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Abstract

This project aims at proposing a new noise reduction technique for speech
recognition purposes. The proposed method called mapping based noise
reduction is performed on the feature vectors extracted from speech sig-
nals. In this work the dimensionality reduction functionality of algorithms
such as Locally Linear Embedding and Principal Component Analysis is
exploited to map the corrupted speech feature vectors to their correspond-
ing noise-free feature vectors. The feature vectors are first mapped to the
lower dimensional space and in this space the nearest clean vector to each
noisy vector is found, mapped back again to the original space and given
as the input to the speech recognition system. This approach is examined
on the speech signals with artificially added wind noise with different sig-
nal to noise ratio values and articulated by two different speakers.
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Chapter 1

Introduction and Related Work

A speech recognition system that converts the human speech to text is
considered robust if it is able to achieve a high recognition accuracy even
under improper conditions. These improper conditions might be caused
by the low quality of input speech signal due to additive environmental
noise or differences in acoustic features of testing and training speech sig-
nals that are recorded in different environments or articulated by different
speakers.

The speech signals we are dealing with in this thesis are a part of the
project MOVEON in Fraunhofer Institute, IAIS. The goal of the project
MOVEON is to develop a communication system that is able to perform
well even in challenging scenarios. A good instance of these challeng-
ing scenarios is when we have speech signals recorded on motorcycles
where different sources of noises are available and we are going to accom-
plish robust speech recognition on those speech signals. Hence, in our
experiments, we use the speech data that is corrupted by the same noise
types appearing on speech data recorded from a moving motorcycle such
as wind noise.

One way to achieve robustness in speech recognition system is to up-
grade the corrupted speech signal by reducing the disturbance. Several
speech enhancement methods have been tried to date. Spectral Subtrac-
tion [7] for instance tries to compensate the effects of noise by estimating
the noise power spectrum and subtracting it from the power spectrum of
the corrupted speech signal. Cepstral Mean Subtraction [7], Blind Equal-
ization [7] and adaptive filters are another noise compensation methods
for speech recognition. However, most of these methods are insufficient
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when faced with difficult domains and consequently the need for an alter-
native noise reduction method arises.

1.1 Scope of the Thesis

The scope of this thesis is presenting a new approach for noise reduction
called mapping based noise reduction, applied on the feature vectors of
the speech signal. In this approach, the feature vectors extracted from
noisy speech signals are projected to their nearest feature vectors extracted
from clean speech signals. The projected feature vectors then serve as in-
puts to the speech recognition system to improve its accuracy and per-
formance. This process is carried out in the lower dimensional subspace
because with the complexity of higher dimensional space, the projection
of feature vectors is almost not feasible. In other words, each noisy feature
vector is replaced by its nearest clean feature vector found in the lower di-
mensional space. Principal Component Analysis and Locally Linear Em-
bedding are the dimensionality reduction algorithms we have used for
mapping the speech feature vectors to lower dimensional space.

1.2 Overview

In chapter 2 the basics of audio signal processing including time and fre-
quency domain properties of audio signals are discussed. Chapter 3 pro-
vides an overview of a modern automatic speech recognition system and
its units. Chapter 4 describes the mapping based method for noise re-
duction and the dimensionality reduction algorithms we have applied. In
chapter 5 the results of experiments are presented and compared. Finally,
the conclusion of this work is provided in chapter 6.
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Chapter 2

Principles of Speech Signal
Processing

A speech signal is the air pressure amplitude generated by forcing air
through the vocal cords and radiated from a speaker’s mouth or nose.
From mathematics point of view, it is a function x : R → C which is an
analog or continuous-time function. In order to represent such a signal
in computers we have to digitalize it. The digitization process will be de-
scribed further in the following sections.

In addition to time domain representation, a speech (audio) signal can be
represented in frequency domain. The frequency domain representation
of a signal shows us the frequency information of the signal.

2.1 Time Domain Representation of Speech Signals

Speech signals as information-bearing signals are functions of a single in-
dependent variable, time, and are analog in nature. This means that they
are functions of continuous time. Such signals can be processed using ana-
log processors. However, an alternative, and mostly better, method for
processing is digital processing using a digital computer or microproces-
sor. In the latter case we have to first convert the so called analog signal
to digital format, that is to convert it to a finite sequence of numbers, to
perform the processing digitally. The analog to digital converter or A/D
converter is used for this purpose. The process of analog to digital conver-
sion or digitization consists of 3 steps: sampling, quantization and coding
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which are briefly described in the following sections. The inverse pro-
cess which converts the digital signal to analog, is called D/A conversion
and is necessary after processing in many cases such as speech process-
ing. However, in the speech recognition case, there is no need for D/A
conversion since the output of a recognizer is text, not speech.

2.1.1 Sampling

By taking samples of a continuous-time signal at discrete time instants, it
will be converted to a discrete-time signal. This is the first step to digiti-
zation. Thus, if xa(t) is the continuous-time signal and we take samples
every T seconds, then the sampled signal is given by: x(n) = xa(nT ),
where T is called the sampling period. Moreover, the number of samples
per second Fs = 1

T (Hz), is called sampling frequency. The relationship
between continuous and discrete time variables t and n is given by :

t = nT =
n

Fs
. (2.1)

Accordingly, there is a relationship between the continuous time and dis-
crete time signal frequencies F and f . It is simply proved that this rela-
tionship is :

f =
F

Fs
, (2.2)

where f is called normalized frequency and −12 ≤ f ≤
1
2 . Using the above

relation, we will get a range for continuous-time signal frequency:

−Fs
2
≤ F ≤ Fs

2
(2.3)

which means the maximum frequency of an analog signal that can be dis-
tinguished after sampling at Fs = 1

T , is Fmax = Fs
2 . In other words, only

the frequencies which lie in this range can be reconstructed after sampling.
If the selected sampling frequency does not fulfill the inequality in Equa-
tion (2.3), then a distortion called aliasing distortion occurs at frequencies
inside and outside this range. For a better understanding of aliasing dis-
tortion consider an analog signal with fundamental frequency F0. If this
signal is sampled at a rate Fs < 2F0, then all frequencies Fk = F0 + kFs
will produce identical sample values to those of F0 and as a result the parts
of the analog signal related to these frequency contents cannot be recon-
structed from their sample values. The frequencies Fk are all called aliases
of F0. Figure 2.1 shows the aliasing distortion in time domain.

Thus, to find the appropriate sampling frequency, we should apply the
sampling theorem [8]. According to the sampling theorem, if the highest
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Figure 2.1: For two sinusoids with fundamental frequencies F1 = −7
8Hz

and F2 = 1
8Hz, selecting a sampling rate of Fs = 1Hz results in identical

samples of two sinusoidal components; this is called aliasing distortion
[8].

frequency content of an analog signal is Fmax = B (Hz) and the sampling
frequency is Fs > 2B, then the analog signal can be accurately recon-
structed from its sample values according to the following equation:

xa(t) =
∞∑

n=−∞
x(n)sinc(2Bt− 2Bn

Fs
) (2.4)

where

sinc(t) =

{
sin(πt)
πt if t 6= 0;

1 if t = 0.

The minimum allowable value of sampling frequency, Fs = 2B, is called
nyquist rate.

Since a speech signal has frequency components up to 4 KHz, its sampling
frequency is selected in the range of 8 to 16 KHz according to the sampling
theorem.
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Figure 2.2: A digital signal x(n) with four quantization levels [8]

2.1.2 Quantization and Coding

By sampling an analog signal it is only converted to a discrete-time sig-
nal, however, a digital signal must be both discrete in time and ampli-
tude. Therefore, quantization is performed on a sampled signal to make
it discrete-valued as well. This is done simply by converting continuous
sample values to discrete levels and represent them as a finite sequence
of numbers. Thus, each sample value is truncated or rounded to a prede-
fined allowable level called quantization level. A rounding quantization
is done by replacing each sample value by its nearest quantization level
while truncation quantization replaces each sample value by the quanti-
zation level below it. The distance between successive quantization levels
is called quantization resolution ∆. This value of resolution can simply be
formulated as follows; if we have the maximum and minimum amplitude
values xmax, xmin, of a sampled signal and the number of quantization
levels L:

∆ =
xmax − xmin

L− 1
, (2.5)

where xmax − xmin, is called the dynamic range of the signal.

For the rounding quantization, the quantization error which is defined
as the difference between the quantized signal and the sampled signal,
eq(n) = xq(n)− x(n), is bounded to the following range:

−∆

2
≤ eq(n) ≤ ∆

2
(2.6)

Therefore, by observing Equations (2.5), (2.6), one can simply conclude
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that for a fixed value of dynamic range, increasing the number of quanti-
zation levels, increases the quantization resolution and consequently leads
to a decrease in quantization error. Thus, the higher the number of quan-
tization levels, the more accurate the quantization process.

Figure 2.2 illustrates a discrete-time quantized signal (digital signal).

Finally, coding is the representation of quantization levels by binary num-
bers of length b bits. 2b binary numbers are produced by b bits and if L bi-
nary numbers are needed ( L quantization levels), the following inequality
must hold true to obtain the number of bits b:

2b ≥ L⇒ b ≥ log2 L. (2.7)

For speech signals, usually 16 bit words are used.

2.2 Frequency domain Representation of Speech sig-
nal

In the frequency domain, a signal is represented by a sum of several sinu-
soidal components (frequency components). This is called the frequency
analysis of the signal. For continuous-time signals, the Fourier series and
the continuous Fourier transform represent the frequency components of
a periodic and aperiodic signal, respectively.

A continuous-time periodic signal x(t) that in Hilbert space [15] of
L2([0, 1]) is represented in terms of its Fourier coefficients Ck, using the
following expression for Fourier series:

x(t) =

∞∑
k=−∞

Cke
j2πkF0t (2.8)

where F0 is the fundamental frequency (the lowest frequency or the first
harmonic) and T0 = 1

F0
is the period of the signal and ejθ = cos θ+j sin θ is

the Euler’s formula (j =
√
−1). The Hilbert space (such as the Euclidean

space) is the space of finite-energy signals and has the following definition:

L2([0, 1]) = {x : [0, 1]→ C | ||x||2 =

√∫ 1

0
|x(t)|2dt <∞}; (2.9)

this means that the periodic signal has finite energy in one period (energy
of a signal is defined as

∫
R |x(t)|2dt).
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The Fourier coefficients can be obtained by the following expression:

Ck =
1

T0

∫ T0
2

−T0
2

x(t)e−j2πkF0tdt. (2.10)

Furthermore, the average power of a periodic signal x(t), which has infi-
nite energy but finite average power, is given by:

P =
1

T0

∫ T0
2

−T0
2

|x(t)|2dt =
∞∑

k=−∞
|Ck|2; (2.11)

this means that the total power of a periodic signal is the sum of the pow-
ers for each frequency component (harmonic) of it.

Figure 2.3 shows the power distribution among frequency components of
a periodic signal x(t) and it is called power density spectrum of the signal.
One can observe from this figure that periodic signals have line spectra.
However if the period of the signal tends toward infinity and the signal
becomes aperiodic, the spectrum becomes continuous.

Thus, the Fourier transform of a finite energy (aperiodic) signal x(t) is
defined as:

X(F ) =

∫ ∞
−∞

x(t)e−j2πFtdt (2.12)

which is a continuous function of frequency F .

The inverse Fourier transform is obtained by replacing the summation in
Equation (2.8) by an integral over the frequency F :

x(t) =

∫ ∞
−∞

X(F )ej2πFtdF. (2.13)

Finally, the total energy of x(t), which is a finite-energy signal, is given by:

E =

∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞
|X(F )|2dF , (2.14)

while the energy density spectrum of x(t) (the energy distribution of the
signal as a function of frequency) is defined as:

Sxx(F ) = |X(F )|2; (2.15)

therefore, the integral of Sxx over F is equal to total energy of signal.
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Figure 2.3: Power distribution of a continuous-time periodic signal with
fundamental frequency F0 [8].

2.2.1 Discrete-Time Fourier Transform, DTFT

In this section frequency analysis of discrete-time signals is discussed.

The Fourier transform of a continuous-time signal has an infinite number
of frequency components in the range−∞ < F <∞, while in the discrete-
time case the frequency components are limited to the range −1

2 < f < 1
2

or equivalently −π < ω < π, where ω = 2πf is the angular frequency.
Therefore, the Fourier transform of a discrete-time signal is unique only in
this range and the frequencies which lie out of this range are equivalent
to the ones within the range. This means that the Fourier transform of a
discrete-time signal or the discrete time Fourier transform is periodic with
period 2π and it is defined as:

X(ω) =
∞∑

n=−∞
x(n)e−jωn. (2.16)

Figure 2.4 illustrates the DTFT of the following finite-length sequence:

x(n) =

{
1 0 ≤ n ≤ L− 1;
0 otherwise.

(2.17)

The inverse discrete time Fourier transform derived from the periodic
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Figure 2.4: The magnitude of DTFT for the sequence in Equation (2.17)
with length L = 10 [8].

characteristic of X(ω) is as follows:

x(n) =
1

2π

∫
2π
X(ω)ejωndω. (2.18)

In addition, the energy of a discrete-time signal in terms of time and fre-
quency can be simply formulated as:

E =

∞∑
n=−∞

|x(n)|2 =
1

2π

∫ π

−π
|X(ω)|2dω, (2.19)

and likewise the continuous-time case, energy density spectrum of the
discrete-time signal is given by:

Sxx(ω) = |X(ω)|2. (2.20)

In the cases where our discrete-time signal, x(n), is real, it is easily proved
that X(ω) and Sxx(ω) will be symmetric functions of frequency. As a
result,the frequency range of real discrete-time signals can be further re-
stricted to the range 0 ≤ ω ≤ π.

2.2.2 Discrete Fourier Transform, DFT

As in the time-domain case, to present the spectrum of a discrete-time
signal we need to digitize it first. By sampling the continuous spectrum
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Figure 2.5: The magnitude of 50-point FFT for the sequence in Equation
(2.17) with length L = 10 [8].

X(ω) of finite-energy sequence x(n) at equally spaced frequencies, we can
perform the frequency analysis of this sequence on a digital computer.
This frequency domain representation of x(n) is called Discrete Fourier
Transform. The Discrete Fourier Transform (DFT) of a sequence x(n) of
length L ≤ N is given by:

X(k) =

N−1∑
n=0

x(n)e−j2πkn/N , k = 0, 1, ..., N − 1, (2.21)

where N is the number of frequency lines in the spectrum. You can ob-
serve in this equation that computation of the N−point DFT requires N2

complex multiplications and N(N − 1) complex additions.

The relation for inverse DFT (IDFT) which reconstructs the sequence x(n)
from its frequency samples is as follows:

x(n) =
1

N

N−1∑
k=0

X(k)ej2πkn/N , n = 0, 1, ..., N − 1. (2.22)

In Figure 2.5 you can observe the frequency samples of the sequence in
Equation (2.17).

Alternatively, viewing the Equations (2.21) and (2.22) as linear transforma-
tions of x(n) and X(k), leads to the matrix format representation of DFT
and IDFT.



12 2 Principles of Speech Signal Processing

We define an N ×N transformation matrix W:

W =



1 1 1 ... 1
1 W W 2 ... WN−1

1 W 2 W 4 ... W 2(N−1)

. . . .

. . . ... .

. . . .

1 WN−1 W 2(N−1) ... W (N−1)(N−1)


, (2.23)

where W = e−j2π/N , to obtain the following linear expressions for the
N−point DFT:

X = Wx, (2.24)

and IDFT:
x =

1

N
W∗X. (2.25)

The N−dimensional vectors X and x in the above equations are the vec-
tors of signal sequence x(n) and its frequency samples X(k), respectively.
The term W∗ refers to the complex conjugate of the transformation matrix.

By applying symmetry and periodicity properties of the term W =
e−j2π/N , the complexity of DFT computation can noticeably be reduced.
This leads us to a number of algorithms called Fast Fourier Transform
(FFT) algorithms, that compute DFT efficiently. Assuming that N is
not a prime number and can be factorized to a product of two integers
(N = LM ), one of FFT algorithms, for instance, divides the N−point DFT
to a number of smaller DFTs (M−point DFTs) to reduce the computation
cost. As a result, the computational complexity is reduced toN(M+L+1)
complex multiplications andN(M+L−2) complex additions. In the cases
whereN is a power of 2, we will have anN log10(N)-complexity algorithm
for computation of DFT.
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Chapter 3

Automatic Speech
Recognition, ASR

Speech technology includes several subfields; amongst them are Speaker
Identification (extracting a person’s identity from his/her voice), Speech
Synthesis (converting text to voice in order to produce artificial human
speech) and Speech Recognition (converting speech to text). In this section
we try to introduce the newest techniques for Automatic Speech Recogni-
tion.

An automatic speech recognition system is used for labeling the human
speech and it has a variety of applications such as voice dialling, call rout-
ing, data entry and automatic control of home appliances. Figure 3.1 gives
you an overview of a speech recognition system and its units. A modern
speech recognition system is composed of 3 main components:

• Feature Extraction: Extracting feature vectors from digitized speech
signal.

• Training Hidden Markov Models: Training acoustic models for
speech feature vectors using Hidden Markov Models.

• Recognition: Classifying the test speech vectors using the acoustic
models obtained in previous step.

In the rest of this section we first introduce phonetics and then explain
each of the above components.
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Figure 3.1: Components of a Speech Recognition System [10]

3.1 Speech Production

Study of human sound production and properties is called phonetics. In
this section two major branches of phonetics, Articulatory Phonetics and
Acoustic Phonetics are discussed. Articulatory Phonetics focuses on how
human organs are involved in speech production while Acoustic Phonet-
ics studies the acoustic properties of speech.

3.1.1 Articulatory Phonetics

Speech is composed of phonemes as its smallest units. There are two
types of phonemes called vowels and consonants and a combination of
them makes each spoken word. This section discusses the production of
vowels and consonants as units of a spoken word. Figure 3.2 shows the
human body organs that produce and modulate the speech (vocal tract).
The sound source as you observe in this figure, is the airflow provided by
lungs and diaphragm while breathing (Respiration phase). This airflow
then passes through a structure called Larynx which plays an important
part in sound production. The structure of Larynx as you can observe
in Figure 3.3 contains two bands of muscle and tissue called vocal cords
and the gap in between them called glottis. This phase of sound produc-
tion with Larynx’s contribution is defined as phonation. Depending on
the position of vocal cords and the rate of airflow, different phonations are
obtained. If the vocal cords are completely closed, a kind of consonantal
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Figure 3.2: Human organs which make speech (Vocal tract) [9]

Figure 3.3: The structure of Larynx [3]

sound is produced named glottal stop. If the airflow causes a vibration
in vocal cords while passing through them, the resulting noise in the air
produces a voicing sound (vowels and voiced consonants) such as [b], [d],
[v], [i], [r], [z]. On the other hand, if the vocal cords are completely apart
(wide-open glottis), the air can freely pass through them and no noise will
be produced in the air. The resulting sound in this case is a voiceless sound
(voiceless consonants) such as [p], [t], [k], [s], [f], [sh], [th], [ch]. Moreover,
if the air flows so rapidly through the wide-open glottis, a whisper-like
sound such as [h] (and some whispered vowels) becomes the result.

The last phase of speech production is called articulation and it refers to
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the places in the human vocal tract which are mostly constricted when
a sound is produced (place of articulation) and how the organs such as
tongue or lips contribute in producing the sounds (manner of articula-
tion). Since the vowels are produced with no noise from constriction in
the vocal tract, these two terms are only used for consonants. The articu-
latory features of vowels that classify the quality of vowels are as follows:

• Height: Vowel height determines the vertical position of the tongue.
Based on this feature, vowels are classified to high vowels (the
tongue located high in the mouth) such as [i] and [u] and low vowels
(the tongue located low in the mouth) such as [a].

• Backness: Vowel backness refers to the position of the tongue rela-
tive to the back of the mouth. For this feature we will have front
vowels (the tongue located forward in the mouth) such as [i] vs back
vowels (the tongue located backward in the mouth) such as [u].

• Roundedness: It determines whether the lips are rounded or not
during articulation and classifies the vowels to rounded or un-
rounded.

• Nasalization: It determines whether the air passes through the nose
during articulation and classifies the vowels to nasal and oral.

A combination of these features determines the quality of each vowel
sound.

The following are the most important places of articulation for classifica-
tion of consonants:

• Labial (lips)

• Coronal (tip or blade of tongue)

• Dorsal (back of tongue)

Furthermore, the major manners of articulation for the consonants are as
follows:

• Stop: All of articulators are closed and air cannot escape through the
mouth.
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• Oral stop (plosive): Air cannot escape through the nose ([p], [t], [k],
[b], [d], [g]).

• Nasal stop: The oral cavity is closed and air escapes through the nose
([m], [n], [ng]).

• Fricatives: A noisy airflow exists at the place of articulation and a
hissing sound is produced ([f], [v], [s], [z], [th], [dh]).

• Approximant: There is very little closure of articulators and conse-
quently no noise is involved ([y], [r]).

• Lateral approximant: Airflow is obstructed along the center of oral
tract and the sound is pronounced by sides of tongue ([l]).

• Tap or Flap: The oral cavity is closed temporarily by tongue ([dx]).

• Affricate: Oral stop that is followed by a fricative instantly ([ch],
[jh]).

3.1.2 Acoustic Phonetics

This section describes the acoustic properties of speech signals. The am-
plitude (loudness) of a speech signal is defined as the air pressure in differ-
ent time instants. A complex speech signal is resulted from adding several
simple sinusoids with different frequencies. A spectrum shows each fre-
quency content (pitch) of the speech signal and its corresponding ampli-
tude. In a spectrum diagram the horizontal axis represents the frequency
(in Hz) and the vertical axis represents the amplitude (in dB). The spec-
trum of a sound wave acts like a prism that breaks the light into colors;
similarly, it breaks a sound wave to its frequency components. This helps
us to find out the frequency patterns of different vowels and consonants
(or phonemes in general).

The human speech production system can be simulated by a system con-
sisting of excitation and articulation units. In the excitation (source) unit
a switch is used to decide between a tone generator for the voiced sounds
and a noise generator for the unvoiced sounds (simulating the vocal cords
task). Then in the articulation (filter) unit a variable filter is used to articu-
late the sounds and make the final speech (simulating the mouth and nose
tasks). Thus, the spectrum of a speech waveform is composed of the actual
frequencies produced by the source mounted on an envelope that is the
frequency response of the filter. The peaks of the filter’s (vocal tract’s) fre-
quency response (resonance frequencies of the filter) are called formants
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Figure 3.4: The spectrum of a speech waveform is a combination of har-
monics and formants [14]

[6]. The formants as demonstrated in Figure 3.4 make the overall shape
(envelope) of the spectrum while the harmonics are the frequency con-
tents of it. Different vowels (with different formants) can have the same
harmonics and same vowels (with similar formants) can be spoken with
different harmonics.

3.2 Feature Extraction

Feature extraction is a kind of dimensionality reduction method used in
pattern recognition tasks to reduce the amount of data (in order to avoid
redundancy), strengthen the variable parts that improve discrimination
of patterns and attenuate the variable parts that worsen discrimination of
patterns. As for speech recognition, the variable parts that may disorder
the speech recognition outcome are speaker variabilities and acoustic and
channel distortions. Through this process the digitized speech signal is
transformed to a sequence of equally spaced (in time) feature vectors. The
speech signal can be considered stationary in the intervals covered by each
feature vector (10 ms intervals).

The features that we use for speech recognition are called Mel Frequency
Cepstral Coefficients (MFCC features). In this section we explain how
MFCC feature vectors are derived from the digitized speech signal.

The first step in MFCC feature extraction is to perform short-time Fourier
transform (STFT) on the digitized speech signal. The short-time Fourier
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Figure 3.5: Overview of short-time Fourier transform

transform determines the temporal frequency contents (time localization
of frequency contents) of a signal which is favorable in our case and it is
a linear transform. Since we are dealing with digital speech signals, we
only describe the discrete STFT. Figure 3.5 shows the process of calculat-
ing discrete STFT. First, the digitized speech signal x(n) is split up into
finite-length frames by multiplying the speech signal by a discrete finite-
length window w(n). For reducing the boundary noise, we should extract
overlapping frames. Then FFT is calculated for each overlapping frame
according to the following equation:

STFT{x(n)} = Xi(k) =
∞∑

n=−∞
x(n)w(n− i)e−j2π

k
N
n, (3.1)

where k = 0, 1, ..., N − 1, i denotes the frame index and N is the number
of frequency bins for each frame that is equal to the frame length.

The squared magnitude of the resulting complex sequence is defined as
the spectrogram of the signal x(n) and it is obtained by the following equa-
tion:

spectrogram{x(n)} = |Xi(k)|2. (3.2)

The plot of spectrogram (with horizontal and vertical axes representing
time and frequency respectively) shows how the frequency contents of a



20 3 Automatic Speech Recognition, ASR

Figure 3.6: A digital signal and its spectrogram

signal change during the time (time-frequency graph). As an example, in
Figure 3.6 the spectrogram of a signal that has varying frequency contents
in different time intervals is given. One can observe from this figure that
the spectrogram shows more energy of the signal in the interval where it
has higher frequencies.

There are three factors that have effect on the quality of STFT: window
type, window length and step size value. In Figure 3.7 you can observe
two commonly used window types for frame extraction and the spectro-
grams that are obtained using these window functions. Hamming win-
dow is the most appropriate one since it prevents the discontinuities at
window boundaries. The equation for hamming window is given by:

w(n) =

{
0.54− 0.46 cos 2πn

N−1 0 ≤ n ≤ N − 1;

0 otherwise.
(3.3)

The window length controls the time-frequency resolution of the spec-
trogram. Long windows lead to high frequency resolution (for detec-
tion of formants with short spectral distance) and low temporal resolution
while short windows result in low frequency resolution and high tem-
poral resolution (for detection of fast variations such as short plosive).
Therefore, having high frequency resolution and temporal resolution at
the same time is not possible and even not desirable. However, for au-
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Figure 3.7: Common window functions used for STFT calculation and
their effect on spectrogram

Figure 3.8: Mel scale versus Hertz scale [16]

tomatic speech recognition the window length of 400 samples (at 16 kHz
sampling rate) which leads to frequency resolution of ∆f = 40 Hz and
temporal resolution of ∆t = 25 ms along with the window shift value of
10 ms, works well.

So far we have obtained the temporal spectrum of the digital speech signal
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Figure 3.9: Mel-frequency triangular filter banks [17]

and now we should transform the frequency scale to the mel scale and
take the logarithm of squared amplitude of spectrum. The mel is a non-
linear frequency scale for sound pitches that are perceived by the listeners
to have equal distances from each other. It models the human auditory
system due to the fact that the human ear does not perceive the pitches
of sound linearly but logarithmically. This is to our advantage because it
improves the human ear sensitivity in lower frequencies and smooths the
spectrum. Moreover, experiments reveal that mapping the frequencies of
speech signal to mel scale improves the speech recognition performance.
The following equation is used for converting the Hertz frequency to its
corresponding Mel scale:

mel = 2595 log10(1 +
f

700
), (3.4)

and Figure 3.8 demonstrates this relation. As you see in this figure, the
high frequencies are compacted in the mel scale while the low frequen-
cies are expanded. The reference point between the Hertz and Mel scales
is 1000 Hz = 1000 Mel and the relation is approximately linear below 1
KHz and logarithmic above 1 KHz. For converting the frequency scale to
Mel, we can apply Mel-frequency triangular filter banks [11] as exhibited
in Figure 3.9. The filters are bandpass and they model auditory spectral
bands. The center frequencies of triangles are calculated according to the
Mel scale (Equation (3.4)) and as a result the bandwidth and distance of
triangles increase with frequency. For each of the triangular filters, the
squared magnitude of each frame’s spectrum is multiplied by the filter
gain and the results are summed up. The logarithm of the resulting values
present the scaled power spectrum of each frame. The following formula
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expresses this step:

X ′i(j) = log
N−1∑
k=0

H(j, k)|Xi(k)|2, {j = 1, ...,M}. (3.5)

In Equation (3.5), M represents the number of filter banks (M < N ), X(k)
is the spectrum of a frame (short-time spectrum) and H(j, k) is the jth
filter bank. The reason for taking the logarithm of squared amplitude Mel-
spectrum is that the loudness of a sound is approximately perceived in a
logarithmic manner.

The last step of MFCC feature extraction is to calculate the Discrete Co-
sine Transform (DCT) of the Mel log power spectrum in order to decor-
relate the Mel-spectrum vectors which are highly correlated. The DCT is
nearly similar to DFT; the only difference between them is that DFT uses
both sine and cosine functions (complex exponentials) to calculate Fourier
transform whereas DCT uses only cosine function. The following equation
formulates the last step of MFCC feature extraction:

mi(l) =

M∑
j=1

X ′i(j) cos (l
π

M
(j − 1

2
)), {l = 1, ...,M}, (3.6)

and it can be expressed in matrix form as follows:

mi = DCT(X′i), (3.7)

where mi is the final M -dimensional feature vector. The resulting vector
is called Mel power Cepstrum since we have taken the Fourier transform
of log-Mel power spectrum. The word Cepstrum refers to the Fourier
transform of log spectrum and it is derived from reversing some letters
in ”spectrum”. The independent variable of the cepstrum is called quef-
erency. Figure 3.10 compares the plots of Hertz spectrum, Mel spectrum
and Mel cepstrum.

The feature vectors mi are 13-dimensional vectors called static features.
The dynamic features are gained by taking the first and second order
derivatives of short-time energy of the signal resulting in two more 13-
dimensional vectors. Thus, each frame of speech signal is finally rep-
resented by a 39-dimensional feature vector; although, we only need
the static features (the first 13 MFCCs) in our experiments. Figure 3.11
presents a summary of the whole process of MFCC feature extraction. The
MFCC feature vectors are extracted for both training and testing data in
our experiments.
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Figure 3.10: A graph example of Hertz spectrum, Mel spectrum and Mel
cepstrum

3.3 Training

In the modern speech recognition systems, the acoustic models are trained
by Hidden Markov Models [12]. In this section we briefly describe HMMs
and its application in speech recognition. First, we introduce the HMM
and its elements and 3 basic problems for it. Then we focus on the func-
tionality of HMM for training acoustic models and labeling the test speech
signals.

3.3.1 An Introduction to Hidden Markov Models

HMM is a statistical model of sequences of events which is an extension of
Markov chains. In the ordinary Markov chains the states are visible while
in a HMM only the outputs (a set of observation sequences) are visible
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Figure 3.11: A summary of MFCC feature extraction [17]

and the states are hidden. In a first order Markov Model we assume that
the probability of an event depends on its previous event only. HMMs
are widely used for recognition of time-varying pattern sequences such as
speech feature vectors. The elements of a first order HMM illustrated in
Figure 3.12 are as follows:

• A set of N states: S = {s1, s2, ..., sN} that are not visible (denoted by
circles in Figure 3.12). Only one state is active at each time instant.

• A set of K possible observation vectors: V = {v1,v2, ...,vK}; the
observation vectors are selected from set V (ot ∈ V).

• The probabilities of state transitions (meaning change from one state
to another at equally spaced discrete times and denoted by arcs in
Figure 3.12) which is a N ×N matrix A with aij = P (qt = sj |qt−1 =

si), where qt ∈ S represents the state at time t and
∑N

j=1 aij = 1.

• The probabilities of observation vectors represented by a N ×K ma-
trix B with bjk = P (ot = vk|qt = sj), where ot ∈ V represents the
observation at time t and

∑K
k=1 bjk = 1.
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• The initial state probability represented by a N−dimensional vector
π with πi = P (q1 = Si) where

∑N
i=1 πi = 1.

A HMM denoted by λ is represented by its known parameters:
λ(A,B,π).

The three basic questions we may face in a HMM are:

• Evaluation Problem: What is the probability that an observation se-
quence O = o1,o2, ...,oT is produced by a given model λ or mathe-
matically what is the probability P (O|λ) given O and λ?

Solution: Forward algorithm [12]

• Uncovering Problem: What is the most likely state sequence
Q = q1, q2, ..., qT that can produce an observation sequence O =
o1,o2, ...,oT by a given model λ?

Solution: Backward algorithm [12]

• Learning Problem: For a given observation sequence O =
o1,o2, ...,oT of length T , how should we set the parameters of the
model λ(A,B,π) to maximize the probability P (O|λ)?

Solution: Viterbi algorithm for training [12]

The learning and evaluation problems are similar to the training and
recognition phases of an automatic speech recognition system.

3.3.2 Training Acoustic Models

The goal of a speech recognition system is to do a mapping between a se-
quence of speech vectors and its corresponding symbol. The speech signal
is either related to a single symbol (word) selected from a fixed vocabu-
lary or a sequence of symbols (sentences). In the former case, we will have
isolated word (word level) recognition while the latter case is called con-
tinuous speech (phoneme level) recognition. In the isolated word recogni-
tion, we have to generate a model for each word in the vocabulary using
enough training samples. Consequently, words that do not appear on the
training set cannot be recognized. Although isolated word recognition
sounds artificial, it has a variety of practical applications.
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If we represent the input speech waveform as a sequence of observation
vectors O = o1,o2, ...,oT (where ot is the observation vector at time t),
then computing the following probability will solve the isolated word
recognition problem:

arg max
i
{P (wi|O)}, (3.8)

where wi is the i−th word in the vocabulary. The probability in Equation
(3.8) cannot be computed directly. Hence, by using the Bayes’ rule we turn
it to the following computable probability:

P (wi|O) =
P (O|wi)P (wi)

P (O)
, (3.9)

that means if the prior probabilities P (wi) are known, the most likely word
corresponding to the observation sequence O is only related to the proba-
bility P (O|wi). Therefore, solving the isolated word recognition problem
is simplified to computation of the probability P (o1,o2, ...|wi). By gener-
ating a Markov Model for each word using spoken examples of it, we can
replace the computation of probability P (O|wi) by the estimation of the
Markov Model parameters. In other words, if λi represents the Markov
model of the word wi, the following relation will hold true:

P (O|wi) = P (O|λi), (3.10)

meaning that the isolated word recognition problem is solved by finding
the parameters of the Markov models for each word wi. As indicated in
Figure 3.12, the sequence of observation vectors O corresponding to each
word is assumed to be produced by a Markov model. At each time unit
the state of the model is changed and when the state j is entered at time
t, a vector ot is produced by the probability density bj(ot). Sometimes the
system stays at the same state for several time units and as a result more
than one vectors are produced at the same state and by the same prob-
ability density function. The transition between states is also a discrete
probability denoted by aij . The state sequence that generates vectors o1 to
o6 in Figure 3.12 isQ = q1, q2, q2, q3, q4, q4, q5, q6. Given this state sequence,
the probability P (o1, ...,o6, Q|λ) can be computed simply by multiplying
the transition probabilities aij and the output probabilities bj(ot). In a
hidden Markov model, however, the states are hidden and we have no
information of the state sequence Q. Therefore, the probability P (O|λ) is
calculated by finding the most probable state sequence and multiplying its
corresponding transition and output probabilities assuming that we know
the parameters of the model aij and bj(ot).

The training phase of a speech recognition system consists of finding the
HMM parameters for each word. The models for each vocabulary word
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Figure 3.12: An example of a Markov Model λ [17]

is produced using enough spoken examples of that word. The parameters
of the models are estimated by the Baum-Welch Re-Estimation algorithm
[17]. These parameters are the transition probabilities aij and the means
µj and variances Σj for each of the output probabilities bj(ot). The distri-
bution functions of output probabilities are continuous Gaussian Mixture
densities.

In continuous speech recognition our models would be trained based on
phonemes rather than words; therefore, even the words that are not inside
the training set can be recognized. Moreover, since we have only a limited
number of phonemes, we would have enough training samples for our
models. However in continuous speech recognition, it is so difficult to
specify the boundaries between symbols from the speech signal. In this
case the HMMs are connected to form the continuous speech models and
3 states are considered for each phoneme.
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3.4 Recognition

The recognition phase of an ASR system is to estimate the maximum value
of P (O|λi) after training the HMMs for each word (in isolated word recog-
nition case) / sentence (in continuous speech recognition). The maximum
value of these probabilities (as mentioned in section 3.3.2) is calculated
based on the most likely state sequence using Viterbi decoding algorithm
[17]. An extension of the Viterbi algorithm is used for continuous recog-
nition as well. The word (sentence) wi corresponding to the model which
produces the maximum likelihood P (O|λi) will be then the recognized
word (sentence).
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Chapter 4

Mapping Based Noise
Reduction

This chapter mainly focuses on linear and nonlinear dimensionality reduc-
tion techniques for the purpose of noise reduction. In many speech recog-
nition problems, environmental and natural noise corrupt the speech data.
In order to perform robust speech recognition in presence of such noise,
one has to first reduce the noise. Several noise reduction methods have
been used so far to improve the speech recognition in noisy environments,
amongst them are Spectral Subtraction, Cepstral Mean Subtraction and
Blind Equalization. Although, in difficult domains these methods prove
to be insufficient.

Another method, however, is the mapping based method which maps the
noisy feature vectors extracted from a corrupted speech signal to corre-
sponding clean feature vectors. In other words, it substitutes each sample
from a noisy data set (noisy feature vectors) Xn by a sample from a clean
data set (clean feature vectors) Xc which best describes its features.The
mapping, however, is done in a low dimensional space due to the fact that
in the lower dimensional space, the distances between vectors are calcu-
lated more accurately and consequently the most accurate substitution of
the noisy feature vector with highest similarity to it, is found. For a bet-
ter understanding of this, you can observe Figure 4.1. One can observe
from this figure that the nonlinearity of high dimensional space, leads to
non accurate measurements of distance between vectors and as a result
the substitution result is not as expected, while, mapping to low dimen-
sional space, results in a submanifold with more linear characteristics and
as a result higher precision in distance measurement. Moreover, the hope
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Figure 4.1: An example that shows how mapping to lower dimensional
space leads to more accurate distance measurement and as a result more
precise vector replacement

is that some dimensions representing noise are dropped in the dimension-
ality reduction. This nonlinear dropping of noise dimensions makes the
process conceptually and mathematically different from techniques like
multi-conditional training.

In the following sections two dimensionality reduction methods are de-
scribed in detail: Principal Component Analysis as a linear method and
Locally Linear Embedding as a nonlinear method. Then, a standard
k−means clustering algorithm is discussed and finally the whole noise
reduction procedure is presented in last section.

4.1 Locally Linear Embedding, LLE Algorithm

Locally Linear Embedding [5] as an unsupervised manifold learning al-
gorithm, performs a nonlinear mapping from high-dimensional to low-
dimensional space. Some of the applications of LLE are Speech Analysis,
Feature Extraction for use in Speech Recognition, Speech data visualiza-
tion, Phone Classification, and Noise Reduction.
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The idea behind LLE is that the neighbouring points in high dimensional
space, remain adjacent in low dimensional space as well. In other words,
mapping through LLE preserves the local neighbourhood in the low di-
mensional space. Therefore, LLE aims at finding a low dimensional em-
bedding which has this property that if two points are neighbors or co-
located to each other in high dimensional space, they will definitely be
neighbours in low dimensional space as well. This means that LLE main-
tains the local neighbourhood of high dimensional space in low dimen-
sional space.

Suppose X : {x1,x2, ...,xn} , xi ∈ RD is the high-dimensional data
set lying on a nonlinear manifold. LLE maps this set of data to a low
dimensional data set Y : {y1,y2, ...,yn} , yi ∈ Rd, d < D in two steps :
firstly, finding K nearest neighbours of each sample xi and calculating the
reconstruction weights of each sample based on it’s nearest neighbours
and secondly, finding the low dimensional mappings yi for each xi which
minimizes a function of the reconstruction weights.

To obtain the reconstruction weights based on nearest neighbours of xi,
the following function is minimized:

ε1(W) =
n∑
i=1

|xi − x̃i|2 =
n∑
i=1

|xi −
K∑
j=1

w
(i)
j xN(j)|2, (4.1)

x̃i =

K∑
j=1

w
(i)
j xN(j),

where xN(j) represents the j−th nearest neighbour of xi. The function ε1
shows the difference between original and reconstructed values of xi and
thus the error of reconstruction. With the optimal value of weights (min-
imum value of ε1), xi is reconstructed most accurately by it’s K nearest
neighbours xN(1)...xN(K). Then for only one vector xi, above equation is:

ε
(i)
1 =

K∑
j=1

K∑
m=1

w
(i)
j w

(i)
m Q

(i)
jm, (4.2)

Q
(i)
jm = (xi − xN(j))

T (xi − xN(m)),

where
∑K

j=1w
(i)
j = 1 and Q(i) contains the inner products of neigh-

borhood vectors for xi. Finally by solving Equation (4.2) and setting
R(i) = (Q(i))−1, the optimal reconstruction weights are calculated:

w
(i)
j =

∑K
m=1R

(i)
jm∑K

p=1

∑K
q=1R

(i)
pq

. (4.3)
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However, since rank(Q(i)) = min(D,K), for K > D, Q(i) is not invertible
and as a result a regularization parameter r should be added before inver-
sion of Q(i) :
R(i) = (Q(i) + rI)−1 (I is the unity matrix with diagonal elements equal
to 1 and other elements equal to 0), otherwise the eigenanalysis algorithm
for finding the inverse of Q(i) does not converge.

Now that the reconstruction weights are calculated, low-dimensional
mappings yi can be calculated by minimizing the following function of
these weights:

ε2(Y) =

n∑
i=1

|yi −
K∑
j=1

w
(i)
j yN(j)|2. (4.4)

This equation can be expressed in matrix form as follows:

ε2 =
n∑
i=1

n∑
j=1

Mijyi
Tyj = trace(YMYT), (4.5)

where W is an n × n sparse matrix of reconstruction weights with
Wi,N(j) = w

(i)
j and M is an n × n matrix wich is defined as

M = (I−W)T(I−W) and finally Y is the matrix containing low dimen-
sional vectors yi in its columns. In order to find the optimal solution, La-
grange Multipliers method is used. The Lagrange equation is obtained by
a combination of Equation (4.5) and a constraint applied to the covariance
matrix of Y to make it equal to identity: 1

nYYT = I. Thus, the derivative
of this Lagrange equation is set to zero to lead us to the final equation:
(M−Λ)YT = 0 where Λ is a diagonal matrix which contains Lagrange
multipliers as diagonal elements. The solution to this equation obviously
consists of the eigenvectors of M. However, not all of these eigenvectors
but only the ones which correspond to the (d + 1) smallest eigenvalues
except for the first one which is discarded, minimize ε2. The eigenvector
corresponding to the smallest eigenvalue is equal to the mean of vectors yi

and by discarding it we make
∑n

i=1 yi = 0. Figure 4.2 shows a summary
of how LLE works. According to this figure, mapping a vector xi to its
corresponding vector in lower dimensional space yi through LLE can be
summarized in 3 steps:

1. The nearest neighbours to xi are selected.

2. The reconstruction weights wij are calculated based on how well xi

can be recreated by its nearest neighbours.
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Figure 4.2: A summary of LLE [1]

3. The same reconstruction weights wij are used to find the mapped
vector yi based on how well yi can be recreated by mappings of xi’s
nearest neighbours weighted to wij.

To map a new sample x which is not included in data set X, its K nearest
neighbours xN(1)...xN(K) in X are found to calculate the new reconstruc-
tion weights wj according to Equation (4.3). Then, it is mapped by using
the new weights and corresponding vectors in Y to the nearest neigh-
bours. Therefore, the mapping equation is:

y =

K∑
j=1

wjyN(j). (4.6)

According to above mapping procedure, there are a couple of parameters
which affect the results. To have a desired mapping result, these 3 param-
eters should be set properly:

1. Regularization parameter r: needed for the cases where K > D to
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Figure 4.3: A 3D data set mapped to 2D space using LLE [4]

help the eigenvalue computation algorithm converge. For my exper-
iments, r = 10−3 results in a good convergence.

2. Number of neighbours K: Low values of K cause a mapping with
no global properties. On the other hand, with high values of K, the
whole data is considered as neighborhood and as a result, the non-
linearity of the mapping process is lost. Additionally, high values of
K make the algorithm slower due to high amount of computations.

3. Dimensionality to map to d: Low values of d result in several data
samples mapped to the same new point and consequently data is
lost and high values for d lead to a mapping with higher amount of
noise involved.

Figure 4.3 shows an example of a 3-dimensional data set mapped to 2-
dimensional space by LLE.

4.2 Principal Component Analysis

Principal Component Analysis [2] is an unsupervised learning algorithm
which reduces the dimensionality of data points by projecting each point
of a data set linearly on a number of vectors called principal components.
These principal components are ordered in the direction of maximum
variance of data and they are orthogonal to each other consecutively. To
put it in other words, PCA projects the data to a lower dimensional space
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(principal subspace) orthogonally and in a way that leads to maximum
variance of the projected data. In addition to dimensionality reduction,
PCA has other applications such as data compression, feature extraction
and data visualization.

Let xn : n = 1, 2, ..., N , xn ∈ RD represent a set of vectors with dimension-
ality D. Using PCA, we intend to project this set of vectors to a new set of
vectors yn : n = 1, 2, ..., N , yn ∈ Rd with a lower dimensionality d < D.

We start the formulation by projecting the data to a one dimensional space
or by setting d = 1, and then generalize it to all possible values for d.
We define the principal component of this one dimensional space by a
vector u1 of dimensionality D. Since we only need the direction of u1

for data projection, we assume that it is a unit vector and formulate this
assumption as: u1

Tu1 = 1. Using the principal component u1, the input
vectors xn are projected to scalar values yn = u1

Txn.

To proceed, we need the relations for mean and covariance of the input
vectors xn. The following relations give the mean vector m and covariance
matrix S of input vectors xn, respectively:

m =
1

N

N∑
n=1

xn, (4.7)

S =
1

N

N∑
n=1

(xn −m)(xn −m)T . (4.8)

Now, we can proceed by finding a relation for the variance of projected
data yn, and maximizing it in terms of u1. Considering that the mean of
projected data is u1

Tm, the following relation is the variance of projected
data:

V ar(yn) =
1

N

N∑
n=1

(u1
Txn − u1

Tm)2 = u1
TSu1. (4.9)

The goal is now to solve the following maximization problem:

arg max
u1

u1
TSu1 (4.10)

subject to: u1
Tu1 = 1.

This is a constrained maximization problem which uses the unity charac-
teristic of u1 as the constraint to avoid that the magnitude of u1 tends to
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infinity. By using a Lagrange multiplier denoted by λ1, this constraint is
imposed to the maximization problem and the following unconstrained
maximization problem is obtained:

arg max
u1

{u1
TSu1 + λ1(1− u1

Tu1)}. (4.11)

To solve this problem we should simply set the derivative in terms of u1

equal to zero which results in the following equation:

Su1 = λ1u1. (4.12)

Equation (4.12) apparently implies that the vector u1 is an eigenvector of
the covariance matrix S. We can left multiply both sides of this equation
by u1

T as follows:
u1

TSu1 = λ1, (4.13)

to make one further conclusion. We observe that the left side of Equation
(4.13) is the variance of projected data which is equal to λ1. This means that
we will have the maximum variance of projected data if u1 is selected as
an eigenvector corresponding to the largest eigenvalue of the covariance
matrix S.

So far, we have found the first principal component which is the eigen-
vector related to the largest eigenvalue of S. To find the other principal
components we should similarly find the eigenvectors corresponding to
the second, third, ... largest eigenvalues of S. The orthogonality require-
ment of successive principal components is fulfilled since the eigenvectors
are orthogonal to each other.

Finally, we generalize the algorithm for any value of d (d−dimensional
projection). The best d−dimensional projection which maximizes the
variance of projected data is obtained by finding the d eigenvectors
u1, ...,ud (d principal components) corresponding to the d largest eigen-
values λ1, ..., λd of the covariance matrix S.

As an example, Figure 4.4 illustrates the realization of a data set with 3
dependent coordinates and its principal components.

4.3 k-Means Clustering Algorithm

k−means is an unsupervised clustering algorithm which classifies the data
set to a number of clusters (k−clusters) such that each data point is asso-
ciated to the nearest cluster centroid. Mathematically, k−means algorithm
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Figure 4.4: Realization of a 3D data set xn (red) and Principal components
of the data set xn (blue)

classifies a data set X : {x1, ...,xn}, where xi ∈ Rd, into k disjoint clusters
S : {S1, S2, ..., Sk} by minimizing the sum of Euclidean distances between
the cluster centroid and the data inside a cluster. This can be formulated
as:

arg min
S

k∑
i=1

∑
xj∈Si

||xj − ci||2, (4.14)

where ci denotes the centroid of cluster Si. Here, the cluster centroid is the
mean of data points inside the cluster. The standard k−means algorithm
works as follows:

1. The first step is to select a value for the number of clusters k.

2. The second step is to set the initial values for the k cluster centroids
c1, c2, ..., ck. One way is to assign the data point randomly to the
k clusters and calculate the centroids and the other way is to assign
the k first data points to each of k clusters and assign the rest of data
to the cluster with nearest centroid and recalculate the centroid after
each assignment.

3. In the third step calculate the Euclidean distance between each data
point and each of the cluster centroids and again assign the data
points to the clusters with nearest centroid. Recalculate the cluster
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Figure 4.5: Block Diagram of standard k−means algorithm [13]

centroid for the clusters which have gained or lost data points. This
step can be formulated as follows:

S
(t)
i = {xj : ||xj − ci

(t)|| ≤ ||xj − c`
(t)||, ∀` = 1, ..., k}, (4.15)

ci
(t+1) =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj. (4.16)

4. Iterate until no change occurs in the location of centroids and the
algorithm converges. The algorithm will always converge if after
each iteration the sum of Euclidean distances between each cluster
centroid and the points in that cluster decreases.

Figure 4.5 shows a block diagram of the algorithm and Figure 4.6 shows
an example of how the cluster centroids (denoted by red stars) move dur-
ing iterations and finally all the data points (pictured by blue squares) are
classified to two disjoint clusters.
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Figure 4.6: An example of how cluster centroids (stars) move after each
iteration in the k−means algorithm [13]

4.4 Mapping Procedure

The process of mapping the noisy feature vectors to clean ones is per-
formed in several steps which are presented in this section. The clean
vectors are the MFCC feature vectors extracted from clean speech signals
recorded for the purpose of speech recognition and the noisy vectors are
the MFCC feature vectors extracted from the same speech signals and by
the same speakers but recorded in a noisy environment like on motorcy-
cles where different sources of noise (wind, construction, other vehicles,
etc.) are available.

The following is the noise reduction process:

1. Let X be the set of clean feature vectors. First, this set is mapped to
a lower dimensional set using a dimensionality reduction algorithm
(LLE / PCA).

2. Let xn be the noisy vector which should also be mapped to low di-
mensional space. Since it is considered a new previously unseen
sample, the mapping can be done using the weights obtained from
nearest neighbours of the noisy vector in clean vectors and find the
mapping of noisy vector based on that. The process is as follows :

First of all, the K nearest clean vectors to the noisy vector are found
in the original manifold. Using these nearest neighbours, reconstruc-
tion weights wi are calculated so that the following relation is ful-
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filled:

xn ≈
K∑
i=1

wixi. (4.17)

To get a mapping of the noisy data z, use the same weights as fol-
lows:

z ≈
K∑
i=1

wiyi, (4.18)

where Y is the image of X mapped to lower dimensional space.
Equations (4.17) and (4.18) are developed based on the minimum
approximate (≈) error of reconstruction (of signal using its nearest
neighbours) in original and lower dimensional spaces.

3. After mapping both clean and noisy vectors to lower dimensional
spaces, we find the nearest mapped clean vector yi to the mapped
noisy vector z.

4. Finally, the nearest neighbour to z is mapped back again to original
space. In other words, xi related to yi is found and given as the input
to the recognizer instead of z.

Lastly, to avoid the fact that the mapped vector xi may lie far away from
the original vector xn, a linear interpolation between these two vectors can
be used. Therefore, a λ parameter determines what percentage of xn and
xi is considered in output: o = (1− λ)xi + λxn.

In order to improve the current mapping based noise reduction algorithm,
the available clean and noisy data can be classified prior to mapping pro-
cess. This means that a k−means clustering is performed on the clean data
set to find several cluster centroids ci, i = 1, ..., k. Then the nearest cluster
ci to each noisy vector xni

is found by calculating Euclidean distances be-
tween that noisy vector and the cluster centroids. Then considering that
xni

belongs to cluster ci, the mapping process for xni
is done using the

clean data from the same cluster Xci .

A brief description of this algorithm is as follows:

1. Let X be the clean data set; using a k−means clustering algorithm, it
is classified to k clusters Xc1 , ...,Xck , where c1, ..., ck are cluster cen-
troids. Then each cluster of clean data is mapped to low dimensional
space separately: Yc1 , ...,Yck are clean data sets in low dimensional
space.
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2. Let xn be the noisy vector which can also be classified by calculating
the Euclidean distances between xn and all cluster centroids to find
its nearest cluster ci. Assuming that the nearest centroid to xn is ci,
we can say xn belongs to cluster Xci .

3. To find the best clean vector substitution for xn, do the same map-
ping process as before for the data in cluster ci or in other words do
the mapping for xn using Xci , Yci .
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Chapter 5

Implementation and Results

In this chapter, different approaches for implementation and the obtained
results are presented. For each approach there are a number of param-
eters which affect the performance and the results are compared so that
we finally find the optimum values. Moreover, the results are verified for
different speakers and for different levels of artificially added noise.

5.1 Data Selection

The speech data used in this experiment includes clean speech signals
from 2 male speakers and the noisy signals obtained by adding wind noise
artificially to the same clean signals and with different signal to noise ra-
tio values. The feature vectors are then extracted for clean and distorted
speech signals. As an example of how different signal to noise ratio values
affect the MFCC feature vectors, you can observe in Figure 5.1 the spectro-
gram of distorted MFCC vectors with 25 and 0 dB SNR values.

*Corr Clean 10 dB 25 dB
Speaker 1 82.58 40.91 75.00
Speaker 2 87.88 60.61 86.36

Table 5.1: The percentage of correctly recognized phonemes for our clean
and noisy feature vectors
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Figure 5.1: The spectrogram of two noisy feature vectors with SNR values
of 25 and 0 dB

We have used the Hidden Markov Model Toolkit (HTK) [17] for the con-
tinuous (phoneme level) speech recognition and QtOctave for implemen-
tation of our noise reduction algorithm. In Table 5.1 you can observe the
recognition results of clean vectors, noisy vectors with SNR=10 dB and
noisy vectors with SNR=25 dB, for two speakers. The value of ”Corr” in
this and all other tables represents the percentage of correctly recognized
phonemes.

In the following sections the recognition results of the distorted speech
signals after processing by our noise reduction methods are presented.

5.2 Implementation by LLE

We implemented our noise reduction procedure described in section 4.4
first by using LLE as the dimensionality reduction algorithm. The noisy
feature vectors were originally 13 dimensional vectors. Through the noise
reduction process this dimensionality was reduced to the values d lower
than 13. The other parameters in our experiment were the number of near-
est neighbours K and the interpolation parameter λ described in section
4.4.
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∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 5 21.21 35.61 41.67 40.91 42.42

K = 15 18.94 37.12 40.15 37.12 40.91

K = 20 26.52 43.94 43.18 43.94 43.18

Table 5.2: Speaker 1, SNR = 10 dB, d = 12

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 5 18.94 31.82 33.33 43.18 40.91

Table 5.3: Speaker 1, SNR = 10 dB, d = 11

The implementation results we obtained using LLE for the dimensionality
reduction are given in Tables 5.2 to 5.5 for different values of d,K, and λ. In
addition, Figures 5.2 and 5.3 show a graph of how these results change by
λ for different values of K and λ. One can observe from Table 5.2 a slight
improvement in speech recognition for K = 20. However, we found out
by checking our results that there is some randomness in the output of LLE
that makes our results unstable. In other words, we obtain a new result
every time we run the algorithm. This randomness might be caused by
the eigen analysis algorithm used in LLE. Moreover, the use of LLE makes
the implementation of our method so slow to be run. Hence, we decided
to replace LLE by another dimensionality reduction algorithm which does
not have the mentioned drawbacks.

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 32.58 52.27 66.67 70.45 74.24

K = 15 50.76 67.42 70.45 69.70 75.00

Table 5.4: Speaker 1, SNR = 25 dB, d = 12

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 15.15 29.55 40.91 56.06 59.85

Table 5.5: Speaker 2, SNR=10 dB, d = 11
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Figure 5.2: LLE, SNR = 10 dB, d = 11

Figure 5.3: LLE, SNR = 10 dB, d = 12
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∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 5 26.52 40.91 42.42 46.97 46.97

K = 10 23.48 42.42 43.18 46.21 46.21

K = 15 37.88 43.94 42.42 44.70 44.70

K = 20 27.27 38.64 40.91 45.45 45.45

Table 5.6: Speaker 1, SNR = 10 dB, d = 12

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 5 26.52 40.91 40.15 45.45 45.45

K = 10 26.52 40.15 43.94 45.45 45.45

K = 15 25.00 40.15 44.70 43.94 43.94

K = 20 28.03 41.67 40.91 44.70 44.70

Table 5.7: Speaker 1, SNR = 10 dB, d = 11

5.3 Implementation by PCA

The dimensionality reduction algorithm we used instead of LLE was PCA.
Using PCA led to the faster implementation of our algorithm. Besides, the
randomness caused by LLE did not exist in PCA and consequently using
PCA resulted in stable outputs. Tables 5.6 to 5.10 illustrate the results ob-
tained by using PCA instead of LLE. One can observe from Table 5.6, for
instance, that using PCA in our algorithm leads to a considerable improve-
ment of 6 percent in the speech recognition. Figures 5.4 and 5.5 illustrate
graphically how the results change with different values of λ. The best
value of λ and K according to these graphs are λ = 0.9 and K = 5, 10
leading to the highest percentage of recognition. Furthermore, d = 12 is
the best value of the dimensionality to map to.

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 5 68.18 74.24 74.24 75.00 75.76

K = 10 67.42 72.73 72.73 72.73 75.76

K = 15 67.42 71.21 73.48 75.76 75.00

K = 20 66.67 70.45 71.97 75.76 75.00

Table 5.8: Speaker 1, SNR = 25 dB, d = 12
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∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 23.48 42.42 47.73 60.61 60.61

Table 5.9: Speaker 2, SNR = 10 dB, d = 11

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 5 72.73 84.85 84.85 84.85 86.36

K = 10 72.73 80.30 80.30 85.61 87.12

Table 5.10: Speaker 2, SNR = 25 dB, d = 12

Figure 5.4: PCA, SNR = 10 dB, d = 11
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Figure 5.5: PCA, SNR = 10 dB, d = 12

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 15 8.33 5.30 6.06 36.36 41.67

Table 5.11: 2 clusters, LLE, Speaker1, SNR = 10 dB, d = 11

5.4 Implementation by Clustered Vectors

This section consists of the results obtained by using the clustered feature
vectors and doing the noise reduction on each cluster seperately. In this
part of our work, we classified both clean and noisy feature vectors to 2, 3,
4, and 5 clusters before we map them to lower dimensional space. Then for
each class of vectors we did the same process of noise reduction using both
LLE and PCA as dimensionality reduction algorithms. With higher num-
bers of clusters the noise reduction algorithm was executed faster. How-
ever, the obtained results given in Tables 5.11 to 5.30 show no significant
improvement in speech recognition. The reason for having undesirable
results after clustering the feature vectors might be that we did not have
enough training (clean) feature vetors to be used in our algorithm.

.
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∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 3.79 12.12 27.27 64.39 75.76

Table 5.12: 2 clusters, LLE, Speaker 1, SNR = 25 dB, d = 12

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 6.82 8.33 8.33 38.64 38.64

Table 5.13: 2 clusters, PCA, Speaker 1, SNR = 10 dB, d = 12

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 5 12.12 11.36 23.48 61.36 75.76

K = 10 12.12 12.88 28.03 63.64 71.21

Table 5.14: 2 clusters, PCA, Speaker 1, SNR = 25 dB, d = 12

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 6.06 6.06 10.61 51.52 51.52

Table 5.15: 2 clusters, PCA, Speaker 2, SNR = 10 dB, d = 11
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∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 19.70 16.67 71.21 83.33 87.12

Table 5.16: 2 clusters, PCA, Speaker 2, SNR = 25 dB, d = 11

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 3.79 2.27 4.55 37.12 37.12

Table 5.17: 3 clusters, LLE, Speaker 1, SNR = 10 dB, d = 12

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 5 4.55 13.64 25.00 62.12 75.76

Table 5.18: 3 clusters, LLE, Speaker 1, SNR = 25 dB, d = 12

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 6.82 3.03 6.06 34.85 40.91

Table 5.19: 3 clusters, PCA, Speaker 1, SNR = 10 dB, d = 12
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∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 9.09 8.33 27.27 61.36 75.76

Table 5.20: 3 clusters, PCA, Speaker 1, SNR = 25 dB, d = 12

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 7.58 6.82 9.85 53.03 53.03

Table 5.21: 3 clusters, PCA, Speaker 2, SNR = 10 dB, d = 11

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 5 15.91 17.42 65.15 81.82 86.36

Table 5.22: 3 clusters, PCA, Speaker 2, SNR = 25 dB, d = 12

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 4.55 4.55 8.33 31.82 40.91

Table 5.23: 4 clusters, LLE, Speaker 1, SNR = 10 dB, d = 12
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∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

d = 6 5.30 6.82 21.97 58.33 75.76

d = 12 8.33 9.09 20.45 61.36 75.76

Table 5.24: 4 clusters, LLE, Speaker 1, SNR = 25 dB, K = 10

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

d = 5 7.58 4.55 6.82 34.85 34.85∗
d = 12 6.06 5.30 6.06 34.85 34.85∗

Table 5.25: 4 clusters, PCA, Speaker 1, SNR = 10 dB, K = 10

.

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

d = 4 6.82 10.61 23.48 58.33 76.52

d = 12 12.88 9.09 17.42 59.09 75.76

Table 5.26: 4 clusters, PCA, Speaker 1, SNR = 25 dB, K = 15
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∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 4.55 4.55 6.06 35.61 38.64

Table 5.27: 5 clusters, LLE, Speaker 1, SNR = 10 dB, d = 12

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 5.30 8.33 8.33 72.73 71.97

Table 5.28: 5 clusters, LLE, Speaker 1, SNR = 25 dB, d = 12

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 10 7.58 3.79 3.79 36.36 36.36

Table 5.29: 5 clusters, PCA, Speaker 1, SNR = 10 dB, d = 12

∗Corr λ = 0 λ = 0.5 λ = 0.6 λ = 0.9 λ = 0.99

K = 5 7.58 8.33 8.33 71.21 71.21

Table 5.30: 5 clusters, PCA, Speaker 1, SNR = 25 dB, d = 11
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Chapter 6

Summary and future work

6.1 Conclusions

In this work, we have presented a new approach towards noise reduc-
tion for speech recognition named mapping based noise reduction. In this
technique, feature vectors which are extracted from noisy speech signals
are mapped from a higher dimensional feature space to a lower dimen-
sional subspace in which the clean speech feature vectors are also avail-
able. Afterwards, the noisy features are projected to their nearest clean
feature vectors in lower dimensional space. The results obtained from our
experiments implemented by Octave show that the recognition percent-
age can be raised up to 6% for some speech signals when we use PCA to
find the lower dimensional features. Nonetheless, it should be noted that
in some cases, this technique does not lead to a significant improvement
in the outcome of the speech recognition system. One of the reasons for
such undesirable results might be lack of training (clean) feature vectors.
Another reason might be that the feature vectors turn into non smooth
vectors after the mapping process. Consequently, this method does not
prove yet to yield promising outcomes in all cases.

6.2 Future work

Considering the results of our experiments, the mapping based noise re-
duction is efficient when enough clean models in lower dimensional space
can be found. Accordingly the current work can be improved to some
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extent by using more clean feature vectors for training the submanifold
model of the clean speech vectors.
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