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ABSTRACT

Low cost depth sensors have been a huge success in the field of computer vision and robotics, providing depth
images even in untextured environments. The same characteristic applies to the Kinect V2, a time-of-flight
camera with high lateral resolution. In order to assess advantages of the new sensor over its predecessor for
standard applications, we provide an analysis of measurement noise, accuracy and other error sources with the
Kinect V2. We examined the raw sensor data by using an open source driver. Further insights on the sensor
design and examples of processing techniques are given to completely exploit the unrestricted access to the
device.
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1. INTRODUCTION

The original Kinect made depth imaging available to a broad public. Its structured light sensor provides robust
depth measurements even in textureless or poorly lit scenes, making it more reliable than stereo camera setups.
Due to mass production the device is highly affordable, with prices being about one order of magnitude lower,
compared to competing devices. Two of the most famous applications are human pose estimation1, which has
been the original use case, as a controllerless user interface for the XBox 360 and KinectFusion2, an application
that tracks the device’s pose with 6 degrees of freedom and performs a dense 3d reconstruction of an unknown
environment. Microsoft strives to continue this success with the release of the Kinect V2. Both devices utilize
active illumination, which is captured by a camera specially suited for the light source’s spectrum. They also
feature a regular RGB camera in order to colorize the depth image by coordinate mapping. As opposed to the
original sensor, a different measuring principle called continuous modulation, provides the time of flight of a light
impulse for every single pixel.

This paper is organized as follows. In Section 2 we give an overview of related work covering the Kinect V1 as
well as different ToF cameras. There is no literature available on the Kinect V2 as it has not been available to the
market at the time of writing. Section 3 introduces the continuous modulation principle, applied by the Kinect
V2. Some of the specifications are given and compared to other depth cameras. In Section 4 we analyze the
main characteristics, such as resolution, accuracy and precision by using a calibration target and model fitting
tests. When feasible, the same tests are performed on a Kinect V1-like device. This allows a direct comparison of
both sensor generations and shows which devices is more suitable in different scenarios. We used an open source
driver to record depth measurements from the device, which also provided raw sensor measurements, currently
not exposed by the official SDK. Yet unpublished specifications and examples of preprocessing techniques are
given, that could not have been obtained without the unprocessed data.
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2. PREVIOUS WORK

Khoshelham3 performed an analysis of the Kinect V1. In order to obtain intrinsic camera parameters, a calibra-
tion target was recorded at different orientations by the IR camera while the pattern projector was obstructed.
A point cloud was generated by reprojecting every pixel of the depth image into 3D space. A high-end laser
scanner was used to capture precise groundtruth data, which was registered against the point cloud using the
iterative closest points method. In addition a planar object was recorded at varying distances and a plane was
fitted to the data. In both cases the residuals of registration and model fitting approaches showed to be propor-
tional to the squared distance within the operation range of the sensor. Martinez and Stiefelhagen4 dissected the
architecture of the depth estimation algorithm by extracting the projected dot pattern, acquisition of the raw
IR image and doing stereo matching in software. Different approaches and parameters were tested, yielding a
strong cue, that a filtered version of the 1280x1024 pixel camera image is used to perform block matching against
the reference dot pattern, because, in this manner, the standard depth output of the sensor could be reproduced
with high accuracy. They suggest, that the dot pattern is to sparse to provide accurate depth measurements for
every pixel and that a different stereo matching algorithm (for example Semi-Global Matching5) would enable a
higher depth resolution, due to better subpixel precision. While the Kinect V2 is a new device and is being made
publicly available to researchers in summer 2014, continuous modulation is already used in many TOF cameras.
Lefloch et al.6 provide an excellent overview with a full mathematical description of the measuring principle,
as well as possible error sources, such as motion artifacts or multiple returns. They also give a short survey
of calibration and post processing approaches. A separate lateral and depth calibration of a TOF camera was
performed by Lindner and Kolb7 and by Kahlmann et al.8 with planar calibration targets. Lindner7 has used a
chessboard pattern for lateral calibration, but the detection performance is strongly limited by the cameras res-
olution of only 160x120 pixels. Depth calibration was done by using a low resolution TOF camera as a reference
device. Kahlmann8 used an active calibration target featuring near infrared LEDs, thus enabling high precision
subpixel detection and precise lateral calibration. Unfortunately, some TOF cameras filter out illumination not
correlated to its modulation frequency, making a direct precise localization of the LEDs impossible. A track line
with a trolley, localized with sub-millimeter precision by an interferometer, was used to move a target in order to
acquire groundtruth data for depth calibration. A joint lateral and depth calibration was done by Schiller et al.9

A planar calibration target was captured by the TOF and several standard CCD cameras, whose intrinsic and
extrinsic camera parameters are initially guessed by standard camera calibration. Afterwards synthetic intensity
and depth images of the calibration target were used to optimize all parameters. The model for depth synthesis
was further refined by Lindner10 incorporating different error sources in order to enhance the calibration and
depth accuracy.

3. SENSOR

3.1 Continuous modulation principle

Lefloch6 describes TOF cameras as a combination of a light source emitting a modulated signal and a special
pixel array. These smart pixels are able to directly correlate the incident light signal r(t) with the reference
signal s(t).

c(τ) = r ⊗ s = lim
T→∞

∫ T/2

−T/2
r(s)× s(t+ τ) dt (1)

where τ is a phase offset used to sample the correlation function at different positions. Usually a sinusoidal
reference signal is used,

s(t) = cos(ωt), r(t) = I +A cos(ωt− φ) (2)

where ω is the modulation frequency, A is the amplitude of the captured component of the illumination cor-
related to the reference signal, I is the uncorrelated illumination (for example scene illumination not originating
from the device itself) and φ is the phase offset of the returning signal due to the round-trip time of the light.

Four samples of the correlation function with τi = iπ/2ω yield two correlation values with suppressed back-
ground illumination, which can be used to calculate φ and a.
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Figure 1. Visualization of the correlation coefficients and the corresponding phase for a modulation frequency of 120 MHz.
Positive correlation coefficients are mapped to the green channel, negative coefficients to the red channel. The phase is
mapped to the hue channel of an HSV image with full saturation and intensity. The three images correspond to the first
argument, second argument and function value of atan2 in Equation 5. The scene is shown again as an IR image in Figure
5.

φ = atan2(c(τ3)− c(τ1), c(τ0)− c(τ2) + π

a =
1

2

√
(c(τ3)− c(τ1))2 + (c(τ0)− c(τ2)2

(3)

The distance can calculated by

d =
λm
4π

φ, (4)

with λm being the modulation wavelength. A lower wavelength will lead to more accurate results in the
presence of noise, but at the same time will shorten unambiguous range of measurements.

3.2 Kinect V2 Features

The Kinect V2 diverges from the textbook case by acquiring three samples of the correlation function with
suppressed background illumination with phase offsets of 0, 2π3 ,

4π
3 as described in patent11, with a formula

different to equation 3.

φ = atan2(−
3∑
k=1

τk ∗ sin(
2π

3
× (k − 1)),

3∑
k=1

τk ∗ cos(
2π

3
× (k − 1))) (5)

According to the patent this reduces the effect of varying temperature, the influence of a imperfect modulation
signal and the variation of the components of the device over time. The required amount of calibration data per
pixel is reduced to the phase offset induced by the signal propagation delay of the hardware.

Three modulation frequencies are used in order to get unambiguous measurements in the standard living room
scenario while still achieving a high depth resolution. The frequencies being used are approximately 16 MHz,
80 MHz and 120 MHz, yielding an unambiguous range of 9.37 meters for the lowest frequency or 18.74 meters
with frequency based phase unwrapping as described by Dröschel et al.12. Multiple modulation frequencies allow
identification of errors due to multiple returns at single pixels, induced by scattering of light within the scene or
at edges of objects.

Additionally, as with the Kinect V1, the depth sensor is accompanied by a regular RGB camera. Its resolution
has been increased to 1920x1080 pixels, compared to 640x480 pixels of the predecessor.
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3.3 Other depth cameras

Name Range (m) Resolution Framerate Precision(mm / 1σ) FOV (degrees)

Kinect V2 not specified 512× 424 30 not specified 89× 71
pmd CamBoard nano 0.5 160× 120 90 not specified 90× 48
Kinect V1 4 640× 480 30 50 @ 4m 57× 43
SoftKinetic DS325 not specified 320× 240 30 14 @ 1m 74× 58
pmd CamCube 7 200× 200 40 3 @ 4m 40× 40
SwissRanger SR4000 7 176× 144 50 4 @ 2m 43× 34

There is a broad range of depth cameras available today for different scenarios. All cameras are based on
continuous modulation, except for the Kinect V1, which projects structured light, performs stereo matching
and thus does not offer per pixel depth measurements. The first 3 devices are consumer oriented, having prices
between 200 and 690$. The last 2 devices are designed for industrial applications with a reduced field of view,
higher precision and range and prices tags at around 5000$. The modulation frequency typically is in the range
of 10 to 80 MHz. There are a few depth cameras that have identical sensors as the Kinect V1 in terms of depth
imaging. For our experiments we used a Carmine 1.08, does not require on an additional power supply.

4. EVALUATION AND RESULTS

4.1 Accuracy on calibration target

We detected a 1m2 square print of fiducial markers13 in the intensity image to estimate the position and orien-
tation of the marker board. The intrinsic camera parameters could be verified based on the average reprojection
error being below 0.4 for all detections. Partial groundtruth depth images were generated based on the known
pose and geometry of the board. Data was recorded in a tight office space and in a wide attic. The first location
was chosen to possibly observe the multipath effect in a standard use case with light walls or other reflective
surfaces, the second location was chosen to avoid these error sources.

Figure 2. Average pixelwise ratio of groundtruth and measured depth of a calibration target at different distances. The
data was recorded in a tight office space as well as in a very wide attic. A significant depth based bias can be observed.
At 5.5 meters the marker board was too small to be reliably detected.

The ratio of groundtruth depth to measured depth at different distances was plotted in Figure 2. Only
pixels showing white parts of the marker board are evaluated. The dominating error source in the attic plot
is a systematic distance dependant error. One possible error source is the non-ideal optical modulation signal
according to Schmidt and Jähne.14 The office plot shows a similar pattern with additional errors, due to multipath
effects. In both cases the error stays below 1% over a range of 5.5 meters. At this distance the board was to
small to be detected in the IR image.
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Figure 3. Reflections of the whiteboard influence measurements on the marker board and vice versa. The noise on the
whiteboard moves according to the position of the marker board as can be seen in the first three images. The relative
distance error has been visualized in the last image. Overestimated distances are shown in green, underestimated distances
in red. Dark parts of the board show a intensity related depth bias.

One hour of data of a completely static setup of sensor and marker board was recorded in order to observe
measurement stability over time. Figure 4 shows that with increasing temperature, the measured depth increases
as well. After approximately 1000 seconds the device activates an internal cooling fan. Its intended use seems to
be to prevent the device from overheating, rather than ensuring stable measurements. An additional temperature
sensor or an object of known geometry in the scene are required, in order to compensate for this effect.

Figure 4. One hour of depth measurements of a stationary marker board show a temperature drift. After around 1000
seconds a cooling fan is activated, delaying the point of thermal equilibrium.

4.2 Precision on a planar surface

Depth data of a planar wall was recorded with the Kinect V2 and a PrimeSense Carmine 1.08. 1000 frames per
device were saved and their average was calculated in order to get depth images with low noise. In the case
of the Carmine this was done by averaging over the depth values, in the Kinect V2 case raw sensor data was
averaged. We estimated the orientation of a plane using RANSAC with an inlier threshold of 2 cm and got
inlier sets sufficiently large to perform a plane fitting test comparable to Khoshelham3. Since both sensors had a
slanted view on the wall, a depth error in respect to the distance from device could be determined from a single
view.



Figure 5. Planar wall recorded for the plane fitting test. The images are an IR intensity image truncated to 8 bit showing
the illumination falloff with increasing distance, illumination normalized by distance and a visualization of the estimate
surface normal of every pixel. The intensity is defined as the euclidean norm of two corresponding correlation coefficients.

We performed three different approaches to calculate the depth error:

• Standard deviation: The quadratic mean of differences of depth measurements and their average of 1000
frames.

• Euclidean distance to plane: The quadratic mean of differences of depth measurements and their closest
points on the estimated plane. Same metric as in Khoshelham3.

• Depth distance to plane: The quadratic mean of differences of depth measurements and their expected
depth based on the estimated plane.

With n being the normal vector of the plane, r being its distance to the origin and p being a vector describing
the coordinate of a point corresponding to a depth measurement, the euclidean distance d from point to plane
is calculated as given in Equation 6.

d = ‖n · p− r‖2 (6)

The depth distance z to the plane is the difference of the z components of the measured point p and the
intersection point p′ of the plane and a line going through the origin and p:

p′ = x× p, 0 = n · p′ − r

z =

∥∥∥∥∥∥(p− p′) ·

0
0
1

∥∥∥∥∥∥
2

(7)

The errors of the PrimeSense Carmine depth measurements are plotted in Figure 6. The fit to the standard
deviation is nearly identical to the result in Khoshelham3, showing the precision in respect to the measuring
distance. Although the euclidean distance to the estimated plane is the distance used in Khoshelham3, it
underestimates the true error for surfaces not perpendicular to the viewing direction. The z distance corresponds
to the difference of an ideal depth measurement of a single point and the actual depth measurement performed by
the device. As the other errors it is influenced by noise and additionally suffers from a bias for depth estimation
on slanted surfaces, introduced by the stereo matching with a large window size.

Figure 7 shows the pixelwise errors of the Kinect V2 depth measurements. The standard deviation is slightly
higher, even under ideal conditions as high reflectivity and no multipath errors. The difference between standard
deviation and z distance is smaller compared to results shown in Figure 6, since the distances is measured by
every pixel independently.
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Figure 6. Average error in respect to the measuring distance for a PrimeSense Carmine. The error increases proportional
to the square of the distance. The RMS fit is almost identical to the one in Khoshelham3 with the coefficient being
1.503×10−5. The higher number of samples shows some anomalies in the z distances, probably due to depth quantization
or sparseness of the projected point pattern. The ratio between standard deviation and RMS depth error is 0.64

Figure 7. Average error in respect to the measuring distance for the Kinect V2. The error increases more regularly
compared to the results in Figure 6. At short distances the error increases slightly, due to a illumination falloff at the
border of the image. The ratio between standard deviation and RMS depth error is 0.84.

In order to have a fair comparison of both sensors we performed bilateral filtering on the correlation coeffi-
cients, the sums of Equation 5, on a 3 × 3 neighbourhood with the results shown in Figure 8. As can be seen,
the standard deviation is reduced to 36%, while the average z distance is only reduced to 57%. Smoothing the
correlation coefficients leads to a higher signal to noise ratio while leading to a lower angular resolution and a
lower ratio between standard deviation and average depth error.

4.3 Angular Resolution

The Kinect V2 has a horizontal field of view of approximately 90◦. At 512 pixels resolution this yields an angular
resolution of 0.176◦, while the Kinect V1 has 57◦ field of view, 640 pixels resolution and thus 0.089◦ of angular
resolution. Since Martinez4 suggests that stereo matching in the Kinect V1 is performed over a windows of
17 × 17 pixels in the IR image, every depth measurement is likely to be correlated to its 7 × 7 neighbourhood,
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Figure 8. Errors as in Figure 7 with bilateral filtering enabled. The errors drop significantly by averaging over a 3 × 3
neighbourhood and thus increasing the signal to noise ratio. The ratio between standard deviation and RMS depth error
is 0.52

Figure 9. A cubby hole shelf was recorded with a Carmine PrimeSense (middle image) and a Kinect V2 (right image). The
Carmine states the depth of the thin boards at either the foreground or the background depth in an irregular way. The
Kinect V2 measurements show strong multipath in the back of the compartments and flying pixels at the fine structures.

thus reducing the angular resolution. In order to illustrate this aspect, we recorded depth images of a cubby
hole shelf with both sensors. The thin wooden boards separating two vertically adjacent compartments are 8mm
thick and have a height of 2 - 3 pixels in the Kinect V2 and 5 pixels in the Carmine depth image.

Figure 9 shows a visualization of point clouds acquired with the Kinect V2 and a Carmine. The Carmine
struggles at resolving the fine structure of the shelf showing a mix of correct and wrong depth estimates as well
as some holes with no valid depth estimate. The sparseness of the random dot pattern used for stereo matching
yields an irregular pattern in the depth image. The Kinect V2 depth image does not show any holes or irregular
depth patterns. Instead it shows ”flying pixels” at pixels measuring two returns at once. They are forming
S-shaped traces of points as single pixel rows fade from viewing foreground to background. The flying pixel
effect is more pronounced when the foreground and background reflect a similar amount of light (e.g. same
material and distance). In a gesture recognition system with skin in the foreground (high infrared albedo) and
background at a greater distance, this effect will be less problematic (see Figure 10).

5. OUTLOOK

We provided a detailed analysis of the Kinect V2’s accuracy and precision in standard scenarios. It was shown
that the new sensor shows similar characteristics as its predecessor in terms of precision that is proportional to
the squared measuring distance. Experiments with a calibration target show a significant distance dependant
error, requiring further calibration. Although the image resolution of the depth camera has been decreased, the
device is capable of better resolving fine structures in certain scenarios. Some aspects of the devices require
further investigation. The timing of the acquisition of correlation images is unknown. With this information



Figure 10. Intensity and depth image of a hand against a dark background. Due to the strong contrast a detailed silhouette
can be seen.

a correction of motion artifacts could be possible in certain situations. The warm up experiment suggests a
temperature dependant bias that needs to be corrected for. We do not now if any helpful information is being
delivered by the device, as some parts of the communication protocol may still be unknown. The open source
driver allows many interesting applications that encourage for more experimentation. Integration over multiple
raw frames has already been implemented, offering measuring ranges of up to 18 meters. Analysis of pixel noise
shows a strong relation to non-correlated scene illumination (e.g. sunlight), suggesting the deduction of a passive
infrared frame for registration with other cameras. The high resolution RGB camera provides a second image
for triangulation, offering an extended range and higher accuracy in short range measuring.
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