Laser and plasma surface treatment of aluminum substitutes wet-chemical processes for fiber metal laminates

<u>A. Klotzbach¹</u>, J.-S. Pap¹, J. Standfuß¹, M. Burchardt², S. Dieckhoff²

¹Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Dresden ²Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, Bremen

LightMAT 2017, Bremen 10.November 2017

Agenda

- Fiber metal laminate / GLARE processing
- Requirements for pre-treatment
- Process overview
- Pre-treatment by
 - Atmospheric pressure plasma
 - Functional tapes
 - Laser
- Results of mechanical testing
- Conclusion

GLARE am A380 (source: fokker.com)

© Fraunhofer IWS Klotzbach, A.: LightMat2017 **Fraunhofer** IFAM

Fraunhofer muchulum IWS Dresden

Fiber metal laminates

Hybrid laminates

(source: flightforum.ch)

- Fiber reinforced metal laminates (FML)
 - Aluminum, titanium, steel, ... +
 - Aramid, glass, carbon fibers, …
- Glass fiber reinforced aluminum (GLARE)
 - Aluminum sheets (AA2024) 0.3 mm - 0.4 mm
 - uni-directional S-glass fiber prepreg + epoxy resign 0.13 mm
 - Fiber orientation based on loading condition

Fiber metal laminates

GLARE - Advantages

- Density of GLARE approx. 10% lower than monolithic aluminum
- High corrosion stability
 - Corrosion attack will be limited by prepreg layer
- Higher damage resistance
- Higher fatigue properties based on reduced crack growing

Fiber metal laminates

GLARE – Production steps

Coil-delivery ->

Part cutting by milling->

PSA-treatment ->

Primer-coating ->

-> Lay-up (manually)

-> Autoclav

-> finished GLARE part

Quelle: Fokker

Fraunhofer muchulu

IWS Dresden

Requirements for surface pre-treatment

State of the art pre-treatment:

- 4-step wet-chemical pre-treatment
 - Cleaning, etching, anodizing, primering
- \rightarrow Specific surface (~4 µm ablation), defined oxide layer

 \rightarrow Treatment time, human safety, costs, environment protection, legal requirements

Requirement:

Pre-treatment with dry (physical) processes

- Active (oxide layer) and passive (adhesion) corrosion resistance
- Production factors (automation, time in m²/min, costs, safety)

© Fraunhofer IWS Klotzbach, A.: LightMat2017 **Fraunhofer** IFAM

Fraunhofer IWS Dresden

Process developments

Atmospheric pressure plasma technique

- Ideal for Inline-processes
- Application with robot coupling
- Treatment of small areas, lines or large surfaces
 - 0.04 0.4 m² min⁻¹ (CO₂-plasma pre-treatment, 4 40 nozzles per side)

© Fraunhofer IWS Klotzbach, A.: LightMat2017

Fraunhofer M.M.

Dresden

IWS

Functional tapes

- Simple handling
- Save and clean process
- Environment friendly
- No contamination
- Especially for local treatment

Laser pre-treatment

Pulsed laser Working field: 110 x 110 mm² PI: 50 W v: up to 5 m/s

Continuous wave laser Working field: 100 x 100 mm² Pl: 2000 W v: up to 15 m/s

Very short interaction times generate material ablation

Ablation depth: typ. 5 µm

Productivity

Pre-treatment with brilliant cw fiber laser

- characteristics:
 - combination of melting and sublimating
 - High scanning speeds realize short interaction times
 - Line scanning on the surface

Parameter	
Wavelength	1070 nm
Laser power	350 - 2000 W
Scan speed	6 – 15 m/s
Fokus diameter	56 µm

high-powe on the fly

© Fraunhofer IWS Klotzbach, A.: LightMat2017

IWS

remocut*FRP high-power on the fly

Results

- Large area pre-treatment
- Ablation depth: > 15 μm
- Scan speed: 10 m/s

material: AA2024 uc thickness: 0,3 mm

No acceptable deformation!

Further decrease of interaction time using higher scanning speed

© Fraunhofer IWS Pap: WerkstoffWoche2017

Laser pre-treatment using 1D – scanning

"State of the art"

Pulsed laser@5m/scw laser@15m/sAblation depth: $\leq 5 \ \mu m$ >15 \ \mu m

1D-cw-Remote @ 300 m/s

Productivity

© Fraunhofer IWS Klotzbach, A.: LightMat2017

Fraunhofer manufation

IWS Dresden

Principle

- Combination of "laser beam scanning" and "laser beam switching"
- Proven technology: laser treatment of electrical ferritic sheets ("laser magnetic domain refinement")

Principle

- quick 1D-beam deflection (up to 300 m/s)
- continuous material movement (up to 80 m/min)
- Programmable line distance and length
- Modified laboratory system

Parameter		
Wavelength	1070 nm	
Laser power	2000 W	
Scan speed	up to 300 m/s	
Fokus diameter	ellipse (a = 18 μm, b= 460 μm)	
Step-by-step material transport		

Fraunhofer M.M.

IWS

Dresden

© Fraunhofer IWS Pap: WerkstoffWoche2017

Structuring results@AA2024uc

Structuring results@AA2024uc

Complete line processing with artificial oxide layer

© Fraunhofer IWS Klotzbach, A.: LightMat2017 Fraunhofer IFAM

Structuring results@AA2024uc

Enlargement of oxide layer thickness

© Fraunhofer IWS Klotzbach, A.: LightMat2017

Fraunhofer muchulum IWS Dresden

Testing of adhesion properties

- Tensile shear test specimens (DIN EN 2243-1) thickening on both sides
- Peel test specimen (DIN EN 2243-2)

Pk.	Pre-treatment	Primer
В	Non treated	
LM	Solvent	ja
TSA	Wine-sulfur-anodizing	ja
pw1	pw-Yb:YAG (fiber laser)	ja
pw2	pw-Nd:YAG (rod laser)	ja
cw1	1D-cw-Remote	ja
cw2	1D-cw-Remote	ja

Material: AA2024 uc; 0,3 mm Adhesive: GF-Epoxy resin Primer: Cr(VI) - Primer

Autoclav - run

Cross section tensile test spec.

© Fraunhofer IWS Klotzbach, A.: LightMat2017

Fraunhofer Mr.M. Dresden IWS

Results of adhesion tests

Comparison and conclusion

Comparison of processes

process	Tensile sheer strength [MPa]	Peel resistance [N mm ⁻¹]
Laser	37	7.8
mech. blasting + Plasma	35	7,7
grinding + functional tape	31	7,2
PSA	31	9.5

Conclusion:

- Processes can fulfill the adhesion requirements
- Material removal is needed for good adhesion and corrosion behavior
- Kind of primer influences the pretreatment processes
- Optimization to increase corrosion resistance is needed
 - successful: Filliform + salt spray testing;
 - under investigation: Bondline corrosion

© Fraunhofer IWS Klotzbach, A.: LightMat2017 Fraunhofer IFAM

Dresden

IWS

Thanks to

Klotzbach, A.: LightMat2017

IFAM

IWS Dresden