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Abstract

The reference process for the development of automotive product lines developed
in the project VEIA introduces different kinds of models for the representation of
architectural views of the system family under development. So far we described
the different models for these views and guidelines on how to develop the models.

In this paper we describe a solution for the problem of representing overlapping
functionality in component architectures. The approach uses aspect-oriented
concepts to describe overlapping functionality by components without overlaps.
The resulting system architecture is generated by a weaving algorithm.

The approach moreover contains concepts for further abstractions of aspects and

their instances that support a patternlike solution for the problem of reusing
functionality.
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Introduction

1 Introduction

1.1 Area of modeling

In project VEIA a reference process for the development of automotive product
lines has been devised. It describes three basic views that have to be modeled
within the development of an automotive product line: product models, function
models, infrastructure models (see Figure 1 and [Gro08]).

Figure 1 VEIA reference process survey.
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Every view contains one or more artifacts that model the automotive system.
The functional view, for instance, contains three main artifacts: the function
hierarchy, the function architecture, and the software architecture. All models are
interconnected by relations, either refinement relations, configuration relations, or
allocation relations.

The models, that make the views and therefore the system, are described using
different modeling techniques. The product line description, for example, uses
feature trees as modeling language. The other models of the function and
infrastructure view use hierarchic component architectures as means of modeling.
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1.2 Problem

Hierarchic component architectures consist of components, that can be decom-
posed in smaller components or component architectures, respectively. Every
component consists of an interface, that defines the boundaries of the compo-
nent, the black box view. The internal structure, and behavior is defined in the
body of a component.

Because of the similarity of component architectures by means of structuring
and composition/decomposition concepts, in the following, only the function
architecture is discussed. All problems and solutions are valid for the other
component architectures as well, although it is possible, that there are small
differences in the implementation of the solutions.

In automotive modeling, the target system is the electronic system of a whole
car. Therefore the function architecture models the whole system. In order to get
manageable and processable subsystems, the function architecture is decomposed
in subsystems, that are further decomposed etc.

This decomposition takes place according to different criteria, e.g. functionality,
commonality, user visibility, or organizational needs. Often the chosen decompo-
sition criterion does not provide good means to uniquely separate two parts. A
steering wheel, for example, can be chosen to belong to the driving features, it
can represent part of an MMI', or it can be classified as part of the navigation
system.

This means, depending on the decomposition criterion, different architectures are
created during the decomposition process. Every architecture has its advantages
and disadvantages concerning one or more decomposition criteria. One common
criterion for the first decomposition steps is the organizational structure, in which
the subsystems are implemented. If, for example, the steering wheel is modeled as
part of the MM, it can be directly identified as such part of the MM, therefore the
responsibility for its implementation is put on the MMI unit?. On the other hand,
the unit responsible for the driving features has no direct access to the driving
wheel, they have to communicate and cooperate with the MMI unit in order to

1
2

MMI: man machine interface
The term “unit” is used to denote a project team, be it an organizational unit or not.
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model and implement their system. A more elaborate example for this problem is
given in the next section using the case study “Condition Based Service”.

The main problem is the need to chose between one criterion or the other.
Component architectures do not allow components to hierarchically belong to
several components at the same time, they are disjoint entities of an architecture.
Therefore, when modeling intertwined functionality with component architectures,
compromises have to be accepted. This leads to loss of modeling information,
because the interdependencies are not modeled. Furthermore parts of components
are scattered throughout other components, which leads to tangled models in
other components. In conclusion, overlapping functionality leads to crosscutting
components, that have to be dealt with. These crosscutting components are not
well modeled concerning coherence and cohesion, therefore resulting in several
interdependencies of the architecture.

However, it is not the goal of this paper to challenge the modeling principle of
component architectures. On the contrary, the principle of disjoint components
leads to hierarchically well structured models, that are easy to maintain. The
advantages of component architectures are manifold: they reduce the modeling
complexity, or provide stable, reusable components.

The problem of avoiding overlapping components manifests in different ways.
In this paper we describe two problems in detail: hierarchic composition of
components and scoping/cutting of components.

The first problem, hierarchic composition of components, deals with the method-
ical question, which subcomponents should be grouped hierarchically into one
component. Seen from the other side of the model, the question is, how to
decompose one component into subcomponents. In relation to the problem of
overlapping components, this problem mainly occurs in the early stages of system
design, when overall decisions are made. One example is the first hierarchy of
organizational units, that has to be decomposed into the main car functions.
Nearly every main car function can be grouped to several organizational units, but
only one unit can be chosen.

The second problem, scoping/cutting of components, describes a rather “technical”
problem. Regardless on how the components are decomposed, they still have to
communicate with each other. Depending on the decomposition, the interfaces
and connectors have to be modeled accordingly. Therefore the whole system
communication depends on the decomposition of the system. In order to model
an overlap-free system, the function scope has to be aligned with the component
scope. This alignment bases on design decisions, that are not kept in the model
themselves. Thus, these design decisions are lost after the scoping process is
finished.

Modeling Overlapping Functionality 7
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1.3 Approach

Overlapping concerns themselves are no fundamental problem for modeling
systems. If there was a way to describe and handle architectures with overlapping
concerns, there would be no problem at all.

On the other hand, the development of large, complex systems, and distributed
development as well, are far more easy to maintain, when hierarchic modeling
techniques are used. This was mainly introduced in programming and modeling
by David Parnas in his paper on decomposition criteria [Par72]. Hierarchic decom-
position for example lead to component-oriented modeling languages. Hierarchic
decomposition, on the other hand, demands for disjoint hierarchic elements: e.qg.
components.

Thus, until the late 1990s, these overlaps in concerns could not be modeled,
because of the disjoint decomposition techniques. Therefore, in the following
discussion, we relate to component-oriented techniques to describe the problems
of overlapping concerns.

When decomposing a system into hierarchic components, the problem of over-
lapping concerns has to be dealt with pragmatically. Component modeling does
not provide the means of describing these concerns in their overlapping nature.
Aspect-oriented technigues, or subject-oriented modeling methods try to solve
the problem by allowing native modeling of overlapping concerns. In general, one
can say, there is a conflict between concerns and components, when concerns
have to be described as components.

Concluding, the problem of overlapping functionality leads to several problems
on several levels of modeling. The main reason for all problems is based on the
fact, that overlapping functionality cannot be modeled by means of component
architectures with disjoint hierarchical components. Therefore compromises have
to be made concerning the system design, that lead to the aforementioned
problems.

In this document we introduce an approach to model overlapping components
natively, i.e. to provide means for modeling overlapping components within
component architectures. Additionally, we describe a weaving algorithm for
converting overlapping architectures to regular component architectures with
disjoint components. Thus, the new approach can be used for modeling a system
with overlaps without losing connection to existing processes and models, that
work with component architectures.

8 Modeling Overlapping Functionality
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The approach uses aspect-oriented principles in order to describe overlapping
functionality. Within the aspect-oriented community, problems such as crosscutting
components, scattering, or tangling are the main focus of research. Originating
in support of programming languages, aspect-orientation spread out to other
areas of system design, such as requirements engineering, modeling, or code
generation. The aspect-oriented solutions so far deal with models in a way, that
supports code generation or modeling of programs in UML. There are but a few
approaches for high-level modeling such as modeling in architecture description
languages (ADLs). Among these approaches even less tackle special problems of
the automotive industry, such as distributed development processes, integration of
suppliers, preservation of intellectual property (IP), seamless integration in existing
processes and model landscapes etc.

Therefore, a new approach, that bases on existing solutions, but focuses on
the automotive domain is needed in order to introduce a practical approach
into existing development processes. The challenge is not only to solve the
aforementioned problems, but to define an approach that is applicable in practice,
that respects existing models, experiences, processes etc.

The presented approach allows for these conditions by providing not only means
for new modeling technigues but by providing a solution to generate well-known
models, that can be used as before. The new modeling techniques are, first, the
possibility to model overlapping functionality. Secondly, the approach regards
the need for pattern solutions by introducing the concept of aspects and their
instances. This results from the experiences with the approach so far. Often,
functions not only overlap but consist of a central part and distributed parts,
that are alike. The parts that are alike build patterns, that are used several
times. Examples are “condition based service”, “error logging”, or introduction
of safety patterns such as redundancy. Our approach separates these patterns
from their use in the model. Thus, the complexity of the models can be reduced
without reducing the modeling power. Furthermore, the patterns are modeled as
overlapping functionality, therefore allowing the weaving algorithm to generate
the component architecture, that can be used as before.

As mentioned before, the approach concentrates on function architectures as
example for component architectures. The adoption of the approach to other
architecture description languages, e.g. for the infrastructure is an open issue.
The concepts, however, are easily adoptable, for their simplicity. For the moment,
the approach is defined and formalized for the structure of the models. It does
not solve the problem of behavioral description and weaving. Nevertheless, the
problems and possible solutions for behavioral modeling are discussed throughout
the document.

Modeling Overlapping Functionality 9
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1.4 This document

This document describes the aforementioned approach in the context of the
project VEIA. First, the problem is discussed in the context of the case study
Condition Based Service (CBS). Section 2 introduces the case study, afterwards the
modeling shortcomings are described and displayed. A short systematization of
the problems closes the section.

Secondly, existing solutions are discussed. In Section 3 we first discuss the tra-
ditional way of component-oriented cuts in order to create disjoint component
architectures. After that, we dispute secondary hierarchies. The section is closed
with the discussion of aspect-oriented approaches.

Thirdly, we present our approach. In Section 4 we introduce the aspect-oriented
part of the approach. Afterwards, we extend the approach by the separation
of aspects and their instances. We use this extension to describe the modeling
of patterns and their introduction into the models. The sections ends with the
formalization of the concepts.

Finally, the results and the approach are discussed in Section 5. After an overall
discussion we name the open issues, that have to be solved later on. The dispute
of pro and contra ends this section.

The end of the document is the references section.

10 Modeling Overlapping Functionality
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Problem

This section describes the problem in more detail. We therefore introduce the case
study “Condition Based Service”. It will help to demonstrate the problem using a
real life example.

2.1 Case study “Condition Based Service”

The case study “Condition Based Service” consists of a real world function, that is
modeled throughout VEIA. The function “Condition Based Service” (CBS) itself is
described and modeled in [GKMO7b]. Therefore, we give only a short summary
introduction into the function:

CBS is an auxiliary function in a car, that computes and displays the next service
date. The computation bases on the wear-out of certain wearing parts, that is
either measured with a sensor, or estimated based on average, empirical wear-outs
of these parts. The parts that are included in the computation vary over the
different products or product families. Premium cars, for example, contain more
sensors, more parts are monitored, therefore, the computation is more accurate.
Middle class cars monitor less parts, they too contain less sensors, therefore, the
computation is less accurate, but still better than the non-adaptive computation
so far.

2.2 Modeling CBS in VEIA

In VEIA, the reference process defines the artifacts, that have to be modeled
for a system. In the case study, we modeled the product line description, the
function architecture, the software architecture, and the technical architecture.
Furthermore, we created the connecting models for configuration and allocation.
Thus, the function CBS is modeled completely within VEIA ((GKMO07b]).

During the modeling phases, we researched several methodical and conceptual
issues. The first issue, of course, was the development of the VEIA reference
process ((GEKMO7]). We described three main views and the corresponding
artifacts, that describe a system at a very abstract level. Variance handling and

Modeling Overlapping Functionality 11
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modeling was integrated from the beginning, therefore allowing product families
to be modeled with VEIA artifacts. In order to completely support product families,
all artifacts contain means of describing, identifying, and configuring variance
within the model.

Secondly, we researched measuring our models. Therefore, we researched metrics
for architectures in general ((GKMO07a]). During this work we had to acknowledge,
that very few metrics exist, that measure not only architectures but architectures
for product families. Therefore a main focus had to be laid on adopting and
interpreting metrics in order to achieve meaningful results. This work was deep-
ened in [Man08a], where the number of discussed metrics was increased and the
conceptual foundations were widened. Both papers use CBS in order to measure
an existing architecture and to answer questions concerning implementation costs,
complexity, benefit of reuse etc.

The question of variant handling concerning configuration was thirdly researched
in [MRO8]. In this paper, configuration is discussed with respect to the impacts
on all VEIA artifacts. Furthermore, questions like completeness of configuration,
conflicts, conflict resolution etc. were raised and answered. The CBS function
contains several variants, thus allowing the methods and concepts to be checked
against a real system.

Last but not least, the process of modeling was researched in [Gro08]. In this
paper, the modeling process of the case study is discussed and annotated. The
main idea is modeling fast, in order to achieve quick results, but on the other
hand to model as formal as possible. The paper discusses methods to achieve a
good balance between these concurring goals. Again, CBS is the example, that is
modeled throughout the paper, in order to consolidate the methodical steps.

One part of the modeling process is the definition of the scope of functions, and
therefore, components. The issue of scoping arises throughout all modeling activi-
ties that concern component architectures. It was not researched systematically
before in VEIA, scoping was done pragmatically, geared to existing solutions. The
problem of scoping is part of the overall problem of overlapping functionality, that
is discussed in this paper. In the following, the problem is shown in more detail
than in the introduction. We use the example of “Condition Based Service” for the
illustration of the problem. While this example is a real-life example, the solutions
in this paper do not reflect real-life models, e.g. used by the BMW Group.

12 Modeling Overlapping Functionality
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ture

2.3 Exemplary function architecture

In the following we will model the function architecture of a car system. One of
the functionalities will be “Condition Based Service”. CBS is used as an example
for an overlapping functionality, so we can illustrate the problem of component
architectures with respect to overlaps.

One can model a system top-down or bottom-up, depending on the level of
knowledge about the system, or organizational standards, or modeling guidelines,
etc. In the automotive industry it is hard to motivate a top-down approach,
because the systems already exist, so there is no need to start over new. On the
other hand, that methodical drawbacks, such as the inability to model overlapping
functionalities, are solved pragmatically in existing architectures, so there exists
the need to revise previous design decisions. Therefore, we start to model the
system not completely from the scratch, but not with an existing solution either.
We first list the functionalities, that should be carried out in the system. After that
we model these functionalities in a function architecture.

Before delving into modeling itself, we have to focus on decomposition, hier-
archies and scoping. These problems are facets of the same modeling process:
defining subsystems of a system or subsystem, respectively, so the modeling and
implementation process can be continued.

The topmost component of a component architecture describes the system to be
modeled. In order to model this component, the designer has to decide, what lies
within the system and what lies outside, i.e. the designer has to define the scope
of the system. In order to partition the system into subsystems, the designer has
to define the scope for every subsystem as well. This continues for every hierarchic
level that is modeled. In component architectures only disjoint components are
allowed. This means, the scope for every component has to be disjoint as well.

The process of scoping is related to the definition of hierarchies. A hierarchy in a
component architectures defines, which components are subcomponents of a hier-
archic component. Thus, the hierarchic component consists of its subcomponents,
adding no further behavior than defined in the subcomponents.® The definition of
the hierarchy on a higher level often follows organizational needs, implementation
responsibility etc. The hierarchies on lower levels are more function driven, as the

3 This is a constraint, that is set for VEIA models. It is not necessarily true for other component

architecture models.
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components tend to become implementable elements.

The definition of hierarchies in a top-down-approach is called decomposition.
The process in a bottom-up-approach is called composition. Decomposition and
composition are terms for the process of defining hierarchies. Often the term
“decomposition” is used for the result of the decomposition process: a structure
decomposed into components. In this document we will separate the models
(subcomponents) from the process (decomposition) for the sake of clarity.

A decomposition has to follow certain decomposition rules, that have to be set
before or during the process. Possible criteria for decomposition are: functionality,
commonality, user visibility, organizational needs, or even rules of thumb. As men-
tioned before, the criterion can depend on the level of hierarchy, that is achieved
so far. Which criterion is chosen depends upon the needs and organization of the
development process.

The main problem concerning the decomposition lies in the impossibility to create
an overlap-free decomposition. Every decomposition criterion focuses on one
main aspect of a system. Given a sufficiently large system, not every function will
fit into one criterion. Several functions interact with each other, often functions
are intertwined by their very nature. Thus, one criterion separates two functions,
whereas the same criterion cannot separate a third function from the others. This
problem is well known in modeling, even in 1972 David Parnas raised the question
of good decomposition criteria [Par72]. Tackling the problem he introduced the
concept of information hiding, i.e. creation of disjoint components. Now, we
know, that information hiding helps organizing components and therefore helps
modeling a system, yet the problem of overcoming the “Tyranny of the Domi-
nant Decomposition” [IBM] is not solved. Although this cannot be scientifically
proven for all decomposition criteria, there is enough experience in the modeling
community, especially the aspect-oriented community, founding this thesis.

In the following we will model a car system with special focus to the example
“Condition Based Service”, in order to identify and illustrate the problems.

System functionality

The following list contains an extract of the functionality of a car system. We
chose to model but a few functionalities for the sake of brevity. The system to be
modeled consists of the following functionalities:

— ignition control
— throttle control
— motor oil check

14 Modeling Overlapping Functionality
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ture

gear oil check

driver's display

time display

kilometer reading display

tachometer

radio display

alert warning display

head-up display

condition based service (inspections, wheels, motor oil, spark plugs, particle
filter, brake pads, microfilter, brake fluid, gear oil)
wheel pressure control

wheel speed control

brake pad check

First hierarchy

The first hierarchy reflects organizational concerns.* This is the designer’s decision,
it bases on our experiences with OEMs. The first hierarchy is the responsibility
hierarchy, too. This means, the subsystems created here are given to the ac-
cording organizational unit, which is responsible for the further modeling and
implementation of the subsystem. The following hierarchy is created:

4

motor management
ignition control
throttle control

motor oil check
gear oil check
driver’s display
— speedometer

- time display

- kilometer reading
— tachometer

— car computer display

Organizational units mostly reflect responsibilities that may arise from hardware views on the
system. Other possible structures consider a process view, resulting in requirements units, de-
sign units, etc. In our example we assume a mixed hardware and functional view.

Modeling Overlapping Functionality 15
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- radio
- alert warnings
— head-up display
e condition based service (inspections, wheels, motor oil, spark plugs, particle
filter, brake pads, microfilter, brake fluid, gear oil)
e wheel functions
— wheel pressure control
— wheel speed control
— brake pad check

Figure 2 First hierarchy of the system.
motor management driver's display
ignition control speedometer
throttle control tachometer

car computer

motor oil check
output

head-up

gear oil check display

wheel functions
condition based service

wheel pressure
control

wheel speed
control

brake pad check

As can be seen, every functionality is arranged into the hierarchy (see Figure 2 for a
graphical representation). Thus, four organizational units take care of the system:
the motor unit, the MMI® unit, the CBS unit, and the wheel unit. The arrangement
of the functionalities can be questioned as follows: the functionality “brake pad
check” is arranged into “wheel functions”, because it is a wheel function and
therefore should be modeled and implemented by the wheel unit. On the other
hand, the functionality “CBS” needs the values of “brake pad check” as well,

> man machine interface
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Figure 3

Exemplary function architec-
ture

therefore it could have been arranged into “CBS”. A third possibility could have
been, to subsume the functionality “CBS” under “wheel functions”. This would
have lead to problems with other functionalities, that affect “CBS” as well.

As we can see, even the first hierarchy contains functionalities, that cannot be
arranged unambiguously. In order to clarify the problem, see Figure 3 for a
enhanced architecture diagram, in which the required and provided information
is shown. Here we can see in detail, that several of the information needed by
the functions is provided by other functions or needed by other functions too. An
example is the information motor rotation speed, that is needed by the functions
ignition control, throttle control, and speedometer as well.

Hierarchy including required and provided information.

motor management driver's display

motor rotation speed

motor rotation speed
motor load [: speedometer

PN ignition point
motor temperature ignition control D

motor knock O Canjereed [] tachometer

pedal angle car computer data
car computer

pedal acceleration cbs display data [: output
motor rotation speed

motor load throttle value car computer data
[: throttle control :] head-up
motor temperature cbs display data [: display
gear
driving profile [:
car time D
motor oil temperature inspection dates E
motor oil quantity . motor oil check value motor oil wear O
L | motor oil check [1 spark plug vear cbs display data
O particle filter wear [: condition based cbs service data
service
q cbs storage data
gear 0il temperature brake pad wear [: :] g
gear oil quantity ) gear oil check value mierofilter wear
i i i gear oil check :] brake fluid wear
gear oil viscosity [: E
gear oil wear E

wheel functions

wheel pressure
4 wheel pressure :] wheel pressure value

wheel temperature [: control

wheel speed

wheel speed
g [: control

:] wheel speed value

brake pad wear-out
:] brake pad value

brake pad temperature [: brake pad check

For the sake of brevity in the following we discuss only the signals motor rotation
speed, motor oil quantity, and motor oil viscosity, the results are easily adoptable
on the other signals and functions. In Figure 4 the relevant information sources
and drains for the needed signals are modeled. It becomes clear, that several
sources are used by several functions, which is a problem for scoping, as we will
see.
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Figure 4

2.4 Scoping

Cutout of the system with information sources and drains.

driver's display

(. speedometer

motor management

P igrfition point
ignition control :] E P

motor rotation f— motor rotgtion spepd >D
speed source |~

o

hyottle value

»[| throttle control []

motor oil :] +guantid

quantity source

motor oil [Vicosify
motor oil -

viscosity source

> . mofor oil check value
motor oil check :]

car computer
output

> motor oil |
4>[: wear computation

A

cbs displlay data R [: head-up
display

motor oil wear

condition based cbs service data

service
j cbs storage data

The problem is now to define system boundaries, scopes for the different function-
alities. These scopes define, who is responsible for the design and implementation
of a function. This supports the distribution of the development process, because
every implementation unit can work independently. Therefore, the scoping should
be as good as possible by means of minimizing the communication overhead and
maximizing the cohesion of the components.

In the previous step we focused on three major units of responsibility, building
the system’s hierarchy: the motor management subsystem, the driver’s display
subsystem, and the condition based service subsystem. Every subsystem will be
implemented by a separate unit. In Figure 4 not every function is assigned to one
subsystem, these remaining functions have to be put into one of these subsystems.

The task of scoping deals with these functions. All functions have to be assigned
to a subsystem, in other words, the scope of the subsystems has to be set in a way,
that the subsystems are disjoint and every function is assigned to one subsystem.
This allocation of functions is not unique, but can be done in different ways. The
function motor rotation speed source delivers data to motor management and
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Figure 5

Scoping

driver’s display as well. Therefore it could belong to either scope. In this case, one
could argue, that the function “naturally” belongs to motor management.

But the function motor oil wear-out computation is a function, that is only neces-
sary for condition based service. On the other hand, the knowledge to compute
the data is located within the motor management unit. Therefore, it should be
located in the according subsystem. The problem continues, if the providing source
and drain functions are viewed, they too have to be placed into one subsystem.

In short: the scopes of the subsystems overlap. Figure 5 shows a selection of
possible, overlapping scopes of the functions.

Possible scopes of the system (cutout).

driver's display

ter

motor management

motor rotation f[— motor rotation speed ‘D
speed source =

P igrfitipn point
ignition control :] 8 P

thfot gl 11
[_] throttle control :] oty vae

motor 0il [—morordit—quantit
quantity source - T

or [pil check value

mo’
motor oil check :]

ulul

Y

motor of 1‘v1 cosify
motor oil m!
viscosity source [—

condition based cbs service data
service

—| car computer
)[: motor oil } > | output
,[: wear computation

bs display data 'm head-up
motor o0il wear i, display

& cbs storage data

Abstracting the problem leads to the general problem of overlapping concerns.
Whether the concern may be organizational units, functionality, or another crite-
rion, one almost always gets overlaps, because of the nature of the problems, that
is not disjoint. Figure 6 shows the abstraction, as can be seen, the scopes of the
decomposed concerns overlap, they are intertwined.
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Figure 6

Abstract visualization of overlapping scopes/concerns.

2.5 Systematization of the problems

In order to systematically present and discuss the problem mentioned before, the
problems are described systematically in this section. First we will abstract the
problem for the sake of clarity. Secondly, we will discuss the effects of the problem
in three ways: component scattering, component tangling, and component
crosscutting.

Overlapping components

The problem of scoping bases in the impossibility to uniquely separate components
(functions) according to one decomposition criterion. This problem is well known
in literature, it is often referred to as the “tyranny of the dominant decomposi-
tion"(e.g. [IBM, OT99]). It says, that the decomposition along one concern is not
sufficient for other concerns, that would be cut into several items by this decom-
position. In general, concerns overlap, thus the resulting decomposition should
overlap as well. Solutions for this problem exist, e.g. in software development IBM
introduced Hyperspace as solution [OT99], Aspect] introduced aspect-oriented
programming [Asp].

In the following a short categorization of the problems caused by overlapping
concerns is performed. The main problems are pointed out, so the existing
solutions and the new approach can be compared by means of providing a
solution to the problems. First, we will describe the effect of scattering, after that,
the effect of tangling, followed by crosscutting. In the following we concentrate
on the description of the problem, after that we describe the solutions and
approaches so far.
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Scattering

Scattering of a concern means, that the component, describing the concern, is
used in several other components. This effect can be seen, if a component could
be placed hierarchically in several components. In order to solve this problem,
the developer decides to include the same component in all related components,
therefore duplicating the component for every use. In programming, this is the
typical copy-and-paste-problem, where the scattered code is hard to maintain,
side effects or inconsistencies have to be dealt with.

An example is a logging functionality, that has to be integrated in every security-
relevant function of the system. Often, the logging functionality is copied into
every function concerned, thus scattering the logging functionality.

Tangling

Tangling of concerns means, that several concerns are implemented within one
component. This effects occurs, if a component is affected by several concerns,
and, in order to disjoin the component from other components, all concerns are
implemented in this component. The result, implementations in one component,
that belong to different concerns, leads again to components that are hard to
maintain, because of its inner complexity and the missing separation of concern
code.

An example is the motor oil quantity source. This function has to provide the
motor oil quantity for the motor management concern. It too has to provide the
wear-out of the motor oil in percent for the CBS concern. If both functionalities
are implemented in one function, this function contains tangled code.

Crosscutting

Crosscutting of a concern means, that the concern spans multiple units of decom-
position. Therefore, in order to disjoin these units, concerns have to be cut at the
borders of the decomposition units. This leads to pieces of a concern, that are
spread throughout other concerns, therefore the concerns are crosscut.

An example is the concern condition based service. For example, the function
motor oil quantity source could be placed into motor management, providing an
providing interface for CBS. Thus, the concern CBS crosscuts the concern motor
management.
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3 Related solutions and work

In the following related solutions and work are discussed, that deal with the
problem of overlapping concerns. We will show, how the problem is tackled,
and which advantages or shortcomings exist. First, component-oriented methods
are discussed. Secondly, the idea of secondary hierarchies is presented. Lastly,
aspect-oriented techniques are discussed.

The presented solutions are no complete list of existing solutions to the problem.
The selection shows the range of pragmatic approaches (component-oriented) over
modifications of existing approaches (secondary hierarchies) up to new approaches
(aspect-orientation).

3.1 Component-oriented cuts

Component orientation demands for disjoint components, no overlapping compo-
nents are allowed. This leads to well separated components that communicate
through well-defined interfaces. Component orientation has vast advantages in
programming and modeling when it comes to flexibility, reusability, modularization,
encapsulation, etc. Therefore, component orientation should not be rejected in
this context. As can be seen further, all other approaches, including our new
approach, base on component orientation, they mainly enhance the component-
oriented methods with new possibilities to use overlapping concerns in order to
construct component architectures.

Having said this, how do component-oriented approaches solve the problem of
overlapping concerns? Generally speaking, they solve the problem by ignoring it.
By “ignoring” | mean, that the problem of overlaps is solved by defining interfaces
for the overlapping sections, thus cutting them in several components; without
regard to keep the information of the overlaps. The concrete strategy depends on
the circumstances of the development.

In Figure 7 the example of Figure 6 is visualized for components. The components
overlap, this situation is not allowed in component architectures. Therefore the

components have to be disjoint.

Figure 8 shows the easiest solution of the problem, every overlapping section
is cut and converted into an interface. This simple approach generates disjoint
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Figure 7

Figure 8

Abstract visualization of overlapping components.
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components, that tend to be small but specialized. Therefore, following steps in
real development concentrate on hierarchic reorganization of the components in
order to reduce connections, interfaces, or number of components.

Abstract visualization of disjoint components.
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Figure 9 shows the result of a hierarchic reorganization of Figure 8. The overlaps
of Figure 7, that suggest a certain hierarchy, were used for structuring.

This leads to a better structured, maintainable model. Figure 10 shows the
advantages of information hiding concerning readability and complexity of the
model. In the figure, the inner components are hidden, the main structure and
information flow is visible.

As can be seen, the aforementioned effects of tangling and crosscutting appear.
Depending on the concrete system, scattering can occur too. Even in the abstract
example, the cut component parts, that belong to several components, are in
a hierarchy relation with one unique component. Therefore the components
crosscut each other with this component part.

In Figure 4 we showed a cutout of the CBS example system with information
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Figure 9

Figure 10

Component-oriented cuts

Abstract visualization of restructured disjoint components.

Abstract visualization of restructured disjoint components (hidden inner functions).

R

sources and drains. Based of this system we will illustrate the component-oriented
approach further. In order to match the CBS example given in [Gro08], one
change had to be introduced: The function motor oil wear-out computation
was splitted into the functions motor oil wear-out sensor and motor oil wear-
out computation. Figure 11 shows one hierarchy, that matches the functional
and organizational needs. The functions are hierarchically allocated in motor
management or condition based service, respectively. Therefore, condition based
service was enlarged by a computation function and a master function.

In the method paper [Gro08] the scope of CBS is defined in figure 7 (“CBS system
boundary”). In that figure, the computation is encapsulated by the motor oil
wear-out sensor, and is thus not part of the CBS but of the motor management.
This scoping makes sense, because the knowledge, how to compute the sensor
data needed for CBS is located in the motor management unit. Therefore, the CBS
sensor should belong to the motor management function. On the other hand,
the motor oil wear-out sensor is a function of the CBS, meaning it is only needed
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Figure 11 Exemplary hierarchy of the CBS cutout.
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by CBS, not by any other function. Thus, we have the typical effect of crosscutting,
and tangling.

The same argumentation goes for the display functions, e.g. head-up display, that
have to display the CBS data. The requirements of what and when to display are
set up in the context of CBS, therefore the display functions belong to CBS. On
the other hand, the display functions have to handle more data than just CBS,
therefore they create an own concern. Again, crosscutting concerns arise.

The display function head-up display additionally shows the effect of tangling,
because the display of several data is managed by one function. Therefore the
data of several concerns are handled within one component, which is the effect
of tangling.

In this example, the effect of scattering is not present. This is because of the size
and abstraction level of the example. Scattering arises to a greater extent when
several other design steps are made, such as allocation of functions on hardware.
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For the sake of brevity, the effect is not shown at this place.

Conclusion

As could be seen, component-oriented modeling gives the possibility to solve the
problem of overlapping concerns. On the downside, the side effects of scattering,
tangling, and crosscutting are introduced into the system model. Additionally, the
overlapping concerns as information are lost, only the cut components are stored
within the architecture.

3.2 Secondary hierarchies

The problem of overlapping concerns is a basic problem of component-oriented
modeling languages. Therefore, when defining the architecture description lan-
guage MOSES ([Kle06]), the problem was present too. At this time we decided to
introduce “secondary hierarchies” into the modeling process.

For this concept, one defines a system architecture using a component-oriented
method, such as MOSES. This system architecture is referred to as “primary
architecture” or “primary hierarchy”.

Now, the overlapping concerns are identified within this architecture, ignoring
composed component boundaries etc. The functions, belonging to a specific
concern are referred to as “secondary hierarchy”, meaning a second, not fully
expressive architecture.

This secondary architecture is defined as view on the primary architecture. There-
fore, component boundaries of the primary architecture can be ignored, they even
can be deleted, resulting in a secondary architecture with its own hierarchy. The
secondary architecture allows viewing connections or describing conditions for
the system. On the other hand, only a few modeling steps are allowed within sec-
ondary hierarchies, in order to avoid modeling inconsistencies within the primary
or other secondary architectures.

Conclusion

Secondary hierarchies allow the modeling of overlapping concerns. The use
of these hierarchies is limited in expression potential as well as restructuring
possibilities. Therefore they enhance component-oriented techniques but do not
provide an equal development of overlapping concerns.
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3.3 Aspect-orientation

Aspect-orientation was invented to solve the problem of overlapping concerns.
It was described and used in Aspect] ([Asp]), and after that adopted for nearly
all areas of programming and modeling. The approach we introduce in the next
section is based on aspect-oriented principles. Therefore, the main issues and
terms of aspect-orientation are described here. Additionally, a short overview over
existing approaches of aspect-oriented modeling of component architectures is
given.

3.3.1 Introduction

Aspect-oriented approaches focus on native description of overlapping concerns.
Therefore, the different concerns are separated, and later woven into a whole
system description. This leads to an improved modularization of the overlapping
concerns, and thus, to a more understandable and maintainable model.

The different concerns are described using the modeling units: classes, modules,
components, etc. After that, the concerns are related to each other, i.e. additional
functionality of one concern is related to the original functionality of another
concerns. After that, an automatic weaver can compute the resulting system
description, containing the original and the additional functionality as well.

In order to fulfill these demands, several new concepts have to be introduced:
point-cuts, advices, aspects, join-points, and aspect weaving. Every aspect-oriented
language has to realize these concepts.

The advantage is the possibility to model aspects (overlapping concerns) natively
and thus maintain the complete model information. On the other hand, more
models have to be maintained, and only after the weaving process, the complete
model can be seen. The concrete advantages and disadvantages of our approach
are discussed in Section 5.

In the following, a brief description of the main terms of aspect-orientation is
given. In order to illustrate the terms, we use Aspect) as example.

Point-cuts

First, the designer must have the opportunity to declare, where an additional
functionality can be inserted. The aspect-oriented language therefore has to
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provide means for describing this place. The definition of where to introduce the
additional functionality, is called point-cut.

Aspect-oriented languages differ in the power of the definition of point-cuts.
Aspect) only allows point-cuts before or after function calls. Other languages
allow direct manipulation of code, or less flexibility.

Advices
An advice is the definition of what the additional functionality is.

In Aspect) an advice is the code, that is inserted at each point-cut. The code
can change local variables, therefore, the additional functionality can alter the
original program execution. The alteration can be forbidden in other languages,
the impact of advices is language-dependent.

Aspects

An aspect is the combination of a point-cut and an advice. An aspect therefore is
the additional functionality, that has to be inserted, and the place, where to insert
the functionality.

An aspect of Aspect) consists of the additional code and the place, where the
code has to be inserted.

Join-points

Join-Points are the set of possible targets, that can be defined as point-cuts. A
point-cut is an element of the join-points. The join-points are limited by the power
of the point-cut description. The more flexible this definition is, the more extensive
the set of join-points get.

Aspect) only creates a small set of join-points, increasing the readability and
limiting the side effects. On the other hand, the modeling possibilities are limited
as well. Other languages allow more or less flexibility.

Aspect weaving

Aspect weaving defines the process of inserting advices into their point-cuts.
Weavers in general look for point-cuts and execute the weaving algorithm, if they
found a point-cut and an according advice. The point-cuts can relate to static
characteristics, in this case, whenever a point-cut is found, the according advice is
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3.3.2 Effects

processed. Point-cuts can relate to dynamic characteristics as well, e.g. assertions,
or states of variables. In this case, the dynamic condition has to be fulfilled in order
to start the weaving process. Additionally, the weaving can take place before,
during, or after further processing, such as generation, compilation, or execution.

What effects does the use of aspect-oriented techniques have, concerning our
view?

First, using aspect-orientation, one must differ between core functionalities and
additional functionalities. Generally speaking, aspect-orientation provides the
possibility to describe two aspects of a system independently, without having to
care, how the aspects are related. This is not fully true, because for the definition of
point-cuts, some information of the aspects have to be known, but in general, the
modularization is improved and the interdependencies are reduced in comparison
to component modeling.

Secondly, combination of aspects can be described. Depending on how the
concrete language is formulated, aspects can be woven only into the base model,
or into other aspects as well. Using the latter mechanism, combinations of aspects
can be described as interdependent aspects. This allows separate modeling of
dependent aspects and improves again the modularization and readability of
system designs.

Thirdly, modularization and readability improve, but the understandability of the
overall system often reduces. This is based on the fact, that only the woven system
contains all information about the system itself. Therefore, in order to extract the
system functionality, several aspects have to be looked at, that are only related
to each other via point-cuts, that are not visible in the target architecture. This
is a principle problem of modularization, but is amplified through the invisible
declaration of point-cuts, viewed from the weaving target.

3.3.3 Aspect-oriented approaches in the literature

As mentioned before, aspect-oriented techniques spread over all concerns of
system development. The main focus lies within the programming community,
that started aspect-orientation with Aspect). Another main focus is aspect-oriented
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modeling, which concentrates on modeling aspect-oriented UML diagrams in order
to generate code. In recent years, the early phases of system design have gotten
more and more interest, starting with aspect-oriented requirements engineering
up to aspect-oriented system design.

The latter is the most interesting focus for this paper, because modeling of compo-
nent architectures lies within this segment of aspect-orientation. In the following,
a brief presentation of related, or interesting work is given.

Generalizations

[KTG*06] compares aspect-oriented software architectures using seven important
modeling concepts of aspect-orientation: aspects, components, point-cuts, ad-
vices, static and dynamic crosscutting, and both relations aspect-component, and
aspect-aspect. From this comparison, an integrated AO approach is extracted,
that generalizes the different principles. Furthermore, four guidelines are defined,
that should help to model one’s own aspect-oriented notation. Although the
definitions aim at UML models, we will discuss our approach regarding [KTGT06]
in Section 5.3.

An approach to integrate different aspect-oriented approaches into one universal
approach is described in [SSKT06]. This results in the introduction of am AOM
reference architecture. Our approach is set in relation to this work in Section 5.3.

Ideas for the systematization of the symmetry of aspect-oriented approaches can
be found in [HOTO3]. Our approach is classified in Section 5.3.

[MT97] defines a framework for classification and comparison of ADLs (architecture
description languages). Although the work is relatively old, the definitions and
classification parameters still remain up-to-date. The VEIA models in their whole
align with the requirements for ADLs given in the paper, the comparison is not
part of our paper.

[BCG™06] describes seven issues for architecture definition languages, that have
to be answered or fulfilled in order to support modeling of aspects. The issues
are good starting points for evaluating an approach. However, the result of the
paper does not reflect our observations, Batista et. al. do not see the need for
new architecture elements but connectors and configurations. As we will see,
in our approach, the main component elements need to be extended too (see
Section 5.3).

[NPMHO02] discusses, which extensions have to be made to an architecture de-
scription language, in order to support aspect-oriented modeling. The issues are
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regarded in our approach, as is shown briefly in Section 5.3.

Variance

In [MRWO06] an approach is introduced, that describes variance with aspects. Every
aspect is viewed as a concern, that has to be modeled. Thus, an unaltered base
model can be modeled, that the variants are woven into. The paper discusses the
advantages of this approach in terms of legacy tool support, and clearer definition
and separation of base and aspect models. The problem of interdependencies is
mentioned, but not solved. The paper describes some techniques and elements,
that are used in this approach too, it focuses on variance, and does not separate
aspect definition and aspect instantiation.

Weaving

[ABEO2, Pre02] describe weaving of behavior descriptions with statecharts. These
are examples for the approaches to weaving behavior. In the following, we
presume weaving of behavior to be executable and, therefore, will not discuss
it further. More general information about weaving of models can be found in
[CVEO7, KLO5].

Notation/UML

There are numerous approaches, that describe aspects using UML, e.g. [BGLO4,
HTOO02, Her02], to mention but a few. In these papers, the modeling of aspects
is done by means of UML, in order to use or reuse existing tools for modeling of
aspects. In our approach, notation is not the main focus, we first have to define
the basic principles. After that, an appropiate tool has to be found and adapted.

Compatibility

[BPS06] discusses the determination of compatibility of embedded software com-
ponents. The compatibility could help ensuring correct interfaces e.g. for the
pattern part of the approach, introduced in the following. For the sake of brevity,
this discussion will not be carried out in this paper.

Other languages
[dFO7] discusses the introduction of aspect-oriented constructs in the Architecture

Analysis and Design Language (AADL). Most of the problems and solutions de-
scribed in the paper are similar to that of our approach. This includes problems
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such as order of weaving, interdependencies, or consistence. Interestingly, most
of these problems are open issues there as well.

[PFTO5] describes a platform for component and aspect based software develop-
ment. They introduce a new model, CAM (component and aspect model), with
the according infrastructure DAOP (dynamic aspect-oriented platform). After a
good comparison of existing approaches, they concentrate on the platform and
the resulting join-point declaration. Though the work seems a similar approach,
our approach aims at a more abstract level of modeling. An important similarity,
nevertheless, consists in the treating of aspects and components as first-level
elements.

[PSCDO6] describes FAC (fractal aspect component), an aspect-oriented extension
of Fractal. Their aim, too, is to model component-based and aspect-oriented
systems. The focus of the paper lies in the different bindings of components and
aspects and in the clarity of the used concepts. In focusing on Fractal and the
issue of bindings, the approach is suited for generative models, but not equally
suited for abstract scoping models, such as the VEIA function model.

[PRJ*03] describes a new language PRISMA for modeling aspect-oriented software
architectures. They distinguish different kinds of aspects, that are modeled with
their own constructs. The approach is far too detailed for our field of use. Further-
more, the distinction between different aspects and components complicates the
use of the solution.

[GCB106] discusses an extension of ACME with aspect features. The main point
of the paper is the fact, that only one small extension is needed: an aspectual
connector. All other aspect-features can be modeled with existing language
features. Their approach, too, aims at seamless integration with as less extensions
as possible. As said before, more extensions are needed in our approach, for the
sake of modeling clarity and expression power.

Other uses of AO

[NPMO5] introduces an approach for tracing changes in architectures via aspects.
An aspect is declared as entity to encapsulate evolution of models. This scope of
use is too narrow in our case, but the mechanisms of encapsulation and the steps
in defining architectures meet our experience as well. On the other hand, they
build up a special aspect architecture, which in our opinion is not needed.

[GBRS06] discusses the possibility to trace decisions throughout an architecture

using aspects. The ideas are similar to the ones, that led to our approach. In
contrast, their solution focuses on reasoning of aspects and on an understandable
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definition, but only on modeling of concerns in the same modeling space. Further-
more, the need for multiple instances of an aspect is not mentioned. Therefore,
although the approaches are very similar in their reasoning and solution principles,
they differ vastly in the details.

Modularization

Several papers tackle the question, on how to modularize programs, or archi-
tectures best. An example is [SGST05], that establishes design rules for mod-
ularization. In this paper, we take the different concerns, and therefore their
modularization, for granted.
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4 VEIA approach

In this section, the VEIA approach for modeling overlapping concerns in a compo-
nent architecture is presented. The approach is aspect-oriented and uses ideas of
pattern engineering as well.

We first introduce the main idea of aspect-orientation using the abstract example
of the preceding section. After that, the ideas are shown using the example of
CBS. In this step, the concept is enhanced with the separation of aspect and
instance models. Finally, the concept is formalized.

4.1 Aspect-oriented modeling

Figure 12

The problem shown so far is to model the overlapping concerns of Figure 7. The
first idea of the approach is to model every concern as an independent model,
as shown in Figure 12. The model of one concern is called aspect model. The
overlapping parts are set in relation to each other using one of the new relations
inner, identity, copy, or replace®.

Abstract modeling of overlapping components.

&  The relations are described in detail in the following section.
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Thus, every concern is modeled completely as a component architecture and
independently of the other ones. The modularization of concerns is increased.
Now, an algorithm has to be defined, how to weave the different models into each
other. Generally speaking, the related components are merged (inner relation) or
replaced (identity relation). As a result, a conventional component architecture is
created (Figure 13).

Figure 13 Abstract result of weaving.

The result does not differ from Figure 7, thus the expression power is not decreased.
But in modeling separate concerns, i.e. in keeping the original concerns, the
maintainability and understandability of the design increased, because the source
model of Figure 12 is kept. Changes can be carried out in the aspect models,
rather than the woven model, they can be located in the concern, they belong to.

The chosen principle is shown in Figure 14. Every concern is modeled in its own
architecture. The interdependencies of the concerns are modeled as relations. The
weaver weaves all input architectures into one overall system architecture. The
shown principle is a symmetric approach, i.e. all architectures are treated equally.
Other approaches mark one architecture as base architecture, these approaches
are asymmetrical.

After this short introduction of the basic idea, we take a look at the more realistic
example of CBS.

4.2 Aspect-oriented modeling (case study CBS)

In Figure 11 three functions are modeled: condition based service, motor manage-
ment, and driver’s display. These functions are now modeled as separate concerns,
first, without relations of the concerns. Figure 15 shows the resulting architecture.
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Aspect-oriented modeling
(case study CBS)

Aspect-oriented principle (symmetric).

—_
concern
architecture

relation

system
architecture

Every concern is modeled as a hierarchic component, that contains the subfunc-
tions needed for the concern. Therefore, looking at the concern component
reveals all functions and their information flow, that are needed in order to achieve
the designated functionality. Thus, the modularization of the concerns is improved
in comparison to Figure 11.

One additional modeling construct was introduced: cardinality. The cardinality
indicates, how often the tagged element is allowed to occur in the woven ar-
chitecture. For more concepts and further explanation, please see the following
section.

The aspect components so far are the advice, that is introduced into the system. In
order to completely describe an aspect-oriented approach, the target architecture,
the point-cuts, and the weaving algorithm have to be specified.

The target architecture is the architecture, that the aspects are woven into. In
our example only condition based service is a supporting function, that could
be treated as an aspect function. The other functions, motor management and
driver’s display are equal functions in the meaning of providing basic functions. So
we have several functions on par with each other, not one unique base function.
Therefore, we design a symmetric approach, i.e. aspects can be woven not only
into a base architecture, but into each other as well.

The advices have yet to be expanded by point-cuts, i.e. the targets, the aspects

are woven into. The point-cuts are defined using relations between the elements
of the architectures. We use two different relations: identity and inner.
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Figure 15

Aspect-oriented model of the CBS concerns without relations.
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Figure 15 contains several redundant functions, e.g. the function motor rotation
speed source occurs twice in the model. These redundancies are solved by the
identity relation. This relation shows, that two functions are identical, i.e. the
weaver leaves only the target function in the model, merges the source function
into the target function, and rewires the according connections. In Figure 16
the aforementioned function motor rotation speed source of driver’s display is in
identity relation to the according function in motor management.

The inner relation demands that the source function is placed into the target
function. If the target function would be an atomic function, the meaning of
the relation would be unclear. Therefore, the target of an inner relation can only
by a hierarchic component. In case of doubt, a new hierarchic component has
to be modeled in the target architecture, or a higher hierarchic target has to be
chosen. In Figure 16 the function motor oil cbs sensor is set in inner relation to
motor management, therefore in the resulting function architecture the sensor
will hierarchically belong to the motor management concern.

In this example so far the point-cuts are the functions of the target architecture.
In addition, ports, signals, and connectors are point-cuts for the identity relation
as well, this is not shown for the sake of brevity.
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Aspect-oriented modeling
(case study CBS)

Aspect-oriented model of the CBS concerns with relations.

motor management

motor rotation (= motor rotation spee
speed source

motor 0il
quantity source
motor oil
viscosity <ource
driver's display

motor rotation [motor rotation sp:ed| domet
speed source speedometer

car computer
O iwets

qtor oil check value

2
2
S
S
H

/]

head-up
display

cond1t10i based corvice

car computer

4":' output
cbs displlay data

1..% m! m head-up
motor 0il motor oil motor oil wear motor oil otor oil wear “”"dzgs‘i‘csasm [ cbs service data display
data source cbs sensor wear computation

master [y cbe storage data

Finally, we need a weaving algorithm. In this document, the algorithm is described
very briefly. Open issues, such as the order of the weaving steps etc. are mentioned
in Section 5. At this point, the general idea of the algorithm should be made clear.

The weaving algorithm starts with two architectures, one target and one source
architecture. The algorithm first processes the functions that are in inner relation.
The source function is placed besides the child functions of the target functions.
The connections of the source function are rewired, if needed, the according ports
are created or deleted at the target function.

After processing the inner relations, the identity relations are processed. First, the
ports and signals are unified in the target function. If the source function does
not contain additional ports or signals, nothing happens, otherwise the additional
ports or signals are created at the target function. The connections of the source
function are rewired accordingly with the target function. If the source function
does contain behavior, the behavior of the source and target functions are merged
in the target function. Now, the source function is deleted.

All other functions are placed besides the topmost functions of the target archi-

tecture. The hierarchy of the source architecture is kept except for the functions,
that were in a relation to the target architecture, they were placed outside the
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Figure 17

original hierarchy in the previous steps. Now, the algorithm starts again with the
next aspect architecture, until all aspects are processed.

Figure 17 shows the result of the weaving process with the architectures of Fig-
ure 16. The concerns are woven into one consistent architecture, just as expected.
The approach so far is a straightforward aspect-oriented extension of the common
VEIA models. In the following section, we will discuss more constructs and
enhancements, that ease and extend the modeling possibilities.

Result of the weaving process.
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4.3 Aspect and instance models

After introducing the basic principle, that is used in our approach, we will now
discuss the separation of aspect and instance models. This extension increases the
modeling power by allowing native modeling of recurring model elements. When
modeling aspects, one often notices, that several aspects are similar or share a
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Figure 18

Aspect and instance models

common pattern. We point this out using again the example condition based
service CBS. Figure 18 shows the model of CBS for three volumes: spark plugs,
brake pad, and motor oil. The models are very alike, differing in the sensor and
computation functions. The identity relations indicate, that the master and display
functions are equal.

Models for three volumes of the CBS concern.
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Furthermore, if we decompose the computation function, as shown in [Gro08],
we see a specific and a generic part. Figure 19 shows this decomposition. The
left function wear normalization computes a relative wear in percent from the
absolute wear value of the according sensor. This function differs in each CBS
aspect. The right function wear computation computes the remaining time or
distance, stores the value etc. This function is identical in each CBS aspect.

For the given aspect CBS we can identify identical and different parts. This is true,
not only for CBS, but for many other concerns, such as logging, or error handling.
This affects concerns, that have many instances in the architecture, that share a
certain alikeness or even equal parts. It is possible to model these aspects with the
given artifacts, but the modeling of one concern is again scattered. Therefore we
will support the modeling of such concerns with a new construct: the separation
of aspect and instance nets.
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Figure 19 Decomposition of the CBS computation.

cbs wear computation

N relative wear

wear wear normalized wear .
l: > wear computation

normalization

Figure 20 shows the new principle. A concern can be modeled as aspect architec-
ture or instance architecture. The instance architectures are the architectures we
used in the previous examples. The aspect architectures define a pattern for the
instances, that have to be integrated into the system architecture. Thus a pattern
for the aspect can be defined for the overall architecture. Please notice, that the
instantiation of aspect architectures is not shown in the picture as arrow, for the
sake of brevity.

Figure 20 Extended aspect-oriented principle (symmetric).
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Aspect architectures

Now, we will define the aspect model for CBS. Note, that this aspect model is the
basic model of the concern CBS, the single occurrences of the different volumes
do not occur in this model. Figure 21 shows the aspect model of CBS. There are
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Aspect and instance models

several new constructs in the model: abstract functions, cardinalities, and abstract
variables. The model and the constructs are discussed in the following paragraphs.

Aspect model for CBS.
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The main function, that encloses the whole aspect, i.e. the root function of the
architecture is condition based service. It is an abstract function, recognizable
by the dashed border and the oblique text. Abstract functions are functions,
that are not fully modeled, they can be changed during instantiation or during
weaving. That means, either they contain hierarchically abstract functions, or
they are not fully modeled or not modeled at all, concerning behavior, ports,
and signals. Abstract functions are used, if a function has to be modeled in the
instance architecture, but the implementation depends on the instance, i.e. it
cannot be defined in the aspect architecture. Abstract functions can occur in
instance architectures, too, as is explained further down in this paper. Signals can
also be abstract, meaning that the signal is not fully defined, it can be defined
during instantiation or weaving. Abstract signals are not modeled in the example.

The function condition based service is composed of four functions: cbs client,
cbs master, and the two display functions. Every function has a cardinality, that
determines, how many instances of the function can occur in the system archi-
tecture. The cardinality can be given as number, or range, with “x" indicating no
boundary. A cardinality can be defined for functions, and ports as well. So far,
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cardinalities are independent of each other, i.e. in Figure 21 cbs client could be
instantiated twice, whereas the according port at cbs master could be instantiated
only once. The further refinement of cardinalities is an open issue of the approach,
an outlook is given in Section 5.

In our example, the cbs client has to be instantiated at least once, it can occur in
up to fifteen instances. For every instance a new port is created at the cbs master,
therefore the port has a cardinality, too. The cbs master can only be instantiated
once, thus every instance architecture contains the same cbs master. The same
goes for the system architecture, it too has only one master function. The display
functions are treated accordingly.

The function data management has the abstract variable /D. This variable shows,
that a certain data element has a name, but is not fully defined yet. On the other
hand, the whole function is completely defined, and therefore not abstract. Thus,
a variable element can be introduced without opening the definition of a function.
The modeling possibilities of the instance architecture are thus cut down to a
controllable level.

The function wear normalization is an abstract function. It contains behavior, that
is not shown in the figure, for the sake of brevity. Also, the input and output
signals are defined. During the instantiation the predefined behavior can be
modified, deleted, or kept as is, but the interface of the function must not be
changed.

The functions with the most liberties are the cbs sensor, and cbs data source. Both
contain no behavior, therefore the implementers are completely free. Only the
provided part of the interface of cbs sensor is defined, and must therefore not be
changed.

Altogether the aspect architecture allows the precise definition of a concern. There
are defined ways of open declarations, that can be changed during instantiation.
On the other hand, fixed elements can be defined, that must not be changed.
Thus, the freedom of the implementors can be guaranteed without uncontrollable
effects on the whole concern or resulting woven system architecture.

Instance architectures

After defining the aspect architectures, they are instantiated in order to create the
instance architectures. This is done for every needed instance of the aspect, in the
example of CBS an instance architecture is created for every volume that has to be
controlled.
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Aspect and instance models

The instance architectures can contain, just as the aspect architectures, relations to
other architectures. In the example of CBS the instance architectures are the first
artifacts that define relations. Figure 22 shows the instance architecture of the
CBS volume motor oil. The signal names of the instance architecture are omitted
for the sake of brevity, in order to get the architecture drawn in one row.

Instance model for CBS volume motor oil.
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The instance architecture of Figure 22 contains the instantiated functions except
for cbs data source, which is still abstract, because it is identified with the ac-
cording motor oil functions. The same applies to the display functions. The
instantiated functions are in relation to motor management. The abstract variable
ID is instantiated with the value MO, that can e.g. be used in the behavior or in
signals.

The instance architecture driver’s display contains the abstract function motor
rotation speed source. This architecture driver’s display was created without
an aspect architecture. This is allowed for architectures, that do not need the
definition of an aspect architecture.

Weaving the given architectures results in the system architecture of Figure 23. Just
as expected, the functions of the concerns are scattered throughout the system,
but identifiable and manageable through the instance and aspect architectures.
The functions are taken out of their hierarchy, so the motor oil wear normalization
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Figure 23

can be positioned inside motor management. This leads to a hierarchic artifact like
motor oil wear computation, that consist of only one function wear computation.
This hierarchy could be removed automatically, at this point, we do not force such
cosmetic corrections.

Woven system architecture with CBS volume motor oil.
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Turning to the remaining two volumes of the example, spark plug and brake pad
we only show the CBS instance architecture for the sake of brevity in Figure 24.
The point in this figure is, that the functions with cardinality “1” of Figure 21 occur
only once in the instance architecture. If the instance architectures are drawn
separately, these functions can occur twice or more often, then they have to be
connected with an identity relation (not shown in the figure).

The woven architecture for all three volumes is not shown at this point, because
of the size of the resulting architecture. The weaving does not differ from the
examples shown so far. There are no new constructs, that have to be introduced
with this example.

In this section, we introduced the separation of aspect and instance architectures
and described it briefly. It provides means to separate the definition of aspects,
that have to be used several times, from their instantiation without giving up the
advantages of aspect-oriented techniques. In the next section we discuss patterns,
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4.4 Patterns

Patterns

Instance model for three CBS volumes.
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a special use of instance architectures. The formalization of the constructs is given
in the next but one section.

There are several kinds of concerns, that can be integrated into an architecture.
First, there are concerns that are developed as a new function architecture. These
concerns are designed as instance architectures, that are woven. Secondly, there
are concerns, that are used several times, they can contain variable and constant
parts. These concerns are modeled with aspect architectures, their instantiation is
woven into the system architecture.

This section describes a third kind of concerns: concerns that are described by
a pattern. Patterns are used throughout several domains, in computer science
the best known description is the description of design patterns by Gamma et
al. [GHJV94]. The principle of design patterns lies in the description of general,
reusable solutions as patterns, modeled in the used language. In our case, the
patterns are described as aspect architectures. For each use of the pattern, an
instance architecture is created. Now, each pattern can be associated with the
elements it has to be applied to. Now, the weaver applies the pattern and creates
thus the system architecture.

An example will show the use of patterns in function architectures. The pattern to
apply is a simple redundancy pattern. The pattern is applied to the architecture of
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Figure 25

Figure 26

ABS and redundancy pattern.
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a simple anti-lock braking system (ABS). Figure 25 shows the ABS architecture and
the aspect architecture of the redundancy pattern. The pattern consists of one to
many abstract functions F, that are connected to a validator function. The output
signal S of the F functions is the same as the output signal of the whole function
F’. The instance architecture will make the use and definition more clear.

Now, an instance architecture for a twofold redundancy is created and set in
relation to the ABS architecture, both can be seen in Figure 26. In the instance
architecture, function F occurs twice, the validator was instantiated to a maximum
selector. It selects the maximum of the input signals S and forwards it to the
output port. The relations of the instance architecture to the ABS architecture
are as follows: First, the scope of application is set by the two limiting identity
relations of the input and output ports. Secondly, both instances of F are copies of
the function ABS sensor analysis, which is indicated by the copy relations. Lastly,
the original function ABS sensor analysis is replaced by the instance architecture
of F’, thus the replace relation.

ABS and twofold redundancy instance.
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AB nsor EFensor, [: ABS sensor real ARQ
S senso: value ™ analysis Dvalue '_‘l AsS-control identfTy

Fepilace.
Cop¥.
identity

copy
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In the description, a certain order of the steps is foreclosed. This is due to the fact,
that the weaver first has to apply the identity and copy relations, after that, the
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Figure 28

Patterns

replace relations are evaluated. The result of the weaving process can be seen in
Figure 27.

Weaving result for ABS with twofold redundancy.
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As can be seen, the target function ABS sensor analysis is replaced by the pattern,
the interface of the function remains the same, therefore the surrounding functions
do not have to be changed. This is the only limitation of the usage of patterns:
the interface of the target function need not to be changed. Otherwise the side

effects are very hard to control. Research in softening this border remains to be
done.

Figure 28 shows the instance architecture for a threefold redundancy instance.
The resulting system architecture can be seen in Figure 29.

ABS and threefold redundancy instance.
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The use of patterns is not restricted to functions, but can be used with e.g.
connectors, too. Another redundancy pattern will show this use case. The sensor
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Figure 29

Figure 30

Weaving result for ABS with threefold redundancy.
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data sensor value of the ABS sensor should be transferred redundantly in order to
increase the safety of the system. The redundant transfer is done with different
hardware connections, e.g. parallel wires. This redundancy is reflected in the
function architecture, because of the function, that checks the different signals for
consistency. Figure 30 shows the aspect architecture and the instance architecture
for signal redundancy through connection redundancy.

ABS and signal redundancy (aspect and instance).
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The aspect architecture consists of only the validator function, that is abstract,
i.e. has to be defined throughout the instantiation. The input and output ports
have the same signal, therefore applying the pattern again does not change the
interface of the target element. The number of input signals ranges from one to
as many as needed. The surrounding abstract functions and their ports define the
context, or the scope of the pattern, respectively.

The instance architecture shows a threefold redundancy, that is resolved by a
median selector. Again, the focus is defined using the identity relations of the
ports, that are connected by the original connector. The according functions are
identified as well, because of clearly setting the context. The signal S is copied
three times, whereas the validator function was implemented as median selector.
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The median selector, its ports, and the corresponding connectors replace the
original connector. The result of the weaving step is shown in Figure 31.

Figure 31 Weaving result for ABS with signal redundancy.
E ABS
& e >0
ABS sensor jﬁ%*)c sgieéigr ve:lsuoer N
—

Summarizing, aspect and instance architectures open modeling possibilities, that
can be used e.g. in the definition of architecture patterns. Other usage surely is
possible, but is not discussed in this paper. All uses have in common, that the
aspect and instance architectures are kept throughout the development process,
therefore the design decisions are preserved for later use, reuse, or change.

4.5 Formalization

In this section the constructs are formalized in order to define requirements for
an implementation of the concepts. The formalization contains the structural
description of the changes in the metamodel. It also contains a semi-formal
description of the weaving process in pseudocode.

4.5.1 Metamodel

Figure 32 shows the metamodel for function architectures without any extensions.
This metamodel bases on the function models of VEIA. It is simplified for this
document in order to show the basic principles of extension, that concern all
metamodels, regardless of the underlying language. Therefore, the aspect-oriented
enhancements can be adopted to other languages more easily.

A Function Architecture consists of Functions. The functions are in topLevelfunc-
tions relation to the architecture. They belong exactly to one architecture, whereas
an architecture can contain several top level functions. As one architecture does
contain only one root function, this function is declared with the attribute isRoot.
A function can be hierarchic, in this case it contains several other functions in
the parent—children relation. A function, too, can be assigned parameters, every
parameter has an ID.
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Figure 32

Metamodel for function architectures.
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Every function contains Ports, the ports are assigned to exactly one function. Every
port has a direction, in VEIA the directions in, out, and inout are provided. The
direction of the ports is indicated with the arrow of the connection in the figures
of this document. This graphical notation can be freely chosen.

Ports are connected with Connectors. Every connector connects exactly two ports,
but ports can be connected by several connectors. Thus, 1:3 connections as in
Figure 31 are three connectors in the model.

Signals are modeled as parts of Ports Types, the same goes for Operation Signa-
tures. The port types work as interfaces for ports. This allows reuse of interfaces,
signals, and operations in a model.

The extensions for the new approach are shown in Figure 33. The contents of the
original model are grayed out, so the new elements can be identified more easily.
There is one new class and several new attributes and relations, that are described
briefly in the following.

The main class, Function has several changes. First, two new attributes are
defined: isAbstract that indicates if a function is abstract, and cardinality that
contains the cardinality of the functions. Secondly, a function can now contain
abstract parameters using the isAbstract attribute of Parameter. Thirdly, the
aspect relations identity, inner, copy, and replace are annotated to the relation of
functions to functions. Lastly, a replace relation can be drawn from Function to
Connector.

Three more identity relations are defined for Port, Connector, and Signal Element.
Signal Elements can be in copy relation as well. Thus, the enhancements of
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Figure 33 Extended metamodel for aspect description.
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aspect-oriented modeling can be applied to the original model with only a few
changes.

4.5.2 Weaver

The weaver carries out the model weaving following the weaving algorithm. The
weaver itself can be a program, however, the weaving can be carried out by hand,
too. In this section, we define the algorithm as a basis for further research or
implementation. The automation or implementation of the weaving process and
the algorithm is no goal of this paper.

The weaving algorithm is shown in Listing 1. Starting with an empty system
architecture, all function or instance architectures are added, until the system
architecture is created. The result is a hierarchic system architecture with all
functions, ports, connections etc. woven into it.

Listing 1 Weaving algorithm (Pseudocode).
1 let system_net = empty architecture;

2> for every function or instance architecture fa do
3 begin

4 for every element e in fa do

5 begin

6 if e has relation r

7 then
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8 case r
9 "inner"

10 put e into target function

1 create new ports at bounding function
12 connect according ports

13 "identity"

14 merge e with target element (structure and behavior)
15 create needed ports

16 connect according ports

17 "copy"

18 replace e with a copy of target element
19 "replace"

20 after resolving all "copy" relations:

21 replace target element with e

22 connect according ports

23 end

24 else

25 put e into system net (keep hierarchy)

26 connect according ports

27 end

28 end

29 end

Of course, the algorithm has to be refined for practical use. For instance, the
meaning of “replacing an element” has to be defined. These details are not
tackled in this paper.

54  Modeling Overlapping Functionality



5 Discussion

Discussion

In this document we presented a new approach for modeling systems with overlap-
ping concerns. We described the approach and started its formalization concerning
structure and basic weaving. The details of the approach were not fully covered,
first, for the sake of brevity, second for some of them are open issues yet. In this
section we will discuss the approach and the open questions.

5.1 Overall discussion

The approach is an extension of the existing VEIA models. Because of the simplicity
and concepts of the VEIA models, the approach is an extension for component
models in general. This means, the use of the approach is not restricted to a
certain ADL, but can be applied to all ADLs, that contain the concept of hierarchic
components with well defined interfaces.

The approach is a symmetric, aspect-oriented approach. This means, functions
architectures, aspect architectures and instance architectures are equally important
architectures concerning weaving one into each other. This eases the definition of
aspects, because function architectures can be easily extended into first instance
architectures. Whether the instance architectures should be abstracted into aspect
architectures lies in the hands of the user.

This approach is defined and investigated for product architectures. An extension
of the approach to meet the needs of product-line modeling was not focus of
the research so far. Such an extension has to handle a new level of concerns,
describing the variance of the product-line. As described in [MRWO06], variance
can be described with aspect-oriented approaches, too. In VEIA, we use a central
product line description, and a local description of the variance in each architecture.
Both approaches are equally powerful, they only differ in the metamodel constructs
needed for the description of variance. In conclusion, the use of our approach
in product-line architectures has yet to be investigated with all its consequences,
before it can be used in practice.
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5.2 Openissues

Several issues are, as mentioned, open. In the following we will discuss some of
them, it is not intent of this document to cover all open questions.

Relation of cardinalities The definitions of cardinalities so far are not related
to each other. That means, the number of instances, and their connection can
be freely chosen, even if this is not intended by the designer. This issue will
be presumably resolved by introducing a separate cardinality element, that can
be assigned to several elements. Thus, if the same cardinality is assigned, the
instances are restricted, if different cardinalities are used, the designer is free in
the instantiation.

Interface changes The declaration of aspect or instance architectures results in
the creation or deletion of ports in the architecture. First, new ports are created
via ranges during instantiation or weaving. Secondly, ports are created or deleted,
if elements are in an inner or identity relation during weaving.

The creation of ports is not difficult for the structural description of the architecture,
but for the conceptual and behavioral description. The concept of component
orientation demands for definite interfaces, i.e. ports. The possibility of changing
interfaces is therefore not supported very well. This shows up especially in the
behavioral description, concepts for describing a variation of ports, even in their
existence, are not defined. In order to support these descriptions natively, the
descriptions language has to be extended too. A suitable workaround lies in the
restriction of the signals of a port: if every port has the same signals, and the
ports are identified by parameters, the behavioral description could handle these
parameters without a language extension.

Abstract functions vs. open ports During the definition of aspect or instance
architectures, often functions are well known to exist, that are needed or that
are provided informations to. These functions do not have to be modeled again,
the existing functions can be reused. This is the main task for the identity relation
in combination with abstract functions: identification of existing functions. This
results in aspect or instance architectures with abstract functions whose sole
purpose is to be identified with existing functions of other architectures.

If one does not like the resulting vastness of the architectures, another solution
can be used. In this case, only the needed interface element, port or signal, is
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identified with the corresponding target element. The modeling information is the
same, it mainly depends on personal modeling favors, which solution is preferred.

Order of weaving In the examples in this document, the order of the weaving,
concerning the order of the affected architectures, is irrelevant for the outcome
of the weaving process. This is no result of the approach, but originates in the
missing behavioral descriptions.

As long as only structure is regarded, the order of the woven architectures remains
irrelevant for the outcome. Structural descriptions with the presented elements
cannot interfere with each other. The problem arises, if behavioral descriptions are
regarded too. In this case, interference can occur, if the related elements are not
independent of each other.

The problem of weaving order is well-known in the aspect-oriented community. In
this document, we only address the issue and relegate solutions into the existing
literature.

Overall behavior One problem, that results from the aspect-oriented approach,
and therefore is well-known, is the problem of changing behavior through the
weaving process.

By relating elements to each other, the behavior of the resulting architectures is
the combined behavior of the elements. In most cases, such a change is wanted,
and therefore cannot be avoided. Unfortunately, the resulting behavior can only
be observed in the woven architecture. It is not possible to predict the behavior of
an unwoven architecture without regarding its relations.

As mentioned before, this is a principal problem of aspect-orientation. The user has

to decide, if this becomes a major problem, or if the advantages of the approach
overweight this inconvenience.

5.3 Related work

In this subsection we take up the open issues of Section 3.3.3.

In [KTG*06] four requirements for aspect-oriented approaches are given. We do
not fulfill requirement 1, because our approach is not UML-based. We chose VEIA
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as base models, because they suit the needs of our problem domain. On the other
hand, VEIA models can be modeled by UML means as well, therefore, our approach
supports UML indirectly. The second requirement demands support for seven main
aspect-oriented concepts. Our approach supports so far: aspects, components,
point-cuts, advices, static crosscutting, and both relations: aspect-component,
and aspect-aspect. So far only dynamic crosscutting is not supported, this will
be an issue, when behavior gets into focus. The third requirement demands
implementation language independence, until the lowest level of detail is reached.
This requirement is fulfilled, because VEIA models are designed to be completely
implementation language independent. The fourth requirement of simplicity is
fulfilled as well, our approach is practically oriented and implements only features,
that are needed in the simplest way possible. Summarized, our approach meets
the requirements of [KTGT06].

In [SSKT06] an AOM reference architecture is introduced. It consists of four
main building blocks: concern decomposition, language, adaptation subject and
adaptation kind. The concern decomposition is reflected in our approach, the
principles are realized. The only difference is, that our approach does not differ
base and aspect elements. The language is defined as requested, missing the
behavior description. The adaptations are realized as well, missing the behavioral
elements, too. Therefore, the AOM reference architecture is implemented with
our approach, missing only some details, and the behavioral elements.

The systematization of [HOTO03] is used to categorize our approach. Concern-
ing element symmetry our approach is symmetric. Every element can be source
and target of aspect relations. On the other hand, there are special elements,
abstract elements, that do not occur in the woven architecture. The occurrence
of such special elements suggests an asymmetric approach. Anyway, the non-
distinction between “base” and "aspect” elements is significant for symmetric
approaches, therefore, our approach is symmetric. Concerning join-point sym-
metry, our approach is again symmetric, for only components are join-points so
far. This can change, when behavioral join-points are introduced. Concerning
relationship symmetry, our approach is asymmetric, for aspects are directly related
to components.

The seven issues of [BCGT06] served as reminder, if any points of ADLs or aspect-
orientation were not covered with our approach. They are kind of a guideline
for defining aspect-oriented ADLs, e.g. Issue 1 “Which ADL elements can have
crosscutting concerns?” was answered. The conclusion of [BCG106] is (in short),
that no new architecture elements but connectors and configurations need to
be defined in order to enhance an ADL with aspect-oriented elements. As we
have shown, we have good reason to introduce further concepts, such as abstract
elements, instantiation and so on. This enhances the power of the approach
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without making the models too complicated.

[NPMHO2] discusses the extensions to an architecture description language, in
order to support aspect-oriented modeling. The issues are: definition of join-points,
definition of aspects, and definition of connectors for aspects and join-points.
Those three issues were regarded in our approach, join-points, aspects, and their
connection are defined.

5.4 Pro and Contra

Pro The major advantage of the approach is the possibility to describe overlap-
ping concerns by themselves, and later combine them into the system architecture.
Every concern is described independently, resulting in @ more clear and subject
oriented description. Modeling scopes do not have to be drawn by organizational
issues, but can be drawn by functional issues. The interfaces between the concerns
are easy to identify.

[ASMTO7] indicates, that the benefit of an aspect-oriented approach increases
with the size and complexity of the system. Dealing with large, complex systems
in the automotive industry, one can assume, that the benefit of this approach will
exceed the costs of use.

Furthermore, the separate architectures of the concerns are kept for later modeling,
changes, etc. This means, all modeling steps can be made with the original archi-
tectures, not the woven model. Thus, traceability of design decisions and modeling
elements can be guaranteed with the original design elements, increasing the
power to predict impacts of changes.

The approach is an enhancement of the existing VEIA models. The VEIA models
implement the basic concepts of component orientation extended by elements for
the description of variance and reuse.” These basic concepts, except the extensions,
are part of every ADL so far. Therefore, the enhancements of this approach can be
adopted to other ADLs without fundamental changes. This means, the concepts
and ideas of the approach can be used with existing languages.

Moreover, existing modeling tools can be used with the approach, all new elements

7 The systematization of the models is described in [Man08b].
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and relations can be modeled using existing relations, elements, or parameters.
The description language changes only in few parts, whereas the result of the
weaving process is a common architecture in the original description language.
The only missing link is the weaver, that has to be implemented or simulated by
hand. Thus, the approach can be integrated into an existing modeling landscape
without tool problems.

Contra Like every new modeling technique, this approach has to be learned,
understood, and used in the modeling practice. Users of the approach have to
be taught the method and encouraged to use it. The approach increases the
power of modeling, useful restrictions have to be declared in order to avoid vast
modeling.

The approach itself introduces two or more levels of separation of concerns. Every
level is modeled independently, increasing the number of models. One has to find
a useful balance between the number of models and the diversification of the
modeled systems. Too many models lead to complexity, as well as too few models.

As mentioned before, the behavior of the system is not the only sum of its parts,
but the combination. This leads to locally correct models, that can behave wrongly
after the weaving process. Therefore, the modeling process has to guarantee the
local as well as the global correctness of the system architecture.
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