption is distributed uniformly in side the week. Formally, for 𝑡𝑖−1 ≤ 𝑠 ≤ 𝑡𝑖, we define: 

𝑧1 =
𝑡𝑖 − 𝑠

𝑡𝑖 − 𝑡𝑖−1 
𝑦𝑖

𝑢 

Similarly, if 𝑡𝑖 ≤ 𝑒 ≤ 𝑡𝑖+1, we define 

𝑧2 =
𝑡𝑖+1 − 𝑒

𝑡𝑖+1 − 𝑡𝑖  
𝑦𝑖+1

𝑢  

 

Finally, we calculate 𝐶(𝑦𝑖
𝑢, 𝑃𝑡) by adding all 𝑦𝑖

𝑢 that are entirely in (𝑠, 𝑒), plus 𝑧1 and 𝑧2 : 

 

𝐶(𝑦𝑖
𝑢, 𝑃𝑡) = ∑ 𝑦𝑖

𝑢

𝑖:𝑡𝑖,𝑡𝑖−1>𝑠 ,𝑡𝑖,𝑡𝑖−1<𝑒

+ 𝑧1 + 𝑧2 

 

Using 𝑢𝑎,𝑛𝑛 we calculate the seasonal difference 𝑠𝑢𝑎,𝑃𝑡  for period 𝑃𝑡 as: 

  
𝑠𝑢𝑎,𝑃𝑡 = 𝐶(𝑦𝑢𝑎,𝑛𝑛 , 𝑃𝑡) − 𝐶(𝑦𝑢𝑎,𝑛𝑛 , 𝑃𝑡′). 

 

The factor 𝑠𝑢𝑎,𝑃𝑡  corresponds to the difference in consumption between successive years, for the time of year of 

𝑃𝑡, for the most similar user of RP, 𝑢𝑎,𝑛𝑛. Since we have assumed that 𝑢𝑎 and 𝑢𝑎,𝑛𝑛 are similar, we can infer 

that 𝑢𝑎 would undergo, from one year  to the next, a change similar to 𝑢𝑎,𝑛𝑛, if he was not participating in the 

trial. Thus, we calculate the baseline consumption 𝑏𝑢𝑎,𝑃𝑡  , for user 𝑢𝑎 and period 𝑃𝑡 as:  

 
𝑏𝑢𝑎,𝑃𝑡 = 𝐶(𝑦𝑢𝑎 , 𝑃𝑡′) + 𝑠𝑢𝑎,𝑃𝑡 
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Given the above, the savings for TP in Trial A for period 𝑃𝑡 are calculated as  

 

𝑀𝑃𝑡 =
∑ (𝑏𝑢𝑎,𝑃𝑡 − 𝐶(𝑦𝑢𝑎 , 𝑃𝑡))𝑢𝑎∈𝐴

∑ 𝑏𝑢𝑎,𝑃𝑡𝑢𝑎∈𝐴
   

 

This corresponds to the total difference in consumption between the estimated baseline consumption and the 

actual consumption, for each user of the treatment panel, for period 𝑃𝑡, relative to the total estimated baseline 

consumption at the same period. In order to obtain the savings for each phase of the trial, we apply the above 

calculation for each phase of the trial separately . 

7.4. Alternative Baselines 

As we have presented in Section 1.1, most studies obtain a baseline for calculating the water savings ef fect of 

various interventions either (a) from the treatment panel itself before treatment, or (b) from an arbitrarily 

selected control panel. We argue that both methods are not able to provide safe estimates of the effect of 

interventions on water consumpt ion, while they are also prone to intentional or unintentional manipulation . In 

the following, and to demonstrate our point, we apply these methods for calculating the savings of our Trial  A. As 

we can observe, both over-estimate  the effect on water savings (reduction of 16% and up to 34% respectively vs. our 

reported 12%). Specifically: 

• Extracting a baseline from the treatment panel . In this case, a time-period (1-2 months) before treatment is 

selected as a baseline; water savings are calculated by compari ng with baseline consumption of the 

treatment panel during this period with their consumption during the treatment phase.  In Figure 8 we 

observe the baseline and post -treatment consumption for our Trial A panel according to this method ( red 

and green lines respectively), with savings reaching 16%. While better than our repo rted savings, this 

method is obviously flawed if we consider the following.  First, the calculation of savings for distinct 

treatment periods where different interventions were tested is flawed. This is depicted in the blue line, 

which corresponds with Phase 2 of our Trial, where the highest savings were observed. Due to its 

proximity with the seasonal peaks in the summer, we observe minimal savings (~3%). Further, if we 

examine the entire period before the start of the Trial ( i.e., when our panel had not even heard of the system), 

it is obvious that a study with a baseline at any of the peak periods (weeks 25-35) and scheduled to end 

at any of low consumption periods (e.g., weeks 52 -58, 65-70) would report strong savings which were 

entirely caused by the inherent seasonality of water use. On the other hand, an unfortunately timed study 

( i.e., baseline in low consumption periods ) would report increases in water consumption, which is of course 

wrong. 
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Figure 8: Weekly consumption of Trial A panel from 1/1/2015; the horizontal lines correspond to 1 month periods 

depicting the baseline consumption (red), the post-treatment consumption (green) and an approximate post-

treatment consumption of Phase 2 (blue) 

• Extracting a baseline from an arbitrary control panel . In this approach, the baseline is extracted from 

households arbitrarily selected from a larger population that does not participate in the study; water 

savings are calculated by comparing the consumption of these households with the  consumption of the 

treatment population during the treatment phase.  According to this method, the savings of our Trial A 

panel are in the range of 20%-34% (for 10 random selections of control panel members ). The problems 

however with this methodology, are  even more substantial. First, the arbitrary selection of a control panel 

is not transparent as there is no means for validating it, thus allowing the intentional or unintentional 

manipulation of the data. In the former case, one could intentionally select high consumers. In the latter 

case, the selection may be strongly biased by the availability  of data for households not participating in 

the Trial. For example, in a real -world smart water meter roll -out, it is frequent to prioritize the 

installation of meters in consumers or areas  with high water use. Hence, for an evolving smart metering 

infrastructure, it is expected for the data to biased. Second, and ass uming a large smart water base and 

researchers truly selecting their control panel randomly  (with the same provision however, that it is practically 

infeasible to validate this selection ), the reported savings natively have an extremely high variance as they 

are dependent from the assembled control panel. For example, t he control panel could contain 

consumers that are not households ( typically this info is not available for filtering consumers ) and hence have 

different consumption behaviors. Of course, each random selection would also deliver different panels 

(and hence savings), with multiple selections required to ensure a small confidence interval for the 

reported savings.  
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8. Annex 2 – Savings calculation for shower 
consumption 

In this section, we present our methodology for the preparation and analysis of the amphiro shower data to 

establish the effect on water savings for in shower consumption behavior. First, we present all data pre -

processing tasks applied, including data cleaning, data wrangling and filtering. In the following, we detail the 

logic we used to further filter, remodel, aggregate and plot our data to calculate the achieved savings.  

The following information only contains the methodology for shower data originating from different studies 

(see Sections 3.6 until 3.10). 

8.1. Data Preprocessing 

We analyzed the consumption data with R (3.4.1, 30.6.2017). With the implementation of the following logic, 

we proceed with calculation of saving effects.  

1. The necessary consumption data is loaded and if necessary, additional datasets are linked (see 3.11, 

Trial A/B allocation of showers to treatment phases). Further transformations may be applied to adapt 

data types. For the study in the Velserbroek and the study in Nuremberg, a fixed number of baselines 

was pre-programmed before handing out the devices for installation. So, another table containing 

the device ID and the number of pre-programmed baselines is linked.  For the studies in Velserbroek 

and Nuremberg, a fixed number of baselines was pre -programmed before handing out the devices 

for installation. 

2. Then, we apply the following filters concerning the consumption data.  

a. First, for Trial A and B, we cut the dataset depending on the timestamp of a shower (the end 

of the study is Feb 28, 2017)  

b. Second, we delete shower events with:  

i. Volume equal or less than 4.5 liters  

ii. Temperature with less than 27 or more than 47°C  

iii. Flow rate over 20l/minute or less than 2l/minute  

iv. We deleted the first shower/measurement of the phase 1 because this represents the 

water extraction during which the device was installed and tested (if there are no 

leaks, etc.) 

c. Third, we delete all showers marked as “real -time” showers because we cannot distinguish if 

they represent just a snapshot or the complete aggregated shower data . 
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3. Furthermore, we exclude the following data due to the experiment situation. This helps us to make 

sure that each household/device correctly proceeded with the course of the experiment (no phases 

were missed): 

a. For the DAIAD trials:  

i. We excluded devices which have no showers  in phase 1 (baseline phase). In the case 

a device was never in the baseline phase (e.g., replacement, second device) we 

cannot compare the consumption of other phases correctly, so, no conclusion on 

savings would be possible.  

ii. We also exclude devices with no shower in phase 2. Further phases were not excluded 

because for us the major saving effects are expected in this phase where we have a 

clean experiment design. So, we make sure that households at least went through 

the first two phases.  

b. For the Netherland study, we deleted households that have missing baseline measurements 

or have not made it in the intervention phase. Additionally, we created a study completion 

ratio. As showers were not delivered with a timestamp, single shower events needed to be 

interpolated to ensure that showers from the same time period are compared for the main 

treatment effects. We also calculated a baseline and intervention mean for each household 

which serve as the foundation for the further analysis . 

4. Only for the Extended Trial A, we cut the filtered dataset according to the timestamps of the study 

(from March 1, 2017, onwards). This helps us to keep as much devices as possible and to make sure 

that they went through the most important steps of the exp eriment (Baseline and Phase 1) . 

8.2. Calculation of Water/Energy/CO2 Savings 

The data analysis is as follows. To calculate the saving effects, we need to concentrate on the baseline phase 

(in the experiment and the data called phase 1) and another phase for comparison. In the following we will 

explain our approach exemplified with the focus on baseline (phase 1) compared to phase 2:  

1. The first metric/diagram showing the mean consumptions per Baseline and Treatment:  

a. First of all, we only select the relevant dat a for the observation – in this case all devices 

with showers in phase 1 and 2.  

b. For each phase, we aggregate all showers of a device and calculate the mean consumption 

per device. Then, we calculate the mean of the mean per devices (for the phase of 

interest).  

c. Additionally, we calculate the 95% confidence interval for the final mean (per phase) and 

the standard deviation. 

d. Finally, we use a ggplot2-package to generate diagrams/plots and export them via the 

ReporteRs-package. 

2. The second metric/diagram showing the change in consumption:  
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a. First of all, we only select the relevant data for the observation – in this case all devices 

with showers in phase 1 and 2.  

b. For each device, we calculate the mean consumption per phase.  

c. Then, we calculate the consumption change  per device (in percent; e.g., 
𝑃ℎ𝑎𝑠𝑒2𝑖 –𝑃ℎ𝑎𝑠𝑒1𝑖

𝑃ℎ𝑎𝑠𝑒1𝑖
, 

i=device) and aggregate the information for devices selected in step i.  

d. Additionally, we calculate the 95% confidence interval based of the consumption change 

of the devices selected in step i. 

e. Finally, we use a ggplot2-package to generate diagrams/plots and export them via the 

ReporteRs-package. 

The calculation method of the energy savings for the Netherlands study are included in [TG+16] 56 and were 

computed in STATA. 

Finally, the histograms used in Section 5.1.1 were computed with R and we used the following bins:  

• Flow Rate: 1 liter/minute 

• Temperature: 1°C 

• Duration: 50 seconds 

• Volume of water: 5 liters 

 
                                                        
56 Tiefenbeck, V., Goette, L., Degen, K., Vojkan, T., Fleisch, E., Lalive, R., Sta ake T. Overcoming Salience Bias : How Real-Time Feedback Overcoming Salience 

Bias : How Real-Time Feedback Fosters Resource Conservation, Management Sc ience, 2016.  
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9. Annex 3 – Pricing Survey 

In this Annex, we provide the complete list of questions and answers in Spanish (exported via printing the form, 

styling omitted). 
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10. Annex 4 - Post-Trial Survey 

In this Annex, we provide the complete  list of questions and answers in English ( exported via printing the form, 

styling omitted, Spanish version omitted). 
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11. Annex 5 - Surveys for PWN Study 

11.1. Registration 
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11.2. Pre-Experimental Survey 
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11.3. Post-Experimental Survey 
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12. Annex 6 – Mobile Analytics 

Keen IO (www.keen.io) is an analytics platform that enables developers to build analytics into their product, 

app, website, or company. The APIs allow developers to stream, analyze, visualize and secure analytics data 

from real-world users. Compared to traditional usage analytics platforms for simple web -sites, Keen provides 

a much more extensive, detailed, and highly granular coverage for all types of usage events available in 

applications (e.g., signups, swipes, purchases, errors). The inherent flexibility and adaptability of Keen 

empowers the collection, management, and processing of analytics across anything ( application, device, sensor) 

connected to the internet, from smart -watches and mobile apps, to large-scale sensor deployments.  

The use of Keen IO is based on three simple steps:  

• Event streaming. Events are the actual actions that we wish to track and can programmatically cover 

all possible user interactions and applications states . Events of a similar type are stored in  event 

collections and can be sent via the API or a webhook.  The DAIAD mobile application integrates 

JavaScript code that invokes the Keen API, generati ng events for all possible interaction points of the 

app (e.g., buttons, swipes).  The example below creates a new Event collection named ‘ purchases ’ 

(JSON format) 

{ 

  "category": "magical animals", 

  "animal_type": "pegasus", 

  "username": "perseus", 

  "payment_type": "head of medusa", 

  "price": 4.50 

} 

The developer needs to add in her application a small script (in JS, Ruby, Python, PHP, Java, or .NET) that 

configures the client, prepares, and submits the event object.  

var Keen = require('keen-js');  

// Configure a client instance for your project  

var client = new Keen({  

projectId: "PROJECT_ID", writeKey: "WRITE_KEY", readKey: "READ_KEY" });  

// Create a data object with the properties you want to send  

var purchase = { category: "magical animals", animal_type: "pegasus", username: "perseus", paymen
t_type: "head of medusa", price: 4.50 };  

// Send it to the "purchases" collection  

client.addEvent("purchases", purchase); 

• Analysis. All transmitted events are stored in Keen’s backend and become available for further analysis 

via the Compute API, which can programmatically support any type of query (e.g., aggregates, filters, 

funnels). We have created several queries (integrated in the Dashboard, see Figure 134 and Figure 

135) and JavaScript code to prepare and  aggregate the usage analytics for the DAIAD mobile app.  

•  

https://keen.io/docs/api/#events
https://keen.io/docs/api/#event-collections
https://keen.io/docs/api/#event-collections
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Figure 134: Keen IO Dashboard for the DAIAD project; a number of predefined queries for select users are 

displayed 

 

Figure 135: Keen IO Query Explorer and builder; enables developers to write, test, run, and export queries 

over collected events 

• Visualization. The output of the Analysis results is available through several visualization facilities, 

ensuring scalability to large-scale event collections (see Figure 136). This service has not been used 

in the project, since visualization was performed via external tools using the downloaded analytics 

data. 

 

 

Figure 136: Overview of collected event streams for the DAIAD mobile application 
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13. Annex 7 – Posterior comparison 

DAIAD is one of the five (5) research projects jointly funded by the Call FP7 -ICT-2013-11 (Objective FP7-ICT-

2013-11). According to the Call’s text, the projects should have an impact towards ‘ Increased user awareness 

and modified behaviors concerning the use of water ’ and ‘Quantifiable and significant reduction of water 

consumption ’.  

Understandably, each project aimed to achieve its impact with a different approach, re search goals, and 

innovation agenda. Regardless however of how the individual projects opted to achieve their impact, it is a 

reasonable expectation to perform a posterior  examination and comparative evaluation of their final 

contributions. With DAIAD being the final project ending from this Call, we had the opportunity to assess the 

final output of each project (deliverables, publications, software) under their joint impact requirements.  

In the following, we compare the reported achieved savings in reside ntial water consumption across these 

projects, as well as other key methodological and technical characteristics of the different approaches.  



 

 

 Waternomics57 ISS-EWATUS58 WISDOM59,60 SmartH2O61 DAIAD 

Savings effect -30% 62 

 

 

Comment: doubts 

regarding this claim; in 

D8.4 it is reported that 

savings is -30% for 9-

11/2016, i.e., ignoring the 

last 3 months of the 

Trial; in D5.2 and 

regarding the entire Trial 

duration, the authors 

report a ‘significant 

increase’, in water use, 

with no further details 

provided 

-10%  

 

 

Comment: doubts 

regarding the claim; 

average monthly water 

use for households was 

extremely low, with 

average monthly 

consumption 30 lt for 

Skiathos and 100 lt for 

Sosnowiec; 

only 9 households in 

Skiathos and 8 in 

Sosnowiec were studied 

N/A63 

 

 

Comment: savings are 

not reported; the 

authors only report that 

‘Reduction of water 

consumption was observed 

over a period of 3 months 

but to verify the stability of 

this reduction a longer 

period of observations 

might help’, and 

‘Comparison with previous 

years’ measurements was 

difficult due to lack of 

comparable data’ 

-3.8% (Spain);  

-10% (Switzerland)64 

 

Comment: in Switzerland 

users not engaged in the 

Trial reduced consumption 

by -6% 

-12% (SWM); -16%  

(shower) 

                                                        
57 Only the projec t ’s pilot in Thermi focused on residential consumers  

58 http://issewatus.eu/mod/resource/view.php?id=510   

59 Only the project ’s pilot in Cardiff focused on residential consumers  

60 http://www.wisdom-project.eu/documents/84944/90571/D5.1.pdf/ff39a068 -d047-47c2-a025-63a926538bd8  

61 http://smarth2o.deib.polimi.i t/wp-content/uploads/2017/03/sh2o_D7.2_SES_WP7_validation_report_v1.1.pdf  

62 http://waternomics.eu/wp -content/uploads/D5.2_Consol idated -Waternomics-Pi lot-Reports-ompressed.pdf  

63 The pilot ’s target was: “5% reduction in w ater use as compared to customers that do not have access to an in -house display or webpage displaying their water Consumption”  
64 The project ’s goal was: “water saved per capita per period 5%”  

http://issewatus.eu/mod/resource/view.php?id=510
http://www.wisdom-project.eu/documents/84944/90571/D5.1.pdf/ff39a068-d047-47c2-a025-63a926538bd8
http://smarth2o.deib.polimi.it/wp-content/uploads/2017/03/sh2o_D7.2_SES_WP7_validation_report_v1.1.pdf
http://waternomics.eu/wp-content/uploads/D5.2_Consolidated-Waternomics-Pilot-Reports-ompressed.pdf


DELIVERABLE 7.3            219 

Baseline/control groups N/A Baseline was the panel’s 

consumption during the 

previous year/No control 

group 

N/A65 Baseline unknown/286 

random members in 

control group (Spain) 

increased consumption 

by 17% 

Baseline period 

unknown/No control 

group (Switzerland) 

SWM: 1,000 random 

consumers with spatial 

proximity 

Shower: first shower 

extractions for panel 

members (no 

interventions) 

Trial duration 6 months 8 months 10 months66 4 months  

 

12 months (extended to 

16 months) 

Trial participants 8 households; 15 

consumers 

17 households + 9 

households (with no 

meters) 

22 households67 Unknown (Spain) 

45 households 

(Switzerland) 

102 households; 293 

consumers (Alicante) 

47 households; 164 

consumers (St Albans) 

4.748 consumers 

(external pilots) 

Published data N/A N/A N/A Available/unknown 

license (~25MB) 

Open data/Creative 

Commons Attribution 

(~80MB) 

Software availability N/A N/A N/A Open source (GPL v3; 

behavioral model); 

Available/unknown 

license (remaining 

components) 

Open source/Apache 

License; 

www.github.com/DAIAD 

 
                                                        
65 A comparison with a control group is implied (“compared to cu stomers that do not have access to an in-house display or webpage displaying their water Consumption”) but there are no further details provided  
66 The actual duration is unclear  

67 The actual number of participants is unclear  


