USAGE OF SYNTHETIC GENERATED AND TACTILE MEASURED FLANK MICRO GEOMETRY IN ROMAX AND TE VALIDATION VIA FE SIMULATION AND MEASUREMENT IN A TORQUE TEST RIG

Simon Kimme, Eric Hensel, Jan Bräunig, Martin Burkhardt, Prof. Welf-Guntram Drossel

© Fraunhofer IWU

Romax Technology Global Forum 2014, 7.-8. October, Darmstadt

AGENDA

- introduction
- Why micro geometry analysis?
- micro geometry analysis in RomaxDESIGNER
 - synthetic micro geometry & measurement data
 - import and analysis of micro geometry with undulations
- validation of Romax TE with FE simulation and torque test rig
 - gearing and torque test rig
 - simulation models
 - results
- conclusion and perspective

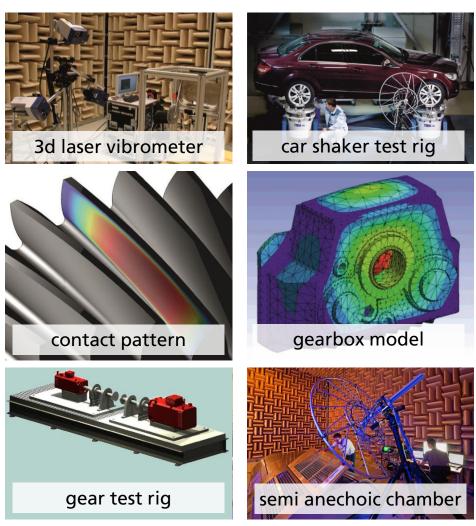
Introduction - The Fraunhofer IWU

Fraunhofer: largest organization for applied research in Europe

- founded in 1991
- about 590 employees
- 37,6 million euro annual budget
- head quarter in Chemnitz, branches in Dresden, Augsburg and Zittau

fields of expertise

Machine Tools, Mechatronics, Lightweight Construction, Forming Technologies, Cutting Technologies, Joining and Assembling, Production Management

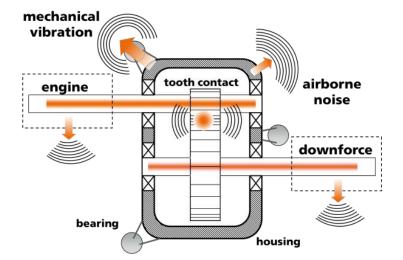


Introduction - Vehicle Technology and Acoustics at IWU Wide range of expertise, focus on gear noise.

- measurement equipment
 - semi anechoic chamber
 - Laser Scanning Vibrometer
 - shaker test bench
 - acoustic cameras
 - from 2015: transmission test rig
 - etc.

software

- RomaxDESIGNER
- PULSE Reflex Core and LabShop incl. TPA, OTPA, OMA, ODS, etc.
- FEMtools and ME'scope
- ANSYS and ABAQUS
- ITI SimulationX
- etc.



Why Micro Geometry Analysis?

Because it's of significant relevance for vibration excitation!

- acoustic aspects of the gear box increasingly importat
- reason: missing masking (of combustion engine) in electric powered vehicles.
- tooth contact excitation is main source of noise in gear boxes
- excitation in the tooth contact due to
 - variable contact stiffness
 - deformation and deflection of the gear wheels
 - surface structure
 - reversion of friction force at pitch circle
 - change of relation of overlap due to load (reason for specific modifications)
 - deviations from exact involute geometry

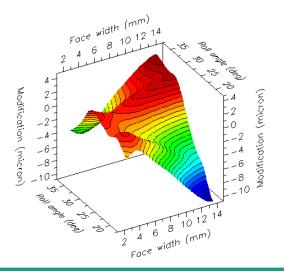
[Linke, H.: Stirnradverzahnung]

Why Micro Geometry Analysis? Because it's affected by manufacturing technology!

- influence of production processes
 - kinematics of gear generation
 - e.g. formation of twist / bias through grinding of crowning
 - geometric deviations, e.g. of the wheel body
 - e.g. wrong orientation of tool or work piece (radial run-out, wobble)
 - dynamic characteristics of production machine in interaction with process forces
 - e.g. formation of small undulations ("ghost frequencies")
 - synthetic nominal micro geometry sufficient?

available technologies for gear production at Fraunhofer IWU

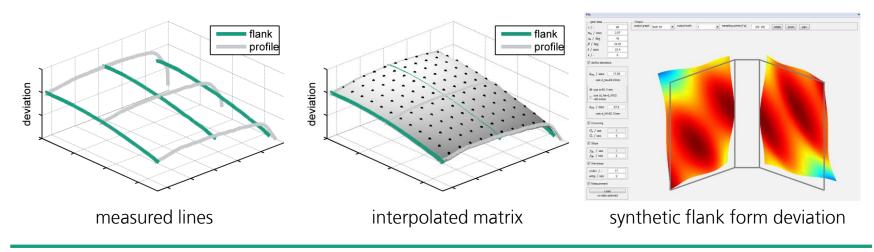
forming



Micro Geometry in RomaxDESIGNER

Available options for generation, import and analysis.

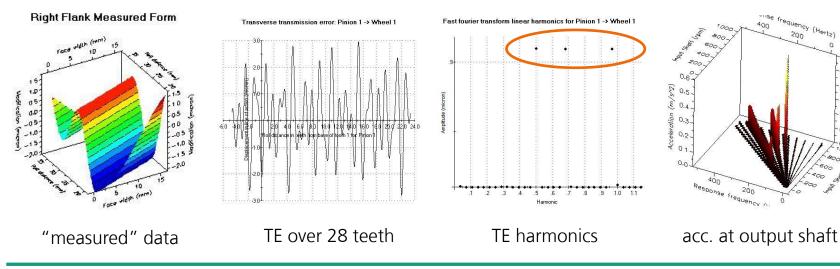
- various options to generate of micro geometry characteristics
 - bias
 - relief (linear / parabolic)
 - slope, crowning, barreling
 - pitch error
- opportunities of analysis and benchmark
 - static and dynamic transmission error (TE)
 - Ioad distribution
 - flash temperature
 - etc.
- import of measurement data
 - matrix of deviations in defined ranges
 - equidistant grid
 - access path for individual generated micro geometry



Micro Geometry in RomaxDESIGNER

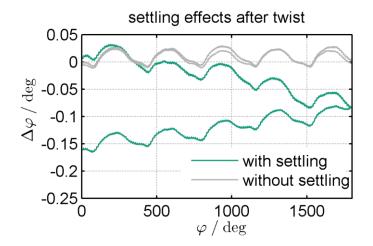
Analysis of waviness - a variable surface for every single tooth.

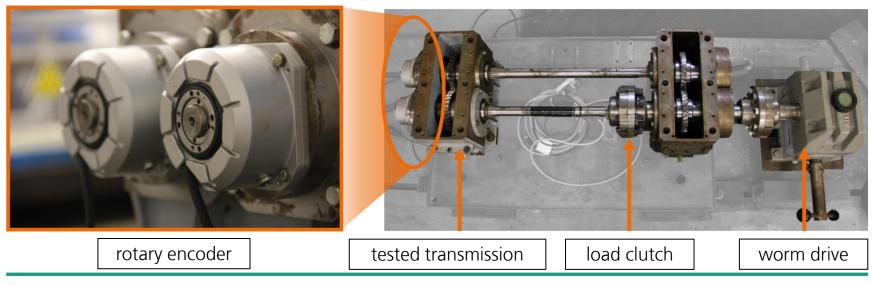
- self-written tools in MATLAB and Excel for synthesis of deviations
- present capabilities (extensible)
 - relief, bias
 - consideration of production induced bias as function of crowning
 - generation of undulations of defined wave length and amplitude
 - import (and optional overlay) of measurement data (currently ZEISS)
 - export of matrix of deviations to RomaxDESIGNER or point cloud to ANSYS



Micro Geometry in RomaxDESIGNER

Analysis of waviness - a variable surface for every single tooth.


- specification of undulations: 14th, 19th and 27th order
- workflow in Romax
 - batch import of measurement data matrices (*.csv)
 - micro geometry analysis over all teeth
- results (with very low load)
 - TE shows exactly the imported amplitudes and orders
 - acceleration at output shaft shows orders multiplied with system properties



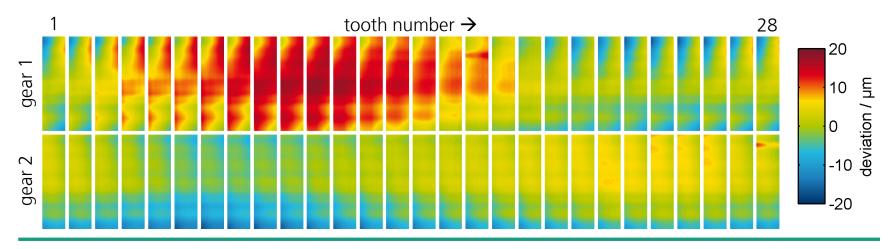
Validation of ROMAX TE – The Torque Test Rig Parameters of the gearing, measurement method.

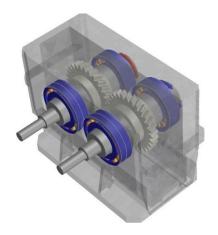
- torque test rig
 - quasi-static stiffness identification: below 20 rpm
 - manually driven with worm drive
 - load clutch for different load levels
 - one torsion shaft with torque measuring
 - settling after first twist with load clutch

Validation of ROMAX TE – The Torque Test Rig Parameters of the gearing, measurement method.

- gear data and dimension (ideal)
 - centre distance: 125 mm
 - gear ratio: -1
 - profile shift coef.: 0.4888
 - transvers contact ratio: 1.5
 - axial contact ratio: 0.5

- number of teeth: 28
- normal module: 4 mm
- tooth width: 16.3 mm
- normal pressure angle: 20 °
- helix angle: 22.7 °
- TE measurement via rotary encoder
 - 2x Heidenhain RON 285
 - system accuracy: $\pm 5''$
 - division marks: 18000

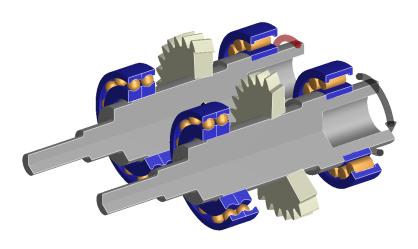


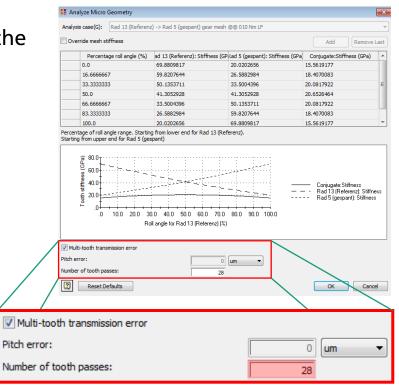

Validation of ROMAX TE – The ROMAX Model Model Description & Import of Measurement.

- basis: system according to the described torque test rig
- symmetric construction (same shaft geometry and bearings)
- two-shaft system
- bearings per shaft
 - double row radial ball bearing 4212
 - cylindrical roller bearing NU2212

left flanks of all teeth

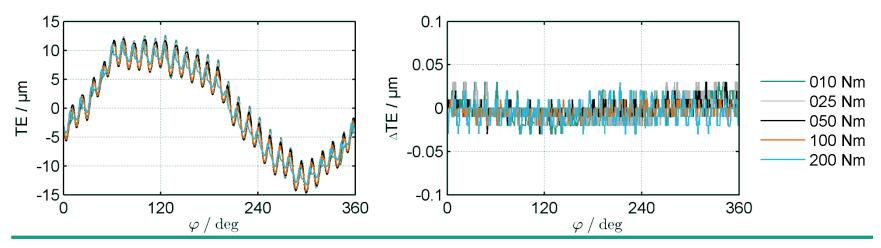
measured deviation matrices (shown in figure below)



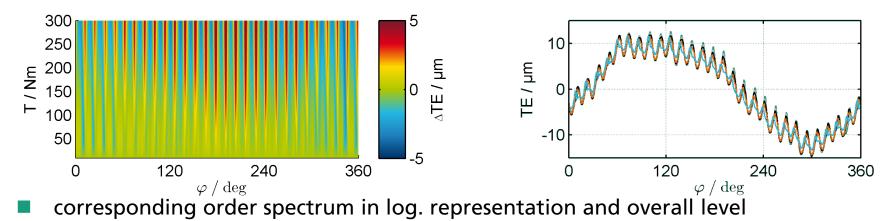


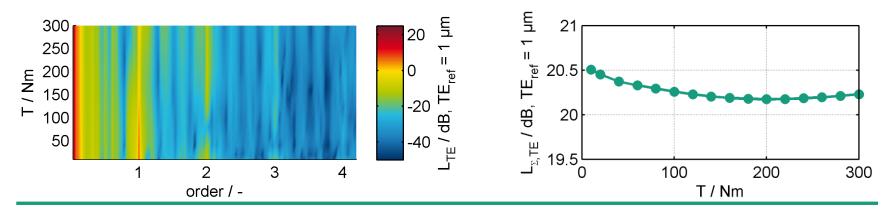
Validation of ROMAX TE – The ROMAX Model Model Description & Import of Measurement.

- import of all measured flank deviations into Romax using batch import
- required module: Helical Gear Multi Tooth Micro-Geometry Module
- calculation of TE using multi-tooth TE analysis (number of tooth passes equal to number of teeth – in this case 28)
- TE over one complete rotation as well as the corresponding spectrum are the basis for comparison of measurement and simulation



Validation of ROMAX TE – The ROMAX Model Influences of Shafts, Bearings, Housing & Loads.


- consideration of shaft deflections, bearing effects and housing influences
- comparison of two models
 - model 1: no mesh misalignment due to shaft deflections
 - model 2: using calculated mesh misalignment from shaft deflections
- main objective: boundary conditions of FE model
- results of TE calculated by Romax shown below
 - left: significant impact of pitch error
 - right: minimal deviations between the two models at different loads



Validation of ROMAX TE – The ROMAX Model Influences of Shafts, Bearings, Housing & Loads.

- detailed investigation of the input torque influence
- differences between TE at different loads with reference to T = 10 Nm

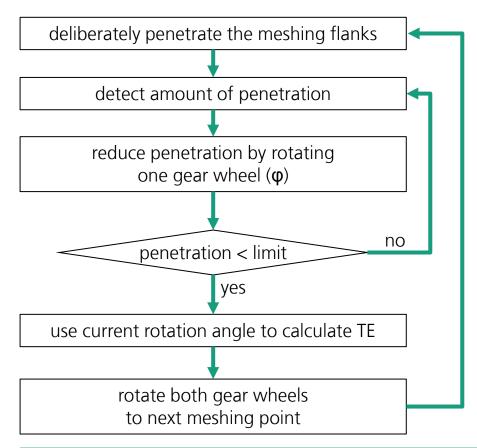
© Fraunhofer IWU

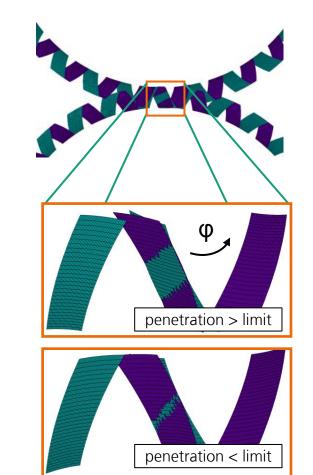
IWU

🗾 Fraunhofer

Validation of ROMAX TE – The FE Model

Geometry generation, element types, boundary conditions.

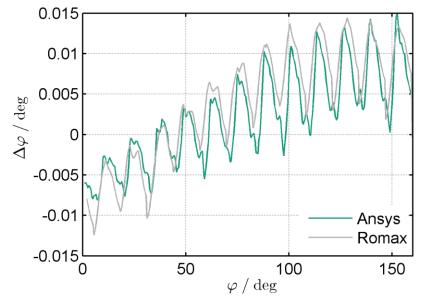

- focus: influence of micro geometry on TE
- micro geometry leads to excitation by a displacement → minimization of other excitation mechanisms such as
 - stiffness variation or
 - meshing interference due to load dependant deformation
- → unloaded simulation suitable
- gear blank and teeth modelled as rigid bodies
- merely detailed modelling of all flanks
 - import of point cloud generated by MATLAB
 - creation of nodes (on points) and shell elements with linear shape functions
 - → shape function with no influence on TE calculation since in unloaded simulation only geometrical contact sections will be determined
 - definition of symmetrical contacts
 - → necessary because of convex forms of tooth flanks



Validation of ROMAX TE – The FE Model

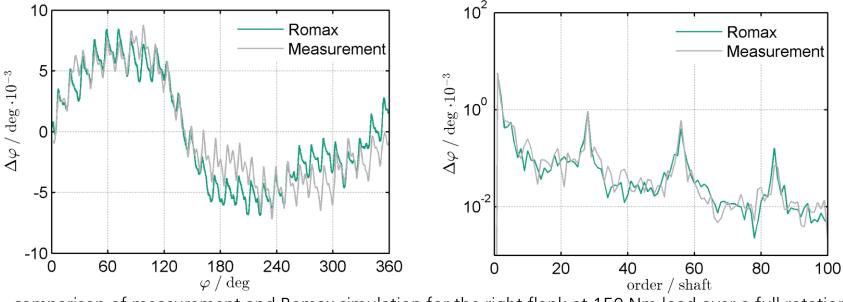
Geometry generation, element types, boundary conditions.

- claim: tooth contact by penetration on flank surfaces
- simulation process in schematic form



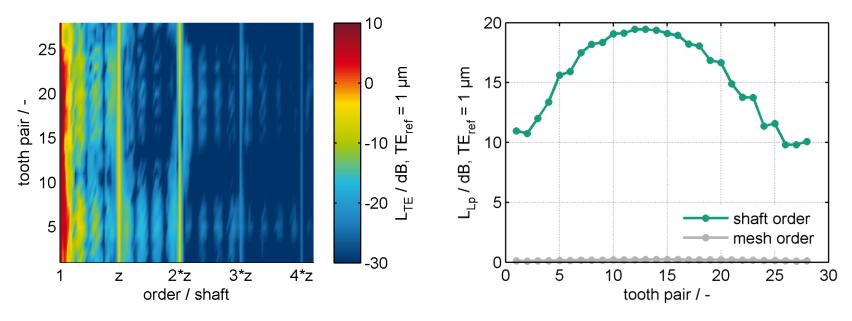
Validation of ROMAX TE Comparison of FE and Romax TE results.

- comparison of unloaded meshing process only
- same data base (interpolated measurement data) for both calculations
 - same measurement matrix resolution
 - nearly same rotation angle step range (Romax 0.4°, ANSYS 0.5°)
- relatively good match even in teeth dependent details
- pitch in simulated range in FE-model fits with Romax calculation
- no calculation over one whole turn in account of high computing time for the FE model
- need for clarification of differences



Validation of ROMAX TE

Comparison of picked measurement results.


- Romax shows only slight deviations to the measured pitch error, explainable by influences of the torque test rig and insufficient gear flank measurements (resolution of measurement grid)
- simulated 1st and 2nd (even the 3rd) harmonic of the gear mesh frequency well according to the measurement
- no "ghost frequencies" in this case (finishing by profile grinding)

One Exemplary Advantage of ROMAX TE Calculation Prediction of teeth attribution's influence.

- TE over one turn for transmission ratio -1 depends on assignment from teeth
 - different TE for meshing of 1st tooth of wheel one with 1st or e.g. 5th tooth of wheel 2
- major influence on first shaft orders
- no remarkable impact on gear mesh order

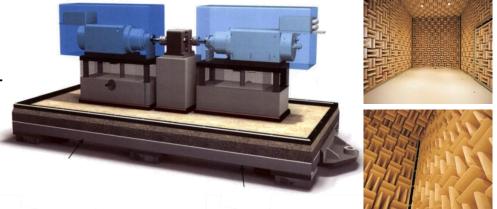
spectrogram of TE FFT for all 28 teeth assignments

extraction of 1st and 28th order from left figure

Conclusion and Perspective

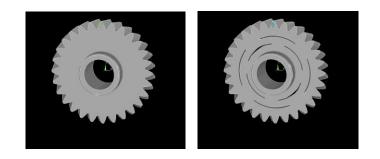
Experience regarding micro geometry analysis.

- detailed investigation of teeth micro geometry's influence on vibration excitation
- significant influence of pitch error identified in this case
- micro geometry affected by production process
- import and analysis of measurement data for every tooth is possible in RomaxDESIGNER
- no influence of the housing, bearings shaft deformation in this case
- TE analysis in Romax shows comparable results to measurement and FE simulation
- very fast analysis over all teeth in Romax: micro geometry analysis over all teeth in several seconds
- FE model extensible for special calculations like e.g. gear blanks with integrated cooling channels or estimation of influence of anisotropy in gear wheel material

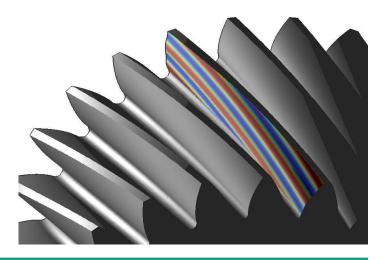


Conclusion and Perspective

What's next at Fraunhofer IWU with RomaxDESIGNER?


New acoustic test bench at IWU-Dresden (Mid. 2015)

- up to ± 10,000 rpm
- up to ± 1300 Nm
- placed in semi anechoic chamber
- acoustic encapsulated drives
- battery simulator
- validation of Romax models


Future investigation in share with Romax and new gear-test bench

- acoustic optimized gear body and it's stiffness influence into gear meshing
- influence of thermal effects to acoustic behaviour and solidness
- influence of production impacts on micro geometry
- acoustic system influence ranking for high speed electric drives

Thank you very much for your kind interest.

