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ABSTRACT:

In many vision applications the depth relief of an observed scene is small compared with the extent of the image. Beside man-made
environments these scenes may be approximated by a plane. Due to environmental influences camera parameters can gradually change
which motivates the need for a continuous self-calibration. Based on the theory of recursive parameter estimation we present an
update scheme for the parameters to handle endless video streams in real time. The geometric parametrization of the frame to frame
homographies allows to incorporate information of other sensors. The application is the visual navigation of robots and unmanned
aerial vehicles moving above nearly planar environments. The approach will be empirically evaluated with a synthetic data set and
demonstrated with a real data set. A typical example is given by a real data set of an indoor robot observing the ground floor with one
camera.

1 INTRODUCTION

Motivation. Many vision applications deal with a small depth
relief of an observed scene compared with the extent of the im-
age. Often these scenes can be approximated by a plane e.g.
the ground plane. Especially man-made environments essentially
consist of planes. Therefore a homography based approach is
proper to model such configurations. The main application at our
focus is an indoor robot observing the ground floor in order to de-
termine its trajectory visually. The odometry of an indoor robot
is often unreliable due to the slip of the wheels. Therefore image
based determination of ego-motion should be used in addition to
standard odometry.

Due to environmental influences camera parameters can gradu-
ally change. Therefore the investigation of odometry determined
from a monocular sensor observing a ground plane requires con-
tinuous self-calibration. The application also requires to handle
an endless video stream in real time. Therefore a method apart
from the computational effort of bundle adjustment is needed.

Related Work. Fundamental work on geometric decomposi-
tion of homography was done in (Faugeras and Lustman, 1988).
But this method requires a proper calibration of the used cameras.
Camera self-calibration from views of a 3D scene has widely in-
vestigated, see for example (Pollefeys et al., 1999, Maybank and
Faugeras, 1992). But it is known that these techniques in gen-
eral fail for planar or almost planar scenes since they run into
singularities. Nevertheless, self-calibration from planar scenes is
possible (Triggs, 1998, Zhang, 1999, Malis and Cipolla, 2002).

In (Zhang, 1999) every available metric information of the scene
is used and the calibration is determined by plane to frame ho-
mographies. A closed form solution is given and improved by
non-linear optimization based on maximum likelihood criterion.
The work was inspired by (Triggs, 1998). He computes con-
straints from the dual image of the absolute conic again from
plane to frame homographies. Frame to frame homographies
are used in (Malis and Cipolla, 2002) to build up a so-called
super-collineation-matrix and to enforce multi-view constraints
e.g. rank constraint. The cost-function for the self-calibration is
then given by the difference of the eigenvalues of matrices with

similar properties to the essential matrix. Fundamental work on
relative orientation was done by Nistér. His solution to the five-
point relative pose problem (Nistér, 2004) using the essential ma-
trix can deal 3D as well as planar scenes. But the determination
of the essential matrix requires calibrated cameras and the preci-
sion of the relative orientation is decreased when the scene be-
comes planar. Therefore the relative orientation computed from
the essential matrix is preferable if the cameras move with known
calibration in 3D environments.

Contribution. We present odometry visually determined from
a monocular camera including update of the intrinsic camera pa-
rameters. We have to deal with endless video streams and have to
ensure real time capability. The update of the intrinsic camera pa-
rameters is relevant because for example the focal length varies
depending on the temperature. Nevertheless we can assume an
initial guess because the used cameras are known.

It is a well known result in photogrammetry that the best results
can be obtained by bundle adjustment (McGlone et al., 2004). On
the opposite the relative orientation between subsequent frames
can be computed very efficiently. One possible compromise is
an incremental bundle adjustment. A typical method for an in-
cremental bundle adjustment of homographies can be found in
(Zelnik-Manor and Irani, 2002, Han and Kanade, 1998).

We introduce a different technique inspired by Kalman filtering
(Welch and Bishop, 2003, Kalman, 1960), where the information
of the past is subsumed in one parameter vector and its covari-
ance matrix. The method reflects the possible smooth change
of the calibration and also allows to incorporate other sensor
information (e. g. GPS, INS, odometry) by using a geometric
parametrization. The computational effort is comparable to ad-
justment over two homographies and is independent on the num-
ber of frames taken into account for estimating the current state.

Notation. For formulation and representation we use the frame-
work of algebraic projective geometry. Homogeneous vectors
and matrices will be denoted with upright boldface letters, e.g.
x or H, Euclidean vectors or matrices with slanted boldface let-
ters, e.g. x or H . In homogeneous coordinates ’=’ means an as-
signment or an equivalence up to an scaling factor λ 6= 0. Many



parameters have to be represented in various coordinate systems.
Observations in the coordinate system Sk attached to the k-th

frame are denoted by an upper index e.g.
k
x. Relative orienta-

tions or mappings between two cameras are written as (Rkl, tkl)
representing the motion from Sk to Sl.

2 MODELING

2.1 Basic Relations

For a 3D point Xi in the plane π the incidence relation

nT
k

k

Xi −dk = 0 (1)

holds, where the plane is represented by its normal vector nk

and its distance dk to the origin of the camera coordinate sys-
tem Sk. The normal vector n = [nX , nY , nZ ]T is oriented so
that it points towards the camera, i.e. nZ ≤ 0. The representa-
tion of the point Xi in an other camera coordinate system Sl is
equivalent to the coordinate transformation

k

Xi= Rkl

l

Xi −tkl (2)

being a rigid 3D motion. Equations (1) and (2) reveal that the
object points and their corresponding image points are related by
the 2D homography

k

Xi=
“
Rkl − tkln

T
l /dl

” l

Xi= H lk

l

Xi (3)

induced by the plane π. The rotation Rkl and the translation tkl

constitute the relative orientation between the two cameras with
five parameters since only the ratio tkl/dl is determinable from
(3), cf. figure 1. The decomposition of H lk according to (3)
has up to eight solutions which can be reduced to two reasonable
solutions (Faugeras and Lustman, 1988).

Assuming straight-line preserving cameras the projection of the

object points Xi is xik = Kk

k

Xi with the homogeneous cal-
ibration matrix Kk introducing five additional intrinsic parame-
ters per camera. Thus the corresponding 2D homography reads

k
xi= KkH lkK

−1
l

l
xi= H′

lk

l
xi (4)

allowing to determine eight parameters from the corresponden-
cies of one image pair. Note that the matrix H lk — in contrast to
H′

lk — can be decomposed into Euclidean entities.
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nk, dk

nl, dl
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Figure 1: shows two cameras in general position and orientation
observing a point Xi on the plane.

2.2 Adjustment Model

Functional Model. Without loss of generality we consider a
parameter estimation for two groups of observations l1 and l2
being explicit functions of the unknown parameters x, i.e. l1 =
f1(x) and l2 = f2(x). This model is the basis for recursive and
sequential parameter estimation schemes, where observations are
added at later stage resulting in an update for the parameters.

With the additional restrictions h(x) = 0 for the parameters the
corresponding linear model for the estimated entities reads (Mc-
Glone et al., 2004)

∆l1 + bv1 = A1
d∆x (5)

∆l2 + bv2 = A2
d∆x (6)

H d∆x = c (7)

with the Jacobians A and H , the estimated corrections bv, the
differences ∆l = l− f(x0) and d∆x = bx−x0, and the contra-
dictions c = −h(x0), evaluated at the approximate values x0.

Stochastic Model. We assume statistically independent obser-
vation groups, i. e. Σl1l2 = O, with the known covariance ma-
trices Σl1l1 and Σl2l2 . These covariance matrices are related to
the true covariance matrices by an unknown variance factor σ2

0

which can be estimated from the estimated corrections bv, see be-
low. If the initial covariance reflects correctly the uncertainty of
the observations, this variance factor is σ2

0 = 1 (McGlone et al.,
2004).

Normal Equations. Minimizing the squared and weighted sum
of residuals

Ω = bvT
1Σ

−1
l1l1

bv1 + bvT
2Σ

−1
l2l2

bv2 (8)

under the linear constraints (7) the corresponding normal equa-
tion system becomes»
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with the Lagrangian multipliers λ and
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∆l2. (11)

The solution of the system (9) is identical to the solution of the
alternative normal equation system (McGlone et al., 2004)24 AT

1Σ
−1
l1l1

A1 AT
2 HT

A2 −Σl2l2 OT

H O O

35 24 d∆x
µ
ν

35 =
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c

35
(12)

with the additional Lagrangian multipliers µ and ν. This solution
can address the situation Σl2l2 = O, that is one can fix param-
eters by setting their covariances to zero. Furthermore one can
undo information by substituting −Σl2l2 with Σl2l2 .

By applying the definition for a pseudo inverse, i.e. Σ+ =
Σ+ΣΣ+ and Σ = ΣΣ+Σ, it can be shown that the equivalence
of (9) and (12) holds for singular covariance matrices Σl2l2 , too.
Thus the weighted sum

Ω = bvT
1Σ

−1
l1l1

bv1 + bvT
2Σ

+
l2l2

bv2 (13)

becomes minimal subject to the constraints for the parameters.



Precision. The covariance matrix of the estimated parametersbx results from the inverse normal equation matrices by»
Σbxbx .

. .
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=
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(14)
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. . .
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(15)

and reveals the theoretical precision of the parameters.

The unknown variance factor can be estimated by

bσ2
0 =

Ω

R
(16)

with the redundancy R of the system. Thus the empirical preci-
sion becomes bΣbxbx = bσ2

0Σbxbx. (17)

2.3 Prior Information

The need for introducing prior information into the estimation
process is manifold: Geometric weak configurations of the sen-
sors or the objects may lead to degeneracies resulting in multiple
solutions, a parametric family of solution, or no solution at all. To
cope with these degeneracies prior information can be introduced
in a Bayesian manner by parameter values and their uncertainties
in form of covariance matrices. These can be either real observa-
tions of the sought parameters or fictitious observations. Beside
the eventually necessity to effect determinability the use of prior
information leads to stabilization and smoothness.

Applying (9) in a rigorous successive way would mean keep the
entire information of the past for the estimations of future states.
But a sneaking change of parameters due to changing environ-
mental conditions requires a changing point of linearization, too.
To cope with this situation we introduce a factor α ∈ (0, 1) which
reflects the amount of information which should be used to esti-
mate the current state of the parameters (memory length). Fur-
thermore this factor determines the relative weight for the contri-
butions of current data and the prior, i.e. the past information.

The amount of data taken from the past to determine the current
state can be estimated in advance. If the number m of observa-
tions per image pair is constant the limit of the geometric series
s =

Pn
i=1 mαi−1 approaches s = 1/(1 − α) for n → ∞ and

α < 1. Thus for α = 0.95 the amount of approximate 20 image
pairs will be used to estimated the current state for instance.

2.4 Relation to Kalman filtering

Neglecting the constraints (7) in (9) yields the formulas for the
recursive parameter estimation or the Kalman filtering (Kalman,
1960). With the estimation d∆x1 = Σbx1bx1

A1Σ
−1
l1l1

∆l1 because
of the first observation group l1 and the corresponding covariance
matrix Σbx1bx1

= (A1Σ
−1
l1l1

A1)
−1 the Kalman-Filter gain matrix

is (Welch and Bishop, 2003)

F = Σbx1bx1
AT

2

“
Σl2l2 + A2Σbx1bx1

AT
2

”−1

. (18)

The update of the parameters due to the new observations l2 is:

d∆x = d∆x1 + F (A2
d∆x1 −∆l2) (19)

Σbxbx = (I − FA2)Σbx1bx1
(20)

These equations constitute the so-called measurement update
(correction) of the extended Kalman filter.

In an intermediate step the time update equations (prediction) are
responsible for forward projection of the parameters, e.g. because
of a change in the coordinate system accompanied by error prop-
agation.

3 REALIZATION

3.1 Parametrization

For the recursive parameter estimation we set the distances dk
.
=

1 for all pairs of images. For the plane normal vectors nk we
assume all three components to be unknown and introduce the
(hard) constraint

nT
knk = 1. (21)

The over-parametrization is justified by the fact that eq. (21) is
bilinear in the parameters and therefore convenient for lineariza-
tion. For the rotation Rkl three parameters rkl are introduced
with l = k + 1.

For the single camera we choose the affine model

K =

24 c cs x0

0 cm y0

0 0 1

35 (22)

with the camera constant c, the scale m, the skew s, and the prin-
cipal point [x0, y0]. The intrinsic camera parameters are therefore
k = [c, m, s, x0, y0]

T. Parameters with known or assumed val-
ues can easily be fixed by setting the corresponding variances in
Σl2l2 to zero.

Dropping the indices the parameter vector is x =
[kT, nT, rT, tT]T, where k are global parameters, n are
global parameters which have to be propagated, and r and t are
local parameters for each consecutive image pair.

3.2 Observations, Weights and Model Validation

The correspondencies of image points can be established essen-
tially in two ways: The first method first extracts interest points
in both images and then finds the correspondencies, e.g. by cor-
relation followed by RANSAC (Fischler and Bolles, 1981). The
second methods extracts interest points in one image and searches
them in the second image, e.g. by a tracker (Lucas and Kanade,
1981).

Empirical covariance matrices of the sub-pixel positions can be
derived anyway – either by an residual-based or an derivative-
based approach (Kanazawa and Kanatani, 2001). The inverse co-
variance matrices are then the weight matrices for the adjustment
procedure. The first observation group l1 consists of the coordi-
nates of the set of observed points. By considering errors in one
image for each correspondence i and mapping H

k
xi +

k
vxi =

H11
l
xi +H12

l
yi +H13

H31
l
xi +H32

l
yi +H33

(23)

k
yi +

k
vyi =

H21
l
xi +H22

l
yi +H23

H31
l
xi +H32

l
yi +H33

(24)

holds with the reprojection errors vi.

The application of the RANSAC procedure enforces the validity
of the mapping model (4). Thus model violations by non-planar



scenes can be treated as long as a dominant plane is visible. Fur-
thermore, with the realistic weights for the observations the esti-
mation of the variance factor (16) can be tested statistically since
its expectation value is one.

3.3 Approximation Values

In general the parameter estimation model requires approxima-
tion values x0 for the sought parameters. For applications pro-
cessing a dense video stream it is usually sufficient to use the
estimation results from the previous image pair as approximation
values for the next image pair. Furthermore for the relative ro-
tation R0 = I3 holds. For applications with a long base line
approximation values can be obtained from the decomposition
(3) with an approximately given calibration matrix.

3.4 Application I: Calibration of an Airborne Camera

For a high altitude airborne camera the observed scenes usually
appear flat. The heights above ground and the relative orientation
between two consecutive frames is individual. Thus we have 3
rotation parameters and 3 translation components for each frame
pair and quasi global parameters k and n. Prior information is in-
troduced by the estimated parameters and their uncertainties from
the respective previous image pair. The normal vector has to be
transformed into the next camera coordinate system. Therefore
the prior information reads l2 = (kT

l , nT
l )T with

kk = kl (25)
nl = Rlknk, (26)

Rlk = R(rlk), and the covariance matrix Σl2l2 estimated with
(14) or (15) from the previous stage. The Jacobian of (25) and
(26) is

A2 =

»
I5 O O O
O RT

lk (∂RT
lk/∂rlk)nk O

–
. (27)

Note that Σl2l2 has a rank deficiency of 1 due to the constraint
nT

knk = 1 on the parameters. Its null space N (Σl2l2) =
(0T, nT

k)T can be use to compute the pseudo inverse Σ+
l2l2

if
needed.

For a metric reconstruction of the sensor trajectory the scale has
to be introduced and updated by dk = dj + nT

j tjk (Han and
Kanade, 1998).

3.5 Application II: Camera Calibration for Indoor Robots

For an indoor robot moving on a ground plane the camera height
above ground dl = dk = d is constant. Furthermore the ro-
tation is restricted to rotations by an angle φ around the plane
normal n being the only rotation parameter r = (φ). Thus an
appropriate parametrization of the rotation matrix is the angle-
axis-representation

R(n, φ) = cos(φ)I3 + sin(φ)Sn + (1− cos(φ))Dn (28)

with Sn inducing cross product Snm = n × m and Dn de-
noting the dyadic product Dn = nnT. The plane normal is
perpendicular to the translation vector and therefore

nTt = 0 (29)

holds and can be used as an additional constraint.

Since the normal vector remains unaffected by the rotation, the
prior information is simply kl = kk and nl = nk with the
Jacobian

A2 =

»
I5 O 0 O
O I3 0 O

–
(30)

w.r.t. to all parameters x = [kT, nT, φ, tT]T.

3.6 Algorithm

The outline of the proposed algorithm is as follows: For each
consecutive frame pair do

1. Feature extraction. Determine interest points in the first
image, e.g. by the Förstner operator (Förstner and Gülch,
1987).

2. Tracking. Find the corresponding points in the subsequent
image, e.g. with the KLT-tracker (Lucas and Kanade, 1981)
together with estimated covariance matrices for the esti-
mated shifts.

3. Outlier elimination. Apply the RANSAC procedure to de-
termine an inlier set (Fischler and Bolles, 1981) in conjunc-
tion with minimizing algebraic distances.

4. Recursive parameter estimation. Calculate the parameter
updates and the corresponding covariance matrices accord-
ing to (9) and (14).

For applications with a wide stereo base line the interest points
have to be determined independently with sub-pixel accuracy.
Furthermore, in the presence of a moderate number of outliers
the RANSAC procedure can be replaced by an adjustment proce-
dure with a robust cost function.

4 EXPERIMENTAL TESTS

For the evaluation of the approach we used synthetic and real data
sets. With the help of the synthetic data we show that the algo-
rithm converges to the correct solution and produces feasible re-
sults. The applicability of the approach is shown with a real data
set from a camera mounted on a dolly driving through a corridor.

For the initialization of the procedure we introduced a rough
guess of the parameters and their uncertainty whereas the a rank
deficiency of the covariance matrix of the normal vector has been
enforced by spherical normalization accompanied by error prop-
agation (Heuel, 2004).

4.1 Synthetic Data

Test Setup. For the evaluation of the approach we simulated
the data of an indoor robot with a camera moving above a vir-
tual chess board (see figure 2). The camera moved on a circle of
constant height above the plane, the angle increment for the 200
positions were 1.8 deg.

Figure 2: shows an image of the synthetic image sequence with
the extracted interest points.

The image of the chess board was mapped into images of size
512 pxl × 768 pxl with the help of the calibration matrix

K =

24 512 0 384
0 512 256
0 0 1

35 . (31)



White noise σ = 2 gr has been added to the gray values. The
orientation angles of the camera w.r.t. the driving direction were

roll: 0.0 deg
nick: 55.0 deg
gear: 1.8 deg,

(32)

where the gear angle denotes the relative change in the azimuth
between two consecutive camera orientations. With this test setup
we have constant unknown parameters.

The images have been processed in the way described in section
3.2. Thus the results include possibly systematic errors of the
tracking algorithm or the correspondences search. For the prior
for the first image pair we used true parameter values (31), (32)
and σc = 20 pxl, σx0 = σy0 = 5 pxl, σnx = σny = σnz =
0.1 as a rough guess of the uncertainties of the parameters k =
(c, x0, y0)

T and n.

Figure 3 shows the distribution of the estimated variance factor
(16). Its mean is approximately 1. Thus we conclude that the
weights for the observations used within the adjustment proce-
dure are plausible and reasonable since the model of a planar
scene really holds and outliers are rejected by RANSAC.
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Figure 3: shows the distribution of the estimated variance factor
(16) with expectation value 1.

For the evaluation the χ2-distributed Mahalanobis distances

dM = (bx− ex)T bΣ+bxbx(bx− ex) (33)

of the estimated parameters bx and their true values ex can be com-
puted for each image pair using the pseudo inverse. Figure 4
shows the empirical distribution of these distances for all param-
eters x = [kT, nT, φ, tT]T and confirms the expected shape of a
χ2-distribution. For a rigorous common adjustment of all image
pairs the expect average degree of freedom is 3 because the intrin-
sic parameters and the normal vector would be global parameters.
The result illustrated in figure 4 is slightly worse because of the
underlying mixed distribution.

4.2 Real Data

To demonstrate the feasibility of the approach we acquired a real
data set with a video camera mounted on a dolly. The projection
center was approximate 1.55 meters above the ground floor. The
nick angle was approximate 33 deg, roll angle approximate 0 deg
and the azimuth w.r.t. the driving direction approximately 45 deg.
The image resolution is 576× 720 pixel. The trajectory is curved
with radii up to 2 meters. Figure 5 shows exemplary an image of
the observed floor. Points on the visible part of the wall and on the
fire extinguisher have been tracked, too. But since they do not lie
in the dominant plane they have been discarded by the RANSAC.
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Figure 4: shows the empirical distribution of the Mahalanobis
distances (33) for all parameters with the expected shape of the
χ2
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8-distribution.

Figure 5: shows the tiled floor, the tracked interest points (·), the
points in the dominant plane determined by RANSAC (◦) and the
resulting motion field.

We chose a memory factor of λ = 0.99 to bridge sequence parts
with critical configurations e.g. straight forward motions. Fig-
ure 6 shows the evolution of the estimated camera constant. The
parameter has been initialized 50 pixels larger than the value
determined separately by Zhang’s calibration method (Zhang,
1999). The runs for parameters of the relative orientation are
plotted in figure 7. The concatenation of these relative motions
delivers the sensor trajectory.

The computations require approximately 3 seconds per image
pair with a non optimized MATLAB Code including graphical
output. Thus the real time capability is within easy reach.
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Figure 6: shows the estimated the camera constant c for the first
220 frame pairs.
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Figure 7: shows the estimated parameters tx, ty , tz and φ of the
relative orientations for the first 200 frame pairs.

5 CONCLUSIONS AND OUTLOOK

We presented and studied a continuous self-calibration method
for mobile cameras observing a plane. The procedure is suit-
able for real time applications such as autonomously navigating
indoor robots capturing endless video streams. By the applica-
tion of the RANSAC the approach is able to cope with model
violations as long as the scene plane dominants. Because of the
geometric parametrization of the frame to frame mappings infor-
mation from other sensors can easily be incorporated. Experi-
ments with synthetic and real data sets confirm the feasibility of
the approach.

Conclusions. For the determinability of the parameters a no-
ticeable relative rotation and translation between consecutive
frames is required. Image frames with almost identical orien-
tations should be discarded e.g. by enforcing a disparity limit of
say >10 pixel for at least one image point (Nistér, 2001). Crit-
ical motion sequences such as straight forward motions can be
bridged by introducing an appropriate memory length.

Outlook. Reference data is needed to perform a more mean-
ingful evaluation of the results for real data sets. For the intrinsic
parameters this ground truth information could stem from a lab
camera calibration with superior accuracy. The influence of the
prior information and past information respectively can be con-
trolled by an adaptive weighting of the information sources. Fur-
thermore the estimation process can be stabilized by introducing
further (soft) constraints which enforce a smooth trajectory of the
sensor.
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