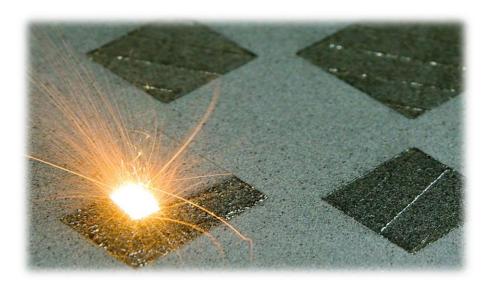


PROJECT GROUP RESOURCE-EFFICIENT MECHATRONIC PROCESSING MACHINES

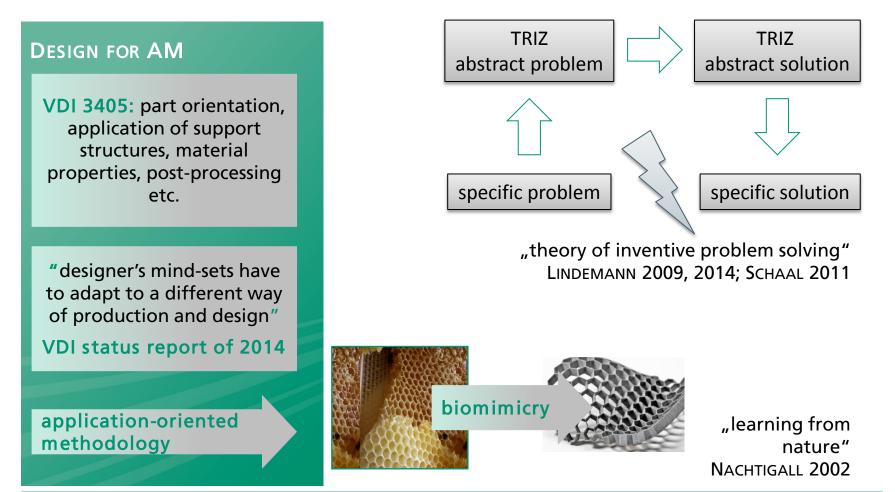
TRIZ-BASED BIOMIMETIC PART-DESIGN FOR LASER ADDITIVE MANUFACTURING

T. Kamps^{a*}, C. Münzberg^c, L. Stacheder^b, C. Seidel^{a, b}, G. Reinhart^{a, b}, U. Lindemann^c



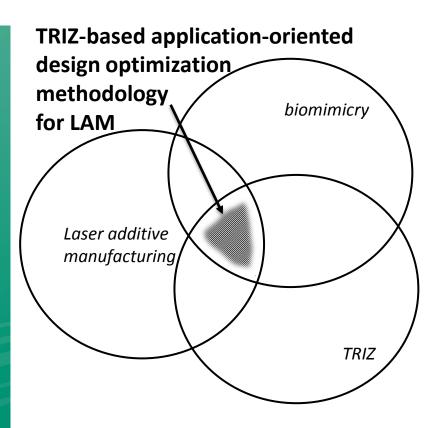
^aFraunhofer-Institute for Machine Tools and Forming Technology ^bInstitute for Machine Tools and Industrial Management, Technichal University of Munich ^cInstitute of Product Development, Technical University of Munich * Corresponding author: Tel.: +49 821 56883 57; fax: +49 821 56883 50

E-mail address: tobias.kamps@iwu.fraunhofer.de.

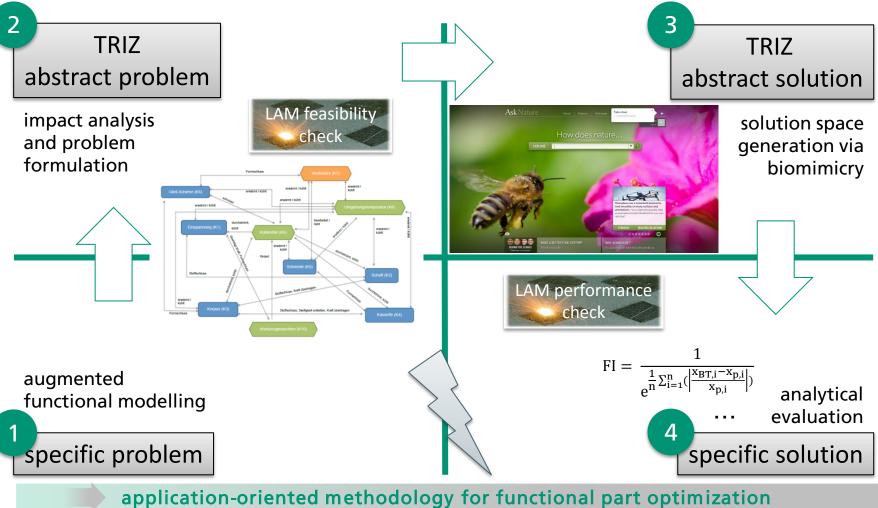

AGENDA

- Motivation and research focus
- Introduction of a new design approach
- Case study
- Summary and outlook

MOTIVATION AND RESEARCH FOCUS HOW TO OPTIMIZE THE DESIGN PROCESS SPECIFICALLY FOR LASER ADDITIVE MANUFACTURING?

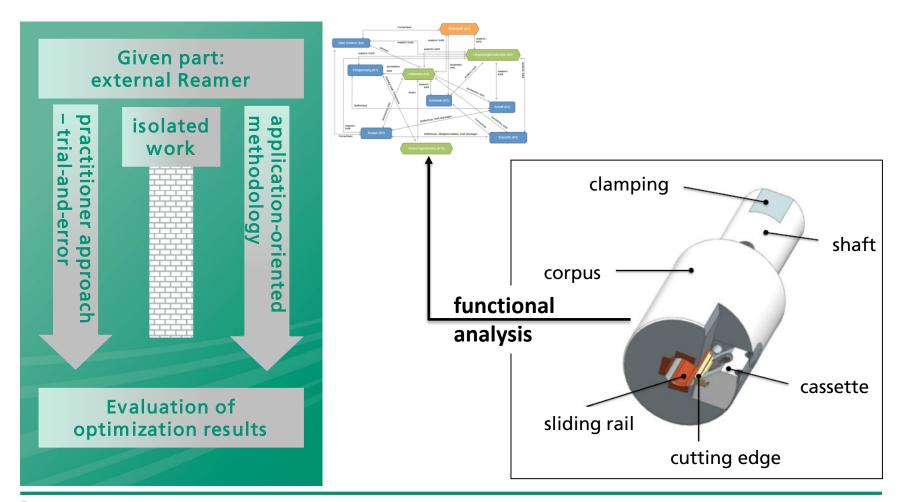


MOTIVATION AND RESEARCH FOCUS TRIZ-BASED INTEGRATION OF BIOMIMETICS AND DESIGN FOR AM

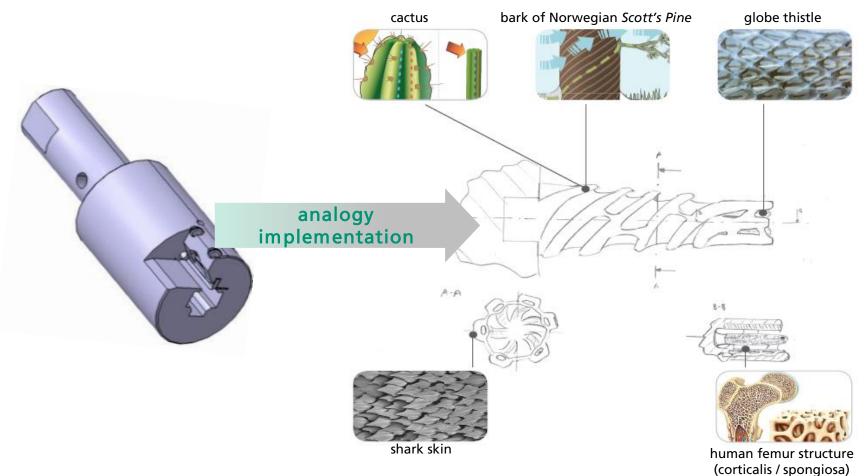

OBJECTIVES

- PICKING SUITABLE METHODS FROM THE TRIZ-METHODOLOGY
- EFFICIENT OPTIMIZATION OF A GIVEN PART
- Systematic creation of large solution space of biomimetic analogies for given application
- EVALUATION OF SUITABLE ANALOGIES
- EVALUATION OF CREATED SOLUTIONS IN TERMS OF DESIGN RESTRICTIONS DICTATED BY LASER ADDITIVE MANUFACTURING
- ENSURING APPLICATION-ORIENTATION
 WITHOUT REDUCING SOLUTION QUALITY

INTRODUCTION OF A NEW DESIGN APPROACH **TRIZ-BASED BIOMIMETIC PART DESIGN FOR LAM**


www.asknature.com, Zugriff am 14.06.2015, The Biomimicry Institute

INTRODUCTION OF A NEW DESIGN APPROACH PART DESIGN EVALUATION FOR LAM


Name	Equation	Parameters	Purpose	Source
feature index	$FI = \frac{1}{e^{\frac{1}{n} \sum_{i=1}^{n} (\left \frac{\mathbf{x}_{BT,i} - \mathbf{x}_{p,i}}{\mathbf{x}_{p,i}}\right)}}$	x_{BT} value for a feature (Ra, min. wall thickness etc.) x_P maximum feature value	degree of exploitation of LAM-potential	Zhang et al. 2014
complexity index	$KI = \frac{\sqrt{O_{BT}}}{\sqrt[3]{V_{BT}}}$	part volume V_{BT} and part surface O_{BT}	degree of part complexity	ZHANG ET AL. 2014
massivity index	$MI = 1 - \frac{\log(\frac{V_{BB}}{V_{BT}})}{2}$	part volume V_{BT} and bounding box volume V_{BB}	degree of part complexity	Маснт 1999
orientation index	$OI = \frac{1}{N_a + N_n} + \frac{N_a}{N_a + N_n}$	N_a functional surface N_n non-functional surface	degree of effort for part orientation	Zhang et al. 2014
safety index	$SI = \frac{R_m}{\sigma_{\nu M_max}}$	R_m tensile strenght σ_{vM_max} von Mises stress	efficiency of part mass usage	KLEIN 2013
lightweight construction indicator	$LBK = \frac{F_{all}}{F_{part}}$	F_{all} overall stress F_{part} part permanent weight	indicator for actual load capacity use	KLEIN 2013
mass reduction index	$MA = \frac{m}{m_{old}}$	m_{old} original part mass m reached part mass	degree of mass reduction	
multiple analytical measures for part design evaluation				

CASE STUDY EXTERNAL REAMER PROVIDED BY MAPAL DR. KRESS KG - METHODOLOGY

CASE STUDY EXTERNAL REAMER PROVIDED BY MAPAL DR. KRESS KG – ANALOGY SEARCH

CASE STUDY EXTERNAL REAMER PROVIDED BY MAPAL DR. KRESS KG – RESULTS AND EVALUATION

C C C C C C C C C C C C C C C C C C C		
Reamer conventional	Reamer LAM-non-TRIZ- optimized	Reamer TRIZ- optimized
	107	86
52080	23980	19280
15000	33000	36000
3,28	6,30	7,11
0,82	0,66	0,56
0,63	0,83	1,25
0,03	0,09	0,49
100	46	37
	conventional 232 52080 15000 3,28 0,82 0,63 0,03	Reamer conventional LAM-non-TRIZ- optimized 232 107 52080 23980 15000 33000 3,28 6,30 0,82 0,66 0,63 0,83 0,03 0,09

131

the systematic approach offers better design results regarding process and part performance

159

SI

29

lightweight construction indicator

PROCESS-PERFORMANCE

complexity-index massivity-index orientation-index PART-PERFORMANCE

mass ratio

9

safety-index

PART-DATA mass (TiAl6V4)

volume surface

SUMMARY AND OUTLOOK ...NATURE KNOWS BEST...

- LAM POSSESSES A GREAT POTENTIAL REGARDING PART COMPLEXITY AND ADAPTION FOR AN INNOVATIVE PART DESIGN
- THUS, DESIGN OPTIMIZATION IS A COMPLEX CHALLENGE FOR THE DESIGNER THAT REQUIRES SYSTEMATIC DESIGN APPROACHES FOR OPTIMAL USE OF "COMPLEXITY FOR FREE"
- NATURE OFFERS A VAST SOLUTION SPACE FOR TECHNICAL PROBLEMS
- THE CASE STUDY OF AN EXTERNAL REAMER SHOWS A SUPERIOR SOLUTION TO A TRIAL-AND-ERROR APPROACH

LAM leverages an economical transfer of analogies due to low part complexity costs.

In spite of 250 years of taxonomic classification and over 1.2 million species already cataloged in a central database, 86% of existing species on Earth and 91% of species in the ocean still await description (Mora et al. 2011).

> Biological solutions have been field-tested for over 3.8 billion years.

Constantly growing analogy database to be used specifically for LAM!

10 mm