

IISB

INFLUENCE OF EPILAYER THICKNESS AND STRUCTURAL DEFECTS ON THE MINORITY CARRIER LIFETIME IN 4H-SIC

<u>B. Kallinger¹</u>, P. Berwian¹, J. Friedrich¹, M. Azizi¹, M. Rommel¹, C. Hecht², P. Friedrichs²

¹Fraunhofer Institute for Integrated Systems and Device Technology IISB, Department of Crystal Growth, Schottkystrasse 10, 91058 Erlangen, Germany ²Infineon Technologies AG, Schottkystrasse 10, 91058 Erlangen, Germany

Motivation

Experimental

- Minority carrier lifetime limits switching characteristics of high power bipolar devices \rightarrow thick n⁻ epilayers with bulk minority carrier lifetime $\tau_{\rm B}$ of several μ s needed
- Most measurement techniques determine an effective minority carrier lifetime τ_{eff} :
 - Surface recombination lifetime τ_s at the epilayer surface and at the sub-epi interface [1]
 - Bulk minority carrier lifetime $\tau_{\rm B}$
 - \rightarrow Distinction between bulk, surface and effective lifetime needed
- Limiting factors for bulk minority carrier lifetime $\tau_{\rm B}$:
 - Lifetime killer in n-type epilayers: [Z_{1/2}] defect [2]
 - For $[Z_{1/2}] < 5 \times 10^{12} \text{ cm}^{-3}$: other limiting factors, e.g. structural defects?
 - Structural defects like dislocations and stacking faults act as recombination centres [3]

 \rightarrow Impact of structural defects on the minority carrier lifetime distribution

Effective lifetime

Effective lifetime τ_{eff} of epilayers

- τ_{eff} increases with increasing epilayer

- 4H-SiC homoepitaxial layers:
 - CVD growth in horizontal hot-wall reactor (EPIGRESS VP508GFR) on vicinal substrates [4]
 - All epilayers intentionally doped with nitrogen: $n = (1-2) \times 10^{15} \text{ cm}^{-3}$
 - Variation of epilayer thickness from 12.5 μm up to 50 μm
- Determination of minority carrier lifetime:
 - Microwave-detected photoconductivity decay (µ-PCD) [5]
 - SEMILAB WT2500
 - UV excitation wavelength: 350 nm \rightarrow penetration depth about 30 μ m [6]
- Determination of defects:
 - Structural defects by defect selective etching (DSE) in molten KOH [7]
 - Point defects by deep level transient spectroscopy (DLTS)

Impact of structural defects

effective distribution of Lateral lifetime

Similar distribution of lifetime for three epilayers with different epilayer

\rightarrow Is this effect really caused by improved material quality (bulk lifetime)?

Bulk lifetime $\tau_{\rm B}$ vs. point defects (DLTS)

- Dominant point defects present in these n-type epilayers: $Z_{1/2}$, $EH_{6/7}$, X
- Point defect concentrations of $Z_{1/2}$, EH_{6/7} decrease with increasing epilayer thickness to e.g. $[Z_{1/2}] = 5 \times 10^{12} \text{ cm}^{-3}$
- Z_{1/2} defect does not limit bulk lifetime of 50 µm thick epilayer [2]

→ Further limiting factors for bulk minority carrier lifetime like, e.g. structural defects?

Minority carrier lifetime mappings of low n-type epilayers with increasing epilayer thickness of 12.5 µm (top), 25 µm (middle) and 50 µm (bottom). Appropriate color legend of minority carrier lifetime is given below each mapping.

thickness

- Highest minority carrier lifetime in the wafer center, lowest carrier lifetime at the wafer edge (doping)
- Characteristic areas with locally reduced lifetime in all epilayers (marked by arrows and circle)
- As epilayers were grown on adjacent substrates cut from one crystal boule:
- → Lifetime distribution related to distribution of extended structural defects like e.g. dislocations?

Comparison of defect and effective lifetime distribution

- Areas with higher dislocation density in epilayer (marked by arrows and circle)
- Areas with higher dislocation density correspond to areas with reduced minority carrier lifetime
- Dislocations act as recombination centers $\rightarrow \tau_d$

 \rightarrow Further focus on surface recombination to improve effective lifetime τ_{eff}

Optical micrograph of defect selectively etched epilayer with epilayer thickness of 50 µm, highlighting areas with high dislocation density (dark gray) and lower dislocation density (light gray).

 \rightarrow Dislocations affect τ_{eff} strongly: local lifetime killers

Conclusions and Outlook

- Bulk lifetime $\tau_{\rm B}$ is really improved with increasing epilayer thickness due to decreasing $[Z_{1/2}]$
- Effective lifetime τ_{eff} is not limited by bulk lifetime τ_{B} but by surface recombination lifetime τ_{S}
- For state-of-the-art 4H-SiC material: increase of effective lifetime τ_{eff} with increasing epilayer thickness w is **mainly** due to the reduced impact of surface recombination
- Dislocations reduce lifetime of epilayers locally, but strongly

References and Acknowledgment

[1] A. B. Sproul; Journal of Applied Physics 76 (1994) 2851 [2] T. Kimoto et al.: Journal of Applied Physics 108 (2010) 083721. [3] G. Feng et al.: Journal of Applied Physics 110 (2011) 33525. [4] C. Hecht et al.: Materials Science Forum 527-529 (2006) 239-242. [5] G. Chung et al.: Materials Science Forum 556-557 (2007) 323-326. [6] S. G. Sridhara et al.: Journal of Applied Physics 84 (1998) 2963-2964. [7] B. Kallinger et al.: Journal of Crystal Growth 314 (2011) 21-29. [8] K. Neimontas et al.: Materials Science Forum 527-529 (2006) 469-472. [9] T. Kimoto, N. Miyamoto, H. Matsunami, IEEE Trans. Electron Dev. 46, 3 (1999), 471-477.

We gratefully acknowledge Alexander Wehrhahn (SiCrystal) for defect selective etching of the epilayers, Dr. Bernd Zippelius (Chair of Applied Physics, university of Erlangen-Nuremberg, Germany; now with Infineon Technologies) for DLTS measurements.