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Abstract

Distributed multimedia applications need end-to-end support from both the
networks and the endsystems. The operating systems are critical both for accessing
networking services and for controlling the activities on the endsystems. It is there-
fore vital to enhance the functionality and performance of the operating system in
order to provide feasible support for multimedia communications and applica-
tions. The work proposes to support multimedia, especially continuous media,
communications and applications by exploiting their special characteristics. The
main emphasis is on OS support for the real-time aspect of continuous media.

The work proposes to realize a soft real-time framework for the operating sys-
tem with supporting features for multimedia. All the system activities are con-
trolled by the framework so that predictability can be achieved. A set of feasible
scheduling methods for the framework have been designed and evaluated. As an
essential component for the soft real-time system, various soft real-time handling
methods for timing overflow are used. In addition, predictable protocol processing
architectures are explored and a flexible and adaptive service provision model is
proposed to support the macro-level adaptability of multimedia applications.

The models and algorithms proposed in this work have been validated
through theoretical analyses, simulation evaluations or experimental implementa-
tions. Together, they can be used to construct multimedia supporting systems
which are predictable, flexible and efficient.
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Zusammenfassung

Die vorliegende Arbeit befaßt sich mit der Unterstützung verteilter multime-
dialer Anwendungen durch das Betriebssystem.

Aus Echtzeit- und Performancegründen benötigen verteilte multimediale
Anwendungen besondere Unterstützung sowohl durch das Netzwerk als auch
durch das Betriebssystem. Das Betriebssystem spielt dabei eine kritische Rolle. Es
ermöglicht multimedialen Anwendungen, auf Netzwerkdienste zuzugreifen und
verwaltet gleichzeitig alle Systemvorgänge auf dem Endsystem. Zur optimalen
Unterstützung verteilter multimedialer Anwendungen ist es erforderlich, das
Betriebssystem so zu verbessern, daß es geeignete leistungsfähige Dienste bereit-
stellt. Dies kann insbesondere durch die Ausnutzung der besonderen Eigenschaf-
ten multimedialer Anwendungen erreicht werden.

Um den spezifischen Zeitanforderungen multimedialer Anwendungen
gerecht zu werden, wird ein “Soft Real-Time Framework” als Systemkonzept für
ein multimedia-unterstützendes Betriebssystem vorgeschlagen. Gegenstand des
Frameworks sind der Entwurf und die Bewertung von Echtzeitplanungs- und
Echtzeitbehandlungsmechanismen, die den besonderen zeitlichen Anforderungen
von multimedialen Anwendungen Rechnung tragen. Die sich in diesem Zusam-
menhang ergebenden besonderen Anforderungen an Protokollbearbeitung und
adaptives Dienstanbieten (adaptive service provision) werden in dieser Arbeit
ebenfalls berücksichtigt.

Mittels theoretischer Analyse, Simulation und Implementierung werden die
in der Arbeit beschriebenen Modelle und Algorithmen validiert und evaluiert. Es
wird gezeigt, daß sie für den Aufbau von effizienten, flexiblen und multimediafä-
higen Unterstützungssystemen geeignet sind.
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Chapter  1

Introduction

Distributed multimedia system has become one of the main focuses of computer
networking and applications. The technical advances in two fields have made a
distributed multimedia system feasible. On the one hand, the rapid advances in
hardware and software have brought about a new generation of workstations and
personal computers with low-cost audio and video capabilities. On the other hand,
with the technical advances in fiber-optic and VLSI, broadband networks can now
provide a larger bandwidth than ever before. We have already seen the basic
audio/video capabilities on our desktops, which have made some simple desktop
teleconferencing possible: audio is now common in workstations and high-end
PCs; though not as common, video devices are coming very rapidly; workstations
are fast enough to do basic software compressions and decompressions, which
makes software video display possible without the use of specialized video hard-
ware; and many networks are fast enough to carry several compressed A/V
streams.

The trend of current development is to extend and optimize the multimedia appli-
cations on endsystems (workstations, PCs), and to further advance the distributed
multimedia applications by connecting the endsystems with large-bandwidth,
high-speed networks.

In the presented work, we investigate a variety of issues related to operating sys-
tem support for multimedia communications and applications. The main effort is
to develop strategies, models and algorithms for supporting continuous media by
exploiting their special characteristics, which are not present in or are not typical of
other kinds of computer applications.
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In this chapter, the motivations and goals of our work are sketched. The organiza-
tion of the dissertation is also briefly explained.

1.1  Motiv ation and goals

 1.1.1  Motivation

Multimedia (MM) systems involve the processing of continuous media (CM) such
as live digital audio/video and the traditional discrete media such as text files.
Multimedia applications have posed a set of new functional and performance
requirements on hardware and software components of a computer system. In a
distributed/networked multimedia system, a single integrated network such as a
B-ISDN network based on ATM technology will carry a mixed traffic of a variety of
media (continuous as well as discrete media) and the endsystems (host computers)
will process the continuous media much in the same way as discrete media.

• Networked / distributed multimedia systems need networking as
well as endsystem support

For networked/distributed multimedia systems, both the support from the net-
work and the support from the endsystem are needed. Until recently, much empha-
sis has been put on the networking aspect in order to construct a multiservice
network. The provision of quality-of-service (QoS) guarantee has been extensively
investigated in the networking field. Such network QoS parameters as bandwidth,
delay and error rate are supported now by ATM technology on a per connection (or
in the term of ATM, a virtual circuit) basis. The same issues in internetworking envi-
ronments are also well investigated as can be found in the IETF work on building
an Integrated Services Packet Network [Clark92, Shenker95a, Braden96] and the
work by BERKOM network [Zeletin89] or Berkeley Tenet group [Ferrari92].

In contrast, relatively less attention seemed to have been paid to end-systems and
the operating system which controls the activities on the end-systems. We note that
in multimedia systems, it is not sufficient to guarantee the transmission of MM
information flow between two endsystems at the level of networking service. In the
end, it is the endsystem (controlled by an OS) that uses this networking service to
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provide multimedia service to end-users. Enhancements in both the endsystem
hardware and software are needed in order to meet the time-constrained high pro-
cessing requirements of MM applications.

Traditionally, the network is usually the bottleneck of the system scenario. But
some recent experiments with high-speed network such as Xunet have shown that
the endsystem can easily become the bottleneck where the network bandwidth is
plentiful [McCanne95].

• Operating system support is crucial for both the endsystems and
the networks

Traditionally, the operating system plans a critical role on the endsystem. It pro-
vides system services to all other software components by controlling effectively all
the hardware resources. It is also the task of the operating system to coordinate all
the hardware and software activities.

Support for continuous media communication is one of the key challenges in con-
structing a distributed MM system. The QoS requirements of the applications in
regard to communication should be converted to QoS parameters supported by the
network. It is the operating system that controls the efficient and predictive access
of the networking interfaces and thus the networking services (see Figure 1-1).

Figure 1-1 Endsystems with network interfaces to network

Endsystem

Network Interface

Endsystem

Endsystem

Network
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In order to guarantee the real time and high-bandwidth transmission of MM infor-
mation flow between two MM applications on two end-systems, it is not sufficient
to guarantee the real time transmission of MM data flow between two end-points
up to network interfaces or even up to the level of transport service (protocol pro-
cessing). It is also important that the operating system provides appropriate
response for all other processes that use these MM information. Hence, QoS issues
such as throughput, latency and real-time responsiveness are end-system concerns
as well as concerns of the communication infrastructure. Some transport services
such as the services with real time features can only be feasibly implemented and
provided within a suitable OS supporting environment. The whole solution
requires an integration of the operating system and the communication infrastruc-
ture.

• Currently available OS supports are not feasible / not enough for
MM

As stated, multimedia applications have posed a set of new functional and perfor-
mance requirements on hardware and software components of a computer system.
Especially, continuous media (CM) represents a significant departure from tradi-
tional applications and places a new set of constraints on the operating system sup-
porting services. Two constraints among them are dominant requirements on the
operating systems which try to support multimedia, i.e., the timeliness required to
simulate continuous media (the continuous media are perceived to change over
time) and the unavailability of brute force resources with which to do so (for exam-
ple, the memory resource required to “play” these media exceed the memory avail-
able on many workstations). Especially, the timing requirements and the
guaranteed throughput required for continuous media force specific consideration
in designing operating systems aimed at CM support. Communication applica-
tions running under conventional operating systems like UNIX are at the mercy of
unpredictable delay and jitter caused by page swaps, interrupts, multiplexed pro-
tocol stacks and other application activities on the same systems. Figure 1-2 shows
briefly the system activities on a BSD UNIX system or its derivative like SunOS
4.1.*. In practice, these factors make conventional OS unsuitable for anything but
the least demanding ones of distributed multimedia applications. Neither have the
commercially available real-time operating systems provided the feasible services
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for CM. Enhancements to OS in both functionality and performance are desired in
order to provide feasible support for multimedia applications.

Figure 1-2 System Activities in BSD UNIX

• Summary

In summary, the main motivation of our work is:

The distributed multimedia applications need end-to-end performance support
from both networks and endsystems; the operating systems are critical both in
accessing networking services and in controlling the activities on the endsystems;
and we want to make contributions to enhance the functionality and performance
of the operating systems in order to provide feasible supports for multimedia com-
munications and applications, especially for the real-time aspect of such supports.
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 1.1.2  Application and problem domain

Since there are a large variety of multimedia application possibilities and the result-
ing issues of the OS support for multimedia are numerous, we try to identify the
main application and problem domain of our interest in this section. The main OS
supporting issues, on which we will concentrate, will be given in the next section.

• Support of continuous media is challenging in two aspects

As mentioned above, continuous media (CM) support is challenging in two
aspects: the timeliness required to simulate continuous media (the continuous
media are perceived to change over time), and the high performance and the huge
resource needed to do so (for example, the bandwidth and memory requirements
on the network and the workstations). As an example, the uncompressed bit rates
for digital video rages from 44 Mb/s (NTSC video quality) to 1.5 Gb/s (HDTV
video quality). And the video should be regularly delivered with a rate of 30
frames/second in real time. Audio, in contrast, should be packetized every 20ms to
100ms with a constant bit rate.

Through compression and decompression, possibly aided by special hardware, all
of the problems concerning high data rate, large data volume and stringent timeli-
ness can be alleviated by one or two orders of magnitude. Still, these requirements
are quite significant for the capabilities of current workstations and high-end PCs.

Table 1-1 Some characteristics of digital audio and video

Characteristics Audio Video

Continuous timing required required

Rate 13 ... 64 ... 1500 ... kb/s 200 ... 1500 ... 6000 ... kb/s

Traffic constant + silences variable bit rate

Packet size small large

Loss tolerance usually <= 5% 10-5 ... 15%

One-way delay tolerance:
conference

40 ms (without echo cancellation)
... 150 ms (echo cancellation)

up to 200 - 300 ms

Playback delay tolerance >= 500 ms >= 500 ms
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Therefore, it is critical for the supporting operating system to try to “preserve” the
timeliness and bandwidth of the low-layer hardware and software components up
to the use of high-layer application components, and to coordinate all the system
components and activities in a harmonic way.

• Multimedia collaboration (MMC) as a typical multimedia
application

The scenarios of MM applications are diverse. We will mainly pay our attention to
a MM application domain called multimedia collaboration (MMC). Such applica-
tions have found their practical usage in many circumstances and are implemented
in many projects such as the BERKOM-II MMC system [Altenhofen93]. They are
the good technical bases for realizing Computer Supported Cooperative Work
(CSCW).

Figure 1-3 MMC scenario with 3 sites

In a typical MMC scenario, several users collaborate their work by working on
some commonly accessible documents concurrently, and they usually interact with
one another by way of live interactive audio/video connections. Virtually, users
(participants) see and hear each other in a natural way as in a face-to-face situation.

conf.
mmc

Network
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In such a scenario, an end-system should handle continuous media communication
and processing (live audio/video), discrete media communication and processing
(document exchange and processing), as well as other local processing (mail pro-
cessing, background compilation, etc.). The two requirements of this scenario are:
the users want to have the real-time continuous media processing capability and at
the same time, the users want to have other conventional processing capability. Fig-
ure 1-3 shows a MMC scenario with 3 sites, where site B and site C posses full
audio/video capabilities and site A has only audio capability.

Note the key point here is that both requirements should be satisfied at the same
time, because the parallel availability of the continuous media and the discrete
media is necessary for the users’ collaboration. If, for example, the document (a dis-
crete media) can not be exchanged reasonably fast because the real-time interactive
audio/video transmission (a continuous media) have used up all the processing
and networking resources then the users can not conduct a satisfactory collabora-
tion. The same undesired effect can happen for the other way round: if the users
have only easy access to some common documents but the quality of live interac-
tive A/V transmission is bad, then the interactive collaboration can not be satisfied
either.

Exactly here lies the main challenge. On the one hand, the capacity of a typical, cur-
rently available workstation is powerful enough to support live digital audio/
video, if the processing and networking capabilities are carefully allocated, sched-
uled and used. On the other hand, this capacity is not yet enough to support multi-
ple activities of multimedia and non-multimedia at the same time without a very
careful arrangement. The designer for a supporting operating system for multime-
dia should always keep this in mind.

• Multimedia supporting affects every part of the multimedia
operating system

There are four major components in a conventional operating system
[Tanenbaum87]: process management, input/output (device drivers), memory
management, and file system. Since MM applications will usually need to coexist
with traditional applications such as data crunching and word processing, the opti-
mization of the functions of a multimedia operating system (MMOS) should take
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this coexistence into consideration. As can be seen clearly through a brief survey of
the current literature and ongoing work, the need to accommodate continuous
media delivery and processing is already affecting every part of the operating sys-
tem: process and thread scheduling, network access control and communication
protocol, memory allocation and file system. A number of key technologies are
beginning to emerge and one of the most important task is to extract the general
principles of them and to integrate them to produce complete solutions.

• Summary

To summarize, the multimedia operating system should cope with the challenges
of continuous media in terms of stringent timeliness, high data rate and huge data
volume. We have to meet the requirements of accommodating both continuous
media and discrete media in one system as is necessary for the multimedia collabo-
ration application MMC. And we have to develop general principles which can be
integrated into all the major components of a multimedia operating system.

 1.1.3  Goals

Numerous issues should be addressed in order to provide feasible OS support for
multimedia. The following will try to identify the main issues on which we will
concentrate. The basic ideas to deal with these issues are also given as part of the
formulation.

As our goals, we want to tackle several important OS supporting issues and pro-
pose appropriate solutions to them so that these proposals can be integrated into a
multimedia-feasible operating system.

• To formulate a new set of principles on resource management and
scheduling

First of all, operating systems that support multimedia applications must modify
the traditional view of scheduling and resource allocation in order to accommodate
the need for timeliness and to deal with the constraint of limited resource. It is very
important to formulate a new set of basic principles on resource management and
scheduling which can, first of all, accommodate the requirements of continuous
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media and which can be applied to every part and every aspect of the multimedia
operating system.

In our opinion, the central idea and starting point for supporting CM communica-
tion and applications should be to exploit the special features of them. That is, the
support of OS to continuous media should exploit the special features of continu-
ous media which are not present in or are not typical of other kinds of computer
and communication applications. Some of these features can be identified as soft
real-time, soft (not 100%) guarantee, periodicity, error-tolerance, adaptability, etc.

Our new view on resource management and scheduling will also consider the need
to accommodate the continuous media as well as the conventional discrete media
at the same time in order to meet the requirements of such applications as MMC.

• To develop a soft real-time framework for the whole multimedia
system

It is clear that multimedia operating systems must have real-time features and
other supporting features for multimedia applications. We would like to point out
here that some rudimentary proposals can not tackle the whole problem of real-
time MM support. For example, only giving the highest priority to communication
protocol processing can only achieve the effect that the multimedia data packets are
processed as soon as possible. This is, however, not enough for the whole system
effect, since the application processes that consume these MM data can not be
scheduled to use these data in time and according to their periodicities.

We hold the view that real-time scheduling schemes should be applied to all the
system components. We note that MM applications are not hard real-time applica-
tions in themselves. A 100% guarantee is not necessary in most cases. We will
investigate the applicabilities of the traditional real-time scheduling theory to mul-
timedia systems. We consider the realization of a soft real-time framework for the
whole multimedia system as an appropriate solution.

• To develop and evaluate soft real-time scheduling and handling
schemes for multimedia

Feasible soft real-time scheduling schemes are the cornerstones for the functional-
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ity and efficiency of the soft real-time framework. The basic requirements on the
base scheduling methods are that they should be simple, flexible yet powerful. Our
work will emphasize on both predictability and flexibility. Base scheduling meth-
ods will be designed to reflect the cooperative timing enforcement model as well as
the semi-imperative timing enforcement model.

Our soft real-time framework should show its “softness” in mainly two aspects:
first, different guarantee degrees should be supported; second, the timing specifica-
tions of processes should be flexible and the timing exceptions should be handled
in some “soft” and “graceful” manners. The second aspect is necessary, since we do
not require a rigid timing specification from the MM processes and not-so-often
timing violations both from the side of user and from the side of the system are
allowed. For this purpose, different soft real-time handling methods for timing
overflow will be developed.

• To build a feasible protocol processing architecture

Protocol processing subsystem plays an important role in constructing an efficient
and predictable distributed multimedia systems.

We will describe the schemes to structure the protocol processing subsystem in
such a way that the whole subsystem runs under the control of the soft real-time
scheduling schemes so that the protocol processing is also predictable.

In addition, there are several important issues which are critical for the efficiency
and the predictability of the protocol processing subsystem. We will investigate the
possibility of damping the effects of interrupts and the different methods for pro-
viding communication services to communication users.

• To provide adaptive QoS support for applications

The services of applications affects the end-users most directly. Quality of Service
(QoS) is a central concept in supporting MM applications. From the viewpoint of
the supporting operating systems, the requirements of the upper layer CM applica-
tions can usually be expressed in the form of a set of QoS parameters. According to
strongness and applicability, a category of different degrees of QoS support can be
identified: from best-effort QoS support, soft guarantee of QoS, to relatively hard
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guarantee of QoS. In addition, the QoS requirements of an application can also
change during its life-time by switching between several “working modes”. We
believe that a range degrees of QoS support are needed by different application
types and that a flexible and adaptive support should be provided. Actually, one
typical nature of many multimedia applications lies in the fact that they are not
rigid but adaptive, not intolerant but tolerant. In the range of its tolerance, the vari-
ation of QoS provision is regarded by an application as acceptable.

At the lower level, a set of micro-level OS mechanisms should be provided to
implement a processing and transport system that is predictable enough to make
various degrees of guarantees possible. These have been found in the above in the
form of soft real-time scheduling and handling mechanisms as well as predictable
protocol processing structures.

At a higher macro-level, many multimedia communication applications are flexible
and adaptive so that they can tolerate the changes in their environmental parame-
ters to some extent. The processing and transport system should exploit this feature
and support this feature explicitly. We propose to use a flexible and adaptive ser-
vice supporting model (FAST) to deal with both functionality and performance
requirements. The FAST model will deal with both system-initiated adaptation and
user-initiated adaptation.

• Summary

As our goals, we will formulate a new set of principles on resource management
and scheduling, we will develop a predictable and flexible soft real-time frame-
work for the whole multimedia system and we will develop and evaluate soft real-
time scheduling and handling schemes for multimedia. Taking the applicability of
the soft real-time scheduling schemes into account, we will develop feasible proto-
col processing architectures that are efficient and predictable. In order to provide
adaptive QoS support for CM communications and applications, an adaptive ser-
vice model will be used for constructing the system.
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1.2  Organization of the disser tation

The dissertation consists of 10 chapters and is divided into 5 parts.

PART I Introduction and Background:

After motivating our work and setting our goals in this chapter, we overview the
general issues related to OS support for continuous media in Chapter 2. A brief
state-of-the-art survey on major areas of operating system support for multimedia
is presented. We then give the system models which are used throughout our work.
The basic approaches of our research are then outlined. This includes a presenta-
tion of our basic views on resource management and scheduling.

PART II Using a Soft Real-Time Framework:

Chapter 3 deals with the relationship between real time scheduling and continuous
media communications and applications and proposes a soft real-time framework
as a solution to real-time continuous media support. We argue that CM applica-
tions and communications posses a set of “soft” features which can be accommo-
dated in our real-time process model and scheduling framework.

Chapter 4 continues our arguments by looking at some closely-related issues. Soft
real-time framework, scheduling framework and soft real-time process model are
concretized. An analysis of the suitability of different real-time scheduling methods
is also conducted. The chapter also explores the mathematical bounds of soft real-
time with loss by using analyses based on the queueing theory.

PART III Soft Real-Time Scheduling and Handling:

The first chapter of this part proposes and justifies some soft real-time scheduling
and handling schemes which can be used in our soft real-time framework. The
scheduling schemes are based on cooperative model, semi-imperative model and
elastic-time model respectively. The handling schemes can be chosen to deal with
different situation of timing overflow.

Both simulation and implementation are used to evaluate our soft real-time sched-
uling and handling schemes. Numerous qualitative and quantitative evaluations
are presented in both chapters. Chapter 6 presents the soft real-time effects by sim-
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ulations on both simple theoretical scenarios and composite practical scenarios.
Chapter 7 gives details to some of our experimental implementations. Measure-
ment results from the implementation are used to further validate our models and
algorithms.

PART IV Complementary Techniques:

Chapter 8 follows by considering other problems in addition to scheduling in order
to realize a highly-efficient and predictable protocol processing subsystem. We dis-
cuss how to damp the effect of interrupts, how to structure the protocol processing
components and other implementation-essential issues.

Many of the continuous media applications are adaptive in nature and there exist
such technical bases as media scaling and transport protocol layer QoS renegotia-
tion. Based on the techniques developed so far which guarantee a certain level of
predictability, the adaptive service model presented in Chapter 9 integrates these
elements together to best support the implementation of adaptive continuous
media applications. Corresponding support from scheduler and other resources
pools are discussed.

PART V Conclusion:

As a conclusion, Chapter 10 summarizes our main contributions and compares
them with other related current research and development. We also point out the
possible directions for future research.
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Chapter  2

An overview of OS support for continuous
media and an outline of our system models

In order to get a general understanding of the necessity to provide multimedia-spe-
cific operating system support and of the main areas of current investigation, we
make a brief survey on the current practices of OS support for multimedia. We then
provide our models about end-systems and networks to clarify the usability scope
of our proposed strategies and algorithms. The basic approaches of our work are
also presented as a basis for further elaboration of our work.

Although the term multimedia can be used to refer to discrete media such as texts,
graphics and still images in its broader sense, we are mainly concerned with con-
tinuous media such as digital audio and video. It is technically more challenging to
support continuous media, which are continuous information flows over real time.
In our context, multimedia refers mostly to continuous media.

2.1  A brief state-of-the-ar t sur vey

A conventional operating system consists of mainly four components
[Tanenbaum87]: process management, input/output (device drivers), memory
management, and file system. Multimedia applications will usually need to coexist
with traditional applications such as data crunching and word processing, the opti-
mization of the functions of real-time multimedia OS should take this coexistence
into consideration. A brief survey of the current literature will show that the need
to accommodate continuous media delivery and processing is already affecting
every part of the operating system: process and thread scheduling, network access
control and communication protocol, memory allocation and file system. The fol-
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lowing subsections identify and survey some of the areas under current investiga-
tion. Because it is necessary to understand the applications’ behavior and needs in
order to provide the feasible support for them, a brief analysis of the implementa-
tion schemes of some typical MM applications is also conducted.

An analysis on different degrees of media integrations and their significances on
OS can be found in Section 2.2.1  Integrated MM end-system and software-intensive

approach. Further references to related work are given throughout the whole disser-
tation, whenever necessary. And, we will highlight again the differences between
our work and related work in Section 10.1  Summary of main contributions and com-

parisons with related work.

 2.1.1  OS kernel support for MM

The existing popular operating systems such as UNIX and its derivatives are inher-
ently unsuitable for real-time continuous multimedia such as digital audio and
video. These operating systems have been designed to maximize the performance
of compute-intensive applications and to maintain a fair share of resources among
competing users. The techniques used by them are sometimes infeasible or even
counter-productive for MM applications.

There are several research efforts trying to extend the OS kernel functionality to
support continuous MM.

There are mainly two approaches to this. One is represented by the work like “real-
time UNIX” [Fisher92, Hagsand94]. The work by Tenet group [Fisher92, Vetter92]
has shown that real-time capabilities can be wedged into existing UNIX-like OS by
placing preemption points into the kernel to provide a certain real-time responsive-
ness required by continuous MM. The main concern with this approach is that it
does not explicitly tackle some real-time issues such as priority inversion and it
usually demands conservative and excessive reservation in order to provide a cer-
tain guarantee. Another approach detailed by examples below begins by directly
addressing the real-time requirements by MM applications, including the standard
real-time problems of priority, deadline scheduling, and priority inversion.

Many applications that use continuous media need guaranteed end-to-end perfor-
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mance (bounds on throughput and delay). To reliably support these requirements,
systems components such as CPU schedulers, networks, and file systems must
offer performance guarantee. The work by the DASH group at UC Berkeley
[Anderson90b, Govindan91] proposes to use a meta-scheduler to coordinates these
components, negotiating end-to-end guarantees on behalf of clients. They propose
a CM-resource model as a basis for such a meta-scheduler. A split-level scheduling
mechanism is used to implement a deadline-workahead scheduling to minimize
system call overhead and to deal with timing requirements of MM applications.

The group led by K. Jeffay at UNC [Jeffay92] based its work on YARTOS kernel
[Jeffay91] — an operating systems kernel that provides real-time communication
and computation services. They aimed at workstations with dependent A/V sub-
systems. The effective use of these A/V subsystems requires that real-time services
be provided at a number of level within the kernel.

Besides, the ARTS group at CMU [Tokuda92, Tokuda93] and a group at Fujitsu
[Nakajima91, Nakajima92] have made extensions to the Mach OS to include real-
time and multimedia capabilities. In their SUMO project, the Distributed Multime-
dia Research Group at Lancaster University is extending CHORUS OS to support
MM communications [Blair92b, Coulson93, Coulson93a]. They used the flow con-
cept to represent the complete path of a media stream from source to destination.

A more recent research collaborate project Pegasus is being conducted by the Uni-
versity of Twente and the University of Cambridge [Leslie93, Mullender94,
Sijben95]. They are designing and implementing a microkernel called Nemesis for
the multimedia workstations and the Pegasus file system. The kernel uses a single
address space shared by multiple protection domains and the scheduling mecha-
nism implemented in the kernel is similar to the scheduler activations mechanism.

 2.1.2  File system and file storage server for MM

A file system for MM must support solutions to the problems of synchronization,
timeliness and bandwidth in order to meet the demands of MM applications. Cur-
rent workstation file systems lack this capability. The earlier work by the DASH
group showed that the efficient and effective access to even simple MM data
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requires the use of both new layout policies and deadline based scheduling of file
access. The real-time multimedia OS file system must support a bounded model of
read-ahead directly into the application data space. It can allow neither the exhaus-
tion of data nor the overflow of the available buffer space.

At UCSD, Rangan and others [Rangan91] describe both algorithms and limits on
buffer resources necessary to satisfy these requirements under varying constraints.
Some techniques for physical organizations of multimedia storage like “disk strip-
ing” have also been proposed [Adam94]. Other systems, e.g. the Lancaster Media
Storage Server [Lougher94], use RAID technology to achieve the high bandwidth
and storage capacity needed for continuous media.

 2.1.3  Network access and communication protocols

Since network is a shared resource, network access is also a concern in supporting
MM applications. The Quality of Service (QoS) parameters [Danthine92] required
by MM communications at the high levels will partly be mapped onto and imple-
mented by the QoS parameters at the networking low levels. The new networking
technologies such as ATM provide some kinds of reservations and guarantees at
the networking level, making the reservation and guarantee of communication
QoS parameters at above layers possible.

Many communication protocols have also also designed and implemented which
aim to address the special requirements of continuous media communications.
Examples can be found in the work by the Tenet group at ICSI [Ferrari92,
Wolfinger92], the ongoing work by the Internet IETF audio/video transmission
group [Schulzrinne92]. While the protocols such as Rapid [Schatzmayr94,
Schatzmayr96] used Forward Error Correction mechanisms to reduce delay and
buffer burden in case of error, there is also work which shows the feasibility of
retransmission in a controlled manner [Papadopoulos96]. It should be noted that
the implementation and the utilization of these protocols would not be complete or
even possible without the suitable supports from operating systems.



2.1  A brief state-of-the-art survey

21

 2.1.4  Implementation schemes of typical applications

Without loosing generality, we classify common multimedia applications into the
following three categories by identifying their main timing requirements:

Type 1 — Real-time interactive. These MM applications have the most stringent
timing requirements. The applications usually try to keep a real-time, continuous
information flow. And the information exchange is quite often bidirectional and
interactive. Many desktop video conferencing tools [Hewitt96] belong to this cate-
gory. In order to achieve the effect of interactive real-timeliness, the end-to-end
delay of the information flow should usually be strictly bounded. Delay variations
(jitters) should also be kept small.

Type 2 — Continuous replay. The timing requirements of the applications in this
category are less stringent than those in Type 1. Although the applications should
still maintain a continuous information flow, the flow is quite often unidirectional
and the end-to-end timing bound on the information replay is usually flexibler and
larger than those of type 1. Video-on-demand applications belong to this category
[Rangan91]. Note that the delays and delay jitters in these applications should also
be controlled in a certain range, otherwise other problems might appear. For exam-
ple, larger delay variations usually lead to larger buffer to compensate them.

Type 3 — Fetch-and-play. Although involved with audiovisual activity, the applica-
tions in this category belong more or less to the traditional data communication
and processing applications. The information is usually fully fetched from the
other side before it is consumed. The current World-Wide-Web (WWW) video com-
ponents usually work in this way — the video source files are fetched completely
from other servers before they are played at the local side.

The audio/video components of the Multimedia Collaboration (MMC) applica-
tions generally belong to application type 1 [Dittrich95]. In some special scenario
such as unidirectional multicast transfer, they can also appear in the form of appli-
cation type 2. The typical MBONE audio/video tools [Jacobson95, Schulzrinne95b,
McCanne95] can be considered as type 1 applications when they are used in an
interactive scenario. They sometimes also appear in the form of application type 2
as in the example of MBone VAT Radio Broadcast where the playback delay has
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been observed to range from 300ms to several seconds.

In the following, we are only interested in applications of type 1 and type 2, where
some degrees of real-timeliness are involved. Type 1 applications are of special
interests because they are technically more challenging. Both types of the applica-
tions can be abstracted as “playback applications” with different timing stringent-
ness/rigidness. This will be dealt with in Section 3.2.1  Modeling CM activity as play-

back application.

2.2  System models and their justifications

After a brief state-of-the-art survey, we are now ready to present and justify our
models concerning the architectures and the system components of the multimedia
systems. We will also present and justify our views on some fundamental issues
such as resource management, the relationship between reservation and guarantee.
In addition, the emphases and the basic approaches of our work will be outlined.

 2.2.1  Integrated MM end-system and software-intensive
approach

A decisive factor in a multimedia system is how and to what extent the media data
is handled within the computer system. The design of a multimedia operating sys-
tem is fundamentally determined by how the media data is handled within the
computer system [Mullender94, Schulzrinne95a, Tennenhouse95].

Mainly two control manners have been used in the existing multimedia systems: a
control-only approach or a fully integrated approach. In a control-only approach,
the continuous media data generally does not touch the operating system or main
memory, but rather uses a separate infrastructure. In an integrated approach, the
continuous media data are under the direct control of the operating system and the
CM data can be processed by the application programs.

Most existing media toolkits and environments address the problem encountered
in a control-only system. The goal of such systems can be briefly defined as “deliv-
ery of audio/video data to desktop”, although they differ in their ways and
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degrees of digitizing and transmitting audio or video. For the case of video in some
earlier systems such as [Milazzo91], the control-only approach simply connects
analog video to a separate monitor or uses analog picture-in-picture techniques.
Analog mixing makes it difficult to integrate video into the windowing system, so
that the user perceives it as an attachment rather than an integral part of the sys-
tem. There is also likely to be a rather low upper bound on the number of concur-
rent video windows.

Instead of analog mixing, some systems such as the Pandora system [Hopper90]
integrated video in digital form, but through a separate video processor and a pixel
switch that decided for each pixel whether to display the workstation graphics
stream or the external live video source. A more integrated approach has live video
and workstation graphics share the same frame buffer, as is done for many work-
station-based video boards such as a Parallax board for SUN workstations. They all
allow mostly seamless video integration into the windowing system.

The fully-integrated systems are emerging recently. Pegasus system [McAuley93,
Leslie93, Mullender94] partly offers the choice of either treating continuous media
as data to be processed or simply switched from network device to display device.
ViewStation project of MIT [Tennenhouse95] aims explicitly at “delivery of media
data to application”, which means making media data accessible to and manipulat-
able by the application program. Note that an integrated approach implies also a
software-intensive approach at the same time, since the media data can now be
accessed and processed by software programs.

In a control-only multimedia system, the media data do not touch the CPU on its
path through the system, therefore their operating system requirements are much
relaxed. They impose only some control timing constraints on the operating sys-
tem. In an integrated multimedia system, in contrast, the operating system must be
able to fully support and control the multimedia-related activities. The OS require-
ments are thus much complicated. But an integrated multimedia system with the
possibility of software-intensive processing has many advantages that can not be
found in a control-only system:

• First of all, audio and video are on longer second-class media on which the
only operations are capture, storage and rendering, but media that can be
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processed — analyzed, filtered, modified — just like text and still images.
Applications can analyze their audio and video data input and take actions
based upon the analysis. “AI-like” functions like image categorization will
be now possible with CPU intervention.

• Second, the audiovisual data processing can easily coexist with other tradi-
tional data processing. The incremental cost of adding video to an existing
workstation can be close to zero if only software decoding is desired, as is
evident by the fast popularity of most MBONE applications. Except for
switch-based backplane architectures, there is also another pragmatic reason
to involve the CPU in that most workstation architectures are simply not
designed to allow adapter-to-adapter communication.

• Third, the benefits of letting CM data use standard system resources can only
be exploited by the users if CM data can be handled in the same software
framework as other data types. Such a framework in a distributed computer
system provides not only the services of the operating system, but also those
of the communication network, the window system and the programming
toolkits.

• Fourth, the software-intensive approach brings naturally with itself flexibility,
scalability and adaptability. With evolving standards in the area of network
protocols and media compression, software-intensive approaches offer far
more flexibility. Software decoding can easily display several windows of
live video simultaneously (depending on workstation performance), while
most hardware decoders only support a single output window. Software-
intensive applications also adapt well to the resources made available by the
platform on which they are executing and to the dynamic load by the mix of
concurrently active applications.

Because of the above advantages, the work on integrated multimedia systems is
regarded as the main stream of the current and future research and development.
Therefore, our work on OS support aims at fully integrated multimedia end-sys-
tems. Our goal-OS will not only provide support in accessing networking services
but also provide support for controlling all the activities on the endsystems
[Fan94a, Fan95a].
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 2.2.2  QoS architecture and components

The notion of quality of service (QoS) originally emerged in communications fields
such as ISO-OSI to describe certain technical characteristics of data transmission. In
our context, we use the term QoS to refer to all general system characteristics that
influence the perceived quality of an application at any level as is shown in Figure
2-1. Intuitively, quality of service is the specification of how “good” an offered ser-
vice is. QoS is generally characterized by a set of specific parameters. For our pur-
pose, the following is used as a working definition [Steinmetz95, Vogel95]:

Quality of service (QoS) represents the set of those qualitative and quantitative
characteristics of a distributed multimedia system which are necessary for the
achievement of the required level of functionality of an application.

Figure 2-1 Layering, mapping and negotiation of QoS
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There are several problem domains relatd to the processing of QoS parameters:

1) Assessment and specification of the QoS requirements in terms of users’
wishes or satisfaction with the quality of the application, be it performance-
oriented, format-oriented, synchronization-oriented, cost-oriented or subjec-
tive-oriented.

2) Mapping of the specifications onto the QoS parameters of various system
components or layers.

3) Negotiation between system components or layers to ensure that all system
components agree and are able to meet the required parameters consistently.

4) Realization and maintenance of the promised QoS parameters by the partici-
pating system components or layers. This will generally involves resource
management issues such as reservation and scheduling.

5) QoS requirement changes may occur due to the changes on the side of ser-
vice providers or on the side of service users. In the case of a change in QoS,
a renegotiation process between the participating components is usually nec-
essary to achieve a new QoS agreement. The realization and maintenance of
the new QoS agreement should then be done by all sides correspondingly.

As a matter of fact, the support of a continuous media stream should involve the
whole of the stack. As partly depicted in Figure 2-1, the representation of an audio-
visual stream varies at each layer. For example, the user level may see a HDTV
video channel which maps down to an application-specific flow, which in turn is
implemented as a composite of real-time processes by the operating system and so
on. In addition to this physical variation of stream representation, each layer associ-
ates a different “view” of QoS for the stream. Each layer does its best to sustain the
QoS agreed to the next layer up. If any layer is unable to maintain an agreed QoS,
then a QoS degradation occurrs and should be handled.

A service provider, be it a component or a whole layer, should schematically con-
tain the following functionality-parts, as is depicted in Figure 2-2: (a) service inter-
face — to be used by service users; (b) admission control and negotiation — this
part is responsible for schedulability test and QoS calculation and it is also respon-
sible for the negotiation of services with other service providers; (c) resource man-
agement and execution — it is responsible for resource management and the
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realization of the services promised to users.

The four most important transmission and processing QoS parameters for the dis-
tributed multimedia applications are throughput, delay (local or global), jitter and
reliability. As long as timing aspect on an end-system is concerned, predictable pro-
cessing delay and jitter are most important.

Figure 2-2 Basic composition of a service provider
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 2.2.3  Resource management, reservation and guarantee

Services for distributed multimedia applications need resources to perform their
functions. We argue that some forms of resource reservations are necessary in order
to guarantee a certain level of predictability in a distributed multimedia environ-
ment.

 2.2.3.1  “Null-reservation” not feasible for composite scenarios
Currently available workstations and high-end PCs are able to support some kinds
of MM applications. They usually achieve this by allowing the MM-related applica-
tions more or less take over the machine. Their scheme of “null reservation” actu-
ally equals to “exclusive use” only for MM-related activities. As such, the
multimedia applications on these systems are inflexible. They usually can not be
combined with other applications. The system usually shows two symptoms.
Either, other applications have direct and noticeable negative influences on the
quality of MM applications. Or, the MM applications have dominated the machine
so much that the other applications have almost no chances to go forward. This can
be seen more clearly in the measurements of the following experiments.

In our simple experimental setting, a pair of simple video applications are run as
source and sink on a Sun SPARCstation-4 with SunOS 4.1.3. The source application,
called SmpSend, does the following: it captures video frames through a video cam-
era, transforms and compresses the video frames, packetizes the frames and sends
the video packets through the loopback interface to the sink application. The sink
application, called SmpSink, performs the following: it receives the video packets,
forms frames, decompresses and decodes the frames and shows the frames as a

Table 2-1 Mutual influences of CM- and non-CM-activities

Measurements
SmpSink

Throughput
(KB/sec)

Dhrystone
Throughput
(Dhrystones/sec)

Scenario 1 115.50 —

Scenario 2 — 71428.6

Scenario 3 87.02 26881.7
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small video window. The popular benchmark program Dhrystone is taken as a tra-
ditional non-CM application.

In test scenario 1, only the video applications are run. The quality of video is satis-
factory. The throughput of SmpSink is about 115.5 KB/sec, as can be seen in Table
2-1. In the second test scenario, The Dhrystone benchmark is run alone and a per-
formance index of 71428.6 dhrystones/sec is achieved. In test scenarios 3, both
video applications and the benchmark application are run. The result is that the
video quality is quite bad, since no enough throughput has been achieved for video
transport. And at the same time, it is not possible to request the processing of Dhry-
stone to be maintained at a level, say, 40000 dhrystones/sec. Similar observations
have been made in a Solaris environment with some primitive traditional real-time
support [Nieh93].

The above two symptoms are harmful to our aim MMC application systems, since
we want to maintain some level of qualities for multimedia related activities and to
let other activities go forward at the same time.

 2.2.3.2  Reasons for service guarantee and resource management
On the one hand, the capacity of a typical, currently available workstation is pow-
erful enough to support live digital audio/video. On the other hand, this capacity
is not yet enough to support multiple activities of multimedia and non-multimedia
at the same time without a careful arrangement. And for our target MMC applica-
tion scenario, the combinations of MM and non-MM activities are inevitable.

We are aware that some contradictory opinions on the necessity of service guaran-
tee exist, especially in the networking fields [Deering95, Ferrari95]. In general, we
hold the view that some forms of guarantee are required to support many MM
applications satisfactorily. And, in order to provide service guarantees, resource
reservation and management schemes have to be used.

As is usually said: “Technical advances can never catch up with the application
requirements. Newer applications with higher requirements keep coming.” At any
time, we can not have enough resources to meet the requirements of ever new
applications. Although abundant resources can provide good services for applica-
tions in some scenarios, services will become worse in the case of higher single
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requirements and/or higher composite loads.

In the distant future, GigaFLOP CPUs and Terabit networks may provide accept-
able performance for most application cases regardless of scheduling policies.
However, in the foreseeable future, hardware resources will suffice for the continu-
ous media applications, but only if they are scheduled carefully. In the DASH
project [Anderson90b, Herrtwich92], this condition is called the “window of scar-
city” as depicted in Figure 2-3. In the dark-shaded region labeled “sufficient but
scare resources”, hardware resources are sufficient to handle the performance
requirements of applications, but only if they are carefully allocated and scheduled
in accordance with these requirements.

Figure 2-3 Window of resource scarcity
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In a multimedia collaboration (MMC) scenario, uncontrolled resource allocation is
not feasible. As shown in Figure 2-4, uncontrolled resource allocation will inevita-
bly lead to the situations where the MM-activities are short of resources to accom-
plish their work or the situations where other activities can not get their proper
shares on the resource or even face “starvation”.

Figure 2-4 Uncontrolled resource allocation

There are several possibilities to realize a controlled resource allocation. Rigid

resource allocations for MM-activities are hard to implement and sometimes lead

to resource waste. Most continuous media applications can adapt in some ranges.

And we hold the view that an adaptive resource management with soft guarantee

is generally the best choice (see Figure 2-5, case (c)).
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Figure 2-5 Controlled resource allocation
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A multimedia application relies explicitly or implicitly on the services provided by
all layers of the system. It is our belief that all layers and their main components
must be able to provide some degrees of performance guarantee in order for any
guarantee to be available to the upper layer users. If a layer is incapable of guaran-
teeing some performance bound, the layers above it cannot guarantee that bound
either.

It is also necessary to offer different quality of services so that the applications can
choose appropriate QoS to meet their needs. As long as guarantee is concerned, dif-
ferent kinds and different degrees of guarantees should be identified and provided.
As is said, continuous media applications generally only need soft guarantee. For
different cases, there can be different degrees of soft guarantee. Like the work on
the Integrated Service Internet, we advocate the separation of concrete scheduling
mechanisms from service models. A service model can possible be realized by dif-
ferent mechanisms.

 2.2.3.3  Basic ways of reservation to achieve guarantee
The traditional way in achieving guarantee is to reserve. To reserve means to sepa-
rate and to control. The resources required for a guarantee should be used sepa-
rately or at least in a controlled manner. The following possibilities of resource
reservation can be used in different multimedia environments:

1) Null reservation — As argued above, null reservation is generally not feasi-
ble for a composite MMC scenario. But in some simple scenarios, null reser-
vation can achieve the effect of reservation by “over-dimension”. As an
example of bandwidth reservation, although a physical link might not sup-
port bandwidth reservation, bandwidth reservation might still be made in
such a form that only a logical connection can be set up over a physical link
so that the connection has virtually reserved the whole bandwidth of the link
and this link always produces very low delays with minimal jitters. As an
example of processing power reservation, extra processors can be provided
for different MM devices and an application can be given enough processing
power by letting it running alone.

2) Rudimentary practices — According to experiences, very simple admission
control methods can be used. An example is the admission control in the
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extended Ultrix OS of the Tenet group [Fisher92] where only up to 4 user
real-time processes are allowed in order to avoid overload.

3) Satisfiability analysis and resource constraint enforcement — A complete sat-
isfiability analysis of the system should be conducted beforehand or at sys-
tem condition changes. During runtime, a resource enforcement should be
conducted by the system in order to prevent some applications from using
more resources than they claimed and which are needed by other applica-
tions. Such satisfiability (schedulability) tests should usually be done in rela-
tion to processing capacity, buffer usage as well as bandwidth needs.

An example of checking schedulability for a set of real-time CM tasks can be found
in the system based on YARTOS [Jeffay91, Jeffay92]. Our scheduling framework
also belongs to the last category.

 2.2.4  Basic approaches of our work

In order to provide proper support for multimedia applications, we advocate the
approach of supporting continuous media by exploiting their special characteris-
tics. We also argue that an application-driven and application-oriented approach is
the most natural approach to achieve the goal.

 2.2.4.1  Exploiting the characteristics of continuous media
Our central idea and starting point for supporting multimedia (especially continu-
ous media) communications and applications is to exploit the special characteris-
tics of them. That is, the support of OS to continuous media should exploit the
special features of continuous media which are not present in or are not typical of
other kinds of computer and communication applications. Some of these features
can be identified as soft real-time, soft guarantee, periodicity, error-tolerance,
adaptability, etc.

The following shows some of the sample working schemes and the related system
effects in this regard.

For example, higher performance can be achieved by exploiting the special charac-
teristics of continuous media communications, as is shown by the following two
cases:
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• Gaining performance by using periodicity

One common feature of continuous media communication is periodicity. That is,
the continuous media shows its periodic continuity both in the sense of time and
space. The periodicity of the continuous media communication can be exploited to
some extent. At the application user level, periodic sending and receiving of data
will result in a periodic scheduling of the corresponding tasks and threads. It is
therefore possible to use the scheduling strategies which deal with periodic tasks to
provide a certain degree of guarantee for their processing. At the lower level, inter-
rupts resulted from CM communication can be partly spared if this periodicity can
be used. By exploiting the periodicity at interrupt level, the processing overhead
can be reduced and be virtually controlled. This is of special importance since the
low-level interrupts have usually taken a large part of the processing capacity of an
ordinary workstation.

• Gaining performance by turning off checksum computation

Since continuous media communications can tolerate a certain degree of transmis-
sion errors in many cases, it would be possible to spare the cost of checksum calcu-
lation over the user data.

It should be noted that turning off checksum protection in a wide area context
seems unwise without considerable study, since a number of gateways are
involved and an end-to-end corruption becomes much more possible. But in many
cases it would surely be advantageous to turn off the checksum computation safely
for multimedia communication in order to get a clear performance improvement.
The following shows some concrete examples of performance gains by turning off
checksum computation. The performance enhancements are usually significant.

In the environment reported in [Kay93], the checksum computation time of UDP
messages is responsible for almost 50% of total processing time for large messages
(larger than 8192 bytes). The computation of the checksum for user data has been
designed to be optional in some contemporary protocols (for example, the NOERR
mode of the XTP protocol). In our experiences with XTP and XTP-lite, for example,
the performances of data transmission using XTP have been clearly improved at
the user-application level if the user data checksum in XTP packet has been turned
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off [Fan93, Fan95c].

• Soft real-time, soft guarantee and adaptive service support

Our work on the realization of a predictable soft real-time framework and the real-
ization of an adaptive service supporting model are all based on the idea of exploit-
ing the special characteristics of continuous media. Further texts of the dissertation
will present the details.

 2.2.4.2  Application-driven and application-oriented approach
In our opinion, it is a natural and perhaps the best method to do resource reserva-
tion and other OS support in an application-driven approach. The QoS require-
ments of an applications dictate the resources required by the underlying system
components which service this application.

• Mapping the QoS requirements of upper layer down to parameters
supported by lower layers

Without the basic support of lower layers, the guarantee at higher layers are very
difficult, if not impossible. Some QoS parameters at the upper layer applications
will eventually have to be mapped on to the QoS provisions of the supporting
operating systems and networks. For communications, the QoS support of under-
lying networks should be used in the end. Networks are evolving towards the pro-
vision of basic performance guarantee. By using ATM signalling protocol, for
example, resources will be reserved in the ATM network such that the connection
will be guaranteed with its bandwidth, delay etc. For processing capacity needs,
the timing requirements of the applications will have to be embodied in the form of
timing parameters of the real-time processes which implement them.

• Reserving protocol processing power by application-driven
protocol processing

As can be seen in the playback scenario abstraction, the MM data packets need not
be processed as soon as possible, they need only to be processed in time — before
their playback points. In Chapter 8 “Predictable protocol processing”, we will see
how a delayed, object-activated processing model can make it possible to reserve
protocol processing power by application-driven protocol processing.
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 2.2.5  Main emphases of our work

Our work will only deal with endsystem OS support for multimedia.

It is clear that the proper resource managements for all resources in the endsystems
as well as the routers are needed in order to provide reliable QoS to users of a mul-
timedia communication system. A key element of the current challenge is the pro-
vision of performance-oriented QoS parameters such as throughput, delay and
delay jitter on top of asynchronous networking systems. The provision of multime-
dia QoS parameters has to cope with the non-deterministic nature of mainly two
components:

1) the communication environment — asynchronous networking systems
which cause probability distributions of performance related parameters of
the information flow; and

2) the OS or other form of run-time support — real-time and non-real-time
operating system scheduling facilities which can only partly support the
bounded processing delay for communication requirements.

To meet the requirement of distributed multimedia QoS support, reservation
schemes should be able to set up and reserve network resource such as bandwidth
and end-to-end delay of different paths over the whole way of a connection. Other-
wise, numerous dropped and delayed packets are unavoidable. In this work, we do
not tackle the problems related to the communication environment. For our pur-
pose, we assume a networking environment with similar functionality to an Inte-
grated Service Network [Clark92, Shenker95a, Shenker95b, Braden96] or a TENET
network [Ferrari92]. That is, the OS should be allowed to request QoS parameters
on network connections and the network should try to maintain these QoS param-
eters or at least give a notification to the OS to indicate QoS violations if the mainte-
nance of the QoS parameters is no longer possible. However, our schemes will not

assume that the networks can provide any rigid and absolute real-time support.

As stated in Section 2.1  A brief state-of-the-art survey, OS MM supports encompass
all components of the QoS architectures, all system resources and all areas of OS.
Needless to say, it is impossible to handle all these issues in our work. Our work
has been centered around the real-time aspect of the multimedia system. We
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mainly deal with the most critical resource of the system — processing possibility
of MM activities, i.e., the scheduling of multimedia processing. The other resources
should be correspondingly managed in an pplication- and timing-driven manner.
Our emphases are not on the definitions or mapping of related QoS requirements,
but the actual realization of these QoS requirements. Such work includes resource
(especially CPU) reservation, QoS maintenance and violation handling.

Our work has been organized under the goal of realizing a predictable soft real-
time framework. Prototype implementation and simulation evaluation have been
conducted in the scope of an internal project effort called “MMOSS”, which stands
for “multimedia operating system support” [Fan94a, Fan95a, Fan96b]. Part of the
work has also been reflected in some milestone reports for a TUB-OKS-Siemens
Cooperation Project [Fan94b, Schatzmayr94, Fan95b].

2.3  Summar y of the c hapter

Through a brief survey, the state-of-the-art of OS support for multimedia is pre-
sented. The need to accommodate continuous media delivery and processing has
already affected every part of the operating system. We take a glance on the work
in several areas of current active research and development: OS kernel support for
multimedia, file system and file storage server for multimedia as well as specific
network access and communication protocols. We have also discussed the imple-
mentation schemes of typical applications so that we can better understand the
applications’ behavior and needs and can thus provide the adequate support for
them.

We have also justified our system models and emphasized our main working
points. Our work on OS support aims at fully integrated multimedia end-systems
because of their many technical and future-oriented advantages. Our QoS architec-
ture deals with all layers and components of the system. The necessity for service
guarantee and resource reservation is also justified and some basic ways of reserva-
tion are presented. The basic idea of our work is to support continuous media by
exploiting the special characteristics of them. To achieve this goal, we take an appli-
cation-driven and application-oriented approach. Our emphases are not on the def-
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initions or mapping of related QoS requirements, but the actual realization of these
QoS requirements. Our work has been centered around the real-time aspect of the
multimedia system and has been organized under the goal of realizing a predict-
able soft real-time framework. We use theoretical analyses, simulation evaluations
or experimental implementations to validate our models and algorithms.
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PART  II

Using a Soft Real-Time Framework
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Chapter  3

A soft real-time framework as a solution

In Part 1, we have briefly argued that real-timeliness is a prerequisite for multime-
dia systems. While it is often assumed that continuous media is challenging
because it imposes the highest data rates or processing requirements on the system,
this may not necessarily be the most critical factor. Graphics or transaction process-
ing may well impose larger loads on a larger range of system components. It is
actually the timing requirements and the guaranteed throughput required for con-
tinuous media that force specific consideration in designing operating system sup-
ports for continuous media. In addition, the high data rate or large processing
capacity requirements can be more easily “scaled out” with the rapid development
in the hardware fields. In contrast, the timing and guarantee requirements demand
solid work on a theoretically-sound technical basis.

In an integrated multimedia system, the operating system must be able to fully
support and control the multimedia-related activities. In order to make the whole
system predictable as well as flexible, we argue that all the system activities should
be controlled by a soft real-time framework. The soft real-time framework is
responsible for controlling networking services as well as end-system services
which access and process the media data on behalf of the users.

This chapter begins by arguing that the CM applications and communications need
soft real-time scheduling and that the current systems do not provide the appropri-
ate support. Further analyses are provided to show that CM applications and com-
munications posses a set of “soft” features which can be accommodated in a soft
real-time framework. Finally, the soft real-time framework is sketched with its
main components identified.
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3.1  CM applications and comm unications need
real-time sc heduling

The applications involving continuous media can appear in many forms. In addi-
tion to the multimedia collaboration (MMC) scenario, which is our main problem
domain, some other examples can be found in:

• Playback of full-motion video and audio recorded in digital form on compact
disks;

• Audio-visual digital teleteaching, where the transmissions are generally uni-
directional multicast;

• Full-motion computer animation accompanied by synthesized sound.

Suppose these applications are to be supported on a new desktop multimedia com-
puter system, then it should be clearly a multi-tasking window system, which is to
support as many concurrent instances of the above-mentioned tasks as is feasible.
Continuous media applications demand the processing of audio and video data in
such a manner that humans can perceive these media in a natural, non-artificial
way.

These CM applications have their real-time constraints which should be satisfied.
For example, it should be ensured that sounds and videos do not have glitches
caused by late arrival of packets or shortage of processing, etc. That is, the quality
of service is impaired if CM data isn’t delivered and processed on time. Therefore,
multimedia systems are real-time systems, since they are systems “in which the
correctness of computation depends not only upon the results of computations but
also upon the time at which the outputs are generated” [Stankovic88, Zalewski93].

By the way, one can even find the cases where CM applications have genuine hard
real-time requirements. One such example is an embedded multimedia system
such as a digital video recorder, in which hard real-time techniques should be used
otherwise video frames could be dropped and a consumer would, of course,
require that it be fixed. Such cases are not our main concerns here.

Most of the continuous media applications which interest us do not have hard and
stringent deadline requirements. By video conferencing, for example, small distur-
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bances in video can be tolerated. The most continuous media applications are
therefore soft real time applications, where “system service and performance are
degraded but not destroyed for failure to meet some response time constraints.”
They need not be treated as hard real-time systems because they need not “be
designed to meet given deadlines under all circumstances to avoid high cost or
even danger” [Zalewski93, Audsley91, Mercer92].

Anyway, developers of multimedia software should incorporate real-time design
and analysis techniques in order to build systems that function predictably and
reliably.

 3.1.1  Why existing systems are not fully feasible

Clearly, the traditional time-sharing operating systems can not provide adequate
support for real-time multimedia applications and communications. In those sys-
tems, some form of “fair-share” should be granted to all system activities so that
the more processes there are, the more seldom each process gets executed on the
average. This, of course, can not meet the needs of multimedia applications which
have real-time constraints and processing capacity requirements. For example,
standard Unix scheduling favors I/O intensive processes by adjusting their sched-
uling priorities correspondingly, while software-based codecs may not get suffi-
cient computational resources.

In most commercially available real-time operating systems, emphasis was placed
on fast interrupt latency, fast context switching, and small preemptable kernel. A
few commercial systems also provide synchronization primitives which avoid the
priority inversion problem [Fiddler89, Hildebrand92, Mukherjee93]. They have one
in common: they usually provide a careful scheduling policy for delay bounds, not
for throughput guarantees; and the real-time feature has to be used by each partic-
ular application in an ad hoc manner. In addition, some main features of these real-
time OS such as short interrupt response latency and fault-tolerance are not very
useful for MM systems. For example, for multimedia communication itself, inter-
rupt handling latency is not a main problem, at least not a central critical problem.
The reason is that a reasonable amount of buffer is always necessary to compensate
the jitter. The same can be said with fault-tolerance. In multimedia systems for
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MMC, fault-tolerance need not be emphasized. On the other hand, these existing
systems lack some important features needed by MM applications. For example,
there are usually no direct supports for explicitly expressing timing constraints
such as processing throughputs, periodicities, etc. Under transient overload, users
may loose control over which tasks should be favored to complete their computa-
tions and which tasks should be delayed or even aborted. By using these real-time
operating systems, it is difficult to construct flexible multimedia systems.

 3.1.2  A whole system concept is needed

To support multimedia applications such as MMC best, a multimedia supporting
system should support soft real-time development methodologies and the whole
end-system should be controlled by a soft real-time framework.

It should be possible for multimedia developers to analyze the real-time behavior
of their programs in order to characterize the circumstances under which the pro-
grams would function correctly. The real-time methodologies should also allow
programmers to carefully isolate the real-time behaviors of each component in the
system in order to have a good control of different application mixes and to facili-
tate debugging.

It should be noted that all the activities related to continuous media applications
should be supported by the real-time mechanisms. The real-time support of kernel
activities alone is not enough. Under heavy or even normal load, application pro-
cesses which consumes the CM information should also be run in real-time man-
ner, otherwise the real-time constraints of the whole activities can not be satisfied.
For example, even if the data can be delivered at the transport service access points
by real time, it will still be useless, if the application processes are delayed and can
not make use of the delivered data in time. We hold actually the point of view that
a kind of end-application-driven scheduling strategy should be promoted.

In a normal MMC application scenario, the workload contains a mixture of real-
time, interactive, and batch applications. Multimedia OS support should accommo-
date MM as well as non-MM activities.
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3.2  “Soft” f eatures of CM applications and comm u-
nications

Since the continuous media applications and communications posses many real-
time (RT) features, the CM supporting systems need not and should not do their
design from scratch. Rather, the design should be based on the currently available
real-time techniques. The main concern here is just how to select, modify, extend
and combine these techniques to make them meet the needs of the specific soft real-
time features of the continuous media. In the following, we try to identify and for-
malize some of these soft features.

 3.2.1  Modeling CM activity as play-back application

The continuous media data has its origin at sources like microphones, cameras and
files. From these sources the data is transferred to destinations (or sinks) like loud-
speakers, video windows and files located at the same computer or at a remote sta-
tion. On the way from a source to a sink the digital data is processed by at least
some type of move, copy or transmit operation. Therefore in this data manipula-
tion process there are always many resources which are under control of the oper-
ating system. The resource management and the respective scheduling must be
performed according to the real-time demands of the continuous media applica-
tions. By examinating the whole way from the source to the sink, we can again
divide the way into several stages. The sink of an intermediate stage is again the
source for the following stage. It is important to note that the goal of the whole pro-
cess is to “play-back” at the sink the CM data generated by the source in a certain
acceptable manner. This leads to some requirements concerning delay, jitter etc. In
order to put the delay and jitter under control, each stage on the way should usu-
ally assert some forms of control on the delay and delay jitter. Of course, the end-
to-end delay and delay jitter matter most.

The whole way from a source to a sink or some stages of it can be abstracted as
some forms of “play-back” scenarios. It has been natural to model CM communica-
tions as play-back applications [Clark92, Kurose84, Partridge91, Mathur93]. This
applies readily to other stages on the way to transfer CM data from a source to a
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sink. CM data are usually generated at the source periodically and continuously
and are then consumed at a destination periodically and continuously, regardless
whether the source and the destination reside locally with each other or are con-
nected by a communication network. Here, one or both of the source and destina-
tion can be CM devices or some forms of intermediate stops.

Let us first formalize the notion of play-back point to some extent. (In the literature,
“play-back” is sometimes called “play-out”.) For sake of simplicity, we use the term
“packet” to denote either real CM data packet or virtual processing event related to
CM data.

Let the end-to-end delay of a packet i be Di, which is the delay experienced by the
packet from the time it is created at the source side to the time it is consumed at the
destination side. The packet delay consists of approximately two components, a
fixed and a variable component. The fixed component of the total delay, denoted
Dfixed, is principally identical for all packets and includes, for example, propaga-
tion delay and other fixed processing overheads. The variable component of the
delay, denoted Di

variable, is the queueing delay experienced by the packet at vari-
ous stage of its processing or transmission path. We have, therefore,

Di = Dfixed + Di
variable and Di ≥ Dfixed.

The playback delay of packets at the destination is defined as

Dplayback = Dfixed + Dslack.

Let us denote the ideal generation time of packet i at source as ts
i
, the actual packet

generation time as tg
i (possibly tg

i ≠ ts
i, especially for the intermediate stages). Then

Dslack should be so chosen that for a high percentage of packet i: tr
i ≤ td

i, where tr
i

(tr
i = tg

i + tdelay
i) is the actual ready time of packet i at destination and td

i (td
i = ts

i +
Dplayback = ts

i + Dfixed + Dslack) is the ideal destination consumption time (playback
time or playback point) of packet i. Only if tr

i ≤ td
i can the packet i be used by desti-

nation in time. If a packet does not arrive by its playback time, i.e. tr
i > td

i, then it
can not be used for its playback in time and there will be a break in the continuity
of the playback. For example, packet 4 in Figure 3-1 is useless because its arrival
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time is after its playback point.

Figure 3-1 Time diagram for a section of playback scenario

Figure 3-2 Delay distribution and the choice of playback delay
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In the delay distribution shown in Figure 3-2, the packets with a delay larger than
Dp2 is represented in the shadowed area. If the playback delay is chosen to be Dp2,
then the packets represented by the shadowed area can not be used for playback
and are therefore “meaningless” or “lost” for the playback. If the playback delay is
moved forwards to Dp3 or backwards to Dp1, then the shadowed area becomes
smaller or larger correspondingly. This means less or more “meaningless/lost”
data correspondingly. This illustrates the effects of different choices of playback
delays, where tp1 apparently causes more packets to miss their playback points
than tp2.

Suppose the probability density function (pdf) of the end-to-end delay to be f(x)
and suppose the playback delay is set to D. For a simplified representation, the per-
centage of the lost packets and the percentage of the packets which can be success-
fully played back are then respectively:

(E-3-1)

(E-3-2)

If the delay is of a constrained range of the form [min, max], for max ≥ D ≥ min, the
percentage of the lost packets and the successful packets are then respectively:
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(E-3-3)

(E-3-4)

The relationship between the success rate and the play-back delay is a key index in
a CM application. The whole goal is to make a trade-off to achieve the best total
system effect. On the one hand, we have to keep the playback delay Dplayback small
in order to reduce the negative effects induced by long end-to-end latency. This can
be the reason that we might choose Dp2 instead of Dp3 in the scenario shown in Fig-
ure 3-3, although Dp3 is long enough to ensure that all packets arrive before their
playback points thus providing a better playback quality. On the other hand, we
have to keep the playback delay Dplayback large enough in order to maintain a con-
tinuous playback by ensuring that most of the packets arrive by their playback
time. This can be the reason that we might choose Dp2 instead of Dp1 in Figure 3-3,
since Dp1 provides a shorter end-to-end delay at the cost of too many packet loses.

It should be noted, however, that the playback delay need not be kept constant all
the time. It is actually a normal practice for the continuous media applications to
adjust their playback delays according to the changing situations. More on this will
be detailed in Section 3.2.2  Flexible features.
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Figure 3-3 Generation and reconstruction of a stream as seen by the
receiver

In an audio conferencing, for example, the end-to-end playback delay should usu-
ally be kept under 300ms in order to make a natural real-time conversation possible
(CCITT G.114 recommends a 400ms upper bound for most applications). At the
same time, the end-to-end playback delay can not be so small that many of the data
packets can not arrive in time thus making the voice incomprehensible for the lis-
tener. The loss tolerance of real-time audio transmission can vary in the range of 1%
to 10% under different conditions [Schulzrinne96]. The human beings are usually
even more tolerant to a video distortion than to an audio distortion [Steinmetz95].
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• A side-note on isochron and synchronization

As implied above, one of the properties of continuous media applications is the
property of isochron. That is, the playback of voice and video data streams should
be isochronous in that their users may be sensitive to the variation in inter-arrival
times between data delivered to the final output device.

Intuitively, jitter is the measurement of the non-steady fluctuations/variations of
the packet arrival time. For sake of simplicity, a delay jitter is defined as the varia-
tion of packet delays relative to a reference packet delay, as is shown in Figure 3-4.
Alternatively, one can also use inter-arrival jitter as a measurement. In RTP, for
example, the inter-arrival jitter is defined to be the mean deviation (smoothed abso-
lute value) of the difference in packet spacing at the receiver compared to the
sender for a pair of packets.

Figure 3-4 Delay jitter as a result of delay variations

Note that the factor of delay jitter is considered implicitly in the above modeling
scheme. The playback delay is used to compensate the delay jitter to a large extent.
The playback delay Dplayback should usually be larger than the average delay Dav-

erage so that the most packets can be processed in time to be played back. Intu-
itively, the greater the jitters are, the larger the Dplayback should be than Daverage. In
order to set a reasonable value for Dplayback, it is helpful to know the average jitter.
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The packets arrived earlier than their due playback time usually have to be buff-
ered up to their playback time. We will turn back again to the issues of buffering
the earlier-arriving packets and the support of isochronous playback later in Chap-
ter 5.

Actually, the temporal aspects of CM data contribute to their semantics and they
result in a need for synchronization of threads that present CM data to users or user
processes. The following two forms of synchronization can be identified:

• Intra-stream synchronization, i.e., within a stream of CM data. This is just the
property of isochron explained above. The consecutive values of a CM
stream must be presented at regular intervals.

• Inter-stream synchronization. This may be needed between different streams
of CM data as well as between CM and discrete media (DM) data. If several
streams of CM or DM data are semantically related, their values have to be
presented in a synchronized manner. An example is “lip-synchronization”,
where it is necessary to synchronize the spoken voice with the movement of
the speaker’s lips. Another example is to incorporate DM data in CM data as
in the case of showing subtitles in a movie. The processing and output of
such DM data has to occur when certain values of the CM data sequence are
reached. In the multimedia collaboration environment, the availability of
CM data such as audiovisual streams and the availability of DM data such as
common documents should also be synchronized loosely.

We are aware that the above playback scenario has just modeled the intra-stream
synchronization aspect of the CM applications. (More considerations with this
regard will be given in Section 5.4.4  Jitter of processing and Section 5.5.3.2  Interfacing

continuous media I/O.)

We hold the view that it is neither necessary nor possible to provide support for all
temporal aspects of continuous media. The aspect of inter-stream synchronization
can be realized by the applications with the help of transport, session and applica-
tion protocols. The direct support for intra-stream synchronization of CM process-
ing can control the variations in processing delay jitter thus providing a good basis
for inter-stream synchronization. For discrete media processing, our process frame-
work will provide a kind of virtual soft real-time support to make sure that the
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DM-related processing can progress with the CM-related processing together.

 3.2.2  Flexible features

In comparison to hard real-time applications, the nonrigidity or flexibility of con-
tinuous media applications and communications can be seen in several aspects. (Of
course, we also keep in mind that not all the CM applications have the same flexi-
bilities or the same degrees of flexibilities.)

First, some losses of CM data packets, some omissions in processing CM data pack-
ets or CM-related events are acceptable. Although the permissible losses or omis-
sions vary from applications to applications, human eyes and ears apparently can
smooth some glitches from missing samples or events.

Second, we can identify three kinds of possible flexibilities (adaptabilities) which
can be exploited. That is, rate, data volume and playback delay of CM applications
are in many cases adaptive and can be adjusted in a certain range.

Let us look at some examples. The first example is a video transmission scenario. If
the effect of “slow motion” can be tolerated by viewers for some time then the
number of frames transmitted in a second can be lowered for some time. The sec-
ond example is the transmission and processing of video packets encoded in
MPEG. By choosing not to transmit or process some P or B frames (or better, not to
encode them in the first place), the data volume can be decreased. The third exam-
ple is the VAT voice-conferencing system developed by LBL and in experimental
use over the MBONE of the current Internet [Casner92, Partridge94]. Although the
current Internet has no support for bandwidth reservation and real-time transmis-
sion, VAT can still deal with the problem of varying delays of voice packets by
changing the playback point, during the conversation, in response to the network
delays it observes. Voice samples are time-stamped at sending side and replayed at
receiving side. If VAT discovers that a lot of voice samples are arriving late, it
increases the playback point. If VAT observes that all the voice samples are arriving
well before they are played, it moves the playback point back. VAT shifts the play-
back point during intervals of silence in the audio stream so that the changes are
almost invisible to listeners.
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Concerning the adjustment of the playback delay, one can be flexible in the case of
audio playback as well as in the case of video playback. Playback delay adjust-
ments done at the talkspurt boundaries are usually unnoticeable by the listener.
And one can as well discard some video frames or to replay some video frames to
speed up or to slow down time.

As a consequence, as long as scheduling is concerned, continuous media applica-
tions and communications usually posses the following features:

1) A high degree of guarantee is required but a strict hard guarantee is not
needed. That is, some violations of timing constraints can be tolerated.

2) A good degree of CPU-usage should be achieved. That means, for example,
the schedulability’s test and the scheduling mechanisms for real-time pro-
cesses or threads should not be too time-consuming; sometimes a trade-off
between efficiency and optimum should be made.

3) Real-time processes as well as non-real-time processes should be accommo-
dated in the same framework to support a composite multimedia system.

4) A certain degree of elasticity in describing the real-time properties of a real-
time process at creation time should be allowed. For example, the worst exe-
cution time of the process need not be the exact real upper bound of the pro-
cess execution at run time.

As is evident, one of the key points is how to exploit the possibility of sacrificing
absoluteness for a higher efficiency and utilization, since multimedia systems are
generally no hard real-time systems. And at the same time, a certain degree of
guarantee of service provision should be maintained. Briefly speaking, resource
allocation should be done in order to achieve a certain degree of predictability, but
we only need to allocate less than peak resources and rely on statistical multiplex-
ing of multiple applications and the felxibilities of these applications to get a satis-
factory probabilistic guarantee.

3.3  Sketc h of the soft real-time frame work

To summarize, the above analyses show that the real-time requirements of the con-
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tinuous media are different from the real-time requirements in a safe-critical hard
real-time system. They are surely “softer”. (They can be seen as more favorable
[Steinmetz95] or more complicated [Mullender94] than hard real-timeliness,
depending on the observer’s perspective angles.) It is advantageous to have some
degree of real-timeliness in the scheduling of continuous media, but the misses of
deadlines are tolerable by the CM processes to some extent.

All in all, it is only necessary to achieve a good approximation of the predictability
guaranteed by the hard real-time scheduling theory. I.e., a certain degree of “skew”
is allowed. We call such a framework a soft real-time framework. In a general
sense, the framework comprises not only the operating system as its center, but
also the underlying hardware supporting components and the overlying software
packages which make the support of continuous media complete.

 3.3.1  Practical meanings of soft real-time

The soft real-time needed for the support of continuous media has several practical
meanings which will be taken into consideration when we design and realize our
soft real-time framework.

• Different degrees of soft real-time

Not all the CM applications have the same flexibilities or the same degrees of flexi-
bilities. This leads to different degrees of soft real-time needed to support them.
More specifically, this means different degrees of real-time requirements for differ-
ent application domains, different applications and different environments. For the
design and implementation, different degrees of soft real-time means different
degrees in the strictness of soft guarantee, admission control, monitoring and
enforcement strategies, etc.

• Two aspects of soft real-time

The real-time features of a multimedia system can be soft in mainly two aspects.
On the one hand, the user processes can be (and should be) allowed to misbehave
to some extent and be allowed to violate some timing agreements from their side.
For example, the user processes may try to use more processor time than they
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claimed and reserved. On the other hand, the supporting system can also be (and
should also be) allowed to misbehave to some extent and be allowed to violate
some timing agreements from their side. For example, the supporting system may
not conduct a very precise accounting on the user processes’ resource usage and
the supporting system may “steal” some time budget from a user process when the
system happens to have to handle a burst of system events.

The tolerances of timing violations from both the side of the system and from the
side of the user processes have also their practical meanings and consequences.
First, different guarantee degrees can be supported as explained above. Second, it
is possible for the system and the user processes to state their timing specifications
flexibly and timing overflows/exceptions can be handled in some “soft” and
“graceful” manners. The handling methods for timing exceptions or violations are
necessary, since we do not require a rigid timing specification from the multimedia
processes and not-so-often timing violations both from the side of user and from
the side of the system are allowed.

 3.3.2  Contents of the soft real-time framework

Generally speaking, enhancements in both the endsystem hardware and software
are needed in order to meet the time-constrained high processing requirements of
the multimedia applications. In this sense, the soft real-time framework should
comprise not only the operating system as its center but also the underlying sup-
porting components and the overlying software packages to make the support of
continuous media complete. Very often indeed, certain hardware configurations
are needed in order to make the software aspect of the soft real-time support easy.

For the part of OS, our soft real-time framework proposal consists of a process
framework for categorizing processes, some timing enforcement models and some
base real-time scheduling and handling schemes. The processes are categorized so
that they will receive different treatments with regard to resource allocations. The
timing enforcement models deal with the issues of enforcing timing contracts
between systems and user processes in different environments. Base real-time
scheduling schemes are used to schedule the system activities and the base real-
time handling schemes are used to deal with the situations of timing overflow.
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These components are designed to work together to achieve a good approximation
of the timing properties as predicted by the hard real-time scheduling theory so
that the whole system is run in a more or less predictable manner. The following
chapters will present some concrete design, implementation and evaluation of
these components.

We are aware, of course, that a multimedia application is dependent on several
kinds of resources in its whole life time and that the processing capacity is only one
of the most important active resources. Real-timeliness and predictability of the
system as a whole can only be achieved if all system resources and activities
involved are managed in a predictable manner. Coupled with some concrete
design of soft real-time scheduling and handling methods, Part III and Part IV will
investigate, among others, realization issues such as application- and timing-
driven resource reservation, interfacing continuous media I/O and predictable pro-
tocol processing.

3.4  Summar y of the c hapter

One of the key points of the feasible multimedia support is how to exploit the pos-
sibility of sacrificing absoluteness for a higher efficiency and utilization, since mul-
timedia systems generally do not need hard guarantee. At the same time, a certain
degree of guarantee of service provision should be provided in order to maintain a
certain degree of application-perceived quality. Correspondingly, resource alloca-
tion should be done in order to achieve a certain degree of predictability. But we
only need to allocate less than peak resources and rely on statistical multiplexing of
multiple applications and the felxibilities of these applications to get a satisfactory
probabilistic guarantee.

Continuous media communications and applications certainly require real-time
support. But the real-time requirements of the continuous media are different from
the real-time requirements in a safe-critical hard real-time system. They are surely
“softer”. In comparison to hard real-time applications, the nonrigidity or flexibility
of continuous media applications and communications can be seen in several
aspects.
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First of all, some losses of CM data packets, some omissions in processing CM data
packets or CM-related events are acceptable. Although the permissible losses or
omissions vary from applications to applications, human eyes and ears apparently
can smooth some glitches from missing samples or events.

In addition, we can identify three kinds of possible flexibilities (adaptabilities)
which can be exploited. That is, rate, data volume and playback delay of CM appli-
cations are in many cases adaptive and can be adjusted in a certain range.

In continuous media-related applications, the whole way from a source to a sink or
some stages of it can be abstracted as some forms of “play-back” scenarios. The
relationship between the play-back success rate and the play-back delay is a key
index in a CM application. A trade-off should usually be made in trying to achieve
a short play-back delay (and thus a short end-to-end delay) and a high play-back
success rate (and thus a high play-back quality) at the same time.

The traditional time-sharing operating systems and the commercially available
real-time operating systems can not provide flexible soft real-time supports for the
multimedia applications and communications. To support multimedia applications
such as MMC best, a multimedia supporting system should support soft real-time
development methodologies and the whole end-system should be controlled by a
soft real-time framework.

In realizing such a soft real-time framework, different degrees of soft real-time
should be considered for different applications and environments. Soft real-time
also implies the tolerance of some timing violations both from the side of the sys-
tem and from the side of user processes. This feature has also to be exploited in the
design and realization of a soft real-time framework.

As a system framework, a soft real-time framework will inevitably involve both
hardware and software components, with the operating system as its center. For
the part of OS, our soft real-time framework proposal consists of a process frame-
work for categorizing processes, some timing enforcement models and some base
real-time scheduling and handling schemes. As will be detailed in the following
chapters, these components are designed to work together to achieve a good
approximation of the timing properties as predicted by the hard real-time schedul-
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ing theory so that the whole system is run in a more or less predictable manner.
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Chapter  4

Inside the soft real-time framework

This chapter begins with a description of our real-time process model and schedul-
ing framework. Semantics of soft guarantee, real-time process categorization crite-
ria, timing enforcement model, formats of real-time attributes and the basic
scheduling framework are described. An examination of different real-time sched-
uling methods and their suitabilities to multimedia environments is also con-
ducted. As a theoretical exploration, some general mathematical bounds are
derived to show the performance upper bounds of soft real-time allowing loss.

4.1  Real-time pr ocess model and sc heduling
frame work

Real-time OS for MM application should support a soft real-time programming
model and a QoS-based resource management model. In the following discussions,
we will consider the general application scenarios where CM application, non-CM
applications are run competitively on a uniprocessor. We will also pay some atten-
tion to the case of communication subsystem where protocol processing is the main
activity.

As mentioned before, the OS part of our soft real-time framework proposal consists
of a process framework for categorizing processes, some timing enforcement mod-
els and some base scheduling and handling schemes. One of the overall goal in
implementing our soft real-time framework is to achieve a good approximation of
the timing properties as predicted by the hard real-time scheduling theory so that
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the whole system is run in a more or less predictable manner.

 4.1.1  Semantics of soft guarantee

We can differentiate between deterministic guarantee and probabilistic guarantee.
For deterministic guarantee, all situations should be considered in the most pessi-
mistic manner and the resource reservation and scheduling should be made in a
very conservative manner so that a contracted guarantee can be maintained deter-
ministically all the time. For probabilistic guarantee, in contrast, most situations
can be viewed in a more optimistic manner and the resource reservation and sched-
uling can be made in a more opportunistic manner, i.e., less than peak resources
need to be allocated. Instead, the statistical multiplexing of multiple applications
and the felxibilities of these applications can be exploited to achieve a satisfactory
probabilistic guarantee. Since conflicts between resource usages of different appli-
cations are possible, probabilistic guarantee means a contracted guarantee which
might be broken from time to time.

Figure 4-1 Deterministic vs. probabilistic guarantee
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Figure 4-1 shows a case with two competitive applications.

In the context of multimedia, only soft, probabilistic guarantee is needed. In the fol-
lowing context, all the instances of “guarantee” indicate some forms of probabilis-
tic guarantee.

In applying real-time scheduling algorithms in the multimedia context, two basic
approaches can be taken to handle the occurrence of a broken soft guarantee.

The first approach is to treat the deadlines of real-time tasks as hard deadlines.
After the expiration of a deadline, the real-time task will not be executed any more.
The violation of soft guarantee appears then in the form that some real-time tasks
can not be completed. In computing the success rate of the packet arrival before its
playback-point, this interpretation will be applied.

The second approach is to treat the deadlines of real-time tasks as soft deadlines.
The execution of a task after the expiration of its deadline has still some value to the
system. In this approach, the violation of soft guarantee appears in the form that
the deadlines are sometimes met in a degraded form. Such interpretation will be
found in ET-SCHEDULE and adaptive service provision.

 4.1.2  Real-time process model and real-time attributes

 4.1.2.1  Process categorization
We propose to use the following process framework. Processes in this framework
will be treated in terms of processing possibility in three categories: “sure” (but not
absolute) guarantee, “maybe” guarantee and best effort. The processes in the first
two categories have to make an explicit claim about their timing constraints and
will then receive a corresponding service — with “sure” and “maybe” soft guaran-
tees of their timing constraints respectively. (Timing constraint specification will be
detailed later and will contain such real-time (RT) features as deadline, period
duration, worst-case execution time, etc.) The processes in the third category
receive service when extra system capacity is available after the processes in the
first two categories are served. Avoidance of starvation for the “best-effort” pro-
cesses should be taken into account.
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The rationale for the above categorization is that the most important MM activities
can then be favored at most. Less important activities can be less favored. Other
activities take what is left.

 4.1.2.2  Real-time attributes and timing overflow
There are several reasons to specify the real-time attributes of soft real-time pro-
cesses. The specifications of the real-time attributes are part of the interfaces
between the supporting system and the user processes. The real-time attributes
describe the load an application will presumably place on the system. The system
will partly base on these specifications to make its decisions on admission control
and scheduling.

The concrete specifications of timing attributes depend on what kinds of processes
the system will support directly, on the criteria of admitting a new process into a
system, as well as on the scheduling strategies used by the system. On the one
hand, it should be easy for the user to define and derive the attributes. On the other
hand, it should be easy for the system to check, monitor and enforce the attributes.

Most continuous media-related activities are periodic in nature. Therefore, the peri-
odic processes are directly supported in our framework. Two most important
attributes of a periodic process is its period and the computation capacity require-
ment per period. Other attributes are necessary when more complicated manage-
ment and scheduling strategies are used.

If accepted, the timing specification is then a kind of contract between the system
and the user process. Both sides are assumed to try to behave according to the con-
tract. In the case that a previously contracted timing specification is broken either
by the system or by a user process, a timing violation or a timing overflow is said to
have occurred.

 4.1.2.3  Timing enforcement models
There are two aspects to the enforcement of the above “timing constraint specifica-
tions”. First, the enforcement on the side of processes and the enforcement on the
side of scheduling system are both relevant. That is, to what extent are the timing
constraint specifications to be observed by both sides. Second, in the case of “viola-
tions” of timing constraint specifications of either side, what measurements should
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be taken and how these measurements should be taken. According to different tim-
ing enforcement models, different soft real-time programming models can be
defined for different application needs.

From the viewpoint of the scheduling subsystem, the following three classes of tim-
ing enforcement models can be identified:

1) Cooperative. The scheduling system assumes that the timing constraints
claimed by RT processes are also to be observed strictly by them. No moni-
toring or enforcement measurements are taken.

2) Imperative. The scheduling system enforces the timing constraint on the run-
ning processes. That is, the scheduler’s view of period, deadline and execu-
tion time will be imposed on the running processes, regardless whether the
running processes have really run in the claimed periods, with the claimed
processing capacity, etc.

3) Semi-imperative (semi-cooperative). It is assumed that the timing constraints
claimed by RT processes are usually observed by them. The scheduling sys-
tem monitors their execution. In case of timing specification violation, some
corrective measures may be taken. For example, a timing-violation-handler
defined by the scheduling system or by the process itself may be called.

The choice of the models depends on the needs of the applications and the system
environment, i.e., on the concrete semantics of the soft guarantee. They have differ-
ent system effects. Note that the three models can be used in a system in a mixed
way. The three models can be, for example, used for the above three categories of
processes respectively or for other mixed usage.

In a system run in the cooperative or semi-imperative model, the processes them-
selves may also take some monitoring and enforcement measures to regulate them-
selves actively.

 4.1.2.4  Enforcement on periodic processes
Since periodicity is a typical feature of the MM activities, the following will try to
deliberate the above enforcement models for the case of periodic processes.

A simple realization framework for a periodic process can be explained in the fol-
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lowing way:

1

2 /* Initialize timing control variables. */

3 next_activation_time = start_time;

4 set_reincarnation_timeout(start_time);

5 loop {

6 sleep_until_reincarnation_timeout;

7 taskbody(); /* Do useful things here. */

8 next_activation_time = next_activation_time + task_period;

9 if (next_activation_time > end_time) then {break;}

10 else {set_reincarnation_timeout (next_activation_time);}

11 } /* end loop */

12

Figure 4-2 Realization framework for a periodic process

The periodic process is realized by an endless loop of its task body. The first instan-
tiation of sleep_until_reincarnation_timeout (line 6) is waken up by
set_reincarnation_timeout(start_time) (line 2), thus the first instantiation of
the task body is activated at start_time . The following instantiations of the task
body are reincarnated repeatedly with a period of task_period  by the repeated use
of set_reincarnation_timeout (line 10) and sleep_until_reincarnation-

_timeout (line 6) until end_time (line 9) .

With the cooperative periodic process model, the periodic processes independently
use the above timing facilities to reflect and embody their own timing constraints.
It is therefore assumed that each instantiation of the task body will be executed
within worst_case_execution_time and the OS does not need to impose any extra
constraints on its execution. The model is direct and simple. But it is then impossi-
ble to have a good control of timing violations caused by imprecise estimation of
the processor usage (execution time) of the processes, by other transient overload
conditions, or by synchronization conditions.

With a pure imperative periodic process model, the timing constraints of the pro-
cesses should be enforced by the OS. Thus, a process is not allowed to use the
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above timing facilities directly and unconstrainedly. According to the real-time
attributes claimed by the process, the OS decides implicitly when and for how long
a process can be executed. Clearly, no timing violations on the side of processes can
ever allow to happen, but the overhead of such enforcement is not small. Another
main disadvantage here is that the intended natural timing features such as period-
icity might not be the same as those actually enforced by the OS.

With a semi-imperative periodic process model, the periodic processes may still
use the above timing facilities provided by the supporting OS to reflect and
embody their own timing constraints or the periods may be activated by the sup-
porting system directly. The OS monitors the execution of the process to detect pos-
sible timing violations. There are several varieties of timing violations and
violation handling. If the execution of the task body has ever exceeded the
worst_case_execution_time as claimed by the process in its real-time attributes,
then it is a timing violation from the side of the process. If the OS detects that the
system can not provide enough processing cycles to meet the need of the claimed
timing requirements of the process, then it is a timing violation from the side of the
OS. In the case of a timing violation, handling can be done by a OS procedure or a
process-specific procedure. The method of handling can be roughly classified into
abortive and corrective. The use of these varieties will be further discussed later in
Chapter 5.

In our opinion, a semi-imperative process model is needed for most cases in most
systems.

 4.1.3  Basic scheduling framework

Our scheduling subsystem proposal contains an Admission Controller and a Soft
Real-Time Dispatcher.

Since the capacities of the current computing systems are too limited to support
many MM streams simultaneously, a satisfaction analysis should be conducted if
the qualities of MM transmissions and processing are to be guaranteed to stay at a
satisfactory level (for further and more general arguments, see Chapter 2). That is,
new communication and processing requirements will usually not be accepted if
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the acceptance would violate the maintenance of the existing MM applications and
communications. (But note again that both the “sure” guarantee and the “maybe”
guarantee are probabilistic guarantees.)

As argued in Chapter 2, in order to achieve a certain degree of guarantee, resource
reservations concerning CPU processing capacity, network bandwidth, buffer
memory etc. should be done. It is the responsibility of the Admission Controller to
check whether to allow the creation of a new process by considering the current
load of the system and the real-time attributes of the incoming new process. The
outcome of the decision of the Admission Controller can be one of the following
three cases: a “sure” guarantee of the real-time attributes of the new process can be
maintained; a “maybe” guarantee of the real-time attributes of the new process can
be maintained; or a “best-effort” maintenance of the real-time attributes of the new
process will be done. The process creator has the right to decide whether to accept
the decision of the Admission Controller by continuing or aborting.

The Soft Real-Time Dispatcher exploits certain scheduling paradigm to schedule
the real-time processes in the whole system.

Generally, an Admission Controller should contain a policy component as well as a

resource accounting component. The policy component is more or less responsible

for the administrative matters concerning admission control. It can take the forms

such as administrative rules about user priorities, access preferences, real or virtual

billing, etc. The resource accounting component is more or less responsible for the

technical aspects of admission control. It deals with the technical possibilities of

sharing the resources while maintaining service levels such as sure-guarantee and

maybe-guarantee.

In the case of admission control for scheduling, the policy component deals with
such preferences as which processes to preempt in the case of need. The resource
accounting component computes the schedulability test proper according to the
results of some scheduling theory.

 4.1.3.1  Guarantee possibility for CM and non-CM activities
It is important to point out that the categorization criteria of our framework are not
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directly MM-dependent. In our framework, the guarantees are not only provided
for CM-related activities. Other non-CM-related activities can also receive guaran-
tees if they are needed. (The framework by other people have quite often some lim-
itations on this. Work such as [Wolf96] allows only CM-related processes to be
favored.)

This important feature of our framework is especially important for composite
MMC scenarios. For example, in the scenario of multimedia collaboration, a compi-
lation job might have to deliver some results which should be diagnosed by the
cooperating partners at different sites. Then it is important that this compilation job
be guaranteed to proceed steadily while the other audio/video streams are deliv-
ered between partner sites. One way to achieve this is to serve the job as a virtual
periodic process with sure guarantee so that the compilation process can be guar-
anteed to proceed quickly enough. (For an interface to virtual periodic process,
please refer to Section 5.4.1  Implications for the implementation schemes of applications

and Section 7.2.2  Sample programming interface of usage.)

 4.1.3.2  Admission controller and QoS manager
We note that the Admission Controller need not be a fully on-line function module.
Generally, schedulability test of process sets has to be done with regard to CPU
usage as well as other resource usage and real-time constraints. For complicated
cases, a separate (off line) analyzer like the Scheduler-1-2-3 of the ARTS system
[Tokuda89] is necessary in order to make an analysis of a large set of RT processes
with complicated interdependency. It is then possible for the users to submit a set
of processes to the Admission Controller together and the Admission Controller
will then do a schedulability analysis and give its estimation result on their satisfi-
ability.

Under many circumstances in MMC, a set of complimentary applications are deliv-
ered to the system together. Many of the applications might specify their QoS
requirements in the form of requirement ranges such as {minimumQoS, desir-
ableQoS, maximumQoS}. These QoS requirements correspond to the feasible
ranges in resource requirements. In this case, a QoS management server can be
used to balance the QoS requirements of various applications semi-automatically.
The admission control is made with regard to the whole set of application pro-
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cesses. The QoS manager also plays an important role in supporting the FAST
adaptive service model (see Chapter 9 on “Adaptive service provision”).

For periodic MM applications, each application specifies a {minimumTime, desir-
ableTime, maximumTime} range of computation time required for a periodic inter-
val. After a successful admission, each application is notified with the concrete
computation time granted by the QoS manager. For normal MM application, it is
feasible to implement a relatively simple Admission Controller based on the analy-
sis of CPU utilization bounds and a small set of heuristics.

The algorithms used in checking schedulability and in scheduling should, of
course, be compatible.

As will be further analyzed below, many of the existing real-time scheduling strate-
gies can be used to support MM in our framework. The question is the degree of
the ease of implementation and use, and the degree of flexibility of the correspond-
ing real-time programming model. The possibility to extend these methods to sup-
port the soft RT features of MM applications should also be taken into account.

The choice of RT scheduling methods should, in the first place, be directed to the
characteristics of the applications, be they event-driven or time-driven. Different
scheduling possibilities can be used to support different types of MM processing
models. It is therefore necessary to test the various scheduling strategies to see the
combined system effects under different system environmental settings and condi-
tions. In this sense, we second the ITDS [Tokuda89] idea of configurabiliy of sched-
uling and take a similar implementation approach. In the scheduling subsystem, a
strategies/mechanisms separation method is adopted in order to make the imple-
mentations and comparisons easy. That is, a process scheduler is divided into strat-
egy and mechanism modules. A strategy module may then embody a different
scheduling algorithm. A mechanism module will then implement a set of routines
for manipulating various ready, waiting and event queues. By carefully designing
the interface between strategy modules and mechanism modules, flexible combina-
tions of the strategy modules and a relatively stable mechanism module can be
evaluated and compared.
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4.2  Real-time sc heduling methods and their suit-
abilities f or MM applications

In this section, a brief overview of real-time scheduling methods is provided. We
analyze their suitability for scheduling MM-related RT activities by comparing
their relative advantages and disadvantages in the MM context. The purpose of
this overview is to find scheduling elements that can be used directly in our soft
real-time framework and to point out the possibilities of using some elements for
other purposes.

 4.2.1  An examination of scheduling methods

In the context of real-time scheduling, a range of different scheduling methods/
algorithms have been developed. The diversity of the algorithms can be seen in
some survey papers such as [Audsley91, Cheng88, Mercer92].

Different scheduling algorithms are designed for different environments or for dif-
ferent application types. Some algorithms can be used for scheduling periodic
tasks, some for aperiodic tasks. Some algorithms can be used on uniprocessor,
some on a multiprocessor or in a distributed environment. Some scheduling algo-
rithms are static and suitable for pre-runtime scheduling, some are dynamic and
suitable for scheduling on the fly.

For scheduling on uniprocessor, scheduling algorithms range from static pre-com-
puted schedule, deterministic scheduling to dynamic scheduling. Here, we are
mainly concerned with the simple scheduling algorithms which do not have a large
complexity both in schedulability test and in scheduling. For multimedia environ-
ment, we are of the opinion that it is infeasible to use complex dynamic scheduling
heuristics on the fly, since the cost of the scheduling itself will then be too large. We
are, however, also of the opinion that it is too inflexible to use a pure static pre-com-
puted schedule method such as the cyclic executive method, since such a method is
not able to handle a general multimedia system with both dynamic real-time and
dynamic non-real-time task loads.

In the following, we look at the scheduling algorithms based on earliest-deadline-
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first, rate-monotonic and imprecise computation model more closely. In our opin-
ion, these methods are simple yet flexible and can be readily used in our schedul-
ing framework.

To simplify the following discussions, some notations are defined first. In this sec-
tion, we use the term task and process interchangeably.

The timing constraints of a task are specified in terms of one or more of the follow-
ing parameters:

(a) The arrival time A; (b) The ready time R; (c) The worst case execution time C; (d)
The deadline D.

A periodic process set Τ has elements {τ1, τ2, ..., τn}, where n is the cardinality of Τ.
Each τi has the following characteristics:

Di  deadline (relative to the beginning of the period)

Ti  Period

Ci  computation time per period

We define a simple periodic process as one with Ci≤Di=Ti (i.e. the process has com-
putation time less than their deadlines, and the deadline is equal to their period).

 4.2.1.1  EDF-centered scheduling
Earliest-deadline-first (EDF) algorithm (also called earliest-deadline algorithm or
earliest due-date scheduling algorithm) schedules the process with the closest
deadline first. The earliest-deadline-first algorithm is a dynamic priority algorithm
in the sense that the process with the current closest deadline is assigned the high-
est priority in the system and therefore executes.

In the context of queueing system, the earliest-deadline-first algorithm is optimal in
the following sense: if any algorithm can schedule a particular task set without
missing any deadlines, the earliest-deadline-first algorithm can as well. The suffi-
cient and necessary schedulability constraint for a set of simple periodic tasks is
given as
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(E-4-1)

Hence, 100% processor utilization is possible. (By the way, it has been shown that
for arbitrary process set in which process timing constraints are relaxed to allow
deadlines not equal to periods, formula (E-4-1) is necessary but not sufficient).

A closely-related scheduling algorithm to EDF is the least-laxity-first algorithm,
where laxity is defined as the deadline minus remaining computation time.
Although the least-laxity-first algorithm is optimum in the same sense as EDF, this
algorithm is relatively impractical because of the possible “thrashing” problem
[Audsley91].

Dynamic priority scheduling algorithms, among them earliest-deadline-first, typi-
cally have slightly greater scheduling overhead than fixed priority scheme such as
rate-monotonic method. This is because the range of dynamic priorities is usually
greater than the range of static priorities, and dynamic priorities must also be recal-
culated at each decision point whereas static priorities do not change and thus do
not have to be recalculated.

The strong points of the EDF-based scheduling algorithm are: (1) It is optimal in
many cases. For a simple task set, 100% utilization is possible. (2) It provides a sim-
ple and consistent framework for both periodic and aperiodic tasks.

One of the biggest problems with the EDF-based scheduling scheme is that it is a
bad scheme under transient overload and it is quite difficult to make a good admis-
sion control without detailed knowledge of the full task set and their interactions.
Ideally, under overload, a scheduling algorithm should be able to select the most
important tasks and executes them while discarding less important tasks. How-
ever, EDF scheduling like most other dynamic priority algorithms does not encode
high-level importance information in the priority; the priorities typically reflect
low-level, dynamically changing timing characteristics.

Earlier studies have observed that in moderately-loaded real-time systems, using
an earliest-deadline policy to schedule tasks results in the fewest missed deadlines.
When the real-time system is overloaded, however, an earliest-deadline schedule

Ci

Ti
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n
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performs much worse than most other policies. This is due to earliest-deadline pol-
icy giving the highest priority to tasks that are close to missing their deadlines.

EDF scheduling or its simple extensions are used in several multimedia systems.
Examples can be found in [Anderson90a, Hagsand94, Nakajima91, Nakajima92].

 4.2.1.2  RM-centered scheduling
The rate-monotonic (RM) scheduling algorithm is a kind of capacity-based algo-
rithm. Capacity-based algorithms have been developed with the goal to provide
more flexibility while retaining the predictability of a fixed static scheduling
method such as the cyclic executive method. In their pure form, capacity-based
algorithms only require information about the amount of computation needed by a
task set and the amount of computation available in the processing elements. This
is in contrast to other deterministic scheduling algorithms which depend on exact
timing information of tasks to make scheduling decisions. Because of this feature,
capacity-based algorithms, such as rate-monotonic algorithm, are more flexible
then a fixed static scheduling algorithm and, at the same time, are more efficient
and easier to implement than a dynamic scheduling algorithms.

The basic rule of rate-monotonic scheduling is quite simple. Given a set of indepen-
dent periodic tasks, the rate-monotonic scheduling algorithm gives a fixed priority
to each task and assigns higher priorities to tasks with shorter periods (rate-mono-
tonic priority assignment according to frequency). The task set is then scheduled
using a fixed-priority-based, preemptive scheduler.

A task set is said to be schedulable if all its deadlines are met, that is, if every peri-
odic task finishes its execution before the end of its period. Based on the following
theorem [Liu73], we can predict whether a simple periodic task set scheduled in the
rate-monotonic manner is schedulable by computing the utilization of the task set
and then comparing that utilization to a schedulable bound.

   Theorem 4-1 A set of n independent periodic tasks scheduled by the rate-mono-
tonic algorithm will always meets its deadlines, for all task phasings, if
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(E-4-2)

where Ci and Ti are the execution time and period of task τi respectively.

Theorem 4-1 offers a sufficient (worst-case) condition that characterizes the sched-
uling of the rate-monotonic algorithm for the case of a simple periodic task set.

By way of period-transformation [Sha86], a long period task can be transformed
into a shorter period task. If all the periodic tasks are transformed in the way such
that the more important tasks have shorter periods, then the system under rate
monotonic scheduling has the nice feature of graceful degradation under transient
overload — the less important tasks (the tasks with longer periods) will miss their
deadlines first.

A problem with RM scheduling is its utilization. For a system with many tasks, a
pessimistic bound is about 69% (see Table 4-1). But this bound is pessimistic. In
most cases, 88% is a more realistic bound [Lehoczky89]. In fact, the reservation
bound is 100% for the case where all periods are harmonic, i.e., each periods is an
even multiple of every periods of smaller durations. Additionally, an amount of
unreserved scheduling time of perhaps 5 - 10% is usually necessary to avoid sched-

Table 4-1 Worst-case scheduling bounds as a function of number of tasks

Scheduling Bounds

Number of Tasks Utilization Bound

1 1.0

2 0.828

3 0.779

4 0.756

5 0.743

10 0.718

∞ ln 2 (0.693)
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uling failures due to inaccuracy in the computation time measurement and enforce-
ment strategy and due to the effects of critical regions and other synchronization
and communication among tasks.

Around the basic rate-monotonic algorithms, many extensions have been made.
The extensions under the name “Generalized Rate-Monotonic Scheduling Theory
(GRMT)” can provide a fairly complete framework for developing real-time sys-
tems [Sha89, Sha94]. GRMT can both schedule periodic and aperiodic tasks with
synchronization requirements and mode change requirements. GRMT with a set of
theoretical results lays a sound foundations for RM-centered scheduling systems.
This point will be further refined in Section 5.1  The choice of GRMT as a cornerstone

for the schemes.

The use of rate-monotonic scheduling can be found in the ARTS and Real-time
Mach systems [Tokuda89, Tokuda90, Tokuda92]. The latter has been used in several
multimedia systems recently [Kihara93, Tokuda93].

 4.2.1.3  Imprecise scheduling
The imprecise computation model [Liu91, Chung90] argues that many computa-
tions are incremental in nature. It argues that it is useful to make available an
acceptable but imprecise results in time, if the desired precise results can not be
produced in time. Three methods of imprecise computations have been proposed:
milestone, sieve and multiple version method.

The algorithms given in [Chung90] belong to milestone methods. Specifically, in
the imprecise computation, real-time processes are designed to be monotone, that
is, the accuracy of its intermediate results is nondecreasing as more time is spent to
produce the result. If the intermediate result is usable, it is said to be acceptable.
The imprecise computation approach makes scheduling real-time tasks signifi-
cantly easier. To guarantee that all deadlines are met requires only that sufficient
processor time be assigned to every task for it to produce an acceptable result
before its deadline. The approach taken is to consider each task as consisting of two
parts: a mandatory part, that must be completed in order for the task to produce an
acceptable result, and an optional part, that refines the result produced by the man-
datory part to reduce the error in the result.
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In these algorithms, the mandatory parts of all tasks are assigned hard deadlines.
The rate-monotonic algorithm is used to schedule them to meet all deadlines. The
optional parts have soft deadlines; different algorithms are used to schedule the
optional parts to minimize the average error.

In the sieve method, certain parts of the computation are considered optional and
can be omitted. In multiple version method, a primary version of the task com-
putes the precise result and an alternative version computes an imprecise (but ade-
quate) result in a shorter period of time. The scheduler chooses between these two
versions based on the runtime situation.

The idea and algorithms of the imprecise computation approach are surely also
applicable to MM scheduling in some cases. In contrast to EDF-centered or RM-
centered algoritms, however, the imprecise computation approach is more readily
applicable as an application-level adaptive method.

 4.2.1.4  Other scheduling strategies
We would like to mention here the value-function scheduling method and various
off-line/on-line dynamic scheduling heuristics.

The value-function scheduling algorithms use value functions associated with the
tasks to make scheduling decisions. The main problem is that it is usually not easy
to find feasible value function for dynamic systems and the computation complex-
ity is high. Usage example in MM system can be found in [Wall92].

There are many off-line/on-line dynamic scheduling heuristics [Casavant88,
Ramamritham89]. Their main problem is that they are usually too complex and too
time-consuming to be used at low-level scheduling.

 4.2.2  Criteria of a suitable scheduling scheme

As mentioned above, in applying the current scheduling algorithms in multimedia
context, two basic approaches can be taken for two interpretations of soft guaran-
tee. In both cases, the estimation of the real-time attributes of the real-time tasks in
multimedia environment can be done in a more optimistic manner, because hard
guarantee is not a necessity.
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Because most of the existing scheduling algorithms are for rigid real-time systems,
they generally impose some strict conditions on the task set. In the practice of MM
systems, some of the conditions may not be met all the time. For example, real-time
processes might have a more complicated interdependency as assumed, they might
not be completely preemptive at all points, context switch times might vary, etc.
Thus, the systems will not adhere to the reservations as strictly as the scheduling
models predict. But, with the aid of accurate execution monitoring and by exploit-
ing the flexibility of MM applications, the transient overload and timing violations
can be detected and corrective actions can be taken both at a low-level on a fine-
gram time scale and at a high-level on a coarser system time scale (adaptive ser-
vice). Generally speaking, we can take a more relaxed approach to constructing
MM system software than to constructing hard real-time system software with
regard to scheduling.

For a scheduling method to be usable in our scheduling framework, the following
prerequisites should be fulfilled:

1) it should provide the possibility to express timing constraints of processes;

2) it should provide the possibility to check the schedulability of a set of pro-
cesses in order to do admission control;

3) optionally, it should provide the ability to control the processes hierarchically
in order to let some of the processes to be “favored” over others.

Many real-time scheduling algorithms fulfill the above prerequisites and can, in
this sense, be used in the MM environment.

According to these criteria, EDF-centered scheduling methods and RM-centered
scheduling methods are apparently the most promising candidates. Other schedul-
ing elements can also be incorporated to produce different scheduling strategies for
different environments. For MMC scenario, we have designed a set of scheduling
and handling schemes based on the Generalized Rate Monotonic Theory (GRMT).
Experimentations and evaluations are conducted with regard to these schemes.
PART III Soft Real-Time Scheduling and Handling presents the related results.
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4.3  Mathematical bounds of soft real-time with loss

In a dynamic system, the real-time processes come and go dynamically. In this sec-
tion, we consider a simplified model for a soft real-time system allowing loss. In
such a soft real-time system, the system should try to service the real-time pro-
cesses within their deadlines. If the deadline of a soft real-time process expires
before it can be serviced by the system, the soft real-time process is considered to be
useless or be lost. It will then be cleared and removed out of the system.

Due to the statistical fluctuation of the process arrivals and the limited capacity of
the CPU, there are always the cases where even an optimal scheduling strategy is
not able to arrange to service all the processes to meet their deadlines. This leads to
a fundamental problem underlying the design and implementation of the schedul-
ing strategies for scheduling soft real-time processes — a certain percentage of loss
is inevitable for many situations.

In this section, the problem is considered under different assumptions about the
deadline and computation time distributions of the arriving processes. These case
are modeled by means of queueing models to get their theoretical performance lim-
its.

 4.3.1  Modelling soft real-time processing with loss

Define deadline D as the time before which a real-time process should be serviced.
Define the computation time needed for the process as C. Let us further assume
that the service of a process will be conducted to the end once the service has
begun, i.e., non-preemptive. Define laxity L as the time between the creation time
Tc of a RT process and the latest time TL at which the service should begin. If the
service begins after the latest beginning time TL, then the deadline of the process
will surely be violated. Therefore it doesn’t make sense to begin the service after TL.
This can be seen more clearly in Figure 4-3. And we have the following relations:

TL = D - C

L = TL - Tc = D - C - Tc
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And for any successful service: C = Se - Sb.

Figure 4-3 Time constraint parameters

In the queueing theory, the above situation is treated under the queueing problems
with impatient customers — impatient customers will leave a waiting queue with-
out being serviced [Baccelli84]. It has been shown that the system performance
indices such as the utilization of the server and the rate of served customers can be
stated in terms of the normalized offered load and the normalized mean laxity
(normalized by the service rate).

We use an abstract queueing model for soft real-time system with loss as shown in
Figure 4-4. The process arrivals are placed in the waiting queue for service. If the
laxity of a process has expired, it will be thrown away from the queue and will be
regarded as a loss.

Figure 4-4 Abstract queueing model of soft real-time system with loss
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In the following analysis, the mean process computation time (required service
time) is normalized to 1. Other parameters are normalized with regard to the mean
process computation time. The total arrival rate of processes normalized by the
mean computation time is denoted as ρ and the mean laxity of the process normal-
ized by the mean computation time is denoted as b. If, for example, the mean com-
putation time of all processes is 15 time units, the arrival rate per time unit is 0.03
and the mean laxity is 75 time units. With the mean computation time being nor-
malized to 1, we have ρ=0.03*15=0.45 and b=75/15=5.

• Backlog of waiting processes

For a non-real-time system, the processes will wait until it is processed/serviced in
the end. Therefore, a non-real-time system is a work-conserving system. If the nor-
malized arrival rate is less or less than 1, than the server (CPU) will be able to pro-
cess all the processes in the end. The backlog of the waiting processes in the system,
though, can be quite large from time to time due to arrival bursts. If the normalized
arrival rate is larger than 1, than the server will be saturated eventually and the
backlog will grow unlimitedly unless the arrival rate is tuned down to less than 1.

In the soft real-time system allowing loss as modeled by the above abstract model,
the backlog of the processes in the waiting queue is practically bounded. This is
due to the fact that the processes can wait at most L time long (with a mean of b)
before they are either successfully serviced or become useless and thus be deleted
from the waiting queue. In other words, the system is a non-work-conserving sys-
tem. Recall Little’s result [Kleinrock75]:

(E-4-3)

where λ denotes arrival rate, W denotes the average waiting time of customers in
the queueing system (including service time), and N is the average number of cus-
tomers in the queueing system (in the queue or in service). The Little’s result is gen-
eral, without regarding the distribution of arrival, service and queueing strategy.
Therefore we can get a bound of the mean number of backlogged processes as:

N λW=
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(E-4-4)

For ρ=0.7, b=10, for example, MeanBacklogBound= 7. This means, there are at aver-
age no more than 7 processes waiting.

Further more, the backlog caused by the short-term overloading will not have a
long-term effect on the system functioning. This is due to the fact that the back-
logged old processes will not exist in the system after L time long — either success-
fully serviced or lost. This implies that the stability problem is not a question in this
context.

• Upper bound of performance

As stated above, due to the statistical fluctuation of the process arrivals and the
limited capacity of the CPU, there are always the cases where even an optimal
scheduling strategy is not able to arrange to service all the processes to meet their
deadlines at all times. It is our intention to derive the theoretical performance limit
of a single CPU in servicing soft real-time processes with loss. As such, we assume
the cost of scheduling as zero.

The use of the derived theoretical performance upper bounds is twofold — They
provide a guideline for the scheduling scheme designers and implementors by
pointing out the optimal performance ever possible. They also provides a guideline
for the scheduling scheme users in that the users would be aware of the limits of a
scheduling scheme under extreme conditions, even if the scheduling scheme in
question does provide acceptable performance under normal operation.

Note that the disappeared, previously backlogged processes are actually lost, if not
successfully serviced. The above phenomenon of low backlog actually means that
the many incoming processes in a bursty period have to be serviced during the
same period even if the process arrival rate in its preceding or following period is
very load. At the same time, the steady-state performance indices for a high arrival
rate are also useful for a system with a low mean arrival rate — in its peak periods,
the short-term system performances are approximate to the case of lasting high
load. It is therefore meaningful to know the scheduling performance under all dif-
ferent loads.

MeanBacklogBound ρb=
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Specifically, a main performance index is the percentage of process loss under dif-
ferent system conditions. We are interested in the performance indices for the ser-
vice (scheduling) schemes which are “fair” with regard to service time
(computation time) requirements. (The “unfair” service schemes which favor pro-
cesses with short service time requirements will achieve a higher success rate. But
this unfairness is not feasible for most system circumstances.)

Earliest-deadline-first (EDF), least-laxity-first (LLF) and first-come-first-serve
(FCFS) scheduling/service schemes are all fair schemes which have no bias with
regard to service time requirements. As stated in Section 4.2  Real-time scheduling

methods and their suitabilities for MM applications, the EDF and LLF schemes are opti-
mal in the following sense: if any algorithm can schedule a particular process set
without missing any deadlines, then the earliest-deadline-first algorithm and the
least-laxity-first algorithm can as well. Since it is sometimes mathematically intrac-
table to model a dynamic priority scheduling algorithms such as LLF or EDF, we
will then make do with a FCFS analysis.

In all the models below, the total arrival rate of the system is assumed to be a Pois-
son process, i.e., the inter-arrival time of the processes are exponentially distrib-
uted. The models are named by an extended form of Kendall’s notation A/B/m+L
[Zhao89]. A describes the inter-arrival process, B describes the service time require-
ments, m is the number of servers, and L represents the distribution of customer
laxity. In our case, A is always M, m is always 1, and L corresponds to the process
laxity distribution.

 4.3.2  M/M/1+D model

Using the M/M/1+D model, we model the case where all the incoming processes
have the same laxity to their deadlines. In this model, a least-laxity-first service
scheme (LLF) takes the same form as the first-come-first-serve service scheme
(FCFS). In the following, we try to derive the upper bound of the success percent-
age of the processes which can be serviced by the LLF/FCFS scheme.

Define F(w,t) as the pdf of the unfinished work (unserved waiting processes) in the
queue at time t. Following the approach in [Baccelli84, Kurose87, Zhao89], the pdf
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of the unfinished work at time t+∆t for M/M/1+G can be characterized as follows:

(E-4-5)

where L(x) is the process laxity distribution and B(x) is the service time distribu-
tion. In the above equation, the left hand side is the probability that at time t+∆t, the
total unfinished work is less than w. On the right hand side, the first term is for the
case where there is no new arrival from time t to t+∆t. The second term is for the
case where there is a new arrival and the new arrival can be serviced. The last term
is for the case where new arrival can not meet its deadline.

Let F(w) denote the steady-state solution as t —> ∞. For the case of M/M/1+D
where the time laxity is a constant K, the loss rate can be given as [Kurose87,
Kurose88]:

(E-4-6)

For our use, the percentage of success P can then be obtained as:

(E-4-7)

The following tries to get an explicit expression of P for the current case. In
[Kurose87], the following steady-state equation has been obtained for the case that
the service time is exponentially distributed with a mean 1/µ:
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(E-4-8)

Let w=K, it follows:

(E-4-9)

Note we also have the following flow conservation equation, which is based on the
fact that all the arrival will either be successfully served or be lost:

(E-4-10)

By combining equations (E-4-9) and (E-4-10), we get the following solution:

(E-4-11)

For λ, K being normalized to µ and µ being normalized to 1, we get the following
result by combining equations (E-4-7) and (E-4-11):

(E-4-12)

where ρ and b are normalized arrival rate and normalized mean laxity respectively.

Some numerical results of the equation (E-4-12) are given in Table 4-2 and the corre-
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sponding curves are presented in Figure 4-5 and Figure 4-6.

Figure 4-5 Success percentage for M/M/1+D model

Figure 4-6 Sample success percentage for M/M/1+D model
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 4.3.3  M/M/1+M model

For a M/M/1+M model with FCFS service, the probability of process loss has been
derived as [Zhao89]:

(E-4-13)

where

(E-4-14)

(E-4-15)

and γ(a, x) denotes the incomplete gamma function

(E-4-16)

Table 4-2 Success percentage from formula (E-4-12)

(* P is always less than 1. A value of 1.0 in the following table indicates a value larger than 0.9999.)

ρ 0.3 0.5 0.7 0.9 1.0-

P (b=5) 0.9936 0.9790 0.9474 0.8927 0.8571

P (b=10) 0.9998 0.9983 0.9893 0.9528 0.9167

P (b=20) 1.0* 1.0* 0.9995 0.9863 0.9545

P (b=50) 1.0* 1.0* 1.0* 0.9994 0.9808

P (b=100) 1.0* 1.0* 1.0* 1.0* 0.9902
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It follows that the success percentage of process service is:

(E-4-17)

Some numerical results from equation (E-4-17) can be found in Table 4-3.

 4.3.4  Other models

As can be seen from the above analysis, it is usually quite complicated to derive
closed-form solutions for A/B/m+L models. For more complicated distributions as
A, B, or L, it is virtually mathematically intractable. In [Fan92], we have proposed
to model and evaluate time-constrained message transmissions by Generalized
Stochastic Petri Nets (GSPN). This approach has the advantages of explicitness,
flexibility and ease of use. With the help of some GSPN tools, it is possible to model
and evaluate some quite complicated and composite scenarios. For example, the
modeling of time-constrained message transmission over a single channel has been
conducted under different assumptions. This result can be readily used in our cur-
rent case where the CPU corresponds to the central channel. Some numerical

Table 4-3 Success percentage for M/M/1+M

ρ 0.3 0.7 0.9 1.0-

P (b=10) 0.9663 0.8938 0.8422 0.8119

P (b=100) 0.9958 0.9803 0.9548 0.9293
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results of different models on FCFS service scheme are compared in Table 4-4.

4.4  Summar y of the c hapter

The OS part of our soft real-time framework proposal consists of a process frame-
work for categorizing processes, some timing enforcement models and some base
scheduling and handling schemes. We propose to use the following process frame-
work. Processes in this framework are treated in terms of processing possibility in
three categories: “sure” (but not absolute) guarantee, “maybe” guarantee and
“best-effort”. The processes in the first two categories have to make an explicit
claim about their timing constraints and, if accepted by the admission control of the
scheduling subsystem, will then receive a corresponding service — with “sure”
and “maybe” guarantees of their timing constraints respectively. In our framework,
it is possible to provide guarantee for both CM and non-CM-related activities. We
consider the following three timing enforcement models: (1) cooperative; (2) imper-
ative; (3) semi-imperative. The usage of the models depends on the needs of the
applications and the system environment, i.e., on the concrete semantics of the soft
guarantee.

Our scheduling subsystem proposal contains an Admission Controller and a Soft
Real-Time Dispatcher. It is the responsibility of the Admission Controller to check
whether to allow the creation of a new process by considering the current load of
the system and the real-time attributes of the incoming new process. The Soft Real-
Time Dispatcher exploits certain scheduling paradigm to schedule the real-time
processes in the whole system.

For a scheduling method to be usable in our scheduling framework, the following
prerequisites should be fulfilled: (1) possibility to express timing constraints of pro-
cesses; (2) possibility to check the schedulability of a set of processes in order to do
admission control; (3) (optionally,) ability to control the processes hierarchically in

Table 4-4 Success percentage comparison of different models

Model M/M/1+M M/D/1+M M/Mx/1+Mx M/Er/1+Er M/M/1+D M/D/1+D

P (b=10) 0.8119 0.8511 0.8700 0.9137 0.9165 0.9539
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order to let some of the processes to be “favored” over others. After an examination
of the currently available scheduling algorithms, we conclude that the EDF-cen-
tered scheduling methods and RM-centered scheduling methods are apparently
the most promising candidates. Other scheduling elements can also be incorpo-
rated to produce different scheduling strategies for different environments.

In a dynamic soft real-time system, due to the statistical fluctuation of the process
arrivals and the limited capacity of the CPU, there are always the cases where even
an optimal scheduling strategy is not able to arrange to service all the processes to
meet their deadlines. This leads to a fundamental problem underlying the design
and implementation of the scheduling strategies for scheduling soft real-time pro-
cesses — a certain percentage of loss is inevitable for many situations. We consider
the problem under different assumptions about the deadline and computation time
distributions of the arriving processes. Some case are modeled by means of queue-
ing models. Their theoretical performance bounds are derived and some numerical
examples are presented.
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Soft Real-Time Scheduling and Handling
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Chapter  5

Design, realization and usage of soft real-
time scheduling and handling schemes

Soft real-time scheduling and handling schemes are essential for the realization of a
soft real-time framework. As the first chapter of Part III, this chapter describes a set
of scheduling and handling schemes which can be used in a concrete multimedia
system. The simulation model and the simulation evaluation results of these
schemes are then presented in Chapter 6. The experimental implementation of
these schemes on a hardware platform is then documented and the related mea-
surement results are analyzed in Chapter 7.

This chapter begins by stating the reasons why we choose the Generalized Rate
Monotonic Theory (GRMT) as the cornerstone of our scheduling and handling
schemes. It then outlines the concrete design of our soft real-time scheduling mech-
anisms and soft real-time handling methods. The overall realization issues of the
soft real-time framework with these schemes are then discussed. Feasible alterna-
tives for implementations are compared. Usage schemes for application implemen-
tations and other practical issues are also explored.

5.1  The choice of GRMT as a corner stone f or the
schemes

As will be detailed in the next section, our scheduling methods are designed by
integrating some elements from the rate-monotonic scheduling, the priority-based
scheduling and the weighted round-robin scheduling. The Generalized Rate Mono-
tonic Theory [9] is used in all the methods as a basis for admission control and for
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real-time scheduling. The other related results of the theory are also used in other
aspects of the system implementation such as preventing unbounded priority
inversion by some forms of priority inheritance.

The choice of the generalized rate monotonic scheduling theory as a cornerstone of
our scheduling methods is based on two main reasons: the completeness of the
GRMT theory for many real-time environments, and the practical advantages of
the GRMT-oriented real-time schemes over many other real-time methods.

 5.1.1  Broad coverage of GRMT

The basic form of a rate monotonic scheduling algorithm which can only be
applied to a set of simple periodic task set has been introduced in Section 4.2.1.2

RM-centered scheduling. The generalized rate monotonic scheduling theory [Sha90,
Klein93, Sha94] has made many extensions to this basic form.

For sake of clarity of the following design and analysis, the following cites and
explains some of the most-related results of the GRMT here.

To determine if tasks scheduled on a resource with utilization greater than the
bound of Theorem 4-1 can meet their deadlines, the following exact schedulability
test based on the critical zone theories can be used:

   Theorem 5-1 For a set of independent periodic tasks, if a task τi meets its first
deadline Di≤Ti, when all the higher priority tasks are started at the same time, then
it meets all its future deadlines with any other task start times.

It is important to note that the above Theorem 5-1 applies to any static priority
assignment, not just rate-monotonic priority assignment. This insight is very useful
in analyzing the schedulability for the case where some higher priorities must be
given to some special tasks not in the strict rate-monotonic order.

The checking of Theorem 5-1 can be represented by an equivalent mathematical
test:

   Theorem 5-2 A set of n independent periodic tasks scheduled by the rate-mono-
tonic algorithm will always meets its deadlines, for all task phasings, if and only if
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(E-5-1)

where Cj and Tj are the execution time and period of task τj respectively and Ri=
{(k, l) | 1 ≤ k ≤ i, l = 1, ..., Ti/Tk }.

Tasks are more often dependent on each other. They interact by sharing and
mutual-excluding. It is then necessary to use synchronization primitives such as
semaphores, locks, monitors and Ada rendezvous. A direct application of these
synchronization mechanisms may lead to an indefinite period of priority inversion,
which occurs when a high-priority task is prevented from executing by a low-pri-
ority task. To tackle the problem of priority inversion, the GRMT provides a real-
time synchronization protocol called priority ceiling protocol.

There are two main parts of the design of the priority ceiling protocol. The first is
the concept of priority inheritance: when a task τ blocks the execution of higher pri-
ority tasks, task τ executes at the highest priority level of all the tasks blocked by τ.
The second is the use of priority ceiling to enforce a prioritized total ordering. The
priority ceiling of a binary semaphore S is defined to be the highest priority of all
tasks that may lock S. When a task τ attempts to execute one of its critical zones, it
will be suspended unless its priority is higher than the priority ceilings of all sema-
phores currently locked by tasks other than τ.

The priority ceiling protocol has two important properties:

1) freedom from mutual deadlock and

2) bounded priority inversion. Namely, a high-priority task will be blocked by
at most one critical region of any lower-priority task.

Let Bi be the longest duration of blocking that can be experienced by task τi. The
following theorem can be used to determine whether the deadlines of a set of peri-
odic tasks can be met if the priority ceiling protocol is used:

   Theorem 5-3 A set of n periodic tasks using the priority ceiling protocol can be
scheduled by the rate monotonic algorithm for all task phasings, if the following
condition is satisfied:

i∀ 1 i n
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(E-5-2)

This theorem generalizes Theorem 4-1 by taking blocking into consideration. A
similar extension can be made for Theorem 5-2. The Bi’s in Theorem 5-3 can be used
to account for any delay caused by resource sharing.

In addition to the above-cited results, the generalized rate monotonic scheduling
theory has extended the basic form of RM scheduling from its original form of
scheduling independent periodic tasks to scheduling

• both periodic and aperiodic tasks (polling server, sporadic server),

• tasks with synchronization requirements (priority-inheritance, priority-ceil-
ing),

• tasks with deadlines before the end of the period (deadline-monotonic),

• tasks with mode change requirements,

• tasks with deadlines after the end of the period.

In addition, the following issues have also been addressed:

• precise algorithms for determining schedulability,

• associated hardware scheduling support,

• implications for Ada scheduling rules and algorithm implementation in an
Ada runtime system,

• schedulability analysis of input/output paradigms.

Furthermore, numerous design and analysis experiments have been performed to
test the viability of the theory. Together, these findings constitute a rich set of ana-
lytical and realization methods for real-time system engineering.

 5.1.2  Practical advantages

The broad coverage of the GRMT theory means that it can provide a sound theoret-
ical basis for the handling of even the most complicated application scenarios. It
would also be possible for us to apply the same set of schemes based on GRMT to
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many different applications and environments. So the first biggest advantage of the
use of GRMT lies in its completeness and soundness of the theory and its broad
coverage of applicability.

• Utilization bound not a problem

One of the most-cited arguments against the use of GRMT for real-time is the rela-
tively-low worst usage bound. The worst case utilization bound for the basic form
of rate monotonic scheduling was shown by Theorem 4-1 to be n(2(1/n)-1), a quan-
tity which decreases monotonically from 0.83 when n=2 to ln2=0.693 as n—>∞.
This bound is actually very pessimistic because the worst-case task set is contrived
and unlikely to be encountered in practice. The average case behavior is substan-
tially better than the worst case behavior. In common practice, the rate monotonic
algorithm can usually successfully schedule task set having total utilization higher
than 69.3%. Indeed, it is not uncommon for large periodic task sets with total utili-
zation bound larger than 90% to be schedulable if an exact analysis is conducted by
using Theorem 5-2 or other techniques. For a randomly chosen task set, the likely
bound is 88% [Lehoczky89]. The reservation bound of rate monotonic is 100% for
the special case where all periods are harmonic, i.e. each period is an even multiple
of every period of smaller duration.

In our context of soft real-time, this seemingly-low utilization bound is still less a
problem. The computation capacity for each soft real-time application can be esti-
mated in a more optimistic manner. I.e. less than worst case should be reserved.
This is especially true for the applications which need “may-be” guarantee only.
Additionally, an amount of unreserved computation time of at least 5 to 10% is gen-
erally necessary to avoid the starvation of the tasks in the best-effort category. Such
an amount of unreserved spare computation capacity may also be very helpful in
avoiding scheduling failures due to inaccuracy in the computation time measure-
ment and enforcement mechanisms and due to the effects of critical regions and
other synchronization and communication dependency among tasks. With a view
to the rapid development in hardware, it is also far more important to have a theo-
retically-sound predictability than to simply strive for a higher utilization.

• GRMT vs. EDF etc.
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Compared to some complicated dynamic scheduling heuristics, the choice of rate
monotonic scheduling as a cornerstone of our scheduling methods lies also in its
simplicity and flexibility. Although earliest-deadline-first (EDF) and related sched-
uling algorithms have the similar advantages with regard to simplicity and flexibil-
ity, they are inferior to GRMT in several aspects.

Although techniques such as kernelized monitor can be used for synchronization
by EDF, there does not exist as complete a set of EDF-related high-utilization theo-
rems for complicated scenarios as GRMT.

A typical phenomenon that may happen with EDF when the system is overloaded
is the “domino effect”, since a first task that misses its deadline may cause many
subsequent tasks to miss their deadlines. In such a situation, EDF does not provide
any type of guarantee on which tasks will meet their timing constraints. This is a
very undesirable behavior in practical systems, since in real-world applications
intermittent (transient) overloads may occur due to exceptional situations, such as
modifications in the environment, arrival of burst of tasks, or cascades of system
failures. Under cooperative scheduling model, the computation time should then
be predicted either exactly or very pessimistically to avoid such phenomena.

Dynamic priority scheduling algorithms, among them earliest-deadline-first, typi-
cally have slightly greater scheduling overhead than fixed priority scheme such as
rate-monotonic method. This is because the range of dynamic priorities is usually
greater than the range of static priorities, and dynamic priorities must also be recal-
culated at each decision point whereas static priorities never change and thus never
have to be recalculated.

So, despite of the apparent dominance of the earliest deadline algorithm over the
rate monotonic algorithm, the GRMT algorithms are of greater practical impor-
tance [Sha94, Lehoczky89]:

• First, they can be used to ensure that the timing requirements of the most
important tasks are met when a transient overload occurs. This can be done
by the technique of period transformation or by giving higher priorities to
more important tasks under the constraining scope allowed by GRMT.

• Second, they provide a convenient way to offer fast response time to aperiodic
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tasks while still meeting the deadlines of the periodic tasks by using the
deferrable server algorithm, the sporadic server algorithm or the extended
priority exchange algorithm.

• Third, they can be modified to handle task synchronization requirements by
using priority ceiling protocol.

• Fourth, they can be conveniently used to schedule tasks where imprecise com-
putation is permitted.

• Finally, they are easy to implement in (multi-)processors, in I/O controllers
and in communication media.

Consequently, GRMT provides an approach to system-wide timing integration.

• Reasoning timing correctness at an abstract level

The advantage of GRMT can also be seen from another perspective. I. e., the major
advantage of using the rate monotonic algorithm is that it allows the user to follow
the software engineering principle of separation of concerns. In this case, the theory
allows systems to separate concerns for logical correctness from concerns of timing
correctness. In essence, the theory ensures that as long as the CPU utilization of all
tasks lies below a certain bound and appropriate scheduling algorithms are used,
all tasks will meet their deadlines without the programmer knowing exactly when
any given task will be running. Even if a transient overload occurs, a fixed subset of
critical tasks will still meet their deadlines as long as their actual CPU utilizations
lie within the appropriate bound. In short, the scheduling theory allows software
engineers to reason about timing correctness at the same abstract level used by, say,
Ada tasking model.

5.2  Proposed soft real-time sc heduling sc hemes

We are now ready to present the design of a set of soft real-time scheduling
schemes which can be feasibly used in an integrated multimedia environment such
as MMC.

We have designed three soft real-time scheduling schemes. They are namely a
cooperative soft real-time scheduling method (CO-SCHEDULE), a semi-imperative
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soft real-time scheduling method (SIM-SCHEDULE) and an elastic time-scale soft
real-time scheduling scheme (ET-SCHEDULE).

The CO-SCHEDULE is designed by integrating some elements from the rate-
monotonic scheduling, the priority-based scheduling and the weighted round-
robin scheduling. The SIM-SCHEDULE is an extension of the CO-SCHEDULE.
And the ET-SCHEDULE is a novel scheduling framework into which many sched-
uling methods can be placed to function.

All the soft real-time scheduling algorithms presented here deal with both real-
time processes and non-real-time processes.

In the following, we put our main attention to CO-SCHEDULE and SIM-SCHED-
ULE. A description of ET-SCHEDULE is given in the Appendix.

 5.2.1  Cooperative scheduling by CO-SCHEDULE

A high-level presentation of the CO-SCHEDULE scheduler is shown in Figure 5-1.
The CO-SCHEDULE scheduler supports a set of high-priority periodic processes
and a set of normal processes. A high-priority periodic process denoted as P0

i has a
higher priority than any normal processes and can preempt them at any time.
Inside the set of the high-priority periodic processes, the processes are scheduled
according to the rate-monotonic scheduling algorithm. The mapping of periods to
the priorities are dynamic and are managed by the scheduling subsystem. The nor-
mal processes are again classified into different priority classes — normal priority
class 1, normal priority class 2, normal priority class 3, ......, respectively, where a
smaller number denotes a higher priority. Inside a normal priority class n, the pro-
cesses denoted as Pn

i are scheduled according to a weighted round-robin schedul-
ing algorithm. That is, when scheduled to run, a process Pn

i with weight wn
i is

given wn
i time budget. Unless preempted by processes with higher priorities, the

process runs until it is blocked or the time budget is used up. In the latter case, the
process is placed to the end of the class n waiting queue.

The CO-SCHEDULE scheduler runs according to the cooperative time enforcement
model. That is, the high-priority processes are assumed to run not longer than the
worst-case-execution-time claimed by them. The scheduler schedules the processes
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simply according to their priorities and weight. No monitoring of the execution
time of the current process is conducted.

Figure 5-1 CO-SCHEDULE scheduler overview

 5.2.2  Semi-imperative scheduling by SIM-SCHEDULE

The SIM-SCHEDULE scheduler extends the CO-SCHEDULE method by monitor-
ing the execution of the high-priority periodic processes. The scheduler preempts a
high-priority periodic process if this periodic process has not completed its task in
one of its period after using up its claimed C0

j execution time. In the case of such a
preemption, several following actions are then possible. For example, it can be sim-
ply allowed to complete its current execution in its next period, or it can be ren-
dered into a process of a certain normal priority class m to continue its execution or
to execute its emergency-handler, or it can be even aborted as a last resort. It is thus
necessary to introduce different handling methods for timing violations to make
SIM-SCHEDULE complete.
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 5.2.3  Variations and other scheduling paradigms

The above design of CO-SCHEDULE and SIM-SCHEDULE is in itself a scheme
which can be further refined to produce extended algorithms.

As an extended variation, a high-priority periodic process which has used up its
reserved capacity can be rendered into a normal process of normal priority class m

before the reincarnation of its next period. This is especially useful for a virtual
periodic process which should proceed as soon as possible by using slack time up to
normal priority class m. Or, the different treatments of the processes which have
used up their reserved capacities can be considered/combined with the handling
schemes together. Still another variation is the use of a UNIX-similar multilevel
feedback queue scheme to manage the normal-priority processes. Other variations
may also be designed to meet the needs of specific environmental requirements.

Still other scheduling paradigms are possible. In Section 4.2.2  Criteria of a suitable

scheduling scheme, we have pointed out the prerequisites for a scheduling method to
be usable in our scheduling framework: (1) possibility to express timing constraints
of processes; (2) possibility to check the schedulability of a set of processes in order
to do admission control; (3) (optionally,) ability to control the processes hierachi-
cally in order to let some of the processes to be “favored” over others.

Clearly, CO-SCHEDULE and SIM-SCHEDULE fulfill all the three requirements.
Many other real-time scheduling algorithms also fulfill the requirements with
regard to the “mere” need of soft guarantee. In the appendix, for example, an ET-
SCHEDULE based on elastic time-scale is presented.

5.3  Proposed soft real-time handling methods

As a soft real-time system, the timing violations from both the side of the system
and from the side of the user processes are tolerated to some extent. The special
characteristics of multimedia are the prerequisites for such a system to work fine.
The real-time features of our proposal are soft due to mainly two aspects: first, dif-
ferent guarantee degrees are supported; second, the timing specifications of pro-
cesses are flexible and timing exceptions are handled in some “soft” and “graceful”
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manners. The second aspect is necessary, since we do not require a rigid timing
specification from the MM processes and not-so-often timing violations both from
the side of user and from the side of the system are allowed.

By timing overflow we mean the situation where a process will apparently try to
use more computation time than it previously claimed and was admitted. The tim-
ing overflow might be a consequence from the system side where the system had
not given enough time to the process although the system had admitted the process
with regard to the process’ timing specification. The timing overflow might also be
a consequence from the user side where the actual computation capacity require-
ment of the process would be larger than it previously estimated/claimed. Or it
might be the consequences of the timing violations from both sides.

Once again, the different meanings of timing overflow for soft real-time systems
and hard real-time systems should be mentioned. For hard real-time systems, tim-
ing overflows (violations) are rare and exceptional. It is abnormal for them to han-
dle situations involving timing overflow. For soft real-time systems, not-quite-often
timing overflows are expected phenomena. Their handling by soft real-time han-
dling schemes is a normal part of the system operation.

In the case of a timing overflow, we suggest not a take an abortive measurement
such as to abort the violating process. Instead, some corrective handling methods
should be used to try to smooth system fluctuations.

• Descriptions of corrective variations

In our system, we mainly support a periodic real-time model for multimedia pro-
cesses. In the case of timing overflow where the computation time in a period
would apparently be larger than previously claimed by the process, different soft
real-time handling methods can possibly be used:

• Method (a) — CANCEL (cancel and swallow):

The current period entity is simply canceled by the OS. It is up to the appli-
cation to “swallow it silently” by some other means;

• Method (b) — RELAY (relayed period):

The work which can not be done in the current period is silently relayed to
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the next allocated period;

• Method (c) — RELAY-TRUNC (relayed period with truncation):

As (b), but the relay can only occur maximum N times before being trun-
cated;

• Method (d) — DELAY (delayed period):

A prolonged period is allowed but at the cost of a delayed new instantiation
of the period following this one.

Method (d) has the advantage that the process in question can get what it immedi-
ately needs. But this method violates the guarantee constraints allowed by GRMT,
since the prolonged period implies a larger usage requirement. That is, the usage
bound for a certain scenario might be exceeded and this might lead to the result
that other processes are negatively influenced. Therefore, the “delayed period”
method is an opportunistic method which should usually not be applied.

Methods (a) (b) (c), in contrast, try to maintain the system in such a way that the
violating process will not have a negative influence on other processes.

Methods (a), (b) and (c) can be augmented by a timing-violation handler (TV-han-
dler) which is triggered when a timing-violation occurs. By triggering such an
exception handler, the scheduling subsystem notify an application process that it is
unlikely to schedule its activity according to its time-constraints. This mechanism
allows the application processes to react to the missed deadlines in an application-
specific manner. Such a notification mechanism is one of the key features with
which an adaptive service supporting model can be built. Such a usage is further
refined in Section 9.3.4  Adaptation support from OS scheduler.

These handling methods can be used in direct combination with SIM-SCHEDULE
since a timing violation monitoring is conducted by the system. Their combinations
with priority manipulations in the scope allowed by GRMT are also possible. The
ideas of timing violation handling are also partly applicable to a system controlled
by CO-SCHEDULE if a self-monitoring is done by the processes themselves.

In order to evaluate the soft real-time framework and the related soft real-time
scheduling and handling methods, both simulations and implementations have



5.4  Usage issues

107

been conducted. The simulation construction and the related results will be
detailed in Chapter 6 “Simulations of soft real-time effects”. The experimental imple-
mentations of these schemes and the related measurements and assessments will
be the topic of Chapter 7.

5.4  Usage issues

The following discusses the usage schemes for the above soft real-time scheduling
and handling proposals. They also reflect some further justifications for our design.

 5.4.1  Implications for the implementation schemes of
applications

One of the most important design decisions in the above soft real-time scheduling
schemes is the explicit and direct support for real-time periodic or virtual real-time
periodic processes. This influences the implementation schemes of the applications
directly.

• Periodic framework

Periodicity is a common property of real-time tasks in continuous media applica-
tions. The decoding and playing-back of a series of video frames coded in motion-
JPEG is such an example. Since periodicity is a typical feature of the MM activities,
the proposed scheduling methods provide direct “sure guarantee” and “maybe
guarantee” aupport to periodic or virtual periodic processes.

A main concern related to a periodic processing framework for continuous media
is that the arrival patterns, data volumes and processing capacity requirements
may vary from period to period. But as pointed out by some related work such as
[Steinmetz95, Jeffay95], such variations do not usually lead to the infeasibility of a
periodic framework. Instead, some forms of periodicity are always exploitable.

Although the periodic processing time for multimedia applications does vary, it is
usually still controllable in the following senses:

a) It does not vary very much in many cases. For example, the statistics on the
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processing of a series video frames coded in JPEG or a series of video frames
consisting of I-frames usually indicate a relative stable curve with small vari-
ations.

b) The stable periodicity may appear in a somewhat transformed form. For
example, the processing time for a series of MPEG frames consisting of I-, P-,
and B-frames may vary greatly. But from the view point of GoPs (group of
pictures, which consists of all the frames related to an I-frame), the periodic
processing time is usually relatively stable. Figure 6-4 on page 137 will show
such an example.

c) The related communication-patterns concerning data volume and arrival
pattern are usually also of periodic manner. See, for example, [Vogt95].

In view of these observations, small variations can be easily contained and toler-
ated in the elastic framework of soft real-time. Major mode changes can be dealt
with by the adaptive service model of Chapter 9.

• Applying periodic model to implementations

Naturally periodic applications can be implemented in the periodic scheme easily.
Non-periodic applications which need guarantee can be rendered as pseudo-peri-
odic processes to fit into the framework.

Two most important indices of a periodic process are its period T and its per period
process time requirement C. The ratio C/T indicates the processing bandwidth the
periodic process requires. The processing bandwidth is critical for the admission
control under GRMT. One of the biggest advantage in using a periodic model to
realize the application is that the timings are not bound to single events. Instead, a
natural periodic timing framework is provided to contain the needed timing
events. This feature is especially suitable for the easy realization of the soft real-
time applications such as A/V applications.

Above all, the A/V applications posses some natural periods which are directly
mappable to process periods. These periods can be estimated independently of the
concrete computer and OS platforms. For example, a decoding process for video
frames must process 30 frames per second. A natural period for it would be 33.3
ms. An audio process may have to be scheduled every 50 ms to generate an audio
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buffer. Sometimes, a period transformation may have to be applied. For example,
the audio process may have to be submitted as a process with a period of 100 ms
(for 2 buffers) in order to lower its relative priority to other processes with shorter
periods.

The processing time needed for each period is unavoidably platform dependent.
Some methods may be used to make an estimation of per period processing time
easier. In our prototype system implementation, for example, the processing time
can be estimated gradually in a “try and asses” cycle due the property of our
scheduling subsystem as a “timing enforcer and predictor” in one (Section 7.3.3).
Such a method can be very helpful for supporting the user to adapt their applica-
tions to different platforms with different hardware and OS configurations.

• Run a non-periodic process in the periodic framework

Not only the naturally periodic processes can be run in the periodic scheduling
framework. There is also the possibility of providing virtual periodic processing
service.

Actually, many system management and application functions should be ensured
to progress deterministically. Though they may not be directly MM-relevant, they
still need virtual real-time support. I. e. they should also be guaranteed with a cer-
tain share of processing bandwidth. For example, in a MMC scenario, we may
want to guarantee the file transfer and processing to accompany an interactive
video connection.

Figure 5-2 Fitting non-period into the periodic framework

(a)

(b)
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Note that, in order to check schedulability bound in a scheduling system using
rate-monotonic scheduling, a non-periodic process has also to be considered and
scheduled in the same way as a periodic process. In order to run a non-periodic
process in our periodic scheduling framework, the scheduler has to schedule the
non-periodic process in an “artificially periodic” way. Since non-periodic programs
do not have an explicit periodic structure and requirement, they can be handled by
arbitrarily setting the period computation time and period to yield an intended
rate, as depicted in Figure 5-2. For example, a compilation job has to be guaranteed
of 3% of processing bandwidth. It may be rendered into a process of 3ms process-
ing time in every 100ms or a process of 12ms processing time in every 400ms.

In this way, such important non-periodic processing can be assigned the role of vir-
tual periodic process with sure- or maybe-guarantee, dependent on their impor-
tance.

The concrete forms of usage of periodic processes and virtual periodic processes
are exemplified by our experimental implementation and are detailed in Section

7.2.2  Sample programming interface of usage.

 5.4.2  Implementation methods of periodic bodies

Within the periodic framework, the users of the periodic process model have two
choices in realizing a periodic entity.

The first possibility is to use a periodic process with the timing properties managed
and enforced by the scheduling subsystem. Using this method, the user provides
the periodic body which conducts the work expected in a period. For example, in
any single period of 25ms with processing capacity up to 4ms, the periodic body
will normally process 4 messages and will process up to 6 messages if more mes-
sages are available. The application should provide the scheduling system with the
period and per period usage it perceives. The whole process can then be created
and managed by the scheduling subsystem automatically. The reinstantiation of
the periodic body and the timing-overflow handling will be dealt with within the
scheduling subsystem.

The second possibility is to use a virtual periodic process and to manage the timing
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properties by oneself. The application should still provide the scheduling system
with the per period usage it requires. The scheduling system will only enforces the
per period maximum usage of the virtual periodic process. The timing-overflow
handling will then not be dealt with within the scheduling system, since the
boundaries between the (instantiations of the) periodic bodies are intentionally left
out. In the periodic body of this case, the application should use the basic timing
facilities provided by the system to decide whether and when to activate their own
timing-overflow handling.

 5.4.3  More on scheduling of normal processes

Periodicity is a common property of real-time tasks in continuous media applica-
tions. The high-priority periodic process set supported by CO-SCHEDULE or SIM-
SCHEDULE can, for example, be used to implement functions for isochronous data
transmission and consumption. The set of the high-priority periodic processes can
be guaranteed to meet their timing specification if the processor usages of the set
are checked to be in the schedulability limit, as given, for example, by Theorem 4-1,
Theorem 5-2 and Theorem 5-3.

Note the processes in the normal process class can also be expected to run in some
sense of real-time if carefully planned. For example, process P1

i will be granted of
its required w1

i computation time in a cycle of L, if the following equation holds:

(E-5-3)

where n0 and n1 are the number of the high-priority periodic processes and of the
priority class 1 processes respectively. Tj and Cj are the period and per-period com-
putation time for P0

j. w
1

k is the weight of P1
k.

As explained in Section 4.1.2.3  Timing enforcement models and Section 4.1.2.4  Enforce-

ment on periodic processes, the predicted schedulability of the proposed schedulers
can only be achieved if timing monitoring and enforcement measures are taken.
Only in this way can the intentional or non-intentional mal-function of one process
be prevented from having negative effects on other processes.
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 5.4.4  Jitter of processing

CO-SCHEDULE and SIM-SCHEDULE both assume a periodic process model for
CM-related processing and schedule the high-priority periodic processes according
to the Generalized Rate Monotonic Theory.

In a complicated scheduling scenario, processing jitter is sometimes inevitable to
some of the periodic processes. This can be seen in the following figure.

Figure 5-3 Actual processing usage in a scheduling scenario by RM

Rate monotonic scheduling guarantees that a periodic process gets its reserved per
period processing time in its cycle of periods. But the processing time the process
receives may not always at the same phase of its period (say, at the beginning of
each period). It is also possible that the process gets its processing time not in a
chunk, but in several pieces. The reasons for these phenomena are that the schedul-
ing is done according to rate-priority and that the context switch is unavoidable
due to the interweaving of different periods and phases of different processes.

One may try to alleviate the problem by trying to keep the processes ready for
scheduling. For example, a delayed playback in a communication and processing

(a)

(b)

(c)
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application with periodic message arrival can be sure that it always has some mes-
sages to process. A MPEG-decoder retrieving its data from disk may starts its I/O
request in the i-th period and begins its processing of the read-in data in (i+k)-th
period when the requested data are sure to be ready. But the processing jitter is still
unavoidable for the processes with lower rate-priorities whose processing can pos-
sibly be preempted by the processes with higher rate-priorities.

It should be pointed out that the jitter of processing is also unavoidable if the pro-
cessing is scheduled according to a scheduling method like earliest deadline first
(EDF). To schedule a set of periodic processes according to EDF, the scheduler will
just try to give the period instance with the earliest deadline to run. Again, due to
the interweaving of different periods and phases of different periodic processes,
the process can neither be guaranteed to receive its processing time always at the
same phase nor in a chunk or in several pieces.

For the processes which are used at the intermediate stages of the MM processing,
such jitters of processing are usually not a big concern. The intermediate stages
must only be sure that they are making regular progresses and that the related jit-
ters of processing are under control (actually, always in the scope of maximum one
period).

Jitter of processing is, however, a big concern for the end-processes which have to
interface audiovisual devices more or less directly. For them, jitter control at the
process level is sometimes necessary to match related physical requirements of
hardware devices. Some of the jitter-control techniques in the scope of GRMT
[Klein93] can be used for this purpose. For example, a process with short period
(thus high rate-priority) may be used to conduct I/O processing only. Or, a process
can be assigned a temporary higher priority for an intended short section of I/O-
related processing.

In “Section 5.5.3.2  Interfacing continuous media I/O”, further issues concerning inter-
facing logical and physical media devices will be discussed.
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5.5  Realization issues

One of the overall goal in implementing our soft real-time framework is to achieve
a good approximation of the timing properties as predicted by the hard real-time
scheduling theory so that the whole system can be run in a more or less predictable
manner. By exploiting the soft real-time properties of the CM applications, this
approximation can usually be realized in simple and efficient ways. In addition, the
management of other resources and activities should be taken into account so that
the real-timeliness and predictability of the system as a whole can be achieved.

 5.5.1  Implementation schemes with different OS
structures

Above all, the first main realization issue is the efficient implementation and provi-
sion of the base real-time scheduling services and the diverse soft guarantee
semantics. As pointed out by [Stankovic92], it is principally possible to achieve
hard real-timeliness with different OS structures. Likewise, it is principally possi-
ble to realize soft real-time by approximating the realization of hard real-time
mechanisms on different OS architectures.

It should be noted that the term “real-time OS” used here is only a general concept.
It practice, this “real-time OS” may be implemented as a real-time OS of its own, it
may be implemented in some environments as an extended run-time system based
on the extension of an available OS or it may be simply implemented as a set of
supporting library modules (especially for an embedded environment).

In the following, different advantages or difficulties in approximating soft real-
time on different OS architectures are considered. Comparisons are made with
regard to monolithic kernel, micro-kernel and nano-kernel OS structures (see Fig-
ure 5-4). Our preference for a micro-monolithic-kernel is then justified and detailed.

 5.5.1.1  Monolithic kernel vs. microkernel
As long as the structure of a real-time OS for multimedia is concerned, a first com-
parison between monolithic structured and micro-kernel structured OS should be
conducted.
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In a microkernel-based operating system structure [Gien91, Hildebrand93], the
micro-kernel provides system servers with generic functions. The functionality of a
micro-kernel is limited to generic processor scheduling and memory management
functions, usually independent of a particular operating system environment, and
a simple inter-process communication (IPC) facility that allows system servers to
interact independently of where they are executed, in a multiprocessor, multicom-
puter, or network configuration. System servers, in turn, are autonomous OS ser-
vice function providers on top of the micro-kernel. A modular set of servers
provides OS services and OS interfaces to application programs. These services,
such as file system, devices and high-level communications, are traditionally incor-
porated in the kernel of a monolithic system. This combination of primitive ser-
vices from a standard base, which in turn supports the implementation of functions
that are specific to a particular operating system environment, makes a micro-ker-
nel based OS structurally modular.

Figure 5-4 Schematic comparison of three different OS structures
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In contrast, traditional monolithic-structured OS is generally inflexible for real-time
applications. The main problem lies in the monolithic kernel where most of the sys-
tem services are provided through system calls which are traditionally single
threaded and non-preemptable. Longer systems calls can thus be a big hindernis
for real-time response.

For traditional monolithic OS, real time responsive ability can usually be intro-
duced by using preemption point mechanisms everywhere in the kernel imple-
mentation, e.g. in the system calls. But such added-on real-time capabilities are
usually quite limited in both functionality and performance. Compared to mono-
lithic OS, a micro-kernel based OS is structurally preemptive because of its modu-
larity, i.e., it has a structural advantage in that the micro-kernel OS can reduce
unexpected delays in the kernel when other tasks execute expensive system calls.

Thus, from the viewpoint of the traditional industrial real-time system where a
short responsive time is a key factor, it seems that micro-kernel OS is more suitable
to serve as a base for real-time systems.

In the context of soft real-time multimedia support, however, the above advantages
of micro-kernel structures play much less significant roles. Instead of them, the
emphases should now be put on direct MM-support service interfaces, fewer mul-
tiplexing points to minimize QoS crosstalks between applications and easy reserva-
tions with simple accounting. (By QoS crosstalk, we mean the phenomenon where
the QoS of an application is negatively influenced by other concurrent applications,
especially in the cases of overloads.) Actually, as far as these new aspects are con-
cerned, the micro-kernel structure has more disadvantages than the micro-mono-
lithic structure explained below.

In the micro-kernel structure, much functionality is moved from the kernel into dif-
ferent server processes. These servers are then multiplexing service provision
points. It is then more troublesome to do resource reservation and usage account-
ing across these different server domains than centrally by a (micro-)monolithic
kernel.

 5.5.1.2  Vertically integrated approach with nano-kernel
One of the trends in modern operating system technology is to exploit a more
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application-oriented architecture. The foremost reason for it might be that it is then
easier to optimize the system in a more application-specific way. An extreme exam-
ple of such a trend in the area of multimedia support is the vertically-integrated
nano-kernel structure as advocated in [Roscoe95, Leslie96].

In this radically different approach, each application is virtually a self-contained
protection and execution domain. Instead of system services being located in the
kernel or server processes, they are placed as much as possible in client application
protection domains and scheduled as part of the client. Communication between
domains occurs only when necessary to enforce protection and concurrency con-
trol. This amounts to multiplexing the service at as low a level of abstraction as pos-
sible.

Such a structure raises a number of technical issues. Programmers should neither
have to cope with writing almost a complete operating system in every application
nor contend with the minimum level interfaces to share servers. Binaries should
not become huge as a result of the extra functionality they support and resources
should be allocated in such a way that applications can manage them effectively.

In order for this approach to work efficiently, the above technical problems should
be solved. First of all, this architecture should be generally coupled with the single-
address-space scheme in order to achieve a high degree of data sharing thus to
make the system efficient enough. Structuring tools in the form of typed interfaces
within a single address space should, for example, be used to reduce the complex-
ity of the system from the programmer’s viewpoint and enrich sharing of text and
data between applications. Second, processing bandwidth should be scheduled
between the domains in a guaranteed manner, the domains should be aware of
their CPU allocation and the CPU multiplexing within application domains should
be easy. Third, inter-domain communication methods should be carefully designed
to allow efficient communication without complicated binding and invocation.

 5.5.2  A micro-monolithic-kernel approach

While agreeing with the lines of thoughts of the above vertically-structured nano-
kernel structure, we hold the opinion that it is generally not necessary to go that far
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as to have to deal with those many new problems of the new structure. As dis-
cussed in the previous chapters, the soft or elastic features of continuous media
can, after all, tolerate QoS crosstalks to quite some extent. We advocate, therefore, a
more traditional micro-monolithic-kernel structure where many traditional system
call kernel functions are implemented as user-space libraries so that the monolithic
kernel can be kept quite small. (It is possible to perform most of the kernel func-
tions of an operating system like UNIX in user-space applications. Example can be
found in the work like the Spring SunOS emulator [Khalidi92], where the whole
SunOS is almost entirely implemented as a client library.)

Note that many existing real-time systems tend to be built along similar lines as our
micro-monolithic approach, with a very simple generic executive supporting appli-
cation-specific real-time tasks.

 5.5.2.1  Advantages of the approach
Using the micro-monolithic approach, the system structure is simple. This leads to
simple reservation and accounting. The advantage of micro-kernel can also be
achieved to some extent.

First of all, rescheduling/context switch can be done without the influences of
some long-delaying system call executions. Second, the cost of invoking library
functions is accounted directly as part of the capacity reserved by the user pro-
cesses. (It is true that the costs of these library functions should be measured and
their behavior under different conditions should be verified. But such analysis
should usually be done only once. The statistics can then be stored and provided
for all the future use). Third, the capacity used by the system kernel on behalf of a
user process should be “paid” by the user process and it is far easier to do such
accounting in a monolithic way than in a micro-kernel environment encompassing
several (sometimes recursive) server domains. Thus, the accounting complication
by a pure micro-kernel structure [Mercer94a] can be avoided to a large extent.
Fourth, the system should usually provide “advisory” cost information with
regard to the execution of MM-related library functions and system calls in order to
aid the user processes in reserving their processing capacities. The reason is that it
is sometimes quite difficult for the processes to estimate their costs for all circum-
stances accurately. This difficulty can be alleviated to some extent if the scheduling
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subsystem can be designed to be time-constraint predictor and time-constraint
enforcer in one. With the aid of such a scheduling subsystem, the user processes
can undergo a “try and revise” procedure to attain a good estimation of their actual
processing capacities. With the simplicity of accounting in a monolithic system, it is
usually easy to achieve such a goal, as to be exemplified in Section 7.3.3  Scheduler as

a predictor and an enforcer.

Additionally, some of the structural advantages of the micro-kernel structure can
be emulated in the micro-monolithic structure to some extent by way of kernel
multithreading. In our opinion, micro-kernel and real-time are somewhat orthogo-
nal in functionality. The key point is multithreading as long as the organization of
the system activities is the main concern. Traditional “system” operations are not
necessarily more important than other “user” activities. They should be threaded
to compete for CPU and other resources with other user activities to achieve the
real-timeliness of the whole system. Such multithreaded processing model can be
implemented in the form of a micro-kernel structure or a multithreaded kernel, as
is shown in Figure 5-5. If a pure micro-kernel approach is pursued, great efforts
should be taken to implement real-time servers [Nakajima93]. Such efforts can be
spared in the micro-monolithic structure.

Figure 5-5 System overview with a micro-monolithic- and multi-threaded-
kernel
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In our experimental implementation, for example, some system management oper-
ations are embedded in a system process of normal priority. Their executions will,
therefore, not influence the executions of (virtual) periodic MM processes. This will
be exemplified in Section 7.3.6  Other features of interest.

 5.5.2.2  Considerations on the processing cost for common paths
Similar to the vertically integrated nano-kernel approach, in a micro-monolithic
system, the activities belonging to an application should be reserved with regard to
the application and should be accounted to the application as much as possible.
This means that the owner of the activities should be identified as early as possible.
Common paths should, in contrast, be minimized.

In a micro-monolithic system, it is quite straightforward to reserve and account for
the processing capacity used to execute plain application codes, library functions
and system calls invoked by the application. It is not so apparent as to how to deal
with those common path executions which are not identifiable with a certain appli-
cation or an independently reserved system function. The initial phase of an inter-
rupt processing and the scheduling overhead of the scheduler itself are two such
common path executions.

Generally, in the cases where the amount of cost for such common path executions
is quite small, it might be taken as part of the system variations which should be
tolerated by the soft-guarantee semantics of the soft real-time framework. In the
cases where the amount of such cost is too significant to be ignored, however, the
capacity for such cost should be independently reserved and accounted.

In a scheduling subsystem controlled by CO-SCHEDULE or SIM-SCHEDULE, the
reservation of a fraction of processing power for a small common portion of system
activities can be made relatively easily. Again, in the case where the amount of
such cost is quite small, it can be taken as part of the system variations which
should be tolerated by the soft-guarantee semantics of the framework. In the case
where the amount of such cost is too significant to be ignored, the capacity for such
cost can be reserved by reserving the processing capacities for one or more virtual
“system-overhead” periodic processes with very short virtual periods (virtually
shorter than the periods of any periodic processes). According to the rate-mono-
tonic theory, these virtual system-overhead processes can break the executions of
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other processes at any time when they are ready, because they have the highest pri-
orities resulting from their very short periods. This has the practical effect that the
virtually arbitrary breaks caused by the scheduling and interrupt handling are, to a
large extent, compensated by these virtual reservations. For a simple admission
control based on GRMT, this has the simple form of just reducing the schedulabil-
ity bound by the amount of the reserved system-overhead capacity.

With communication-intensive applications, the cost of interrupt processing
caused by incoming packets can be quite significant if the protocol processing is
implemented in the traditional kernel/server way. It is the topic of Chapter 8 to
minimize the common path processing involved in the protocol processing and to
make the protocol processing more controllable and predictable.

If not otherwise indicated, all our following discussions will be made with the
micro-monolithic approach as a reference. Especially, the experimental implemen-
tations to be documented in Chapter 7 also follow this approach.

 5.5.3  Real-timeliness and predictability of the system as
a whole

A multimedia application is dependent on several kinds of resources in its whole
life time. Processing capacity is only one of the most important active resources.
Resource management and allocation should, of course, deal with all resources in a
multimedia system. Real-timeliness and predictability of the system as a whole can
only be achieved if all system resources and activities involved are managed in a
predictable manner. The issues of interfacing audiovisual I/O and making protocol
processing more controllable are also directly relevant.

 5.5.3.1  Application- and timing-driven resource reservation
It has been argued that it is natural to do resource reservation in an application-
driven approach, since the QoS requirements of the applications dictate the
resources required by underlying system components which service this applica-
tion. In addition to this, resource allocation should also be done in a timing-driven
manner. Since real-timeliness is a key factor in continuous media support, the
resource allocation and usage should be surrounded around timing consideration.
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In the scope of an endsystem, CPU is a kind and actually the most important kind
of resource as long as timing is concerned. In order to achieve the real-timeliness of
the whole system, all the system activities should be controlled by the real-time
management scheme. We have proposed to give CM-related processes some kinds
of soft guarantee of their CPU usage. Admission control with related real-time
scheduling is the “reservation mechanism” which we have used to offer the soft
guarantee. For a capacity-based scheduling system such as GRMT scheduling, the
relationship between CPU capacity reservation and guarantee is quite apparent.

Since the processes also use other kinds of resources, these resources are directly or
indirectly involved to make the system as a whole predictable. Soft real-time sched-
uling and handling is only the reservation of CPU capacity resource. The allocation
(sharing or reservation) of other resources should also be done by taking timing
factor into consideration. Only in this way can the system behave predictably as a
whole.

Some resources such as bandwidth to a peer endsystem will involve peer and inter-
mediate systems. The management of such resources will inevitably have to be
conducted in a distributed manner. The reservation and enforcement of the trans-
mission bandwidth in an integrated service network, for example, can be con-
ducted by use of RSVP, CBQ, etc. [Fan97].

The management of the local resources on an endsystem should be done by taking
timing requirements into consideration. For example, to reserve some passive
resources such as buffer memory, methods used in [Ferrari92] should be applied
along the time axis of the applications’ life time.

 5.5.3.2  Interfacing continuous media I/O
Chains of processes may be involved in a multimedia application. Usually, the end-
processes will have to interface continuous media devices more or less directly. For
them, it is usually necessary to match their processing speed and processing rate to
the related physical requirements of some logical or hardware I/O devices. This
stands in contrast to the intermediate stage processes which usually have only to be
sure that they are making regular progresses and that the related jitters of process-
ing are under control.
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The problems with the input direction from and the output direction to a CM
device, typically an audiovisual device, are usually different. Interfacing input
from a CM device is generally not very problematic where the process is generally
the single user of the device. The hardware of the audiovisual device generates the
input data periodically and the generated data can generally be delivered to the
process through a notification mechanism such as interrupt or status bit. Many CM
input devices support a FIFO buffer to further simplify the timing requirement of
the input process. On output, in contrast, the case is generally more complicated.
The output CM device is usually a place where some mixing and multiplexing
should be done. For example, several audio streams may have to be mixed before
being playing out by a loud-speaker and a window system usually has to support
multiple video windows.

• Audio input and output

Modern workstations and high-end PCs usually have built-in audio support. On a
Sun SPARC, for example, the 16-bit audio device can be used in almost the same
way as a standard I/O device. The /dev/audio  device can be open ed and then
asked to read  and write . Parameters such as sampling rate, gain, channels can be
set and retrieved by ioctl . The /dev/audioctl  device can be used to set vol-
ume. For audio input, an event-based technique such as using select()  can be
used to wait for several possible events such as the readable state of the audio file
descriptor.

For audio output, it is feasible to use an explicit periodic timer to trigger the writ-
ing of blocks of audio data to the audio output (such as a speaker) or use a periodic
process to do the job. Since there is usually a FIFO buffer to the speaker (such as on
a Sun workstation), the preciseness of the period of the writer to the buffer can then
be relaxed a little — the writer will then be regulated (blocked/unblocked) auto-
matically by the high-water and low-water mark mechanism of the FIFO. In the
NEVOT Internet audio terminal [Schulzrinne95b], a more efficient method has
been used to do the timing for audio output. It does this by coupling the audio
input and output timing: each time the audio input device (the analog-to-digital
converter) delivers a full block of audio (usually, corresponding to 20 ms) to the
input application, one equal duration block of audio data is copied from the play-
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back buffer to the audio output device. This method has the advantage that it is not
necessary to rely on the system clock for the accurate periodic timing and it also
incurs less overhead.

By the way, a play-back process used to handle audio play-back usually adjusts its
play-back delay quite often — sometimes even with each new talkspurt. A schedul-
ing model based on GMRT (such as ours) guarantees the processing bandwidth of
the process but does not relate a user-relevant timing decision (in this case the play-
back delay) with the scheduling. It brings with it the advantage that such user-rele-
vant timing decisions will not influence the system scheduling directly or
frequently which may be the case with a scheduling scheme based on EDF etc.

• Video output and real-time window system

Video and animation outputs are usually sent to a window system to be displayed.
There are problems with a traditional window system like the X window system.
For some decoding and displaying experiments conducted on a Sun SparcStation,
for example, the main processing power has been found to be devoted to the video
decoding itself. But a significant part (varying from 5% - 30%, dependent on the
display content and the number of the applications) of the processing power is con-
sumed by the X-server which displays the decoded results. This part of processing
power is not accounted to the video applications. In addition, the X-server handles
the client requests basically in a FCFS manner.

Several implications follow. First, if several video streams have to be displayed
concurrently, then the X-server does not take into account their QoS requirements.
A stream may overwhelmed the others. Second, the display requests from other
non-real-time applications may delay the intended normal delay rates of the video
streams. In an overloaded case, both situations become worse.

There are basically two approaches to solve the above problems. One approach is
to have the applications take over most of the rendering work of a window system,
reserve and account such work to the application itself. The work concerning other
window management functions can be left as it is and be viewed as non-real-time.
The other approach is the so-called real-time window system approach where the
window system is multithreaded and correspondingly scheduled in a real-time
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manner.

A recent version of the 81/2 window system of Plan9 renders graphics almost
entirely within the client. The client then sends bitmap tiles to a window manager
which is optimized for clipping these tiles and copying them into the frame store.
And, in some experimental implementations like the Cambridge Desk Area Net-
work, many low level window manager primitives have been provided in hard-
ware. If such techniques are combined and applied together with the micro-
monolithic kernel, then the reservation and accounting of video output are quite
application-driven and can be easily done.

The feasibility of the real-time window system can be seen in some experiments
like [Sasinowski95]. Some real-time threads and non-real-time threads are created
as the processing entities for the window server. Real-time threads only process the
categorized real-time primitives such as drawing operations and event-related
requests, which are usually of deterministic length and which are directly real-time
relevant. Real-time window threads and other real-time activities are scheduled by
some real-time scheduling schemes. Although the relationship between the RT
window threads and their clients can be diverse in a general real-time window sys-
tem, it will achieve the best effect if a client application needing real-time window
service can provide its window-related QoS requirements before hand and the cli-
ent processes together with the corresponding RT window thread can undergo the
admission control together to make sure that the system has the capacity to support
them satisfactorily.

 5.5.3.3  Protocol processing and mode changes
In addition to the application MM processes, the protocol processing activity is one
of the main activities on a MM communication system and it should also be man-
aged by the system in a controlled manner. Especially, the interrupt processing cost
caused by communications is usually quite significant. Several degrees of treat-
ment are possible: (a) consider interrupt-driven protocol processing as system
noises; (b) try to damp the interrupt effects; (c) use special hardware such as front-
end to distribute part-load; and (d) exploit application-driven protocol processing.
These are different methods of bringing the protocol processing under control.

Another major issue in making the whole system predictable concerns mode
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changes requested by the application itself or caused by variable environmental
conditions. It is possible to support a flexible and adaptive service model (the FAST
model) in our soft real-time framework. The FAST model can support both the
application-initiated adaptations and the supporting-system-initiated adaptations
needed by multimedia communications and applications.

Because of the importance and the scope of these two issues, Part IV will have a
detailed treatment of them to make our soft real-time framework complete.

5.6  Summar y of the c hapter

The center of a soft real-time framework is a set of feasible soft real-time scheduling
and handling schemes. The basic requirement on these schemes is that they should
be simple, predictable, flexible yet powerful.

The Generalized Rate Monotonic Theory (GRMT) has been chosen as the theoreti-
cal basis for the design of our soft real-time scheduling and handling schemes. The
choice of GRMT is based on mainly two reasons: the completeness of the GRMT
theory for many real-time environments; and the practical advantages of the
GRMT-oriented real-time schemes over many other real-time methods.

Our scheduling schemes are designed by integrating some elements from the rate-
monotonic scheduling, the priority-based scheduling and the weighted round-
robin scheduling. The Generalized Rate Monotonic Theory is used in all the meth-
ods as a basis for admission control and for real-time scheduling. The other related
results of the theory are also used in other aspects of the system implementation
such as preventing unbounded priority inversion by some forms of priority inherit-
ance.

Two soft real-time scheduling schemes are then presented which can be feasibly
used in an integrated multimedia environment such as MMC. They are namely a
cooperative soft real-time scheduling scheme (CO-SCHEDULE) and a semi-imper-
ative soft real-time scheduling scheme (SIM-SCHEDULE). Other than their differ-
ent timing enforcement models, the basic design of CO-SCHEDULE and SIM-
SCHEDULE are similar. Their scheduler supports a set of high-priority periodic
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processes and a set of normal processes. Inside the set of the high-priority periodic
processes, the processes are scheduled according to the rate-monotonic scheduling
algorithm. The normal processes are categorized in classes and are scheduled in the
weighted round-robin algorithm.

For soft real-time systems, not-quite-often timing overflows are expected phenom-
ena. Their handling by soft real-time handling schemes is a normal part of the sys-
tem operation. A set of corrective soft real-time handling schemes has been
proposed which will try to smooth system fluctuations: CANCEL, RELAY,
RELAY-TRUNC and DELAY. These handling schemes can be used in direct combi-
nation with SIM-SCHEDULE and are partly applicable to CO-SCHEDULE.

The above soft real-time scheduling schemes provide an explicit and direct support
for real-time periodic or virtual real-time periodic processes. This influences the
implementation schemes of the applications directly. Usage issues have been dis-
cussed concerning applying the periodic model to implementations, running a
non-periodic process in the periodic framework, implementing periodic bodies and
handling jitter of processing.

One of the overall goal in implementing our soft real-time framework is to achieve
a good approximation of the timing properties as predicted by the hard real-time
scheduling theory so that the whole system can be run in a more or less predictable
manner. In order to achieve an efficient implementation and provision of the base
real-time scheduling services and the diverse soft guarantee semantics, we advo-
cate a micro-monolithic-kernel structure for its advantages over traditional mono-
lithic, micro-kernel or vertically integrated nano-kernel approaches.

Real-timeliness and predictability of the system as a whole can only be achieved if
all system resources and activities involved are managed in a predictable manner.
Some issues are explored concerning how to conduct application- and timing-
driven resource reservation and how to interface continuous media I/O. The issues
of making protocol processing more controllable and dealing with mode changes
by adaptive service provision are delayed to the next part for a detailed treatment.

In short, the chapter has shown how to concretize a soft real-time framework by
exploring the issues in designing, realizing and using a set of feasible soft real-time
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scheduling and handling schemes. It is the foundation for the further work on
qualitative simulations and experimental implementations of the next chapters.
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Chapter  6

Simulations of soft real-time effects

The main purpose of our work on simulation (described in this chapter) and imple-
mentation (described in the next chapter) is to further ascertain the feasibility of the
soft real-time framework and to evaluate the related soft real-time scheduling and
handling methods — not only qualitatively but also quantitatively, not only theo-
retically but also practically.

6.1  Simulation with practical implications

The construction and realization of our simulation models as well as their parame-
terizations are based on extensive analyses of the practical application scenarios
and current multimedia software packages. Some of the analyses have been men-
tioned in Section 2.1.4  Implementation schemes of typical applications and Section 3.2.1

Modeling CM activity as play-back application. In addition to the components reflect-
ing soft real-time scheduling and handling methods, our simulator has reflected
some of the characteristics of continuous media applications such as buffer sizes
and playback delays. It has also reflected some of the characteristics of the net-
working environments such as delays and losses.

For example, some observations on the MBONE audiovisual data transmission
over the Internet have shown the following facts: many packets are simply missing,
many packets are misordered, but usually no packets are duplicated. The histo-
gram in Figure 6-1 shows a section of the packet arrival situations across the Inter-
net. It was recorded using vat audio conferencing tool developed by Lawrence
Berkeley Laboratory during the MBONE live report of NASA shuttle mission STS-
74 on Nov. 20, 1995. In an observed interval of 10 minutes, playback delay was con-
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stantly adjusted by vat (in a range of 150 ms to 2 s). In such a unidirectional trans-
mission case, a long playback delay is not a problem. The playback delay is usually
set long enough so that usable packets are rarely dropped. Other observations have
also been made. For example, audio packets are usually of constant length and pos-
ses a higher packet rate than video packets, which are usually of various length.

Figure 6-1 Histogram of audio packet arrival over Internet

The key features of the CM applications are embodied in the simulation in the form
of play-back scenarios, as analyzed in Section 3.2.1  Modeling CM activity as play-back

application. This is based on the fact that CM data are usually generated at the
source periodically and continuously and are then consumed at a destination peri-
odically and continuously. The use of playback delay can accommodate the irregu-
lar delays (delay jitters) of packets as well as out-of-order packets to the extent
where they are still ready for their playback. In Figure 6-2, for example, the play-
back of the audio packets are delayed to 80 ms after the mean ready time. Packet
no. 4 is out of order but is still ready in time for its playback. Packet no. 9 is too late
and its place for playback might be replaced by a dummy audio sample instead.

Although it is a normal practice for the adaptive continuous media applications to
adjust their playback delays according to the changing situations, the whole life-
time of an application can still be seen as a composition of a series of playback sec-
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tions each with a constant playback delay.

Figure 6-2 Simulated audio playback

The quality of the continuous media application depends mainly on the rates of
packets which can be successfully played back. This is also the main index in the
simulation. As explained in Chapter 3, a trade-off should be made to achieve the
best total system effect. On the one hand, we have to keep the playback delay Dplay-

back small in order to reduce the negative effects induced by long end-to-end
latency. On the other hand, we have to keep the playback delay Dplayback large
enough in order to maintain a continuous playback by ensuring that most of the
packets arrive by their playback time.

One interesting question is how to interpret the success rate for playback. For
example, does a success rate below 90% means an unusable low quality? Actually,
such question can only be answered in a concrete application environment. The
loss tolerance of real-time audio transmission can usually vary in the range of 1% to
10% under different conditions. The conditions depend on factors such as coding
methods, stream contents, loss distributions, etc. In some MBONE transmission, it
has been observed that an audio stream is still comprehensible with a loss rate level

0

10

t/ms
100 2000 300 400 500 600 700 800 900

sequence

number

Tg

Dp+

ready time
Tr playback time

Tp

generation time

too late !

out of order !

dummy sample



Chapter 6 —  Simulations of soft real-time effects

132

at ~10%. Video stream transmission can tolerate even higher loss rate, provided
that the human viewer is tolerant and patient enough.

The construction and parameterization of our simulation models have taken virtu-
ally all the above practical factors into consideration. In our simulation models, the
parameters are somewhat abstracted. Delay is expressed in a kind of delay time
unit. Computation time is also expressed in an abstract computation time unit. In
this way, we are mostly independent of concrete communication links and proces-
sor types. Still, the simulation results can find their direct applications in practical
scenarios.

The use of simulation has brought with it many flexibilities. For example, some
complex process sets including A/V processes, virtual periodic non-RT processes,
and other non-RT processes can be easily simulated with a wide range of parame-
ter settings. It would usually be very difficult to arrange some such parameter set-
tings in an implementation environment. The results from simulations can also be
used in choosing the feasible algorithms to be implemented in our experimental
systems.

6.2  Simulator and parameterization

The simulator is composed of several functional components with diverse parame-
ter setting possibilities [Fan96b].

 6.2.1  Structure of the simulator

In the simulator, the following functional components can be roughly identified:

• the component which embodies the various processes including real-time
periodic processes for continuous media, virtual real-time periodic processes
and other normal processes;

• the component which realizes different soft real-time scheduling and han-
dling algorithms;

• the component which reflects the characteristics of the networking and pro-



6.2  Simulator and parameterization

133

cessing environment;

• and the house-keeper component which is responsible for initialization, mon-
itoring and accounting of the simulation.

These components are to a large extent self-contained so that different mechanisms
and algorithms can be used and extended in each of them.

In order to mimic a scheduling subsystem, the simulator has simulated a discrete
tick-driven system in which processes have to complete their jobs. A job is an
abstraction for data packets or other events which should be worked on by a pro-
cess. From a dynamic point of view, as shown in Figure 6-3, a simulation run com-
prises the following four phases:

Figure 6-3 Four phases of a simulation run

Phase 1 — The components are initialized with corresponding parameters. Dif-
ferent running entities are created.

Phase 2 — The simulated queueing system is checked to reached its statistical
equilibrium. The determination is mainly with regard to the success rate of
all processes. During this transient period, the simulation outputs are simply
discarded.

Phase 3 — This is the main part of a simulation run. In this phase, different sim-
ulation data are produced and collected. The simulation will be run until the
required precisions of all the main target results are reached.
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Phase 4 — According to the collected sample data, the results are computed and
formatted.

A suitable solution for deciding upon the starting point of a steady-state analysis in
the phase 2 and a technique for obtaining the final simulation results to a required
level of accuracy are both taken from [Pawlikowski90]. Concretely, we use the fol-
lowing rule to determine the initial transient period:

Rule 4 of [Pawlikowski90]: In a time series of observations x1, x2, ..., xi, ..., the initial
transient period is over after n0 observations if k consecutive values of the running
mean X(i) recorded after the observation n0 differ less than 100δ% from X(n0+k);
that is, for all i, n0 < i <= n0+k,

The initial parameters are set to: k = 100, δ = 0.01.

We use the method of non-overlapping batch means to determine when the
required precision has been reached. The first step is to determine the batch size m*
such that batch means are (almost) uncorrelated at a given level of significance. In
the second step, the accuracy of the results are analyzed by calculating their confi-
dence interval. The simulation is continued and more observations are collected to
improve the accuracy of the results until the required precision has been reached.
In the beginning, the batch size m0 is set to 100 and the number of batch means kb0

is set to 100.

The simulation results reported below all posses a confidence level of 99% (α=0.01)
with a maximum acceptable relative precision of confidence interval of 1%
(εmax=0.01) with regard to the success rate of playback — which is the main target
result. Other results are usually collected when the precision for the main target
result has been reached.

 6.2.2  Varying factors

A simulation run can be configured and parameterized in mainly three ways. The
definition files for the programs of the simulator can be changed before their com-
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pilation. In this way, relatively stable parameters can be changed. For example, the
parameters for detecting the initial transient period are given in this manner. The
second way is to deliver a set of parameters to the simulator in a description file as
the simulator is started. The description file contains, in addition to other things, a
description of a set of the processes to be simulated. Still more parameters can be
given to the simulator as command-line parameters.

The following lists some of the varying parameters which are necessary for the
understanding of the simulation results to be presented:

• ProcID — Process identifier, a natural number.

• Type — “P” stands for a real-time periodical A/V process, “V” for a virtual
real-time periodic process and “N” for a normal non-real-time process.

• CompTime — For real-time process, maximum processing time per period.

• Period — For real-time process, the period.

• Quantum — For non-real-time process, time quantum for one invocation.

• Offset — Start-time of a process.

• JobCnt — Maximum number of the jobs the process will try to complete in a
period. For non-real-time process, a value of zero can be given to designate a
“load” process which is always ready for consuming computation time.

• BufferSize — The size of the buffer for the jobs which have arrived and waited
for processing.

• JobOffset — Time for the arrival of the first job for a process.

• JobLoss — Probability for the loss of a job.

• JobSize — Distribution of the size of jobs (in the sense of processing cost).

• JobArrival — Distribution of the arrival interval between jobs.

• JobDelay — Distribution of the variable part of the delay caused by “network-
ing”.

• NetDelay — Constant part of the delay caused by “networking”.

• PlaybackDelay+ (pbDelay+) — Extra playback delay (End-to-end playback
delay minus mean end-to-end delay which is NetDelay plus the mean of Job-
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Delay).

For real-time A/V processes, the main target result is the rate of successful play-
back. Other results of interest include the number of timing violation, the variation
of ready time, etc. For virtual real-time and non-real-time processes, the main target
result is the achieved utilization. Several distribution functions have been used to
parameterize JobSize, JobArrival, JobDelay, etc. In the following presentation, they
are coded as a triple (e1, e2, e3) (or written as e1/e2/e3) for sake of brevity. The
meanings of the elements are explained in the following table.

 6.2.3  Timing parameters

As is mentioned, the timing parameters are somewhat abstracted in our simulation
models. Delay is expressed in a kind of delay time unit. Period and computation
time are also expressed in an abstract computation time unit. In this way, we are
mostly independent of concrete communication links and processor types. Still, a
reasonable composition of relative parameters are necessary.

The main timing parameters of a soft real-time process used for multimedia related
processing are its period and the computation time per period. While the period
can usually be determined by the nature of the multimedia data to be processed
and the number of samples to be processed pro period, it is relatively tricky to
determine the per period computation time to be reserved. Processor types, data
volume/complexity and processing paths vary. In addition, considerations must
also be taken with regard to the timing-violation handling methods used and the
degree of guarantee intended. These and other factors all have direct impact on the
processing capacity needed.

Table 6-1 Coding for a distribution function

Functional description e1 e2 e3

Identity: constant as e2 0 value 0

Uniform distribution 1 lower bound upper bound

Exponential distribution 2 mean 0

Normal distribution 3 mean variance

Distribution from trace 5 trace file scaling factor
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In Figure 6-4, the decoding time for a MPEG stream is depicted. For an application
like this, it is quite apparent that the processing cost varies quite considerably dur-
ing the whole process. It is then a waste of resource if the CPU reservation is done
according to the worst case.

Figure 6-4 Decoding time for a MPEG stream

With our soft real-time approach, different degrees of optimism can be taken by the
need of different degrees of soft guarantee. The timing handling methods for the
cases of timing violations add another possible dimension of optimistic reservation
of processing capacity. In can be anticipated, however, that it is usually infeasible to
just reserve the mean actual processing time because of the variations in the actual
processing time itself and the variations in job arrival.

If the mean actual processing need is larger than the reserved capacity, say
actual_need = (100 + over)% * reserved_capacity. Then, as a upper bound,
success_rate ≤ (100/(100 + over)). For over = 25, i.e. reservation_grade = 125%,
success_rate ≤ 100/125. That is, success_rate ≤ 80%.

In the following simulations, various distributions are used for job computation-
size and job arrival. The impact of various rates of mean actual job computation-
size to reserved per-period computation time is also evaluated.
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It remains to be mentioned that the simulation results are directly applicable to
each working phase of a set of multimedia applications. Between working phases
where timing parameters might vary considerably, the FAST adaptive service pro-
vision model of Chapter 9 should come to play a critical role.

6.3  Soft real-time eff ects and their anal yses

We are now ready to present some of the simulation results and relate the simula-
tion results to their practical meanings.

 6.3.1  Soft real-time is necessary and better

The flexibility and adaptability of the multimedia applications only make their
underlying real-time support “softer” and (generally) easier to implement. Some
grade of real-time support is, however, necessary. Otherwise, either the quality of
the MM functions can not be guaranteed to be satisfactory or resources could not
be exploited to support as many applications as they could possibly be.

 6.3.1.1  Rate-monotonic vs. round-robin
Real-time scheduling can achieve the effect that the timing and execution charac-
teristics of a process is virtually isolated from other processes thus providing a
guarantee for its computation QoS. Simple round-robin scheduling would let the
process take a smaller share if more processes compete for the computation capac-
ity. In a simple scenario, for example, we have the following three simplified pro-
cesses which should handle some A/V related work:

ProcID CompTime Period Offset JobSize JobArrival JobDelay pbDelay+

1 3 11 83 0/3/0 0/11/0 0/5/0 18

2 7 31 101 0/7/0 0/31/0 0/5/0 38

3 9 47 97 0/9/0 0/47/0 0/5/0 54

In addition to these processes, which account for a total usage of 0.69, there are a
number of load processes which each consumes a time slice of 1 time unit in each
invocation.

Under rate-monotonic scheduling, the above A/V processes are assigned priorities
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according to the lengths of their periods. The load processes are assigned a lower
priority as in the SIM-SCHEDULE or CO-SCHEDULE scheduling algorithms given
in Section 5.2  Proposed soft real-time scheduling schemes. Under round-robin schedul-
ing algorithms, the A/V processes are each given a time slice of their respective
CompTime’s at each invocation. The success rate for playback is clearly dependent
on the scheduling method used. While the rate-monotonic scheduling algorithm
has guaranteed the usage of the three A/V processes, the simple round-robin
scheduling has lead to a unusable low quality for them, especially under heavy
load. See Table 6-2 for some numerical examples.

 6.3.1.2  More applications feasible by soft real-time
As a result of real-time scheduling and timing enforcement, more concurrent multi-
media applications can be supported satisfactorily in a soft real-time environment
than in a time-sharing environment.

Suppose a set of video processes should be supported in a video-on-demand
server. The success rates for these processes should be, of course, very high. The
following simulates the situation in a SIM-SCHEDULE system and a round-robin
system. The video processes are assumed to posses the following parameters:

compTime 4, Period 40, Offset 100, JobCnt 3, Buffersize 100, JobOffset 92, JobLoss 0, Job-

Size 1/3.0/3.9, JobArrival 1/39.5/40.5, JobDelay 0/10/0, playbackDelay+ 150.

That is, the job size and arrival of the video samples are quite regular (uniform dis-
tributions in small ranges). It is further assumed that there are some small load pro-

Table 6-2 Dependence of success rate on scheduling methods

Success rate in % Rate-Monotonic Round-Robin

Number of load processes P1 P2 P3 P1 P2 P3

0 99.9+ 99.9+ 99.9+ 99.9+ 99.9+ 99.9+

1 99.9+ 99.9+ 99.9+ 95.31 99.98 99.97

2 99.9+ 99.9+ 99.9+ 67.32 99.98 99.97

3 99.9+ 99.9+ 99.9+ 36.18 99.88 99.97

4 99.9+ 99.9+ 99.9+ 18.10 93.75 99.97

5 99.9+ 99.9+ 99.9+ 8.76 93.23 97.36

10 99.9+ 99.9+ 99.9+ 1.45 41.89 95.96

20 99.9+ 99.9+ 99.9+ 0.96 1.59 36.49
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cesses each consumes a time slice if it is allowed to run. The following table gives
the success rate for the SIM-SCHEDULE system and the round-robin system.

Since the video processes are harmonic, the SIM-SCHEDULE system can support
up to 10 instances of the video process concurrently (with an admissible total
capacity of 1). The success rate for these processes are always higher than 99.9%, no
matter how many load processes there are. In contrast, the video processes in the
round-robin system are disturbed by those load processes. If a threshold for 99%
success rate is required, then the heavily shaded area is not usable. For example,
only up to 7 instances of video process can be supported by round-robin with 15
small load processes. If a higher threshold success rate of 99.9% is set, then only up
to 5 instances of video process can be supported by round-robin with 20 small load
processes (lightly shaded area also not usable).

 6.3.1.3  Isolation of timing characteristics
Strict hard real-time scheduling try to guarantee the timing requirements of the
hard real-time processes within the range of their worst run-time behavior. It can
thus achieve the effect of isolating one hard real-time process from the timing and
execution characteristics of other processes in the similar way that a memory pro-
tection system isolates it from outside memory access. The resource allocation and
the process model for hard real-time system are thus very constrained in order to
make the guarantee even in the worst possible scenarios. We have argued that
more relaxed soft real-time models are applicable for multimedia applications.

All of the scenarios simulated here are soft real-time in the following aspects: (1) no
100% success rate is taken as a goal; (2) not strict rate-monotonic model where each

Table 6-3 Feasible concurrent applications and scheduling methods

Success rate in % Number of concurrent instances of applications

Number of small
load processes

SIM-SCHEDULE Round-Robin

10 5 6 7 8 9 10

0 99.99+ 99.99+ 99.99+ 99.99+ 99.99+ 99.99+ 99.99+

5 99.99+ 99.99+ 99.99+ 99.99 99.99 99.99 99.99

10 99.99+ 99.99 99.99 99.98 99.89 96.65 28.05

15 99.99+ 99.99 99.97 99.85 47.34 25.63 18.89

20 99.99+ 99.97 99.40 36.38 23.33 17.75 14.05
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process should be ready at the beginning of a period; (3) loose interdependence
between processes can be ignored; (4) optimistic admission control allowed, espe-
cially for maybe-guarantee; etc. Even with these relaxations, it can be seen from the
numerous simulation results that the predictability features of real-time scheduling
are well reserved through the use of soft real-time scheduling and handling
schemes.

The following example should show that soft real-time can ensure the timing fea-
ture of A/V processes even in a competitive situation. The SIM-SCHEDULE is used
to schedule the processes and the RELAY method is used to handle timing over-
flow. The following parameters for audio and video processes are used:

ProcID CompTime Period Offset JobCnt JobSize JobArrival JobDelay

Audio 2 20 100 3 2/1.5/0 0/20/0 2/50/0

Video 4 40 100 3 2/3.0/0 0/40/0 2/50/0

In the first simulation, only one audio process and one video process is run. In the
second simulation, three audio processes and three video processes are run concur-
rently. We note that the total CPU usage of them (0.6) is still within the schedulabil-
ity bound (0.74 for 6 RT processes, see Table 4-1).

Figure 6-5 shows the results for running one pair of A/V processes separately and
Figure 6-6 shows the results for running three pairs of A/V processes concurrently.
Table 6-4 has given some numerical results for a better inspection.

Table 6-4 Separate and concurrent running of A/V processes

Success
rate in %

Separate
running

Concurrent running

Playback
delay+

A V A1 A2 A3 V1 V2 V3

40 80.5 62.9 87.0 86.5 80.5 63.4 63.4 63.6

50 91.1 84.3 94.8 94.4 91.1 69.1 77.6 85.6

60 89.9 84.2 94.4 93.8 90.1 85.1 84.4 84.9

80 94.8 83.8 97.7 97.1 94.8 84.4 84.2 85.0

100 97.1 92.9 98.8 98.7 97.1 93.6 93.1 93.7

150 99.6 96.6 99.9 99.8 99.6 97.1 96.7 97.1

200 99.8 98.4 99.9+ 99.9 99.8 98.6 98.3 98.5

250 99.9+ 99.6 99.9+ 99.9+ 99.9+ 99.4 99.5 99.6
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Figure 6-5 Success rate for separate running of A/V processes

Figure 6-6 Success rate for concurrent running of A/V processes
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As can be seen from the figures and the table, even in the case of concurrent com-
petitive execution of several A/V processes, their timing requirements are still well
met in the sense that they are not influenced negatively by the competitive pro-
cesses. The timing results are similar to the case where they are executed separately.
The timing specification of each process is fulfilled without sacrificing the timing
reservations of other processes. A careful reader might notice the small differences
among the success rates of the concurrent audio processes or video processes.
These small differences have resulted from the fact that three instances of the audio
process and the video process are now running. Their executions should be sched-
uled sequentially although their periods are identical. Since the play-back delays
are not always just at the end of a period, some small differences in the success
rates of the three instances are inevitable. Such differences are smoothed out by
large playback delays.

Since soft real-time can also achieve the effect of isolating one soft real-time process
from the timing and execution characteristics of other processes to a large extent,
the simulation results of a single set of real-time processes can as well be scaled up
to apply to several concurrent and similar sets of real-time processes as long as
their usage capacities are still in the schedulability bound. This effect has lead to
some simplifications in the simulations of process sets and the presentations of
their results in the following.

 6.3.1.4  Regularity and synchronism
Soft real-time can make sure that an A/V process can take its share of execution
and thus make progress regularly according to its timing reservation. This is a good
feature for the concurrent reservation of other resources such as buffers and I/O
devices. The feature is also well suited for the cases where some forms of synchro-
nism are needed. The feature of synchronism is quite important for such cases as
the synchronization between the playbacks of related audio and video streams (lip-
synchronization), where a deviation of 50 ms can already be clearly noticed and be
considered as disturbing.

The following investigates a case for the parallel playbacks of an audio stream and
a video stream. It is assumed that the A/V packets have been processed by other
processes and are put into some kinds of ring-buffer. Here, the attention is paid to
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the processes which are directly responsible for retrieving A/V samples from the
ring-buffer to A/V devices for playback. For them, the job size and job arrival are
normally quite regular, as is experienced in some software implementation such as
NeVoT:

ProcID CompTime Period Offset JobOffset JobSize JobArrival

Audio 6 20 100 90 1/5.8/6 0/20/0

Video 12 40 100 90 1/11.8/12 0/40/0

The system is assumed to be loaded additionally by non-real-time load processes
each with a quantum of 1.

The following figures show a section of synchronism between the corresponding
playback points of audio and video samples under different degrees of system
loads. As also can be seen in the numerical examples in Table 6-5, the synchronism
is much worse under round-robin scheduling than under CO-SCHEDULE schedul-
ing, especially under heavy loads. For sake of comparison, the y-range of Figure 6-
8, Figure 6-9 and Figure 6-10 are all set to [0, 100].

Table 6-5 Synchronism between playback points of A/V processes

synchronism in time unit

Scheduling method Maximum Mean Standard deviation

CO-SCHEDULE 1.95 1.82 0.0714

Round-Robin 0%-Load 2.45 1.56 0.4889

Round-Robin 10% Load 16.6 4.93 3.9092

Round-Robin 20% Load 53.0 9,42 8.5102

Round-Robin 30% Load 90.7 17.5 15.5831
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Figure 6-7 Synchronism of playback points with no extra load

Figure 6-8 Synchronism of playback points with 10% system load
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Figure 6-9 Synchronism of playback points with 20% system load

Figure 6-10 Synchronism of playback points with 30% system load
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 6.3.2  Pros and cons for monitoring and enforcing

In Section 6.3.1.3, a scenario under SIM-SCHEDULE has been simulated where sev-
eral processes run concurrently. The effects are virtually the same as the processes
are run separately and alone. That means, their executions are quite independent
from one another. This achieves the effect that the timing and execution characteris-
tics of the concurrent processes are more or less isolated from one another. Thus
SIM-SCHEDULE has reduced the negative influence of timing violations of one
process on other processes to a minimum and has thus guaranteed their respective
processing capacity reservations.

The following simulation should further contrast the pros and cons of timing mon-
itoring and enforcing in a scheduling system. The following process sets are sched-
uled under CO-SCHEDULE and SIM-SCHEDULE respectively:

ProcID Type CompTime Period JobSize JobArrival JobDelay pbDelay+

10 P 4 20 2/3.0/0 1/19.5/20.5 1/14.9/15.1 120

11 P 8 40 2/6.0/0 1/39.5/40.5 1/14.9/15.1 200

12 P 14 80 2/10.5/0 1/79.5/80.5 1/14.9/15.1 350

13 P 16 80 2/12.0/0 1/79.5/80.5 1/14.9/15.1 350

14 P 10 80 2/7.5/0 1/79.5/80.5 1/14.9/15.1 350

15 V 40 400 0/39.9/0 0/400.0/0 0/2.0/0 2000

Other parameters for these processes are less relevant and are set to the same. For
example, JobCnt=4, BufferSize=50, JobLoss=0, NetDelay=10.  Since this is a har-
monic process set, it is schedulable under the rate-monotonic scheme (with the
total capacity less or equal to 1).

Process 12, 13, 14 have the same length of period. According to the extended rate
monotonic theory, their priority orders among themselves can be arbitrary (thus
breaking ties). It is assumed that the system gives them their priority orders in the
order as listed above. Process 15 is a virtual-periodic real-time process which needs
40 time quantums in each period of 400. In a normal situation, all processes receive
a workload of 75% as listed above. For other situations, however, it is assumed that
the work load for process 11 is heavier than expected. In overload situation 1, the
JobSize  for process 11 is assumed to be 2/12.0/0 , i.e., 150% of the declared
(expected) capacity. In situation 2 and 3, the values are 2/18.0/0  (225%) and 2/

24.0/0  (300%) respectively.
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The following table shows the success rates of all real-time processes and the actual
usage of the virtual real-time process. Note again that the CO-SCHEDULE system
schedules the processes in the rate-monotonic manner but does no timing monitor-
ing and enforcing. The SIM-SCHEDULE system not only schedules the processes
in the rate-monotonic manner but also monitors their usages constantly. In the case
of timing violations, the RELAY handling method is used here to achieve timing
enforcement.

Under CO-SCHEDULE, Process 11 maintains a high success rate at the cost of other
processes. The overload of process 11 has direct negative influences on all the pro-
cesses (process 12 - 15) which have lower priorities as arranged by the rate-mono-
tonic scheme. The heavier the overload is, the worse the negative influences are. In
overload situation 2, for example, the success rates for process 13 and 14 are only
85.79% and 61.18%. Process 15 only gets a usage of 6.19%, far less than reserved.

Under SIM-SCHEDULE, the overload of process 11 has only a direct negative influ-
ence on itself. All other processes are insulated from its overload. In overload situa-
tion 2, for example, the success rate for process 11 is down to 13.30% but the success
rates for process 13 and 14 are as in the normal situation (96.41% and 96.45%
respectively). Process 15 also gets a normal usage as reserved.

Generally, timing monitoring and enforcement is not important in a static, con-
strained and stable system environment. In such an environment, a scheduling sys-
tem such as CO-SCHEDULE has its advantage of simplicity and efficiency.
Transient and slight overloads can be more or less compensated between processes

Table 6-6 Effects concerning timing monitoring and enforcing

Success
rate in %

CO-SCHEDULE SIM-SCHEDULE

Situation Situation

ProcessID Normal Over-
load 1

Over-
load 2

Over-
load 3

Normal Over
load 1

Over
load 2

Over
load 3

10 99.99+ 99.99+ 99.99+ 99.99+ 98.39 98.39 98.39 98.39

11 99.99+ 99.99+ 99.85 97.63 97.02 34.50 13.30 6.93

12 99.99+ 99.97 97.58 81.08 96.03 96.04 96.07 96.04

13 99.99 99.02 85.79 52.37 96.65 96.41 96.41 96.41

14 99.71 92.69 61.18 24.81 96.70 96.45 96.45 96.45

15 (usage) 9.98% 9.97% 6.19% 1.69% 9.92% 9.92% 9.92% 9.92%
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silently.

However, timing monitoring and enforcement is important for general and
dynamic system environments. In such environments, overloads are unavoidable
and common due to many reasons. The overload of process 11, for example, might
be caused by over-optimism (much lower load expected), selfishness (don’t want to
“pay” as much) or malice (don’t care for the system and other users) of the process
creator. Anyway, a scheduling system like SIM-SCHEDULE can monitor the execu-
tion of the system and take enforcement measures in case of need. The reservations
and guarantees of timing characteristics of the whole system can thus be achieved
in a predictive and stable manner. In the following, SIM-SCHEDULE will be the
main emphasis of further investigations.

 6.3.3  Effects of soft real-time handling of timing-overflow

As pointed out, a scheduling method like SIM-SCHEDULE can reduce the negative
influence of timing violations of one process on other processes to a minimum and
can thus guarantee their processing capacity reservations to a large extent. For each
process itself, soft real-time handling for timing-overflow is still necessary since
soft real-time allow occasional timing violations both from the side of the system
and from the side of user processes.

The following simulations should show the effects of different soft real-time han-
dling methods. The simulations are mainly varied with regard to different lengths
of play-back delays and different degrees of reservation optimism, i.e., different
rates of mean actual computation time to reserved computation time. The process
and its variations are parameterized as follows: compTime 10, Period 20, Offset 100,
JobCnt 1-3, Buffersize 100, JobOffset 0, JobLoss 0, JobSize 50%(2/5/0) | 75%(2/7.5/0) |
100%(2/10/0) | 125%(2/12.5/0), JobArrival 0/20/0, JobDelay 0/50/0, netDelay 50,
playbackDelay+ 0 ...... 800 (step 5). That is, the reserved computation time is 10 time
units. The actual computation capacity needs are respectively 50%, 75%, 100% and
125% of the reserved computation capacity. The computation sizes of jobs are expo-
nentially distributed and playback delay plus is varied from 0 to 800 with a step of
5 time units.
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From the following figures, it can be seen that the methods of CANCEL, RELAY,
RELAY-TRUNC from Section 5.3  Proposed soft real-time handling methods have
achieved different system effects. The curves are parameterized by the reservation
grade, i.e., by the ratio of the mean actually required computation time to the
reserved computation time.

The effects of handling timing-overflow by the CANCEL method are shown in Fig-
ure 6-11. It shows that the success rates are generally not satisfactory in our case
where the job sizes vary quite considerably. The success rate can not rise anymore
after a certain length of playback delay. The reason is that only the jobs whose com-
putation sizes are smaller than the reserved capacity in a period have the chances
of being processed successfully. Computationally larger jobs will be canceled
(aborted) anyway. A much longer setting of playback delay will not change this sit-
uation.

Figure 6-11 Handling of timing-overflow with CANCEL

Figure 6-12 shows the effects of handling timing-overflow by the RELAY method.
A computationally large job will be relayed to the next period to be further pro-
cessed if it can not be fully worked out in one period and thus has caused timing-
overflow. Larger jobs and smaller jobs have thus the chances of compensate with
each other to achieve a kind of inter-period compensation. The success rate
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becomes better generally with the increase of the playback delay.

Figure 6-12 Handling of timing-overflow with RELAY

Due to the variation of the job sizes (modeled as an exponential distribution), the
timing violations occur quite often in the above simulations. With a playback delay
plus of 105 time units for 50% reservation grade (205 time units for 75% reservation
grade, respectively), a success rate of 100% has been achieved for the RELAY
method. The percentages of timing violations are 13.5% for 50%-curve and 26.3%
for 75%-curve. For even more optimistic reservations, the timing violation rates are
even higher. At a playback delay plus of 400, the violation rates are 36.9% for the
100%-curve and 45.4% for the 125%-curve. The violation rates are almost the same
for the cases where the CANCEL method is used, where the violating jobs are sim-
ply discarded.

The above simulation concerning the RELAY method has been conducted by
allowing the process to try to compute more than one job per period (JobCnt=3 ). If
the process is only allowed to complete a job in a period, the effect of inter-period
compensation would be almost useless. And the results would be very similar to
the CANCEL method (see Figure 6-13).
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Figure 6-13 Effects of inter-period compensation by RELAY

Figure 6-14 Handling of timing-overflow with RELAY-TRUNC
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shown in Figure 6-14. The effects of combining the elements of RELAY and CAN-
CEl can be seen quite clearly. For more conservative reservations, the success rates
of RELAY-TRUNC can not be as high as RELAY, even if the playback delay has
been set quite long. The reason is that a certain percentage of large jobs have been
truncated after being relayed once. On the other hand, the success rates for RELAY-
TRUNC are better than the case of RELAY in over-optimistic case. The 125%-curve,
for example, is clearly better than its RELAY counterpart.

Some numerical examples taken from the above figures are compared in Table 6-7
to show the different influences of the handling methods for timing-overflow.

Numerous other simulations with more varying factors (such as more variations in
job arrival and job delay) have also been conducted to compare the influences of
the different soft real-time handling methods for timing-overflow. The results are
generally quite similar to the above situation. (See, for example, the next section —
Section 6.4.) The RELAY and RELAY-TRUNC methods can usually achieve better
success rates as long as the reservations are not made too optimistically. Another
important point is that a larger job is sometimes also a more important job in many
cases. For example, the I-frames in a MPEG-stream are usually the larger (and of
course more important) frames than the P- and B-frames. It is therefore unwise to
truncate the processing of such larger jobs. In addition, the truncations caused by
the CANCEL and RELAY-TRUNC methods will inevitably incur the processing of
inconsistent states from time to time. The RELAY method is, in contrast, more easy
to use and will not cause complications in the applications. In this sense, the

Table 6-7 Influences of different handling methods for timing-overflow

Success rate in % CANCEL RELAY RELAY-TRUNC

Playback
delay+

Reservation grade Reservation grade Reservation grade

75% 100% 125% 75% 100% 125% 75% 100% 125%

5 48.8 39.6 33.3 37.6 25.9 17.8 41.6 30.6 23.4

10 73.7 63.1 54.6 59.7 42.2 30.0 65.6 51.3 40.9

25 73.7 63.1 54.6 71.3 52.2 37.1 75.4 59.8 47.0

50 73.3 63.1 54.6 97.8 68.3 47.5 86.0 75.5 63.5

100 73.3 63.1 54.6 99.9 77.1 51.2 86.9 78.8 68.5

200 73.3 63.1 54.6 100.0 85.7 53.4 86.9 79.7 72.0

400 73.3 63.1 54.6 100.0 90.5 53.2 86.9 79.7 72.8
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RELAY method is the best choice for application if care has been taken to reserve
sufficient processing capacity.

6.4  Validations with trace-oriented sim ulations

Most of the varying factors such as variations in job sizes and network delays have
been modeled in the above simulations by some kinds of mathematical distribu-
tions such as uniform, exponential, normal distributions or their combinations. In
addition to these “theoretical” simulations, we have also conducted some simula-
tions based on the measurements from the real-world scenarios. If the results of the
theoretical simulations and the trace-oriented simulations match well, our simula-
tion models and their constructions will then be further validated. The following
shows that this is indeed the case.

 6.4.1  Measurements from real world scenarios

It is a well known problem that the processing capacity for an audiovisual stream
varies from samples to samples, from packets to packets. In Figure 6-4 on page 137,
the decoding time for a series of MPEG frames has been depicted.

For that measurement, the MPEG player mpeg_play from UC-Berkeley was run on a
Sun Sparcstation 5/110 to decode a MPEG film named ReadsNightmare.mpg com-
posed at the University of Erlangen-Nürnberg. The displays of the decoded frames
were deactivated (with option -no_display ) so that the processing cost was purely
the cost for decoding. The film contains I frames, P frames and B frames. It is logi-
cally divided into a series of Group of Pictures (GoP) which is mostly of the bit-
stream order IBBBBBBBBBPBBBBBBBBBPBBBBBBBBBand which is mostly displayed in
the order BBBBBBBBBIBBBBBBBBBPBBBBBBBBBP.

Two kinds of traces were recorded. One (mpeg_frame.trace ) recorded the series of
processing cost for each frames and another one (mpeg_gop.trace ) recorded the
series of processing cost for GoPs. The costs are scaled into the range of [0, 1] and
are depicted as two separate curves in Figure 6-4. It can be seen that the processing
cost for single frame varies quite considerably. In contrast, the processing cost for
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GoPs stays relatively stable. The mean cost for single frame is computed to be 0.135
in mpeg_frame.trace . And the mean cost for Group of Pictures is 0.382 in
mpeg_gop.trace .

The measurements of the processing cost of other audiovisual streams have shown
similar appearances. In the following, mpeg_frame.trace  is used as a representative
for audiovisual streams with greatly varying processing cost. Other audiovisual
streams such as a video stream consisting of JPEG frames might not vary so consid-
erably. And mpeg_gop.trace  is used as a representative for such streams with rela-
tively stable processing cost.

It is also difficult to model the actual network traffic with some simple mathemati-
cal distributions. Network delays over LAN and WAN have been traced for the use
of our simulations. The following sample trace, wan_net_delay.trace , was
recorded between one machine at GMD FOKUS and one machine at the Computer
Science Department of the University of Massachusetts at Amherst. The trace was
done on Aug. 25, 1995 around 13:00 GMT using the tool rtpdump  [Sieckmeyer95].
The probability density function of the variable part of the observed delays (i.e.,
delays minus minimum delay) is depicted in Figure 6-15.

Figure 6-15 A measured delay distribution
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For the easy use of the simulations, the observed variable parts of delays (delays+)
are scaled in the range of [0, 1]. For example, the mean delay+ for the above-men-
tioned wan_net_delay.trace  is 0.2018.

 6.4.2  Calibration and validation of simulation models

As a step to further verify the validity of the simulation models used in the above
sections, the results of a trace-oriented simulation and a corresponding simulation
based on mathematical distributions are compared. The following parameters are
used for a real-time process in both simulations:

compTime 10, Period 20, Offset 100, JobCnt 2, Buffersize 100, JobOffset 0, JobLoss 0,
JobArrival 0/20/0, netDelay 30, playbackDelay+ 0 ...... 800 (step 5).

The differences lie in JobSize, JobDelay and NetDelay. For the theoretical simulations,
the following parameters are used:

JobSize 50%(2/5/0) | 75%(2/7.5/0) | 100%(2/10/0), JobDelay (2/50/0 + 0/50/0).

That is, the actual computation capacity needs are respectively 50%, 75% and 100%
of the reserved computation capacity. The computation sizes of jobs are assumed to
be exponentially distributed. The JobDelay, which is the variable part of the network
delay, is composed of an exponential distribution and a constant.

For the trace-oriented simulations, the following parameters are used:

JobSize 50%(5/mpeg_frame.trace/37) | 75%(5/mpeg_frame.trace/55.5) | 100%(5/

mpeg_frame.trace/74), JobDelay 5/net.trace/495.5.

That is, the computation sizes and the variable part of delays are taken from the
trace files instead of being mathematically generated. Note that the scaling coeffi-
cients have been so chosen that the means of the trace data series are equal to their
theoretical distribution counterparts. For example, for 75% reservation grade,
mpeg_trace_mean * scaling_coefficient = 0.135 * 55.5 = 7.5. And for the variable net-
work delay, net_trace_mean * scaling_coefficient = 0.2018 * 495.5 = 100.
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The results of the theoretical simulations and the trace-oriented simulations are
compared in Figure 6-16, Figure 6-17 and Figure 6-18. The three figures correspond
to different reservation grades, while the success rates of the trace-oriented simula-
tion and the theoretical simulation for both RELAY and CANCEL timing handling
are compared in each figure. It can be seen clearly that the results of the trace-ori-
ented simulation and the theoretical simulation match quite well. Small differences
can be found between the corresponding curves, but the general “trends” of the
curves agree with each other well. This has further ascertain our simulation models
to some extent. And, the other way round, the results from the theoretical simula-
tions can indeed be believed to be realistic and usable. Some numerical examples
from the figures are listed in Table 6-8.

Figure 6-16 Comparison of theoretical and trace-oriented simulations (50%
reservation grade)
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Figure 6-17 Comparison of theoretical and trace-oriented simulations (75%
reservation grade)

Figure 6-18 Comparison of theoretical and trace-oriented simulations
(100% reservation grade)
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Some simulations have also been conducted to use both trace data and mathemati-
cal distributions together. For example, Figure 6-19 depicts the results of a simula-
tion by using mpeg_frame.trace and by assuming constant network delay. Other
simulations deal with the case with smaller processing variations. For example,
Figure 6-20 and Figure 6-21 show the results of the trace-oriented simulations for
both RELAY and CANCEL handling by using mpeg_gop.trace. Generally, these
results have further ascertain a conclusion drawn in the previous sections: the
RELAY timing-overflow handling method usually achieves a better results than the
CANCEL method.

Table 6-8 Comparison of theoretical and trace-oriented simulations

Success
rate in %

RELAY
(TRACE/THEO)

CANCEL
(TRACE/THEO)

Playback
delay+

Reservation grade Reservation grade

50% 75% 100% 50% 75% 100%

10 5.8/11.8 5.7/10.8 5.3/9.7 5.1/10.2 4.3/7.6 3.3/5.7

30 18.6/25.2 18.2/23.1 17.2/20.3 16.2/21.5 12.9/15.8 10.1/11.9

50 37.7/40.2 36.8/37.0 34.2/32.2 32.1/33.9 24.4/24.7 18.5/18.5

75 55.9/54.0 54.3/49.5 49.7/42.9 46.7/45.2 34.4/32.8 25.8/24.7

100 79.1/73.4 72.7/62.6 49.7/48.2 66.1/62.2 47.3/45.1 35.0/33.8

150 91.5/87.3 89.2/82.9 80.0/71.8 75.0/72.1 53.0/52.1 39.0/38.9

200 97.2/95.2 93.4/89.3 66.7/72.0 79.6/78.5 55.9/56.7 41.0/42.4

250 98.7/97.8 97.7/96.0 88.1/86.3 80.7/80.3 56.7/57.9 41.6/43.3

300 99.5/98.9 97.4/97.6 73.0/83.2 81.4/81.4 57.1/58.7 41.9/43.9

350 99.8/99.4 99.5/99.1 90.8/91.6 81.6/81.8 57.2/58.9 42.0/44.1

400 99.9/99.8 99.5/99.4 76.5/88.3 81.7/81.9 57.3/59.1 42.0/44.2

450 99.9+/99.9 99.9/99.8 92.3/93.5 81.7/82.0 57.3/59.1 42.0/44.2

500 99.9+/99.9 99.9/99.9 79.5/91.2 81.7/82.0 57.3/59.2 42.0/44.3

550 99.9+/99.9+ 99.9+/99.9+ 93.6/94.8 81.7/82.1 57.3/59.2 42.0/44.3

600 99.9+/99.9+ 99.9+/99.9+ 83.4/92.4 81.7/82.1 57.3/59.2 42.0/44.3

650 99.9+/99.9+ 99.9+/99.9+ 95.0/95.7 81.7/82.1 57.3/59.2 42.0/44.3

700 99.9+/99.9+ 99.9+/99.9+ 87.5/93.1 81.7/82.1 57.3/59.2 42.0/44.3

750 99.9+/99.9+ 99.9+/99.9+ 96.2/95.7 81.7/82.1 57.3/59.2 42.0/44.3

800 99.9+/99.9+ 99.9+/99.9+ 89.7/93.8 81.7/82.1 57.3/59.2 42.0/44.3
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Figure 6-19 A case with real processing cost and ideal network

Figure 6-20 RELAY handling of less variant processing cost and real delay
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Figure 6-21 CANCEL handling of less variant processing cost and real
delay

Table 6-9 Numerical examples of other trace-oriented simulations

Success
rate in %

Figure 6-19 Figure 6-20 Figure 6-21

Playback
delay+

Reservation grade Reservation grade Reservation grade

50% 75% 100% 50% 75% 100% 50% 75% 100%

10 0.0 0.0 0.0 18.7 16.9 10.9 16.7 13.0 8.1

20 92.4 74.7 45.2 16.2 6.9 1.7 14.5 7.8 4.1

30 98.7 93.9 81.2 37.9 34.3 22.1 32.7 24.0 14.8

40 98.6 89.8 57.8 33.9 18.0 5.1 29.7 17.8 10.0

50 99.7 96.7 85.9 56.1 50.7 32.5 47.4 33.6 20.5
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250 99.9+ 99.8 92.0 99.1 96.9 65.9 81.3 54.4 32.6

300 99.9+ 99.9+ 76.8 99.5 98.0 66.4 81.6 54.5 32.6
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It is interesting to note that the success rates do not increase linearly with the
increase of the playback delay in many of the curves, especially in the areas of
small playback delays. The reason lies in the periodic process model and the fact
that a process begins to work on a job if the job has not yet missed its deadline. Yet,
the job might in fact have missed its playback deadline after it is processed com-
pletely. Such a processing is of course a waste of the processing power but it is
unavoidable given the fact that a process does not know, beforehand, how long it
will take to process the job and when the CPU is available to it during the next
period. A small increase of the playback delay at some points might cause more
such wastes. The complicated interactions of these several factors have caused the
saw-toothed curves in the areas of smaller playback delays. With the increase of the
playback delay, the effect is gradually smoothed out. The general trend is then
higher success rates with longer playback delays.

6.5  Summar y of the c hapter

The work on simulation aims to evaluate the soft real-time scheduling and han-
dling methods not only qualitatively but also quantitatively.

The construction and realization of our simulation models as well as their parame-
terizations are based on extensive analyses of the practical application scenarios
and current multimedia software packages. In addition to the components reflect-
ing soft real-time scheduling and handling methods, our simulator has also
reflected some of the characteristics of continuous media applications and the net-
working environments. The simulator is composed of several functional compo-
nents with diverse parameter setting possibilities. It is thus possible to simulate
complicated process sets and integrated situations.

The key features of the continuous media applications are embodied in the simula-
tion in the form of play-back scenarios. The main index in the simulation is the rate
of successful playback reflecting the quality of the continuous media applications.

The first set of simulations has shown that soft real-time support is necessary and
better. Without soft real-time support, it is shown that the quality of the multimedia
processing can not be guaranteed to be satisfactory under disturbance or heavy
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load. As a result of real-time scheduling and timing enforcement, more concurrent
multimedia applications can be supported satisfactorily in a soft real-time environ-
ment than in a time-sharing environment. A further scenario shows that soft real-
time can ensure the timing feature of A/V processes even in a competitive situa-
tion. The timing specification of each process is fulfilled without sacrificing the tim-
ing reservations of other processes. Also, soft real-time is shown to promote
regularity and synchronism: it can make sure that an A/V process can take its share
of execution and thus make progress regularly according to its timing reservation.

Through simulations, it becomes apparent that timing monitoring and enforcement
is necessary for general and dynamic systems. A scheduling system like SIM-
SCHEDULE can monitor the execution of the system and take enforcement mea-
sures in case of need. In this way, the reservations and guarantees of timing charac-
teristics of the whole system can be achieved in a predictive and stable manner.
Simple cooperative scheduling is only usable in a static, constrained and stable sys-
tem environment where transient and slight overloads can be more or less compen-
sated between processes silently.

Numerous other simulations have been conducted to compare the influences of the
different soft real-time handling methods for timing-overflow. The RELAY and
RELAY-TRUNC methods have been found out to achieve better success rates than
the CANCEL method as long as the reservations are not made too optimistically.
The RELAY method is additionally easy to use and free of the complications caused
by the truncations of processing.

In addition to the “theoretical” simulations parameterized by some mathematical
distributions, some simulations have also been conducted which are based on the
measurements from the real-world scenarios. The results of the theoretical simula-
tions and the trace-oriented simulations have been shown to match well. Our simu-
lation models and their constructions are thus further validated and the usability of
the results from the theoretical simulations is also further founded.

In short, the simulations have ascertained the feasibility of our soft real-time frame-
work. They have provided some quantitative evaluations of the soft real-time
scheduling and handling methods. Some of the results have been used in choosing
algorithms and their parameters in our prototype implementations.
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Chapter  7

Experimental implementations and
measurements

The simulations of the last chapter have evaluated our proposed soft real-time
scheduling and handling methods qualitatively and quantitatively. The methods
have been compared under different system parameter settings. Those results are
very helpful in deciding the applicability of different methods to different environ-
ments. In this chapter, our work on experimental implementations and measure-
ments of the soft real-time scheduling and handling methods are reported. These
implementations and measurements should further verify the feasibility of our
approach and algorithms. The practical experiences will also be very enlightening
for more practical work in this direction.

7.1  Experimental implementation en vir onment

The experimental implementations and measurements have been conducted on a
“TMS320C40 Parallel Processor Development System (PPDS)” produced by the
Texas Instruments [TI91]. The choice of the PPDS system was not only due to its
technical features described below but also due to the needs of other related project
activities [Fan94b, Schatzmayr94, Selent96].

 7.1.1  Hardware platform

The main hardware platform of the PPDS is an external evaluation board with four
TMS320C40 (‘C40) processors. The evaluation board can be accessed by a host com-
puter on which the development is aided by a set of development tools.
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Texas Instruments’ TMS320C4x generation floating-point processors are designed
specifically to meet the needs of parallel processing and other real-time embedded
applications. Devices in the TMS320C4x generation incorporate on-chip hardware
to facilitate high-speed interprocessor communication and concurrent I/O without
degrading CPU performances.

Figure 7-1 Summary of TMS320C40 performance data

The main features of the TMS320C40 processor are:

• High-performance DSP CPU capable of 275 MOPS and 320 Mbytes/sec (with
reference to a 40 ns CPU cycle time);

• On-chip program cache and dual-access/single-cycle RAM for increased
memory access performance;

• Six communication ports for high-speed interprocessor communication;

Sustained Computation: Sustained I/O:

• DMA Coprocessor
• High Performance CPU

• Communication Ports
• DMA Coprocessor
• Global and Local Busses

40-ns
Cycle Time

CPU and DMA Performance

CPU - 8 OPS/Cycle = 200 MOPS
• 2 Data Accesses 60 MOPS
• 1 FP Multiply 25 MOPS
• 1 FP ALU Operation 25 MOPS
• 2 Addr. Register Mods 60 MOPS
• 1 Loop Counter Update 25 MOPS
• 1 Branch 25 MOPS

DMA Coprocessor
3 OPS/Cycle = 75 MOPS

• 1 Data Access 25 MOPS
• 1 Addr. Register Mods. 25 MOPS
• 1 Transfer Counter Update 25 MOPS

TOTAL MOPS = 274 MOPS

DATA THROUGHPUT

• Global Port 100 Mbyte/sec
• Local Port 100 Mbyte/sec
• 6 Communication Ports 120 Mbyte/sec

TOTAL I/O = 320 Mbyte/sec
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• Six-channel DMA coprocessor for concurrent I/O and CPU operation, thereby
maximizing sustained CPU performance by alleviating the CPU of burden-
some I/O;

• Two identical data and address buses supporting shared memory systems
and high data rate, single-cycle transfers;

• On-chip analysis module supporting efficient parallel processing debug;

• Separate internal program, data and DMA coprocessor buses for support of
massive concurrent I/O of program and data throughput, thereby maximiz-
ing sustained CPU performance.

The total performance data is summed up in Figure 7-1. In addition, the ‘C40 pro-
cessor uses a “Load-and-Store” architecture which is comparable to a RISC struc-
ture. It has a relative large register file with 32 general-purpose registers and 8
special-purpose registers.

In PPDS, the host-independent evaluation board contains four ‘C40 processors.
Each ‘C40 is connected to every other ‘C40 via their communication ports. For our
implementation, the ‘C40 processor was clocked at 16 MHz. Each processor posses
5 memory areas: an internal RAM of 8 kbytes; a internal periphery area for memory
mapping of I/O devices; a local RAM of 64 kbtes, a global RAM of 128 kbytes and a
ROM area for boot loader etc. The development of software is conducted on a host
computer and then downloaded to the external evaluation board through an inter-
face provided by a parallel processing emulator (XDS510), which also makes paral-
lel debugging and measurement possible.

 7.1.2  Procedure of software development

As is shown in Figure 7-2, the development of software for the PPDS involves the
use of an ANSI-C compiler, an assembler, an archiver, a linker, two libraries as well
as a simulator and a XDS emulator.
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Figure 7-2 Procedure of software development for PPDS

7.2  Overview of the implementation

The original goal of our experimental implementation in the PPDS environment
was to implement a run-time supporting system for a communication subsystem
which may be, for instance, implemented on a front-end subsystem. The construc-
tion of the run-time supporting system has followed the micro-monolithic
approach as described in Section 5.5.2  A micro-monolithic-kernel approach.

 7.2.1  System components

The main components of the run-time supporting system are depicted in Figure 7-
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3. As can be seen from the figure, the run-time supporting system provides many of
the main functions of a normal operating system. Our goal was not to implement a
complete OS. The hardware environment had also prevented us from doing so. For
example, the ‘C40 processor does not differentiate between supervisor mode and
user mode. This makes it impossible to have a strict boundary between kernel
space and user space as in the normal sense. As another example, the ‘C40 proces-
sor does not provide a mechanism for prioritizing and masking interrupts either.
However, all these restrictions do not prevent us from implementing a relatively
complete run-tim supporting system. It is thus still possible for us to gain useful
insights into the realization of a soft real-time supporting system.

Figure 7-3 System components of the run-time supporting system

The components provide functionality similar to those provided by their counter-
parts in a normal OS, although sometimes in reduced forms:

• The memory management component manages dynamically the free memory
blocks and the memory blocks currently in use. It takes into account the fact
that the PPDS system board possesses several different memory areas of dif-
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ferent types.

• The dynamic lists management provides a set of functions for the manipula-
tion of dynamic data structure in the general form of lists.

• The semaphore management component makes it possible for processes to
guard their critical section by using semaphores. A simple form of priority
inheritance has been implemented to alleviate priority inversion problem.

• The signal facility can be used by the processes to inform and get informed
about asynchronous events. One can poll  or wait  for an event, which will
eventually be signal led. A general form of asynchronous signal handler is,
however, not provided.

• The message facility makes it possible for the processes to exchange messages
between established port s. Only asynchronous message passing is sup-
ported.

• The kernel and extended process management provide a set of facilities for
managing and scheduling real-time, virtual real-time and non-real-time pro-
cesses. Here lies the main emphasis of our implementation. More details will
be given in the following.

 7.2.2  Sample programming interface of usage

The CO-SCHEDULE and SIM-SCHEDULE soft real-time scheduling schemes pro-
posed in Section 5.2 are implemented in the experimental system. For timing-over-
flow handling in SIM-SCHEDULE, both RELAY and RELAY-TRUNC methods
proposed in Section 5.3 have been implemented and can be used for different
needs. Programming interfaces for periodic real-time processes and virtual peri-
odic real-time processes have been provided in such a way that the user of the pro-
cesses only need to provide task body and specify real-time constraints such as
start time, period, execution-time. The real arrangement of the periodic instantia-
tions of the task body is then done by the system automatically in a similar scheme
as Figure 4-2.

In the implementation, a process or a set of processes should be created before the
process or the set of the processes as a whole can be started. The motivation of sep-
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arating creation and starting of process(es) is that these are independent steps. The
creation of process(es) may be quite time-consuming and it is done in a virtual peri-
odic system process or a system process of normal priority class 1. To start a pro-
cess or a set of processes, the admission control should be done. For the case of a set
of processes, the admission control might have been done previously or even off-
line by other tools. The implementation details are described in the Section 7.3 fol-
lowed.

Together with the considerations on admission control and process adaptation, sev-
eral sets of programming interfaces for process management have been imple-
mented for the experimental system. A simple set of programming interfaces is
presented in this subsection schematically for the case of separate and simple
admission control of single processes.

The programming interface for creating a semi-imperative periodic process looks
like the following:

ProcID = CreateProc_PERIODIC (env, unit_prog, end_prog,

period, unit_comp_time, tv_excep)

where, env  is a structure containing environmental settings such as stack size and
initial arguments, unit_prog  is the entry point of a procedure which should be exe-
cuted in each period, end_prog  is the entry point of a procedure which should be
executed when terminating the process, period and unit_comp_time  are the
intended period and computation time per period of the intended virtual periodic
process, tv_excep  is the exception handler which should be called by the OS when
a timing violation arises. The simplest form of tv_excep  is the termination of the
whole process. Note that end_prog  and tv_excep  can be set to NULL to indicate
that no corresponding actions should be taken.

To create a virtual periodic process, the following interface can be used:

ProcID = CreateProc_VIRTUAL (env, body_prog, end_prog,

period, unit_comp_time)

where, body_prog  is the entry point of a procedure which should be executed in the
virtual periodic frame, other parameters have the similar meanings as in
CreateProc_PERIODIC .
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After being created, a real-time process should be explicitly started. As will be
detailed below, it is at the time of trying to start a process that the system makes an
admission control. An already successfully created periodic process or virtual peri-
odic process can be started using the following:

success = StartProc_RT(start_mode, ProcID, start_time, end_time)

where, start_time and end_time  are the intended start time and end time of the
intended (virtual) periodic process. Different start_mode ’s can be used for different
requirements concerning guarantee and timing wishes. It will be further detailed in
Section 7.3.2  Simple admission control.

Correspondingly, CreateProc_NORMAL()  and StartProc_NORMAL()  are provided to
create and start a normal process which takes parameters such as normal priority
class, quantum, nice grade, etc. In the experimental system, all the processes are
allowed to mask some small parts of its process body as non-preemptable with a
pair of FORBID() / PERMIT() .

7.3  Implemented f eatures and implementation
trade-offs

In implementing the experimental system, efforts have been made to realize and
validate the strategies and algorithms proposed in the previous chapters. Some
trade-offs have been made due to the concrete experimental system conditions.
Some implemented features and the related implementation trade-offs are pre-
sented below with an emphasis on scheduler and scheduling-related functions.

 7.3.1  Efficient dispatcher

As depicted in Figure 7-4, a process in the experimental system has usually the fol-
lowing life cycle: a process has a state of ADDED after being created; after being
started, the process is READY and can be eventually scheduled to RUN; it may change
its state into WAIT for waiting some resources or events; after running to an end or
being killed, the process remains as ZOMBIE and will be eventually cleared by a
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house-keeping system process.

Figure 7-4 Transition of process state

It is of course very important to have a very low scheduling cost, otherwise the
goal of soft real-timeliness can not be achieved. A scheduling scheme such as CO-
SCHEDULE or SIM-SCHEDULE can indeed be implemented in a very efficient
manner — based in part on a priority-driven dispatcher.

Recall the GRMT results given in Section 4.2 and Section 5.1, the processes under
rate-monotonic scheduling are scheduled according to their (static) priorities at
run-time. A CO-SCHEDULE scheduler can therefore be derived from a priority-
based dispatcher which can be easily implemented efficiently. The high-priority
periodic processes are assigned different priorities according to their periods. If
necessary, a period-transformation should be done. A SIM-SCHEDULE scheduler
must, of course, do the extra work about monitoring and enforcing.
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Once again, in contrast to a pure fixed-priority scheduling method, a method based
on rate monotonic scheduling has two attributes: (1) it can do admission control in
a very simple way by checking the processing capacity required by the processes,
especially in the context of soft real-time; (2) the priorities of the processes can be
dynamic and will be adjusted when new processes are admitted into the system.
Note admission control can be made even for some very complicated scenarios, it is
therefore more theoretically sound than a simple priority setting scheme.

Similar to communication bandwidth, the C/T ration for a periodic process indi-
cates the process’ share of the CPU bandwidth. Scheduling and enforcement
according to GRMT ensures that the processes do not influence each other nega-
tively too much. I.e., each “guaranteed” process is assured of its share of its process
bandwidth.

In our scheduler, the mapping of real-time and virtual real-time periodic processes
to their priorities are dynamic and are done implicitly by the scheduling sub-
system. This is in contrast to a pure priority system where priority setting has to be
done explicitly and it is difficult to do reasonable admission control and priority
adaptation.

As such, the scheduling of high-priority periodic set is in the end conducted on the
base of priority setting. The normal priority processes are scheduled according to a
weighted round-robin method.

 7.3.2  Simple admission control

In contrast to hard-real-time systems, admission control in a soft real-time system is
simplified to a large extent. For more complicated situations, the GRMT theories
concerning blocking, synchronization etc. can be used to analyze the schedulability
of a set of related processes in order to make a precise admission decision. For most
simple cases, simple admission tests are good enough to maintain a high success
degree. These simple tests generally do not need to account for the intricate depen-
dences among processes. Small factors involving blocking and synchronization can
be implicitly smoothed out by the soft real-time features. In the most situations
simulated in Chapter 6, for example, a very simple admission control is generally
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used to simply make sure that the whole capacity to be reserved by the processes is
less than the utilization bound of the classic rate-monotonic theory. The simulation
results indicate that a high success rate is still achieved although the processes are
actually also influenced by factors such as suspension, delayed-ready, etc.

A very simple admission control for separate admission of single processes can be
implemented by simply checking the whole capacity already reserved by the exist-
ing processes and the capacity needed by the incoming process(es). Note that, in
contrast to a pure fixed-priority scheduler, the priorities of the existing real-time
processes will have to be adjusted when new processes are admitted into the sys-
tem. For example, if a new process comes with period Tp1 < Tnew < Tp2, then its pri-
ority has to be Pp1 < Pnew < Pp2. If it happens that (Pp1 + 1) = Pp2 then either Pp1 or
Pp2 has to be adjusted.

A closer look at the start_mode  for starting a real-time process might help to clarify
the idea more clearly.

In start_mode , a process can request to be started “now” (actually “as soon as possi-

ble”) or “at a specified time later”. In the implementation, a simple record of “process
history” has been maintained in the form of a simple database. The reservation for
a future time can thus be safely conducted.

Also in start_mode , a user should indicate his “requirement grade” to indicate what
kind of process he intends to start and what kind of process he would like to accept
if the best quality can not be satisfied because of admission control. For the “require-

ment grade”, SureG and MaybeG bits may be set which denote “sure guarantee” and
“maybe guarantee” requirements or intentions respectively. The system will also
try to satisfy the process in this requirement order. The admission control is done
by the on-line Admission Controller of the scheduler. For example, a process A has
already been created as a real-time periodic process. It should now be started with
SureG and MaybeG bits set. The system will then check if an admission control for a
sure-guarantee can be passed. If yes, then the process will be started as a process
with sure-guarantee. If no, the system will then see if an admission control for a
maybe-guarantee can be passed. If yes, then the process will be started as a process
with maybe-guarantee. Otherwise the process can not be started.
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• Implementation scheme of sure-guarantee and maybe-guarantee

As is stated, the outcome of the decision of the Admission Controller can be one of
the following three cases: a sure-guarantee of the real-time attributes of the new
process can be maintained; a maybe-guarantee of the real-time attributes of the
new process can be maintained; or only a best-effort maintenance of the real-time
attributes of the new process can be done.

Recall again that the runtime behavior of the rate monotonic scheduling is simply
dependent on a fixed priority assignment scheme. This factually ensures that the
processes with higher priorities are directly more favored than the processes with
lower priorities under transient load. Recall also that a capacity bound is usually
used for various admission control of GRMT. Let’s call the set of the processes with
total capacity within a certain bound B the B-bounded processes. The smaller the
bound is, the fewer processes will pass admission control. Thus, a smaller bound
means, to an extent, a lower degree of the risk of possible timing violation. For
B1<B2≤1, the B1-bounded processes get higher priorities than the processes admit-
ted in the scope of (B1, B2). This will factually ensure that the B1-bound processes
are directly more favored under a transient load than the processes out of the
bound.

With these considerations, the following two simple algorithms are implemented
for the admission control of separate processes. In these algorithms, two bounds
are used for admission control — a sure-bound and a maybe-bound. Initially, the
bounds are set to SureBound = n(2(1/n)-1), MaybeBound = maximum (SureBound,
0.88). The sure-bound is taken from Theorem 4-1 for guaranteeing the schedulabil-
ity of a simple periodic task set with arbitrary phasings. For maybe-bound, the
bound is relaxed, in case of need, to 88%, which is the likely schedulability bound
for a randomly chosen task set [Lehoczky89].

In line of the above considerations, these two bounds can/should actually be
adjusted in a concrete practical environment through experiments and according to
experiences.

For the experimental system, the following two algorithms have been used to make
admission control for sure-guarantee and maybe-guarantee. Assume a new process
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with period T and per-period computation time C arrives and it requires a guaran-
tee as strong as possible, the first algorithm tries to place the processes which need
sure-guarantee and the processes which need maybe-guarantee in a mixed manner:

1

2 if  (C/T + (the capacities of all existing SureG processes) +

3 (the capacities of all existing MaybeG processes with

4 period <= T)) <= SureBound

5 then  the new process can be admitted as a SureG process

6 elsif  (C/T + (the capacities of all existing SureG processes) +

7 (the capacities of all existing MaybeG processes))

8 <= MaybeBound

9 then  the new process can be admitted as a MaybeG process

10 else  the new process can be admitted as a BestEffort process

11

Figure 7-5 Admission control algorithm for mixed placement

The second algorithm tries to place MaybeG processes in a less prioritized position
than all SureG processes thus make it possible to admit more SureG processes into
the system in case of need.

1

2 if  (C/T + (the capacities of all existing SureG processes))

3 <= SureBound

4 then  {adjust existing MaybeG processes in case of need;

5 the new process can be admitted as a SureG process

6 }

7 elsif  (C/T + (the capacities of all existing MaybeG processes))

8 <= (MaybeBound - SureBound)

9 then  the new process can be admitted as a MaybeG process

10 else  the new process can be admitted as a BestEffort process

11

Figure 7-6 Admission control algorithm for separate placement

For sake of easy implementation, a MaybeG process in consideration is transformed
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into a virtual periodic process with a virtual period longer than all the SureG pro-
cesses — by giving it a virtual period which is an integral multiple of its original
period and activating the integral multiple of its periodic body in this virtual
longer period. In this way, its corresponding priority is assigned correspondingly
to be lower than all the SureG processes so that it is not possible for it to possibly
violate the timing constraints of all SureG processes.

As mentioned in Chapter 3, the admission control with regard to the schedulability
of a complicated set of interdependent processes could be a time-consuming task
which need not be conducted on-line. An off-line tester such as Scheduler-1-2-3
could be used to make the schedulability test and the resulted parameter-settings
could then be submitted to the running system together. Due to the flexibility and
tolerance of the soft real-time systems, the strictness for their admission control can
be relaxed. A set of closely related real-time processes, which implement an appli-
cation together, should be submitted together to the system for a more precise
schedulability analysis and, if admitted, corresponding reservations should be
done. Groups of processes implementing different applications, though they might
be dependent on each other loosely by way of asynchronous communications,
might be treated as independent in admission control. In this way, some simple
heuristics can be used to simplify admission control for different environments. In
this regard, the engineering considerations for applying GRMT to hard real-time
applications are also partly applicable [Katcher93].

 7.3.3  Scheduler as a predictor and an enforcer

Although much work was done in predicting or measuring the processing capacity
requirements of a real-time program [Colnaric90, Wittig94], it is always difficult to
estimate the exact processing requirements of a program. There are several reasons
to this. One is that the runtime behavior of a program is quite dependent of the
concrete environments.

To alleviate the problem and to assist users, our idea is to make the scheduler func-
tion both as a timing enforcer and a timing predictor. Our scheduler is a timing
enforcer in the sense that the scheduler makes timing control by real-time schedul-
ing. Our scheduler is a timing predictor in the sense that it can facilitate the estima-
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tion of processing time usage by providing such timing accounting information to
the users.

In other words, the difficulty of estimating computation time can be eased by
allowing the application processes a “run and adjust” cycle: a real-time process can
be delivered with a preliminary set of timing constraints to run; the system feeds
back timing accounting information; the process can be run again with a set of
adjusted timing constraints; and so on. Through such a cycle of interaction between
application processes and the scheduler, a better “cooperation” can be achieved —
a better system effect can be achieved both for system under CO-SCHEDULE and
SIM-SCHEDULE.

For sake of simplicity, the current implementation instructs the scheduler either to
run in a predictor mode or in an enforcer mode. In the enforcer mode (i.e. normal
mode), the scheduler only makes essential timing accounting to run as efficiently as
possible. In the predictor mode, the scheduler makes a more detailed timing
accounting with regard to periods and timing violations. The accounting results
can be retrieved by way of a system call from time to time.

 7.3.4  Implementation of soft real-time handling

For the execution under SIM-SCHEDULE, both RELAY and RELAY-TRUNC timing
overflow handling methods are implemented and can be chosen by the users. The
users can optionally provide a timing-violation handler (TV-handler), which will
be triggered to execute automatically when a timing overflow occurs. In the TV-
handler, the user processes can, for example, account the recent timing violation
frequency and take corresponding measures later.

The implementation schemes of RELAY and TV-handler are explained in Figure 7-7
and Figure 7-8. In Figure 7-7, a timing-overflow is detected by the system, the vio-
lating process is preempted and not-yet-completed part is relayed to be executed in
the following period. As can be seen in Figure 7-8, the execution of the TV-handler
is also charged against the timing budget of the process itself. This has the advan-
tage that the timing irregularity of a process will not have negative influences on
other processes.
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Figure 7-7 Handling with RELAY

Figure 7-8 Handling with TV-handler and RELAY

An alternative implementation would be to implement the TV-handler as a sepa-
rate thread and to let it run concurrently with the new instantiation of the next
period. But this would incur much sophistication both in accounting and concur-
rency control and was therefore not adopted.
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 7.3.5  Low-level scheduling details

As can be seen from above, a real-time process will begin to compete for CPU after
it has passed an admission control and got assigned a priority according to the
GRMT scheme. The low-level scheduling (dispatching) of the processes is then
more or less driven by the priority assignment.

Some details of the low-level scheduling implementations are provided here to
make it easy to understand the related measurements to be presented later. More
specifically, the processing flow depicted in the following flowcharts (Figure 7-9
and Figure 7-10) has been used to realize the process state transition depicted in
Figure 7-4.

The main entry to the dispatcher is the _RSWITCH triggered by the periodic schedul-
ing clock interrupt (default to be of 1 ms interval). Basically, the section from
_RSWITCH to the point numbered 4 is responsible for a possible switch of a process
from RUN to READY. The section from the point 4 to RETI  (return from interrupt) is
responsible for switching a process from READY to RUN.

The entry point _WSWITCH is entered when a process has to transfer into WAIT state.
This can happen when the process explicitly invokes WAIT()  or when it has to wait
for some resources. The entry point _NSWITCH is entered when the process runs to
an end or gets aborted. In this case, the process in question is transformed into the
state ZOMBIE. Both these entries will lead to point 4 since another process will have
to be scheduled to run.

System timer processing is necessary to realize the functions such as the automatic
arrangement of the periodic process body. Figure 7-10 sketches the flow for system
timer processing.

Basic timing accounting and the possible installation of a TV-handler are also parts
of the processing flows.
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Figure 7-9 Flowchart of low-level process dispatching
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Figure 7-10 Flowchart of timer-job handling (subfigure of Figure 7-9 )
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 7.3.6  Other features of interest

In the experimental system, most of the system management operations are exe-
cuted either in the scope of a virtual real-time process or in the scope of a process of
normal priority class 1. Examples can be found in creating, starting and clearing
processes and other house-keeping operations. Principally, these operations are not
as time-critical as the real-time processes which are running. Such an arrangement
is helpful to make the main system scheduling flow as light-weighted as possible.

The semaphore management component makes it possible for processes to guard
their critical section by using semaphores. A simple form of priority inheritance has
been implemented to alleviate priority inversion problem.

The experimental system also provides support for the adaptations of soft real-time
processes. This will be described in Chapter 9 in relation with the provision of an
adaptive service provision model (see Section 9.3.4  Adaptation support from OS

scheduler).

7.4  Performance measurements and anal yses

It is clear that the goal of soft real-timeliness can not be achieved if the proposed
models and mechanisms can not be implemented to perform efficiently. Measure-
ments have been made to asses the performances of our experimental implementa-
tions. The measurement results have confirmed that it is easy to implement
efficient base schedulers incorporating our soft real-time scheduling and handling
methods.

 7.4.1  Measurement setup

The measurements were conducted on a PPDS evaluation board with TMX320C40
processors. The TMX320C40 is a functionally identical pre-version of TMS320C40.
The processors were clocked at 16 MHz.

The test programs and the run-time system components, with the exception of the
interrupt handlers _RTClock , _NSwitch , _WSwitch  and _RSwitch , were resident in
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the local RAM area. For efficiency reasons, the above-mentioned four interrupt
handlers were loaded into internal RAM to run.

The global RAM area of the PPDS evaluation board was not used in the measure-
ments so that the synchronization interdependence between processors had no
effects on the measurement results. The instruction cache was also deactivated so
that a relatively stable and less optimistic results could be gained.

 7.4.2  Basic scheduling overhead

A scheduling scheme such as SIM-SCHEDULE can indeed be implemented in a
very efficient manner, partly due to the reason that its runtime behavior is based on
a static-priority-driven dispatcher to a large extent. The following tables give some
examples of the basic scheduling overhead of the SIM-SCHEDULE as we have
implemented it on the TMS-C’40 processor. The basic overhead includes the over-
heads for context switch, basic timing monitoring and enforcing etc. For SIM-
SCHEDULE, this corresponds to what is depicted in Figure 7-9. But it does not
count into its subfigure Figure 7-10 concerning “timer handling” and the part con-
cerning “installing timing-violation handler”, which are dealt with in the next sub-
section.

The numerical examples listed in all the following tables are the maximum over-
heads which are not usually needed in a normal execution scenario. Note that the
TMS-C’40 is a RISC-like processor with many registers. The scheduling overheads
could have been reduced greatly if the operations for register switch had been
reduced.

In Table 7-1, some measurements of the basic scheduling costs of SIM-SCHEDULE
implemented on PPDS are listed. The measurements are listed both in the unit of
instruction cycles and microseconds. In the experimental implementation, the
scheduling interval is set to 1 ms, since the time granularity of the multimedia
applications are mostly in the range of miniseconds. The low-level scheduler is
thus triggered each minisecond or at the event when a process changes its status
into ready. If a highest priority real-time process is running within its time quan-
tum, then no process context switch is needed. In this case, the scheduling over-
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head is quite small. In the case of a context switch, the scheduling overhead is
dependent on the current number of ready real-time processes, since the pre-
empted process should be put into the right waiting position among all ready real-
time processes sorted by their priorities. Note that the scheduling overheads will
not increase with the number of non-real-time processes which will not get sched-
uled as long as there are ready real-time processes.

Nowadays, it is common for the microprocessors to clock at over 100 MHz or even
200 MHz. In Table 7-2, the measurements are proportionally mapped onto proces-
sors with 120 MHz and 300 MHz clock respectively. The maximum basic schedul-
ing overheads in percentage can be seen to be quite small with regard to a
scheduling interval of 1 ms.

 7.4.3  Additional overhead with full real-time support

Under SIM-SCHEDULE, the system provides some direct timing supports for real-
time processes. The periodic process bodies are instantiated by the system. Such
instantiations involves timer handling which is dependent on the number of expir-
ing system timers. The maximum additional overheads for such timer handling are

Table 7-1 Measured maximum basic scheduling overhead

Basic scheduling
overhead

Within
quantum

Number of ready real-time processes

1 2 3 5 10 20

Overhead in cycles 57 243 251 264 290 355 485

Overhead in µs 3.56 15.19 15.69 16.50 18.13 22.19 30.31

Table 7-2 Proportional maximum basic scheduling overhead in percentage

System clock
frequency

Within
quantum

Number of ready real-time processes

1 2 3 5 10 20

120 MHz 0.048 0.203 0.209 0.220 0.242 0.296 0.404

300 MHz 0.019 0.081 0.084 0.088 0.097 0.118 0.162
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measured and listed in Table 7-3.

In our implementation, the number of the system timers will not be very large. The
timer pools needed by subsystems such as protocol processing are processed either
by a virtual real-time process or a system process of normal priority 1.

The instantiation of a periodic process body will be activated at each beginning of
the period of a real-time process. A longer period implies thus a smaller overhead.
Assume a system runs a set of real-time processes with periods of 40ms. Further
assume that there are on the average 2 additional expiring system timers. For a
scheduling interval of 1 ms, the proportional maximum total scheduling overheads
in percentage are listed in Table 7-4. Again the listed overheads are worst-case
overheads which should not usually occur in a normal running operation. Even as
such, these overheads should be acceptable.

In the case of timing violation and the need of installing a timing-violation handler,
additional cycles are needed to install the handler. On PPDS, 49 instruction cycles
are needed to install a timing-violation handler, which corresponds to 3.0625 µs for
a 16 MHz system clock.

 7.4.4  Other measurements

As is noted, most system management operations are executed either in the scope
of a virtual real-time process or in the scope of a process of normal priority class 1.

Table 7-3 Measured maximum additional scheduling overhead

Additional
scheduling overhead

Number of expiring system timers

1 2 3 5 10 20

Overhead in cycles 101 128 155 209 344 614

Overhead in µs 6.31 8.00 9.69 13.06 21.50 38.37

Table 7-4 Proportional maximum total scheduling overhead in percentage

System clock
frequency

Number of real-time processes

1 2 5 10 20

120 MHz 0.332 0.361 0.461 0.628 0.961

300 MHz 0.199 0.217 0.277 0.377 0.577
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Examples can be found in creating, starting and clearing processes and other
house-keeping operations. These operations, as well as other functions executed in
the scope of a real-time or non-real-time process, will not have a direct impact on
the real-timeliness of the system.

As a reference, some measurements of them in the experimental PPDS environ-
ment are listed in the following table.

7.5  Summar y of the c hapter

Orthogonal to simulation evaluations, experimental implementations and mea-
surements have been conducted on a PPDS development system to further validate
the feasibility of our soft real-time approach and algorithms proposed in the previ-
ous chapters.

Partly due to the restrictions of the hardware environment, the goal of the experi-
mental implementation was not to implement a complete OS. Rather, the intention
was to implement a run-time supporting system for a communication subsystem.
However, the implemented run-time supporting system has provided many of the
main functions of a normal operating system — in addition to a kernel, there are

Table 7-5 Execution overheads for some functions of the runtime system

Execution time in µs -D USE_MACRO Compiler
optimization -O2Function name not set set

CreateProc_NORMAL 373.2 339.6 224.9

CreateProc_PERIODIC 386.4 352.7 235.2

CreateProc_VIRTUAL 384.3 350.6 233.3

StartProc_NORMAL 22.6 19.3 18.9

StartProc_RT 66.6 48.1 45.5

FORBID / PERMIT 2.2/2.9 0.5/1.2 0.5/1.2

DISABLE / ENABLE 2.4/2.6 0.4/0.9 0.4/0.9

Signal/Wait 20.8/23.7 17.5/20.3 17.2/19.9

ObtainSemaphore 19.1 10.9 10.4

ReleaseSemaphore 17.4 10.7 10.6

AllocMem 64.2 49.0 45.1

FreeMem 56.9 42.0 39.6
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extended process management, memory management, dynamic lists management,
semaphore management, signal facility and message facility. By implementing
such a relatively complete run-tim supporting system, it is possible for us to gain
useful insights into the realization of a soft real-time supporting system.

Basically, the CO-SCHEDULE and SIM-SCHEDULE soft real-time scheduling
schemes have been implemented in the experimental system. For timing-overflow
handling in SIM-SCHEDULE, both RELAY and RELAY-TRUNC methods have
been implemented and can be used for different needs. The users can optionally
provide a timing-violation handler which will be triggered to execute automati-
cally when a timing overflow occurs. Programming interfaces for periodic real-
time processes and virtual periodic real-time processes have been provided in such
a way that the user of the processes only need to provide task body and specify
real-time constraints such as start-time, period, execution-time. The real arrange-
ment of the periodic instantiations of the task body is then done by the system
automatically.

In our scheduler, the mapping of real-time and virtual real-time periodic processes
to their priorities are dynamic and are done implicitly by the scheduling subsystem
according to the GRMT scheduling theory. The scheduling of the high-priority peri-
odic set is in the end conducted on the base of priority setting. The normal priority
processes are scheduled according to the weighted round-robin method. In con-
trast to hard-real-time systems, admission control in a soft real-time system can be
simplified to a large extent. For the experimental system, one of the two simple
algorithms have been used to make admission control for processes requiring sure-
guarantee and maybe-guarantee: either a mixed placement algorithm or a separate
placement algorithm. To alleviate the problem of estimating the processing usage
of a process, our idea is to make the scheduler function both as a timing enforcer
and a timing predictor.

Measurements have been made to asses the performances of our experimental
implementations. Results concerning basic scheduling overhead, additional over-
head with full real-time support and other functions have confirmed that it is easy
to implement efficient base schedulers incorporating our soft real-time scheduling
and handling methods.
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In short, the implementations and measurements have further verified the feasibil-
ity of our approach and algorithms. The practical experiences will also be very
enlightening for more practical work in this direction.
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PART  IV

Complementary Techniques



192



 193

Chapter  8

Predictable protocol processing

End-to-end QoS supports are essential for continuous media communications. As
is partly described, adequate supports must be provided in the network as well as
in the end hosts. Generally, protocols and mechanisms are needed to reserve
required resources (buffers, processing capacity, link bandwidth, etc.) commensu-
rate with the desired QoS of the applications, and resource scheduling and enforc-
ing mechanisms are needed to satisfy the contracted QoS guarantees.

Without the appropriate support from the networks, it is very difficult to support
CM communication on end-systems. Methods for supporting CM data transmis-
sions and other real-time communications in networking systems are extensively
discussed in the literature [Clark92, Ferrari90, Ferrari92, Delgrossi93b, Zhang93,
Shenker95a, Shenker95b]. Above all, continuous media transmission requires the
appropriate mechanisms from communication protocols [Dupuy92, Hehmann90,
Moran92, Shepherd92]. Rate control, for example, is the most-often cited mecha-
nism for CM transmission. Scheduling mechanisms within the network (on routers,
etc.) are also needed to insulate the negative influences between communication
streams and to achieve a high utilization of the shared communication media at the
same time. (We would like to emphasize explicitly here that our schemes in this
chapter do not assume that the networks can provide any rigid and absolute real-
time support, although a better support from the underlying network will surely
make the whole system more usable for a wider range of applications.)

Given the adequate support within the network to provide QoS guarantees, the
communication subsystem within the end hosts must be made cognizant of the
QoS requirements as well. This involves the support within the operating system
and the networking software to conduct adequate link access, protocol processing,
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process scheduling, buffer management, communication service provision, etc.
Given that the application-specific bandwidth guarantees can be established with
the help of a reservation protocol like RSVP and that the modern network adapters
(such as a Fore ATM adapter) have usually the capability to do traffic shaping so
that stream sources at the network boundary are guaranteed to be QoS-conform to
a large extent, link access has again been heavily related to the scheduling of com-
munication processes as well as protocol processing.

The preceding chapters have presented a soft real-time framework with which all
system activities on the end-system should be controlled to make the system pre-
dictable. It is the intention of this chapter to investigate how communication-
related activities can be contained within the soft real-time framework so that the
predictability of the system as a whole can be maintained. Since the processes
accessing communication services are scheduled normally within the soft real-time
framework, the main considerations will be made with regard to the protocol pro-
cessing-related activities. Especially, the processing of network layer and transport
layer protocols is traditionally regarded as part of the system kernel/server ser-
vices. The main attention of the following discussion will be paid to the protocol
processing for the network and transport layers.

In the following, the traditional protocol processing architecture and its shortcom-
ings are analyzed. Methods are then given which will try to damp the effects of
interrupts caused by communication activities. Application-driven protocol pro-
cessing is then advocated as the feasible method to achieve predictable protocol
processing. Other related issues such as the methods of communication service
provision are also discussed. Again, the micro-monolithic kernel structure is usu-
ally taken as the reference.

8.1  Traditional pr otocol pr ocessing ar chitecture
and its shor tcomings

The following takes the protocol processing procedure in the 4.3BSD UNIX system
as a typical example of how the traditional monolithic OS conducts its protocol
processing. The pros and cons of such a procedure are analyzed.
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For transfer layer data communications in the traditional 4.3BSD UNIX system
[Leffler89], the sending side behavior is generally under the control of a sending
process where library functions and system calls should be invoked by the sending
process and can be accounted to it. The problem lies mainly at the receiving side
where the incoming packets are generally processed by the kernel at the cost of the
whole system and then delivered to the processes destined.

Specifically, the protocol processing at the receiving side uses a kind of software
interrupt technique (SOFTINT), in which protocol processing is done at a non-pre-
emptable software interrupt level (a priority level higher than any user process but
lower than the hardware interrupt level). As is argued in [Mercer91, Anderson91],
SOFTINT technique has several advantages and also several disadvantages. On the
one hand, SOFTINT technique avoids process-scheduling overhead while mini-
mizing interrupt-masked time, it serializes protocol processing thus simplifying
the synchronization mechanisms needed in the protocol processing modules. On
the other hand, the SOFTINT technique is not appropriate for CM real-time com-
munication. Software interrupts preempt time-critical processes, and may cause
them to be blocked for unknown durations. Also, in the SOFTINT mechanism,
packets are processed on a FIFO basis, which is undesirable for real-time preference
and performance.

With the SOFTINT mechanism, protocol processing is begun right after hardware
interrupt is ended. This inevitably incurs much disturbance on the ongoing user-
level process which is interrupted by the interrupts resulted from the incoming
data packets. In some system environments, the interrupt activities are so rare that
the effects of the brief interrupt processing on real-time processes can be viewed as
the stochastic variations of the RT processes themselves. In some other system
environments, the interrupts constitute a main part of the whole system activities.
The interrupt processing in such systems should then be done in a controlled man-
ner, otherwise, the real-time guarantee and predictability of the system can not be
managed.

Usually, several independent protocol stacks are supported in parallel by letting
the data link layer network drivers dispatching the packets for different protocol
stacks. The packets for different protocol stacks are interleaved somewhat but are
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generally still processed in a FCFS style. Packets for the same protocol stack are
usually handled in the FCFS order.

The current implementations of some real-time protocol stacks used the conven-
tional architecture detailed above. For example, the Tenet Protocol Stack (Suite 1)
was implemented in the following manner [Barnerjea94, Ferrari92]:

Figure 8-1 Software Structure of Tenet suite and Internet protocols

The same method had been adopted by the GMD implementation of the protocol
XTP and the protocol stack XTP-lite/ST2 on a Sun platform [Fan93, Fan95f]:

Figure 8-2 Communication software structure on GMD-BTS
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These implementations used the conventional architecture and, therefore, had the
same shortcomings detailed above: the interrupt processing and the following pro-
tocol processing caused by incoming packets preempt the current running user
process and they are completed before any user processes have the chance to take
over CPU again. The related processing costs are not reserved for or accounted to
the processes which incur such processing. Thus, protocol processing is neither
reservable nor predictable.

8.2  Damping the eff ects of interrupts

In any case, some processing capacity is needed for common path interrupt pro-
cessing caused by incoming communication packets. In the case of non-trivial com-
munication activities, such system overhead is too significant to be treated as
system noises that can be tolerated in the soft real-time framework. As pointed out
in Chapter 5, the overhead should be reserved in the form of one or more virtual
periodic system-overhead processes.

This section proposes some measures which can be taken to reduce the influences
and randomness of the interrupt processing caused by the incoming packets. The
goal is to make the costs for such interrupt processing minimal and regular. It is
then easier to closely reserve the costs in the form of some virtual periodic system-
overhead processes.

 8.2.1  Less interrupts and interrupts with regularity

No matter how the communication software is realized, it can not manage to keep
a predictable and high performance when facing harsh system conditions such as
inadequate I/O bus bandwidth, high I/O interrupt frequency and latency, unintel-
ligent I/O processors, etc. Fortunately, it is usually possible to eliminate or allevi-
ate these problems with the help of modern network adapters.

Though quite obvious, but many systems do not take into account such a simple
fact: as long as the handling of interrupts is concerned, it is usually more efficient to
not do it (too frequently and non-regularly) than to do it faster. In the case of con-
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tinuous media communication where data volume is usually quite huge, such a
consideration is of special importance.

Current RISC CPU’s tend to have a high interrupt overhead resulting from saving a
large register file and doing other stuff in software while RISC CPUs do them in
hardware. It is thus even more important to reduce the number of interrupts and to
make interrupt processing more regular. For CM communications, it is also possi-
ble to do so.

One common feature of multimedia communication is its periodicity. That is, the
multimedia shows its periodic continuity both in the sense of time and space. The
periodicity of the multimedia communication can be exploited to a large extent.

At the application user level, periodic sending, receiving and processing of data
will result in a periodic scheduling of the corresponding tasks and threads. It is
therefore possible to use the scheduling strategies which deal with periodic tasks to
provide a certain degree of guarantee for their processing, as is exemplified in
Chapter 5. The randomness of the multimedia communication is thus reduced to a
large extent by the periodic scheduling of the communication processes and the
rate-control exerted by the communication applications at the sending side (and
possibly along the route).

At the lower level, interrupts resulted from multimedia communication can be
partly spared if this periodicity can be used. By exploiting the periodicity at inter-
rupt level, the processing overhead can be reduced and principally controlled. This
is of special importance since the low-level interrupts have usually taken a large
part of the processing capacity of an ordinary workstation.

Several methods might be used to reduce interrupt processing overhead. In one
case, for example, an interrupt can be generated with a periodicity of a certain n

microseconds so that the incoming packets accumulated during this time period
can be processed together. In another case, a cumulative interrupt can be used so
that an interrupt will be generated for every m packets at a network interface
instead of for every packet. Or, the network interface might be enabled to generate
an interrupt if there are some packets at the interface or when a timer runs out. In
this way, it can be prevented that the interface generates interrupt too late because
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there are not enough packets arriving in the last timer period. In yet another case,
the network interface does not generate interrupts at all. It will be the network pro-
tocol module itself that polls the interface periodically.

Consider a concrete example [Fan95c] in our ATM LAN environment which is
based on the hardware from Fore Systems Inc. For data transmission between two
Sun workstations using UDP/IP over the ATM LAN, the receiving side is generally
too slow where the connections virtually collapsed due to the non-existing flow
control and due to the inability of the CPU to both reassemble the incoming ATM
cells and to forward the messages upwards the protocol stack in time. In particular,
the data delivery is not able to provide a higher bandwidth than 45 Mbit/s to the
network layer (symptom: “packet dropped, IP queue full”) and 18 Mbit/s to the
application (symptom: “socket overflow”). One main reason is that the numerous
interrupts caused by incoming ATM cells took too much CPU time.

A reduction of interrupt processing is clearly necessary for such environments. The
above-mentioned several methods can be used in some cases to reduce interrupts
and to make interrupts regular. They have actually also been made possible by cur-
rent network interface technology. Presently, some network interfaces have already
provided some hardware support for realizing the afore-mentioned methods. In
the newer version of the Fore ATM network interface, for example, one can have
the ready support for cumulative interrupt generation, time-out interrupt genera-
tion, etc. [FORE93, FORE95]. The experimental network interfaces like “After-
burner” had also similar features.

 8.2.2  Physical reservation and separation

The burden induced by heavy communication can also be partly eliminated by
appropriate extra hardware support to reach the effect of physical reservation and
separation.

DMA is usually used when the I/O board’s memory is on a separate bus and is iso-
lated from the host’s memory. Here, a DMA controller (DMAC) is used to transfer
data between the host memory and the I/O board memory (see the following fig-
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ure). The protocol processing board can be used in a similar configuration.

Figure 8-3 Front-end protocol processing board

As a typical form of physical reservation, the front-end subsystem structure has its
advantages as well as its disadvantages. Actually, the feasibility of a front-end sub-
system depends a lot on the intended application scenarios.

On a front-end subsystem, a relatively independent MM supporting system can be
built. Different and hopefully more suitable OS or run-time environments can be
used on the front-end and on the host. The performance of the whole system can be
possibly enhanced through the extra processing power of the front-end and
through the parallelization of processing of the front-end and the host. But the
question is, to what extent are the anticipated advantages realizable if the interac-
tion between host and front-end is unavoidable.

Through the development of the MNI front-end, for example, the Distributed Mul-
timedia Research Group at Lancaster University had come to the conclusion that
the use of a front-end structure is a partial success [Blair92a]. In the Bermate project
at GMD-FOKUS [FOKUS92], a front-end subsystem had also been experimentally
used as an extra place for protocol processing and multimedia application. The
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goal of performance improvement and parallelization was also achieved to some
extent. A reintegration of the front-end subsystem into the host itself will possibly
meet the close interaction requirements between host and front-end for some appli-
cations.

 8.2.3  Two-level interrupt processing

As pointed out in Section 8.1, the SOFTINT mechanism used for interrupt process-
ing in the traditional protocol processing architecture has the following shortcom-
ings: the interrupt processing and the following protocol processing caused by
incoming packets preempt the current running process and they are completed
before any user processes have the chance to take over CPU again. The related pro-
cessing overheads are not reserved for or accounted to the processes which incur
such processing. For the systems where communication activities are no rare
events, such protocol processing is neither reservable nor predictable.

For the communication-intensive systems, it is especially important to be able to
reserve the processing capacity for communications and to be able to make
accounting on the capacity used by different processes for their communications.

Note also that in these systems, the incoming packets from the networks generate a
large quantity of interrupts, which should be handled in time otherwise the packets
will be overridden by newer incoming packets at the same interfaces and be lost.
Therefore, on the one hand, the interrupts should be responded quickly in order to
avoid packet loss. On the other hand, the interrupt processing related to packet
incoming should be done in a controlled manner in order not to disturb any current
real-time activities too much.

Principally, the interrupts caused by communications or other activities shouldn’t
be allowed to steal away at will the processor from real-time applications which
have previously reserved a share of the processor. Here, we can borrow an idea
used in developing device drivers [Armand91]. A two-level interrupt scheme can
be used to achieve this effect. At the lower level, the interrupt handlers do no other
processing other than just record the occurrence of an interrupt then disable the
cause. The scheduler will then make the right decision about next runner after that.
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Thus, the main processing of the interrupt itself is deferred to a later, more appro-
priate time. Note again that a characteristics of the continuous media communica-
tions is exploited here: the CM data packets need not be processed as soon as
possible, they need only to be processed in time — before their playback points.

For interrupts caused by incoming packets, the first-level interrupt processing will
simply queue the incoming packets and clear the interrupt cause. Since in modern
MM systems, the relatively independent network interfacing subsystem will usu-
ally allocate the memory for storing the incoming packets and will give only the
reference to the packets for further processing, this first-level processing will there-
fore be a very simple operation: enqueue the references of the new packets to wait-
ing queues which will be processed by protocol processing later. In the next
section, we will further discuss when and how the actual main protocol processing
triggered by these incoming packets should be carried out.

Using this scheme, the disturbances caused by non-deterministic interrupt events
can be kept as low as possible.

8.3  Structuring pr otocol pr ocessing

According to the above two-level interrupt processing scheme, the main protocol
processing should be conducted in the second level and should be scheduled in the
framework of real-time processing. Two methods can possibly be used to structure
this part of protocol processing: multithreaded protocol processing or application-
driven protocol processing.

 8.3.1  Multi-threaded protocol processing

In the traditional protocol processing scheme using a mechanism like SOFTINT, the
whole protocol processing is done at a non-preemptable software interrupt level.
Protocol processing is begun right after hardware interrupt is ended. This has the
same effect of serializing all incoming packets in a single processing thread. A mul-
tithreaded protocol processing structure can be used for the second level of packet
interrupt processing.
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Actually, multithreading protocol processing has already been advocated in
[Anderson91, Mercer91, Hutchinson91, Wolf93] in which protocol-processing activ-
ities are implemented as independent, prioritized threads with/without preemp-
tion possibility. In our opinion, associating messages to as many threads as
possible, as in the scheme advocated in [Hutchinson91, Wolf93], is not advisable in
MM case. Such fine-grained associations are difficult to manage and schedule. For
MM communication, connection is a natural unit for ordering messages (we argue
that connectionless service is not feasible for MM communications where QoS
related to a connection should be somehow supported). It seems reasonable to
associate the messages belonging to a connection with the processing thread for
this connection. Resource reservation, including processing capacity reservation,
can then be done in a connection-oriented manner. Note that connection establish-
ment and release are relatively complex and time-consuming. They could be
treated as non-real-time and system specific, and they could be conducted in a dif-
ferent thread than that for the normal transmission path.

The multithreaded processing model can be implemented in the form of a multi-
threaded server on top of a micro-kernel structure or in a multithreaded monolithic
kernel. For the case of a multithreaded kernel, the main advantage is that the entire
protocol subsystem just happens to run in a single privileged mode and can be
more efficient. The main disadvantage is that there is no good protection between
protocols or between protocols and other system modules, since they all run in the
same kernel address space.

As far as the reservation of processing capacity is concerned, the multithreaded
protocol processing has its problems. It is difficult to define a feasible interface
which can be used by an application to ask for the reservation of a protocol process-
ing thread on its behalf. It is also difficult to arrange a joint admission control of the
application and the reserved protocol processing thread. In view of these difficul-
ties, the following advocates a more direct application-driven protocol processing
method which can be used with our micro-monolithic approach easily.

 8.3.2  Application-driven protocol processing

We suggest to use an application-driven protocol processing model as an alterna-
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tive to structure protocol processing in the second-level packet interrupt process-
ing. The model can be briefly explained as follows: in the first level of packet
interrupt processing, packets are queued to different connection-oriented packet
queues. The processing of the packets in the queues will then begin before the
application possessing the connection will possibly begin to use the packets. From
a logical point of view, the (network layer and transport layer) protocol processing
related to the data packets is just part of other processing to be applied on these
packets such as decoding etc. At the sending side, the protocol processing can also
be viewed as a logical part of processing and forming a data packet.

For this method to work, we should, of course, be able to find connection identifica-
tion (session identification) at low level. For protocols like TCP/IP and XTP, the
connection identification is easy to find by “looking into” the packets — TCP/IP
packets have “port number”, XTP packets have “key”, IPv6 packets have “flow
label”. For other protocols like Tempo++, a connection-oriented network service
with some identification is also assumed. Over an ATM network, the connection
identification is simplified in the form of a virtual circuit identifier, i.e., the VPI/
VCI combination.

In this manner, processing capacity reservation can be made mainly in an applica-
tion-oriented manner, not scattered over various parts of user and system activities.
That is, the time used for main protocol processing is then part of the application
processing time and the schedulability test will be done by treating protocol pro-
cessing consumption as part of application processing consumption.

There are several effects of the above “lazy-evaluation” style of protocol processing
at receiving side: (1) Interrupt processing is done in a controlled manner so that the
real-time processes under current execution will not be disturbed too much; (2)
Process reserve their own processing capacity, including the capacity for protocol
processing, so that these processes can be scheduled in a real-time manner.

The most direct method to implement the above application-driven protocol pro-
cessing scheme is for the user processes to do the main part of protocol processing
through the help of protocol processing libraries. (It might also be possible for a
user process to relay the processing to a system process which runs using the tim-
ing budget of the user process. But this has the same complications as the above
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multithreaded protocol processing method.) Such a method also makes it very sim-
ple and direct to reserve the capacity needed by protocol processing as part of the
whole user processing capacity. Recall again that techniques and measures have
been taken to reduce the influences and randomness of the first-level interrupt pro-
cessing caused by incoming packets so that the cost for such interrupt processing
can be more closely reserved in the form of the virtual “system-overhead” periodic
processes mentioned before.

The related idea of application-level protocol processing was originally proposed
under the name of “application level framing” as an approach for improving per-
formance of protocol processing [Clark90]. The idea was later verified in many
projects as a feasible method to do protocol processing in the user space and to
improve flexibility as well as performance at the same time [Thekkath93, Maeda93,
Edwards94]. Here, we argue that it is also applicable for the easy reservation of
protocol processing capacity and for the improvement of the predictability of pro-
tocol processing.

8.4  Other related issues

There are a few other issues which should be briefly dealt with.

 8.4.1  Methods of communication service provision

Generally, the interaction relationship between the communication service user
and the service provider can be differentiated between explicit interaction and
implicit interaction.

• Explicit interaction modes

The explicit interaction modes can be one of the following three: (a) Service-user-
active mode: service users issue system call and then retry or be blocked; (b) Ser-
vice-provider-active mode: service providers upcall the consuming function of ser-
vice users in receiving; (c) Semi-provider-active mode: service providers notify the
consumers through a way like signal but the providers do not have control over
when the signal handlers can be activated.
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For irregular interaction and monolithic kernel, mode (a) is the easiest way to
implement and is also quite efficient. Upcall is the fastest reaction method for
receiving. Mode (c) might be naturally done as an extension of the existing OS sys-
tems.

The information exchanged between communication service user and provider can
be provided by shared buffer, through memory remapping or through explicit
parameter delivery. These interaction modes are sometimes desirable because they
are easy to use.

• Implicit timing relationship

For the non-explicit interaction modes, the timing relationship is implicitly
arranged. Shared control information between communication service user and
provider is necessary for all cases. Data can also be exchanged by way of shared
buffer or memory remapping. Synchronization variables and mechanisms should
be used to maintain integrity of data.

Figure 8-4 Use of ring-buffer for implicit timing relationship

In our opinion, the implicit timing relationship is suitable and efficient for an inter-
action in good regularity. This is the reason why some MM systems advocate the
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use of such a scheme in the form of a ring buffer [Wolfinger92, Kihara93], where the
timing relationship between the producer and the consumer is implicitly regulated
by the current positions for new arrival and consumption.

 8.4.2  Granularity of timing

It is clear that the basic timing facilities in a MM-supporting OS should have higher
precisions than in a non-RT OS in order to make the timing results meaningful.

As for protocol processing, the scheme used in [Anderson90a, Hagsand94] associ-
ates each message with its own deadline. Such a scheme is direct and easy to apply
but it incurs a high bandwidth and processing overhead.

In our opinion, there are also other applicable views of timing granularities. The
CM applications usually posses periodicity, thus it is possible to define a single log-
ical group deadline for all the messages in the period of some logical units. The
timing granularity is then larger then the message-oriented timing granularity and
it may reduce the overhead in scheduling and bandwidth. An effect of larger tim-
ing granularity is the possible larger “burst” of processing or delay jitter.

 8.4.3  Complications with a strict micro-kernel model

The discussions in this chapter have taken mainly the micro-monolithic kernel
structure as the reference OS structure, since it is the advocated OS structure best
suitable for the realization of the soft real-time framework. Other than this, a few
words on the complications with the protocol processing by a strict micro-kernel
approach might be necessary.

As many other system services, the communication services are generally provided
as separate communication server in a micro-kernel OS. As is well known, different
system servers are of different protection domains and are embodied in different
system processes which communicate which each other and application processes
via the micro-kernel using message passing. The related advantages of robustness,
extensibility and configurability come at some cost in performance since invoking a
service now requires communication between two processes. In the micro-kernel
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system, this overhead includes two context switches as opposed to a simple proces-
sor trap in a (micro-)monolithic kernel system. In addition to the performance con-
sideration, the reservation and accounting related to the communications in the
micro-kernel system are also more complicated since these also involve multiple
protection domains.

Actually, the method of moving the protocol processing into application processes
is now also advocated in the micro-kernel system to solve all the above complica-
tions [Maeda93, Mercer94b].

8.5  Summar y of the c hapter

Given the adequate support within the network to provide QoS guarantees, the
communication subsystem within the end hosts must be made cognizant of the
QoS requirements as well. The intention of this chapter is to investigate how com-
munication-related activities can be contained within the soft real-time framework
so that the predictability of the system as a whole can be maintained. The main
attention of the discussion is paid to the protocol processing for the network and
transport layers, which is traditionally regarded as part of system kernel/server
services.

Methods have been investigated which can be used to reduce the influences and
randomness of the interrupt processing caused by incoming packets. They either
exploit the characteristics of continuous media communication to make interrupts
less and regular, or, simply make use of the possibility of physical reservation and
separation. Two-level interrupt processing is also advocated where the first-level
packet interrupt processing is made brief. The use of these methods can make the
costs for common-path packet interrupt processing minimal and regular. For sys-
tems with non-trivial communications, some processing capacity is still needed for
common path interrupt processing caused by incoming communication packets. It
can be done in the form of reserving some virtual periodic system-overhead pro-
cesses.

In the two-level interrupt processing scheme, the main protocol processing is con-
ducted in the second level and is scheduled in the framework of real-time process-
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ing. Although it is possible to structure the second higher level packet interrupt
processing in a multithreaded manner, we advocate a more direct application-
driven protocol processing scheme which can be used with our micro-monolithic
approach easily. The most direct method to implement the application-driven pro-
tocol processing scheme is for the user processes to do the main part of protocol
processing through the help of protocol processing libraries. Such a method also
makes it very simple and direct to reserve the capacity needed by protocol process-
ing as part of the whole user processing capacity and to do the related accounting.

A few other related issues such as methods of communication service provision
and granularity of timing are also briefly dealt with.

In short, the methods in this chapter can be used to bring the protocol processing
activity, which is one of the main activities on a multimedia communication system
other than the normal application processing, under the predictable control of the
soft real-time framework.
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Chapter  9

Adaptive service provision

As argued above, a multimedia application system need to be predictable as well
as flexible. Soft real-time techniques can not only provide some degree of soft guar-
antee but can also accommodate the flexibility of adapting to changing system
environments. The latter takes the form that it is possible to support a flexible and
adaptive service model in the soft real-time framework.

In our system, the support of Quality of Service (QoS) requirements of applications
are realized through micro-level mechanisms and macro-level strategies. As
described in the previous chapters, a set of micro-level OS mechanisms are needed
to support the implementation of a processing and transport system that is predict-
able enough to make various degrees of guarantees possible. At a higher macro-
level, we propose to use a flexible and adaptive service supporting model (FAST
model) to provide OS services to support the flexible and adaptive nature of many
multimedia communication applications.

Here, we would like to emphasize explicitly once more that we do not promote a
system that relies exclusively on “graceful degradation” to attempt to handle sys-
tem overload, as is done in [Compton94, Fall95]. Instead, the algorithms and tech-
niques proposed in the preceding chapters have laid a foundation for building soft
real-time supporting systems that are quite predictable under general and normal
operations. Our adaptive service model aims primarily at serving macro-level user-
initiated adaptation and supporting-system-initiated adaptation, both of which are
still directly supported and predictively controlled by the supporting system, as
will be described in detail below.

This chapter is divided into three sections. They deal with the applicability of the
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model, the description of the model and the realization aspects of the model respec-
tively.

9.1  Applicability of the model

The section deals with the applicability of the proposed service model. First of all,
the necessity for supporting a flexible and adaptive service model (the FAST
model) by our OS supporting framework is given. We also analyze the adaptive
nature of many multimedia applications that can be easily supported by the FAST
model. The technical bases for realizing the adaptive MM communication applica-
tions and our proposed soft real-time OS support for the FAST model are then
sketched briefly.

 9.1.1  Why an adaptive service model

The need for adaptability comes roughly from two categories. Either, a continuous
media-related application will actively switch its working modes and initiates the
changes in its QoS requirements itself. Or, a multimedia communication applica-
tion has to passively tolerate the changes in their environmental parameters to
some extent. The adaptation requirements can be correspondingly classified as
application-initiated and supporting-system-initiated. The CM supporting system,
especially the transport subsystem, should be able to cope with both situations.

First, let us have a look at the cases where the applications have to change/adapt
its “working modes”.

Since the resources that a user can use is always limited in one way or another, it is
sometimes the responsibility of the user to decide how he will divide the usage of
the resources for different subtasks of his whole application. Again, consider a mul-
timedia collaboration (MMC) application scenario. For some time period, the users
might want to lower the interactive audio/video quality in order to achieve a faster
exchange of working documents. After that period, the users might again want to
raise the quality of A/V exchange and make document exchange less significant.
(The switch between these “working modes” might occur semi-automatically in a
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concrete MMC software, see Section 9.3.6  Automatic higher-level adaptation manage-

ment.) Note that the whole resource capacity (CPU power, bandwidth) is generally
constant, the change of “working modes” will inevitably make it necessary to
adapt the “working modes” of MMC components. It follows that these MMC com-
ponents should be made adaptive and that the supporting system should be able to
adapt the resource partition/allocation and management correspondingly.

By the way, the adaptability is also useful even when an application has no inten-
tion to change its working mode at run-time. The reason is that it is usually difficult
to do an exact mapping from user-level QoS parameters to lower-level system QoS
parameters such as exact bandwidth and CPU usage capacity. According to the
actual parameters reported by the system, it would be very helpful to do an adjust-
ment of these mappings in the initial phase of the application.

When, then, does a supporting system have to initiate the adaptation of the CM
communication applications?

This can happen, for example, when the activities supported by the supporting sys-
tem have changed significantly. For example, the supporting system has to accept
and process more connections or the network service has been degraded because of
congestion or fallout of some routers. In such cases, a repartition/reallocation of
the available resources is necessary and the applications should adapt correspond-
ingly.

Two aspects make it possible to use an adaptive service model: the adaptive nature
of some CM applications and the technical bases that supports adaptability. The
latter includes media coding and media scaling, communication protocol mecha-
nisms and other OS support. We argue that flexible soft real-time OS supports
should be provided to make an adaptive system support complete. And some pro-
posals for providing such OS supports are made.

 9.1.2  Adaptive nature of CM applications

The adaptive nature of many continuous media applications has been partly dis-
cussed in Section 3.2  “Soft” features of CM applications and communications. We have
pointed out that the non-rigidity or flexibility of CM applications and communica-
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tions can be seen in several aspects. One aspect is that we can identify three kinds
of possible adaptabilities which can be exploited. That is, rate, data volume and
playback delay of CM applications are in many cases adaptive and can be adjusted
in a certain range.

In short, the adaptive nature of human users’ perception to continuous media has
lead to the adaptive nature of many MM applications. An adaptive MM applica-
tion can function with different degrees of QoS requirements and corresponding
supports.

 9.1.3  Technical bases for implementing adaptive CM
applications

In the current technical literature, there are already many examples of the imple-
mentation of adaptive CM applications [Clark92, Kurose84, Partridge91,
Mathur93]. Several aspects of technical bases make the implementation of the
adaptability of these applications possible.

For one thing, flexible coding methods are used to produce adaptable data volumes
and data rates for different media streams. For another thing, communication pro-
tocol mechanisms are used to negotiate and renegotiate the QoS agreements among
communications partners.

In addition, OS mechanism support is necessary. In our opinion, the OS supports
for the implementation of these adaptive applications are currently still not enough
or still need to be improved. OS support is needed so that the time-constraints of
the application processes can be adapted. OS support is also needed in monitoring
and adjusting all the other system activities, especially the activities in the trans-
port subsystem.

Together with a treatment of the technical bases for implementing FAST model
itself, the treatment of the above-mentioned technical bases for implementing
adaptive applications will be given after a more concrete description of the FAST
model. This will include especially our OS mechanism proposals and implementa-
tions.
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9.2  FAST Model description

This section describes the components of the FAST model and argues for its advan-
tages.

 9.2.1  Components of a flexible and adaptive service
supporting model

The main purpose of the flexible and adaptive service supporting model (the FAST
model) is to support both the application-initiated adaptations and the supporting-
system-initiated adaptations.

Figure 9-1 System overview of the FAST model

A system overview of the FAST model is shown in the above figure. The construc-
tion of the (supporting) system, especially the transfer layer (including network
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layer and transport layer protocol processing), will include not only normal pro-
cessing components but also management component, monitoring component and
adjustment component. Boundaries between these components shown in the figure
are only schematic. They may not be so clear and absolute in a concrete implemen-
tation.

Let’s look at an example of the supporting-system-initiated adaptation. Assume a
live video transmission, the scenario will then work like this: the upper layer appli-
cations give their requirements in the form of a set of QoS parameters through the
service supporting interface to the transfer layer. The management component will
check these QoS parameters and try to allocate resources for the satisfaction of
them. If the satisfaction lies in a certain confidence range (not necessarily a 100%
absolute guarantee), the service requests can then be accepted and serviced. During
the transmission period, however, the actual fulfillment of the QoS parameters will
be monitored by the monitoring component. In case of a QoS violation or unsatis-
faction, the upper layer will be notified of the current situation. The upper layer can
then decide whether to abort (video quality should not be worse), to continue
(video quality is still bearable) or negotiate new QoS parameters and then continue
(maybe change to a lower resolution or a lower frame rate of video). The adjust-
ment component and management component should do the necessary adjust-
ments if necessary.

During different periods of the application execution, the upper layer application
might actively initiate the changes of video transmission in terms of resolution or
frame rate. These changes can also be supported by the management component
and the adjustment component. And this constitutes an example of the application-
initiated adaptation.

In the traditional service provision model, the support of QoS parameters by the
scheduling subsystem and the transfer layer is somewhat passive. In the FAST
model, the processing and trasnport subsystem and its user (higher layer protocols
and applications) will interact with each other during the whole process. That is,
both service provider and service user are active participants of the whole process.
Both can react to changes actively. This property of activeness applies also to the
cases where no network communications are involved.
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 9.2.2  Advantages of the FAST model

• FAST model is adaptive, flexible and accommodative

Based on the assumptions that a perfect scheduling and resource reservation is not
always feasible, the monitoring component is constructed to compensate them.
That is, monitoring methods can be used in the case of possible violations of QoS
agreements. Note the function of monitoring and the reaction to related violation is
two fold: it can monitor the violation from the side of service user so that the effects
of the misbehaving users can be constrained; it can at the same time monitor the
real achievements of the service providers so that either the corrective actions in the
scope of service providers can be undertaken or some indications of such violations
can be delivered to the service users so that the service users may undertake possi-
ble corrective actions.

As can be seen from the above scenario, one advantage of the FAST model is that it
can satisfy the need for adaptive service support (adaptability). At the same time, it
has also the advantage of being able to accommodate various degrees of service
requirements and service provision strategies (flexibility). That is, statistical and
optimistic-style service supporting strategies which provide various degrees of soft
guarantee can be used since monitoring and adjustment component will come to
help in case of violation of QoS fulfillment. Pessimistic-style, full-reservation-and-
hard-guarantee service provision strategies can also be accommodated under this
model since it simply means QoS parameters will always be observed and the
monitoring and adjustment functionality can virtually be turned off.

• FAST model is practicable

The FAST model does not base on any assumptions of perfect scheduling or
resource reservation. Rather, it assumes that a perfect and absolute guarantee is not
always possible or feasible. The imperfection will be compensated by the adapt-
ability of the whole supporting system and the higher layer applications.

Because the adaptive nature of the FAST model will be able to compensate the case
where the expected degree of availability can not be maintained, the estimation of
availability of the resources can be made in an optimistic manner even in the case



Chapter 9 —  Adaptive service provision

218

where the “calculation” and “reservation” of some resources are vague or difficult.

For example, it is often very difficult to calculate precisely and reserve exactly the
processing power under currently available operating systems. For service sup-
porting schemes which are based on the assumption that an absolute guarantee of
processing power should be available, this will cause a very big practical problem.
They have to make very pessimistic estimations in these cases and this will inevita-
bly lead to an over-reservation and resource waste. For FAST, instead, an estima-
tion of processing bound based on certain degree of confidence can easily be found
and used.

This means that some simple strategies, mechanisms and algorithms can and
should be used in the realization of the FAST model so that the advantages of real-
timeliness, predictability and controllability can still be achieved in a dynamic
manner. For any concrete implementations, this starting point is of course very
important.

9.3  Realization aspects

This section describes in detail the various aspects of the realization and applica-
tion of the FAST model. It gives examples of media scaling and transport QoS
negotiation mechanisms which can be used in implementing adaptive multimedia
communication applications. It also describes the needed OS support for realizing
the FAST model. As an emphasis, the detail of soft real-time scheduler support in
adapting the variance of the time-constraints of the processes are provided.

 9.3.1  Issues in realizing and applying the FAST model

The FAST model provides a framework for providing OS services to multimedia
communications and applications. At the same time, the FAST model also provides
a framework for the MM communications and applications to use OS services. Sur-
rounding this service supporting model, the following issues need to be investi-
gated in order to make it possible to realize and apply the FAST model:

(1) Service provision and access structure should be designed so that QoS negotia-
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tions can be made and QoS violations can be indicated; (2) Resource management
and reservation methods should be designed and implemented so that the QoS
parameters can be really maintained; (3) Monitoring possibilities and methods
should be investigated to prevent and detect violations on QoS agreements; (4)
Adjustment possibilities and methods should be examined to see to what extent
the adaptability in the scope of transfer layer and other system components is pos-
sible.

• A service model best supported by a soft real-time OS

As a flexible service-supporting model, the FAST model can principally be utilized
in almost all OS environments to a more or less extent. But we argue that the model
should at best be supported by a soft real-time OS in order to achieve the optimal
effects, since the implementations of monitoring, adjustment and adaptation func-
tions can be best realized in a soft real-time framework. As presented in the preced-
ing chapters, a feasible predictable protocol processing architecture and various
degrees of soft guarantee of multimedia activities can be relatively easily provided
in a soft real-time environment. In addition, the real-time environment has usually
a more precise timing support, which is the basis for all monitoring functions. With
the support from soft real-time scheduler, the monitoring and adaptation of real-
time processes can also be easily provided, as will be presented in detail in Section

9.3.4  Adaptation support from OS scheduler.

In the following, we will have a look at several areas which are vital for the realiza-
tion and application of the FAST service supporting model. The areas include
media coding and media scaling, support from communication protocol mecha-
nisms, support from OS scheduler and other OS resource pools. In traversing each
area, we will deal with the issues listed at the beginning of this subsection, as long
as they are relevant. Concrete design and implementation examples are used to
validate our claims.

 9.3.2  Media encoding and media scaling

First of all, the presentation forms of multimedia should be adaptive, otherwise,
the applications using them can not be made adaptive. This is indeed the case.



Chapter 9 —  Adaptive service provision

220

Current media encoding and compression methods for audiovisual data make it
possible to “scale” the multimedia data streams to a more or less extent [Clark92,
Steinmetz93, Delgrossi93a, Partridge94]. By media scaling, we mean the practice of
subsampling a multimedia data stream and presenting only some fraction of its
original contents. Generally, media scaling can be done at either the media source
where a media stream stems or at the media sink where a media stream is con-
sumed. At the source, for example, frame rate can be scaled up and down. While at
the sink side, a hierarchical decoding method can be applied.

Scaling methods used in a multimedia transport system can be classified as trans-
parent and non-transparent [Sandvoss94]:

Transparent scaling methods can be applied independently from the upper proto-
col and application layers. That is, the transport system has the possibility of scal-
ing the media stream on its own. Transparent scaling is usually achieved by
dropping some portions of the data stream. These portions, in the form of single
frames or substreams, need to be identifiable by the transport system.

Non-transparent scaling methods require an interaction of the transport system
with the upper layers. This kind of scaling implies a modification of the media
stream before it is given to the transport layer. Non-transparent scaling methods
typically require the modification of some parameters of the coding algorithms or
even recording of a stream that was previously encoded in a different format.

• Scaling examples of audio/video data streams

For audio data, non-transparent scaling can be easily done by changing the sam-
pling rate at the audio stream source. Transparent scaling is usually more difficult
for an audio data stream, since presenting only a portion of the original audio data
is easily noticed by a human listener. Possibilities still exist. For example, voice can
adapt imperceptibly by adjusting silent periods. Dropping a channel of a stereo
stream is another example.

For video streams, the applicability of a specific scaling method depends strongly
on the underlying coding and compression technique. Generally, there are several
possible domains of a video signal to which scaling can be applied. This leads to
the possibility of temporal scaling, spatial scaling, frequency scaling, amplitudinal



9.3  Realization aspects

221

scaling and color space scaling.

An example of the temporal scaling of a video stream is the variation on the num-
ber of video frames for transmission within a time interval. This is best suited for
video streams in which individual frames are self-contained and can be accessed
independently. An example of the spatial scaling is the change of the number of
pixels of each image in a video stream. One way of color space scaling is to switch
between color and greyscale presentations.

An important form of scaling technique is layered encoding, where the stream is
composed of various substreams with different importance/quality significance.
For a spatially scaled stream, for example, a substream might consist of odd/odd
pixels while the other substream would consist of even/even pixels. Exemplified
by layered MPEG, a video stream could use one substream for intra-coded frames,
which can be independently decoded and are themselves self-contained, and one
or even more substreams for other frames.

Note that the varying amount of the audio visual data resulting from dynamic
media scaling has a direct impact on the network resources, such as bandwidth,
needed to transmit them and on the end system resources, such as processing
power, needed to process them.

 9.3.3  Support from communication protocol mechanisms

The implementation and the use of the transfer layer (including OSI network and
transport layer) according to the FAST model is critical for supporting adaptive
multimedia communications and applications. To provide adaptive communica-
tion services with soft guarantee, we need not only the protocol mechanisms to
conduct QoS parameter negotiation and renegotiation, but also the protocol mecha-
nisms to support the implementation and monitoring of the negotiated communi-
cation QoS parameters.

Many current protocols have integrated mechanisms to support communication
QoS. These include the negotiation and renegotiation of QoS parameters and the
maintenance of these parameters during the period of communication. We note, of
course, that the realization and maintenance of these QoS parameters, especially
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the performance parameters, can not be done by the protocol processing alone. The
support from the underlying networks, which should be able to provide and adapt
the basic networking performance parameters to some extent, and the support
from operating system functions are necessary or even decisive. In an ATM net-
work, for example, the renegotiation of QoS parameters over virtual channels
(VCs) are possible using UNI 4.0 signalling. As such, a network technology like
ATM is especially feasible in the context.

• Network layer protocol support

The possibilities of network layer protocol support for layer-encoded media
streams can be seen by conducting a comparison between the original RSVP
approach and MMG approach [Zhang93, Zhang94]:

RSVP is a new resource reservation protocol proposed by the Internet community.
In the initial design, the RSVP protocol sets up reservation state which decides how
to forward each packet and uses packet filter to sort packets into different classes
(separate substreams) for different treatments. Therefore, it is possible to use RSVP
to treat the substreams of a media stream differently and conduct media scaling in
case of need.

The MMG (multiple multicast groups) approach, in contrast, uses multiple multi-
cast groups for a layered-encoded media stream, one group for each substream.
The advantages of MMG are two fold. First, it provides a convenient constraint of
bandwidth selection. For example, bandwidth requirements can be made in rela-
tionship to substreams and receivers can choose their bandwidth usage be deciding
which multicast group(s) to join. Second, it provides a finer control granularity for
multicast routing. Since routing decides where to forward packets, the MMG
method can make substreams visible to QoS routing, so that substreams can be
routed through small pipes that the whole stream cannot. In case of necessity,
unwanted substreams can be pruned (truncated).

By the way, in the newest version of RSVP draft, the idea of MMG is also consid-
ered to be a better choice and only a very restricted set of filters is allowed.

• Transport layer protocol support
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Transport layer protocol can support the realization and application of the FAST
model by providing mechanisms for end-to-end QoS negotiation and renegotia-
tion, and by providing mechanisms for QoS monitoring. We first look at the exam-
ple of RTP QoS Monitoring and then discuss our implementation experiences with
XTP-lite/ST-II more thoroughly.

In RTP [Schulzrinne92, Schulzrinne94], there are mechanisms for supporting QoS
monitoring:

The packets of RTCP, the control protocol of RTP, contain the necessary information
for quality-of-service monitoring and controlling. As data RTP packets, they are
multicast so that all session members can survey how the other participants are
functioning. Applications that have recently sent data, generates a sender report. It
contains information useful for intermedia synchronization as well as cumulative
counters for packets and bytes sent. These allows the receivers to estimate the
actual data rate. Receiver reports are issued by all session members for all senders
they have heard from recently. They contain information on the highest sequence
number received, the number of packets lost, a measure of the interarrival jitter and
timestamps needed to compute an estimate of the round-trip delay between sender
and the receiver issuing the report. Loss and jitter information contained in the
receiver reports can be used by senders to adjust their sending rate thus achieving
graceful degradation in case of need.

The BERKOM-II MMT protocol stack XTP-lite/ST2, as we implemented on a SUN
platform [Fan95f], possesses the necessary mechanisms for QoS negotiation and
renegotiation, and the support for QoS realization and monitoring. Some concrete
cases are illustrated in the following.

The XTP-lite/ST2 transport service provides mechanisms for the definition of the
users requirements in terms of QoS parameters. A small set of clearly defined QoS
parameters are included: TSDU maximum size (bytes), throughput (TSDUs/sec-
ond), end-to-end transit delay (miniseconds), and reliability class (4 classes avail-
able). Rate control mechanisms and timing control mechanisms, for example, are
used to guarantee the negotiated throughput.

In our implementation, QoS negotiation can be conducted at the time of connection
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establishment in a form of “handshaking”. If necessary, the transport user can
require the transport entity to initiate a new round of QoS negotiation at any time.
In terms of an extended socket API, this is done by calling the following function:

setsockopt(so, XTP_lite, B2_SET_QOS, &new_qos, sizeof(new_qos))

In the current version of our implementation, a transport responder can either
acknowledge the new QoS request positively by accepting it, or tentatively reduce
the QoS parameters in its acknowledgment, or acknowledge the new QoS request
negatively by rejecting it. The responder is not allowed to raise the QoS parame-
ters. On receipt of the acknowledgment with the possibly reduced QoS parameters
from the transport responder, the initiator can either accept it implicitly or reject it
explicitly. In this way, an endless negotiation circle will not occur.

The transport applications can also be informed of QoS violation conditions. For
example, the violation of QoS at receiving side is indicated to the transport applica-
tion by way of the setting of a flag B2_QOS_VIOLATION in the extended recv  system
call. The application then needs to check the condition in the following way:

if (flag & B2_QOS_VIOLATION) {

/* Reaction handling to QoS violation, such as new QoS

negotiation. */

}

With the transport services similar to these and others provided by our XTP-lite/
ST-II implementation, it should be feasible to construct an adaptive communication
application which can handle application-initiated adaptation as well as handle
supporting-system-initiated adaptation.

 9.3.4  Adaptation support from OS scheduler

Without the architectural support for protocol processing and the scheduling
mechanism support for all system activities, the FAST model can only be realized
and applied in a primitive and approximate way. This became quite evident for us
as we tried to implement some functions of XTP-lite/ST-II processing according to
the FAST model on a SUN platform, where time-sharing scheduling, primitive tim-
ing support and BSD protocol processing architecture are the main environmental
conditions [Fan95f].
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We have discussed the issue of realizing predictable protocol processing architec-
ture by application-driven protocol processing in Chapter 8. To make an adapta-
tion to changing environments really effective, the related processes and their
timing constraints must also be adapted. Above all, this requires the support from
the OS scheduler.

By using a soft real-time scheduling framework, it is easier to accommodate the
changing environments. This is mainly due to two features of the soft real-time
framework: (1) imprecise timing-constraint descriptions can be tolerated to some
extent; (2) admission control can be made quickly and in an optimistic manner.
Because of the two features, the small fluctuations in the execution timing of the
processes can be tolerated, for example, in a framework like CO-SCHEDULE or
SIM-SCHEDULE (see Chapter 5 and Chapter 7). The following will deal with the
major changes in the execution modes.

• Timing property changes initiated by the user-processes

In the case of application-initiated adaptation, i. e., when the application has to
change its working modes, it usually has to initiate the changes of the timing prop-
erties of some of its processes itself. It is our belief that a supporting-system-initi-
ated adaptation should also be consented by the application processes before going
into effect. For this to work, the timing-constraint changes of the processes can
always be invoked by the application processes themselves actively by using corre-
sponding programming interfaces. We do not, therefore, provide implicit, auto-
matic methods to adapt the processes dynamically by the scheduler itself. The
same policy usually applies to other management subsystem as well. This simpli-
fies the implementation of the scheduling subsystem and the management of other
subsystem in dealing with the adaptation dynamics. As a side effect, the possible
problem of frequent oscillation caused by an automatic adaptation can also be
avoided to a large extent.

One primitive way to deal with process-property changes is to cancel the current
processes and recreate them with their new timing constraints. This is feasible to
some extent, since the creation and deletion of processes are quite easy in such
scheduling framework as CO-SCHEDULE and SIM-SCHEDULE, where simple
admission control and management are used. But it is more convenient for the
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application to accommodate its changing modes by changing the timing control of
the running processes directly. It is also less time-consuming to provide a means to
adapt the processes to new timing properties without having to destroy the current
processes and then to recreate them with the changed timing constraints.

In the scope of the experimental implementations of the CO-SCHEDULE and SIM-
SCHEDULE scheduling subsystems, which has been described in Chapter 7 to a
large extent, some possible implementation forms for process adaptations have
also been experimented.

Recall from Chapter 7, the interfaces for creating a semi-imperative periodic real-
time process and a virtual periodic real-time process take the following forms:

ProcID = CreateProc_PERIODIC (env, unit_prog, end_prog,

period, unit_comp_time, tv_excep)

ProcID = CreateProc_VIRTUAL (env, body_prog, end_prog,

period, unit_comp_time)

After being created, a real-time process should be explicitly started. It is at the time
of trying to start a process that the system makes an admission control. An already
successfully created periodic process or virtual periodic process can be started
using the following:

success = StartProc_RT (start_mode, ProcID, start_time, end_time)

In our experimental implementation, an adaptation of the timing properties of a
real-time process is conducted in a way of restarting the process. The scheduling
subsystem has to make an admission control test again in order to see whether it is
possible to let the process change its timing requirements. A real-time process can
request to change its timing constraints with the following call:

success = AdaptProc_RT (start_mode, ProcID, new_start_time,

new_period, new_unit_comp_time)

where, new_start_time is the intended earliest possible time of mode change for
the target (virtual) periodic process. new_period and  new_unit_comp_time  are the
new intended period and computation time per period for the target (virtual) peri-
odic process. As in the case of starting a real-time process, different start_mode ’s
can be used for different requirements concerning guarantee and timing wishes in
adapting the process.
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In order to check whether the adaptation requirement is allowed, an admission
control is conducted as if, to the time of mode change, the current process with the
current timing properties would be deleted and a new process with the new
intended timing properties would be created. Other aspects of the admission con-
trol for adapting the process are identical to the admission control for starting the
process, which is already detailed in Section 7.3.2  Simple admission control. For sake
of simplicity, only the mixed-placement algorithm is used in the adaptations.

The timing adaptations generally fall into two categories: (1) Capacity reduction. In
this category, the processing capacity required by the adaptation has either
remained constant or been reduced. Then the process can usually be scheduled
according to the new timing constraints as soon as an old period has come to an
end and the time new_start_time  has been reached. (2) Capacity enhancement. In
this category, processing capacity required by the adaptation has been raised. As
mentioned, the scheduling subsystem has to check the new CPU capacity require-
ments as if the current process would be deleted and a new process would be cre-
ated. The admission control might not allow this change of timing-requirements.

If the timing adaptation can not pass the admission control, the AdaptProc_RT  call
returns a value of FAILURE and nothing is changed — the target process remains the
same. If the timing adaptation can pass the admission control, the AdaptProc_RT

call returns a value of SUCCESS. In the state field ProcFlags  of the process control
block (PCB), a state bit “mode change pending” is set and the values of
new_start_time, new_period, new_unit_comp_time  are also recorded.

At the start of each new period, a process with its “mode change pending” bit set

will check whether it has reached its new_start_time . If yes, then the values of

period, unit_comp_time  in PCB are replaced with new_period,

new_unit_comp_time  and the “mode change pending” bit is cleared. (These exten-

sions are made in the “Reinstall TimerJob” part of the flow chart Figure 7-10 on

page 183). The process is then scheduled according to the modified timing proper-

ties automatically.

The sketched implementation scheme is apparently more efficient than the primi-

tive approach of deleting the existing process and recreating a new process.
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• Monitoring and bottom-up notification of overload

The SIM-SCHEDULE scheduler monitors the execution of the high-priority peri-
odic processes. The scheduler preempts a high-priority sure-/maybe- guaranteed
periodic process and possibly renders it into a process of normal priority class m if
this periodic process has not completed its task in one of its period after using up
its claimed execution time. (See, for example, Section 7.3.4  Implementation of soft

real-time handling.) The execution control of the process can then be transferred to a
timing-violation handler defined by this process. That is, the timing-violation han-
dler defined by this process will be invoked as soon as the process is allowed to
execute again. Under the control of the SIM-SCHEDULE scheduler, the mal-func-
tion of one of the high-priority periodic processes will not have negative effects on
other high-priority periodic processes and the processes of the priority class 1 to
(m-1).

By timing-violation handler, the scheduling subsystem notify an application pro-
cess that it is unlikely to schedule its activity according to its time-constraints. This
mechanism allows the application processes to react to the missed deadlines in an
application-specific manner. Such a notification mechanism is one of the key fea-
tures with which a supporting-system-initiated adaptation can be built.

 9.3.5  Support from other OS resource pools

In addition to CPU processing power administered by an OS scheduler, various
other OS resource pools should be used to realize resource reservation, soft guaran-
tee, monitoring, and adaptation. Some of the related investigations have been pre-
sented in the preceding chapters and will not be repeated here. Still some other
considerations are necessary. For example, it is necessary to have high-resolution
timing facilities in order to conduct monitoring and adapting precisely.

For communication applications, access to buffer pool is necessary. A partition of
the whole buffer pool is then necessary: statically reserved partitions can be
reserved to processes requiring guarantees. Other access requirements can be met
by sharing some common buffer partition.
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 9.3.6  Automatic higher-level adaptation management

In a composite application scenario, some higher-level adaptation managements
can be done in an automatic or semi-automatic manner. A set of user-defined pref-
erences and policies can be set up before hand to assist the automatic or semi-auto-
matic choice of which sub-applications to adapt in case of need. The run-time
decisions concerning adaptations can then be done on the basis of such a set of
preferences or policies.

The human ears are usually more sensible to the changes in audio quality, whereas
the eyes can better tolerate the instability of video quality for a while. In a multime-
dia collaboration (MMC) application, therefore, the user might always prefer the
degradation of video quality to the degradation of audio quality, if a degradation is
unavoidable. Such preferences can be applied to the MMC software so that the
video-related processes are always requested to lower their processing capacities if
an overload condition is detected. Another example is the resource allocation dif-
ference between different working modes. The user can predefine a “normal work-
ing mode” in which all activities are allocated some portions of resources to go
ahead, a “mute mode” in which the local site will not send out any A/V streams, a
“local mode” in which A/V interaction with other sites are minimized to let the
local activities such as compiling to go as fast as possible, a “document exchange
mode” in which A/V interaction with other sites are minimized whereas ftp activi-
ties with other sites are given the most favor, etc.

9.4  Summar y of the c hapter

The algorithms and techniques proposed in the preceding chapters have laid a
foundation for building soft real-time supporting systems that are quite predictable
under general and normal operations. However, macro-level application-initiated
adaptations and the supporting-system-initiated adaptations are still needed by
many multimedia applications under certain circumstances. Our adaptive service
model aims primarily at serving these macro-level adaptations, which are still
directly supported and predictively controlled by the supporting system.

The service model tries to provide services in a flexible and adaptive manner
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(called the FAST model). By the FAST model, the construction of the (supporting)
system includes not only normal processing components but also management
component, monitoring component and adjustment component. Two aspects make
it possible to use the FAST adaptive service model: the adaptive nature of some
multimedia applications and the technical bases that supports adaptability. The lat-
ter includes media coding and media scaling, communication protocol mecha-
nisms and other OS supports.

We argue that flexible real-time OS supports are vital to make an adaptive system
support complete. Soft real-time techniques are feasible for this task since they can
not only provide different degrees of soft guarantee, which make the system basi-
cally predictable, but can also accommodate the flexibility of adapting to changing
system environments. Some proposals for providing such OS supports have been
made and experimented in our experimental implementations.
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PART  V

Conclusion
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Chapter  10

Conclusions and future work

We now summarize the main contributions of the dissertation, compare them with
other related work and point out possible working areas for future research.

10.1  Summar y of main contrib utions and compari-
sons with related w ork

Throughout the dissertation, comparisons have been made between our work and
other related work, whenever possible and appropriate. Here once again, we high-
light our main contributions [Fan94a, Fan95a, Fan95d, Fan96b] and emphasize the
main differences between our contributions and those of related work.

Our central idea and starting point for supporting multimedia (especially continu-
ous media) communications and applications is to exploit the special characteris-
tics of them. That is, the support of OS to continuous media should exploit the
special features of continuous media which are not present in or are not typical of
other kinds of computer and communication applications. Some of these features
can be identified as soft real-time, soft guarantee, periodicity, error-tolerance,
adaptability, etc.

Based on a survey and analysis of the state-of-the-art of operating system support
for multimedia, this dissertation has made its main investigations on the following
topics:
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 10.1.1  On a soft real-time framework

Many researchers have pointed out and experimented with the possibility of
applying real-time technologies to multimedia systems [Anderson90a,
Herrtwich92, Jeffay92, Leslie93, Mercer94]. Most of them have applied the real-time
mechanisms and algorithms to protocol processing or other communication-
related activities only. The situation remains the same with some recent work
[Coulson95, Wolf96, Gopal96, Mehra96]. As argued in Part I, this is neither enough
to control the whole multimedia system in a predictable manner nor feasible for a
more complicated system environment like multimedia collaboration.

As a solution, we propose to use a soft real-time framework to control all the activ-
ities on an end-system. As a system framework, a soft real-time framework will
inevitably involve both hardware and software components, with the operating
system as its center. For the part of OS, our soft real-time framework proposal con-
sists of a process framework for categorizing processes, some timing enforcement
models and some base soft real-time scheduling and handling schemes.

The work by [Mercer94a] has a similar proposal of controlling activities of a multi-
media system under a real-time framework. Their motivation is to provide “a uni-
fying framework for hard real-time and multimedia systems”. Therefore, they
advocate the direct application of hard real-time theory to support multimedia
applications. Our work has furthered their ideas. Our soft real-time framework just
tries to achieve a good approximation of the timing properties as predicted by the
hard real-time scheduling theory so that the whole system can be run in a more or
less predictable manner. By exploiting the soft real-time properties of the continu-
ous media applications, this approximation can usually be realized in simple and
efficient ways.

It is also important to point out that the process categorization criteria of our frame-
work are not directly multimedia-dependent. In our framework, the guarantees are
not only accessible by CM-related activities. Other non-CM-related activities can
also receive guarantees if they are needed. This feature of our framework is espe-
cially important for composite MMC scenarios. The frameworks by other work
have quite often some limitations on this aspect.
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As to the realization of the soft real-time framework, we argue that it is not neces-
sary to go so far as to use a vertically integrated nano-kernel approach as used in
[Roscoe95, Leslie96], we advocate a more traditional micro-monolithic approach.

 10.1.2  On soft real-time scheduling and handling
schemes

Soft real-time scheduling and handling schemes are essential for the realization of a
soft real-time framework. A set of scheduling and handling schemes have been
designed which can be used in a concrete multimedia system. The schemes are sim-
ple, predictable, flexible yet powerful. Extensive simulations and implementations
have been conducted to validate their feasibility.

The Generalized Rate Monotonic Theory (GRMT) has been chosen as the theoreti-
cal basis for the design of our soft real-time scheduling and handling schemes. Our
scheduling schemes are designed by integrating some elements from the rate-
monotonic scheduling, the priority-based scheduling and the weighted round-
robin scheduling. The Generalized Rate Monotonic Theory is used in all the meth-
ods as a basis for admission control and for real-time scheduling.

For soft real-time systems, not-quite-often timing overflows caused either by the
system or by the application processes are expected phenomena. Their handling by
soft real-time handling schemes is a normal part of the system operation. Our soft
real-time handling schemes are mostly corrective in the sense that they try to
smooth system fluctuations.

Compared to other related work [Nieh93, Wolf96], our schemes are based on a
sound real-time theory GRMT and use corresponding admission control to avoid
unexpected system saturations. Direct supports in the forms of periodic real-time
processes and virtual periodic real-time processes are not only provided to MM-
relevant activities but also provided to other non-MM-relevant activities, which
should receive guaranteed processing bandwidth to go forward regularly in case of
need. Through timing handling schemes, timing overflows can also be handled in
graceful manners.



Chapter 10 —  Conclusions and future work

236

 10.1.3  On predictable protocol processing and
adaptation support

In order to contain the communication-related activities in the soft real-time frame-
work, protocol processing must be made predictable. Methods have been investi-
gated which can be used to reduce the influences and randomness of the interrupt
processing caused by incoming packets. They either exploit the characteristics of
continuous media communication to make interrupts less and regular, or, simply
make use of the possibility of physical reservation and separation. Two-level inter-
rupt processing is also advocated where the first-level packet interrupt processing
is made brief while the main protocol processing is conducted in the second level
and is scheduled in the framework of soft real-time processing. Processing capacity
for the common-path interrupt processing is reserved in the form of some virtual
periodic system-overhead processes and the main protocol processing is conducted
and reserved in an application-driven manner.

The ideas of putting part of the lower layer protocol processing in user-space have
been used in many other work [Thekkath93, Maeda93, Edwards94]. Their empha-
ses are mainly on the flexibility and efficiency in implementing the protocol pro-
cessing. Our emphasis, in contrast, is put on the predictability. That is, user-layer
protocol processing make the reservation of CPU capacity for protocol processing
more application-oriented, easy and precise.

Although the algorithms and techniques of the soft real-time framework have laid
the foundation for building soft real-time supporting systems that are quite pre-
dictable under general and normal operations, some macro-level application-initi-
ated adaptations and supporting-system-initiated adaptations are still needed by
many multimedia systems under certain circumstances. In addition to other sup-
ports such as media scaling and communication protocol mechanisms, we argue
that flexible real-time OS supports are vital to make an adaptive system support
complete. Soft real-time techniques are feasible for this task since they can not only
provide different degrees of soft guarantee, which make the system basically pre-
dictable, but can also accommodate the flexibility of adapting to changing system
environments. Some proposals for providing such OS supports are made and are
experimented in our scheduling subsystem.
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It is clear that we do not promote a system that relies exclusively on “graceful deg-
radation” to attempt to handle system overload, as is done in [Compton94, Fall95].
Our adaptation supports are still predictively controlled by the soft real-time
framework.

 10.1.4  On theoretical analyses, simulations and
implementations

Operating systems that support multimedia applications must modify the tradi-
tional view of scheduling and resource allocation in order to accommodate the
need for timeliness and to deal with the constraint of limited resource. A new set of
basic concepts, principles and algorithms on resource management and scheduling
has been developed. They deal with components of a soft real-time framework,
semantics of soft guarantee, real-time process model, criteria of suitable scheduling
schemes, soft real-time attributes, timing enforcement model, algorithms for sched-
uling and handling, admission control etc. As a theoretical exploration, mathemati-
cal bounds of soft real-time with loss is considered under different assumptions
about the deadline and computation time distributions of the arriving processes.
They are modeled by means of queueing models and their theoretical performance
limits are derived.

Simulations and implementations are conducted to further ascertain the feasibility
of the soft real-time framework and to evaluate the related soft real-time schedul-
ing and handling methods. The simulations have evaluated and compared the pro-
posed schemes under a wide range of system parameter settings. Some of the
quantitative evaluation results from the simulations have been used in choosing
algorithms and their parameters in the prototype implementations. The experi-
mental implementations and related measurements have further verified the feasi-
bility of our approach and algorithms. The practical experiences such as making
the scheduler as a timing enforcer and timing predictor in one are quite enlighten-
ing for more practical work in this direction.
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10.2  Directions f or future resear ch

In retrospect, the goals set up at the beginning of the dissertation have been
reached. Our work has developed a set of models, methods and algorithms suitable
for multimedia operating system support. As a whole, they constitute a novel
architecture which provides general and efficient support for multimedia. The
basic ideas of them can also be separately applied to the existing OS environments
so that the usability or the performance of the existing systems can be improved to
support the multimedia applications better.

Based on the current work, research and development can be continued in many
ways. Refinements and evaluations of some variations of the soft real-time sched-
uling and handling schemes may be conducted; more specific strategies for the
scheduling of other resources other than timing scheduling may be explored; a
kind of service definition with quantitative matrix may be specified so that many
kinds of QoS can be managed in a management information base (MIB); ......; it is
most desirable, of course, if the proposed models and algorithms can be used in a
complete system solution with large-scale practical application scenarios.

The work on multimedia support is by far not complete yet. There are still many
challenging problems to be tackled. Through the research and development on OS
support for multimedia, we believe, a more solid basis can be created on which
more efficient and powerful multimedia systems can be built.
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Appendix: ET-SCHEDULE

in Chapter 5, an innovative soft real-time scheduling scheme named ET-SCHED-
ULE has been mentioned. In this appendix, the scheduling scheme will be
described in more detail. ET-SCHEDULE stands for an elastic time-scale soft real-
time scheduling scheme (or drifting clock scheme). The scheduling scheme is
aimed at avoiding some disadvantages brought about by the traditional scheduling
schemes including CO-SCHEDULE and SIM-SCHEDULE.

• Problems and questions concerning timing-violation handler method

The motivation for introducing an elastic time-scale soft real-time scheduling
scheme is that many questions can sometimes be raised to a timing-violation han-
dler method based on a rigid time scale:

How should the programmers of the real-time (RT) system take timing violation/
emergency conditions into explicit consideration? How to express and program it?

At what priorities should these emergency handlers be scheduled?

To what extent should/could the handlers change the normal behavior of their
parent RT process, for example, by changing their RT timing attributes or even
aborting their further processing?

Which one causes more disturbance to the whole system: to activate and execute an
timing-violation handler, or, to let the extra part of the user process, which exceeds
the proclaimed deadline, simply run to end?

In addition, the currently running process should sometimes produce intermediate
inputs which are necessary for the processes followed. Can the processes followed
still make reasonable progress even though the current process does not produce
all the intermediate results because its time-budget is used up?
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• Elastic time scale scheduling model

The elastic time scale scheduling model frees the RT processes of the above bur-
dens by providing them with the following features: the RT processes will never
have timing violations thus they do not need any emergency handler. The pro-
gramming model for these RT processes are quite simple: they always assume their
timing characteristics are guaranteed by the scheduling system.

The idea of the drifting clock is to slow down or to speed up logical time in case of
need: slow down time for the real-time tasks which have a longer actual running
time than they previously estimated (and claimed) through their real-time parame-
ters so that they can get their work done. And, speed up the time when the system
is idle or is executing non-real-time tasks.

• Operational scheme

There are several forms of elastic time scale. In all these elastic time scale schemes,
two time scales are used as time references — a physical time scale which is pro-
duced by the exact physical clock and a drifted logical time scale which is pro-
duced by a drifting logical clock.

A simple form is explained first. In this first form of elastic time scale, logical time
is always equal to or slower than physical time.

Scheduling is done according to the logical time scale. The logical clock usually
runs at the same pace as the physical clock or it sometimes runs behind the physi-
cal clock. A real-time task is always executed till the end of its period once it is
started. At the end of each period of the real-time task execution, the logical clock is
advanced/adjusted according to the claimed logical execution time of the real-time
task instead of according to the real physical execution time of the task. But the log-
ical clock is never adjusted ahead of the physical clock. (The physical clock runs, of
course, always at its physical pace.) The logical clock might be behind the physical
clock because real-time tasks might have run physically longer than they formally
(logically) claimed. If the logical clock runs behind the physical clock, then it
should try to run at a faster rate in order to catch up with the physical clock.

Figure 10-1 shows a section of the scheduling scenario. In the figure, ri’s are real-
time (RT) tasks and ti’s are non-real-time (non-RT) tasks. It is assumed that all the
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tasks claim logically an estimated execution time of 4 time units. It is further
assumed that the logical clock runs two times as fast as the physical clock in its
“faster” mode when the logical time is behind the physical time. At logical time
(TL) and physical time (TP) 0 (TL = TP = 0), RT task r1 is started and it takes 4 physi-
cal time units as claimed. Both the physical clock and the logical clock are advanced
to time 4. The following RT task r2 has actually run for 6 physical time units instead
of the logically claimed 4 time units. At the end of r2 period, the physical clock is
advanced to 10, but the logical clock is only advanced to 8 according to the claimed
logical execution time of r2. Now the logical clock is behind the physical clock and
it runs now two times as fast as the physical clock. The non-RT task t3 takes then 4
logical time units but actually only 2 physical time units because the physical clock
runs now faster. At TL=TP=12, the two clocks run at the same pace again. RT tasks
r3, r5 and r6 take less than 4 physical time units, but the logical clock is at maximum
adjusted to be the same as the physical clock, not faster than the physical clock.

Figure 10-1 Drifted logical time vs. actual physical time

• Rationales and variations

The rationales for such an elastic time scale are:

1) Do not use rigid deadline — the value function of a process does not usually
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become zero after the deadline;

2) Deadline violation need not lead to some kinds of exception handling, or
even worse, to the abortion of the processes;

3) Compensations between the worst-case-execution time of different processes
are usually possible.

The above simple form of elastic time scale can be extended to several variations.

Variation 1 — With Elasticity Boundary (EB). The drifted logical time can be at
maximum EB time units slower than the exact physical time. If the drifted logical
time is EB behind the exact physical time, a catch-up in the logical time is done in
that the logical time is assigned the value of the physical time. (All the tasks which
should have been executed in the “catch-up gap” are then ignored.)

Variation 2 — With violation handler. To invoke timing-violation handler when a
RT task makes the logical clock drift two much.

Variation 3 — Free drifting. The logical time can be slower or faster than the physi-
cal time.

Note that, although non-real-time processes usually still get their shares to go for-
ward, their physical shares are actually getting smaller when the logical clock runs
faster than the physical clock. In this way the real-time processes are favored in a
new aspect. In addition, for some forms of elastic time, some adjustment points for
the logical clock may be introduced: when there are no ready RT tasks to run, then
the logical time and physical time are adjusted to be the same at once. This method
has the effect that all the non-RT tasks which should have been executed in the
“catch-up gap” are ignored.

• System effects of elastic time scale scheduling

Elastic time is one of the methods of dealing with the problem of estimating the
execution time of a process. With this method or other compensation method such
as timing-violation handler, the worst execution time of a process need not be esti-
mated so pessimistically that only a low utilization can be achieved. The biggest
advantage of the elastic time scheme is that the RT users of the process scheduling
system have now a very simple view of the system: they can program their process-
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ing in such a way as if all the processing will be completed as they expect, i.e., no
deadline violation, no exception handling, and they can have a static flow control
of their own.

Note that such virtual-time based RT scheduling is only feasible in the context of
soft real-time scheduling for the reason that a strict adherence to the real world
time-scale is not necessary for some soft real-time environments. It is not feasible
for hard real-time scheduling. Actually, elastic time scheme will not cause a mess
only if (a) the applications have a certain degree of elasticity in viewing the time
scale, (b) the durations of time deformation from physical time to logical time are
usually short, and (c) the frequencies of such deformation are low. This is the case
for some MM applications with soft-real time requirements.

Elastic time scale provides a framework in which many kinds of the existing RT
scheduling methods can be adapted to function. Note also that it is possible to
schedule some of the real-time processes in a system using the elastic time scale
scheduling method while scheduling others using the traditional scheduling meth-
ods.
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