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ABSTRACT
Matrix factorization methods are among the most common
techniques for detecting latent components in data. Popular
examples include the Singular Value Decomposition or Non-
negative Matrix Factorization. Unfortunately, most meth-
ods suffer from high computational complexity and therefore
do not scale to massive data. In this paper, we present a lin-
ear time algorithm for the factorization of gigantic matrices
that iteratively yields latent components. We consider a
constrained matrix factorization s.t. the latent components
form a simplex that encloses most of the remaining data.
The algorithm maximizes the volume of that simplex and
thereby reduces the displacement of data from the space
spanned by the latent components. Hence, it also lowers the
Frobenius norm, a common criterion for matrix factorization
quality. Our algorithm is efficient, well-grounded in distance
geometry, and easily applicable to matrices with billions of
entries. In addition, the resulting factors allow for an in-
tuitive interpretation of data: every data point can now be
expressed as a convex combination of the most extreme and
thereby often most descriptive instances in a collection of
data. Extensive experimental validations on web-scale data,
including 80 million images and 1.5 million twitter tweets,
demonstrate superior performance compared to related fac-
torization or clustering techniques.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—algorithms; H.3.3
[Information Storage and Retrieval]: Information Search
and Retrieval—clustering

General Terms
Algorithms
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1. INTRODUCTION
Understanding data by unmixing its latent components is

an important task that received increasing attention through-
out the last years. Common applications are found within
various disciplines, including Geology, Economics, or As-
tronomy [2, 5]. It also plays an important role for data
analysis at web-scale, i.e. social networks or text mining us-
ing Internet data. The main idea is to automatically acquire
a descriptive representation by explaining data as a linear
combination of certain important or dominant latent com-
ponents. In this paper, we consider representations where
data matrix V can be decomposed into a product of two
lower rank matrices WH. The matrix W contains the la-
tent components or basis vectors, H contains the mixing
coefficients. In particular, we focus on a constraint factor-
ization that restricts the representation to convex combi-
nations of latent components and has already been consid-
ered in Convex-NMF (C-NMF) [4], Convex-hull NMF (CH-
NMF) [6], or Archetypal Analysis (AA) [3].

Convexity constraints yield latent components with inter-
esting properties: First, the basis vectors are included in the
data set and reside on actual data points; they are therefore
readily interpretable even to non-experts. Second, convex-
ity constrained basis vectors usually correspond to the most
extreme data points and not to the most average ones which
often further improves interpretability. Third, they span a
simplex that encloses most of the remaining data.

In this paper, we present a novel algorithm to determine
convexity constrained latent components. Simplex Volume
Maximization runs in linear time and is, to the best of our
knowledge, the fastest algorithm to date for solving the task
at hand. Further, it is the first algorithm in this area that
does not require subsampling for handling gigantic matri-
ces. With respect to common error measures, such as the
Frobenius norm, it shows a similar or even better perfor-
mance than related methods. What might be even more
important, is that it solely relies on iterative distance com-
putations. As such, it inherently allows for parallelization
and is well suited for web-scale problems.

2. PROBLEM FORMULATION
Clustering is arguably one of the most common steps in

data analysis. Dealing with n samples of d-dimensional vec-
torial data gathered in a data matrix V d×n, the problem
of determining useful clusters corresponds to finding a set
of k � n centroid vectors W d×k. If we express the mem-
bership of data points in V to the centroids in W using a
coefficient matrix Hk×n, we note that clustering can be cast
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as a matrix factorization problem which aims at minimizing
the expected Frobenius norm ‖V −WH‖.

In this paper, we study a clustering approach where the
data are expressed as convex combinations of certain points
in V . The underlying problem can be formulated as

V ≈ V GH (1)

where G ∈ Rn×k,H ∈ Rk×n are coefficient matrices such
that H is restricted to convexity and G is restricted to unary
column vectors

1Thj = 1, hj � 0, and gi = [0, . . . , 0, 1, 0, . . . , 0]T . (2)

In other words, the factorization in (1) approximates V us-
ing convex combinations where the basis vectors W = V G
are data points selected from V . The goal now is to deter-
mine a basis that minimizes the Frobenius norm

E =
‚‚V − V GH

‚‚2
=
‚‚V −WH

‚‚2
. (3)

When minimizing (3), we have to simultaneously optimize
W and H which is generally considered a difficult problem
and known to suffer from many local minima. Archetypal
Analysis (AA) as introduced in [3] applies an alternating
least squares procedure where each iteration requires the
solution of several constrained quadratic optimization prob-
lems. It solves the case where G is restricted to convexity
instead of to unarity. Convex-NMF (C-NMF) according to
[4] iteratively updates intermediate matrices of size n × n.
Neither approach scales well to gigantic data matrices.

Our contribution in this paper is a novel, highly efficient
algorithm for estimating W = V G. It is based on the
observation that, if vj is expressed as a convex combination
vj = Whj , the coefficient vectors hj reside in a (k − 1)-
simplex whose k vertices correspond to the basis vectors in
W . Because of this duality, we may use the terms polytope
and simplex interchangeably in the following.

3. SIMPLEX VOLUME MAXIMIZATION
If we assume that the basis vectors W d×k for a convex

combination are selected from actual data samples vj ∈ V ,
it is easy to prove that extending a given simplex W d×k by
adding a vertex wk+1 sampled from a data matrix V d×n

will not increase the Frobenius norm of the optimal convex
approximation of the data. That is‚‚‚V d×n−W d×(k+1)H(k+1)×n

‚‚‚2

≤
‚‚‚V d×n−W d×kHk×n

‚‚‚2

if Hk×n and H(k+1)×n are convexity constrained coefficient
matrices that result from solving constrained quadratic op-
timization problems.

This hints at the idea of volume maximization for matrix
factorization. Any increase of the volume of the k-simplex
encoded in W will reduce the overall residual of the recon-
struction. Next, we derive a highly efficient volume maxi-
mization algorithm that determines a suitable basis W for
convex reconstruction of a set of data. It is rooted in dis-
tance geometry which studies sets of points based only on
the distances between pairs of points.

Distance geometry draws heavily on the notion of the
Cayley-Menger determinant (CMD) [1] which indicates the
volume of a polytope or simplex. Given the lengths di,j of
the edges between the n + 1 vertices of an n-simplex S, its

volume is given by

Vol(S)2n =
−1n+1

2n(n!)2
det(A). (4)

where

det(A) =

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛

0 1 1 1 . . . 1
1 0 d2

1,1 d2
1,2 . . . d2

1,n+1

1 d2
1,1 0 d2

2,2 . . . d2
2,n+1

1 d2
1,2 d2

2,2 0 . . . d2
3,n+1

...
. . .

...
1 d2

1,n+1 d2
2,n+1 d2

3,n+1 . . . 0

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛

(5)

is the Cayley-Menger determinant.
With respect to data analysis, our goal is to select vertices
{w1, . . . ,wk} ∈ V such that they maximize the volume of
the corresponding simplex. If a number of vertices has al-
ready been acquired in a sequential manner, we can prove

Theorem 1. Let S be an (n − 1)-simplex. Suppose that
the vertices w1, . . . ,wn are equidistant and that this distance
is a. Also, suppose that the distances between vertex wn+1

and the other vertices are given by {di,n+1, . . . , dn,n+1}, then
the volume of S is determined by

Vol(S)2n =
a2n

2n(n!)2

"
2

a4

nX
i=1

nX
j=i+1

d2
i,n+1d

2
j,n+1 +

2

a2

nX
i=1

d2
i,n+1 −

n− 1

a4

nX
i=1

d4
i,n+1 − (n− 1)

#
.

Theorem 1 indicates that instead of determining a suitable
W from minimizing the Frobenius norm, we may equiva-
lently determine a solution from fitting a simplex of maximal
volume into the data. Such a simplex could be found by op-
timizing the volume using the Cayley-Menger determinant.
However, for large data sets this approach is ill-advised as
it scales quadratically O(n2) with the number of samples.
Fortunately, it is possible to iteratively determine a set of
k basis vectors in O(kn) that maximize the volume of the
simplex. Given a simplex S consisting of k − 1 vertices, we
simply seek to find a new vertex vπ ∈ V such that

vπ = argmax
k

Vol(S ∪ vk)2. (6)

From Theorem 1 we can directly derive an iterative algo-
rithm for finding the next best vertex (note that we omit
constant values). After some tedious algebra, we arrive at

vπ = argmax
k

"
nX
i=1

di,k

"
a+

nX
j=i+1

dj,k −
n− 1

2

nX
i=1

d2
i,k

##
.

(7)
This leads to the simple and efficient Simplex Volume

Maximization (SiVM) Algorithm 1. We note that the pair-
wise distances computed in earlier iterations can be reused
in later steps. For retrieving k latent components, we need
to compute the distance to all data samples exactly k + 1
times. The distances are computed with respect to the last
selected basis vector. Informally, the algorithm can be for-
mulated as finding vertex m+ 1 that maximizes the simplex
volume given the first m vertices. Figure 1 exemplifies how
SiVM iteratively determines basis vectors.

Computing the coefficient matrix H is straight forward
once a suitable set of basis vectors W has been determined.
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Figure 1: Didactic example of how the Simplex Volume Maximization algorithm iteratively determines four
basis vectors for representation of a data sample by means of convex combinations.

Algorithm 1 Simplex Volume Maximization (SiVM)

1: vj ← vrand(n)

2: w1 = argmax
k

d(vk, argmax
i

d(vj ,vi))

// randomly select vj from V and find 1st basis vector
3: for K = 2 . . . k do
4: φK,i ← φK−1,i + d(wK−1,vi)

// corresponds to:
Pn
i=1 di,k

5: λK,i ← λK−1,i + d(wK−1,vi)
2

// corresponds to:
Pn
i=1 d

2
i,k

6: ρK,i ← ρK−1,i + d(wK−1,vi)× φk−1

// corresponds to:
Pn
i=1

Pn
j=i+1 di,kdj,k

7: wK = argmax
i

ˆ
dmax ∗ φK,i + ρK,i − K

2
λK,i

˜
8: end for

This process can be parallelized since the coefficients of data
vectors vi and vj are independent and result from solving
the following constrained quadratic optimization problem

min
‚‚vi −Whi

‚‚
s.t. 1Thi = 1, hi � 0. (8)

Regarding computational complexity, SiVM basically con-
sists of iterative distance computations. For each basis vec-
tor wi we have to compute the distance d(wi,vi),vi ∈ V
only once. If we assume k basis vectors, this translates to
O(kn) where k � n. Note that we omit constants for the
used distance metric. The 3 simple additive operations in
steps 4, 5, and 6 of Algorithm 1 do not majorize compu-
tation times for large n and conventional distance metrics
(e.g. for a data set of 80 million images, they require less
than 0.1% of the overall computation time).

4. EXPERIMENTS
In this section, we report on a series of experiments in-

tended to evaluate the maximum volume algorithm in terms
of computational efficiency and approximation quality.

Observation 1. If S is an n-simplex whose n+1 vertices
were sampled from a large distribution s.t. they maximize the
simplex volume and enclose most data, then the vectors rep-
resenting the vertices are almost perpendicular on average.

Observation 1 does not allow a formal proof as it is essen-
tially dependent on the data under consideration. Assume,
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Figure 3: Computational efficiency and approxima-
tion quality of the Simplex Volume Maximization
(SiVM) algorithm and AA. The x-axis shows the
number of data samples, the y-axes show (averaged)
Frobenius norm or computation time in seconds.

for example, an iid data distribution in a 3D-cube. The
vertices of a polytope that is supposed to enclose most of
the data must reside on data points near the corners of that
cube. Next, we provide empirical evidence that the proposed
algorithm does indeed select vertices like this.

For example, we consider a set of 80 million tiny color im-
ages [7]. We experimented with the publicly available 384-
dimensional gist descriptors computed from these images.
As this descriptor encodes an image using various Fourier
bases, we expect SiVM to find images that resemble Fourier
bases. Obviously, a data set consisting of random Inter-
net images will hardly contain any real depiction of Fourier
bases, but it may contain images that closely resemble them.
Figure 2 shows the first 10 basis vectors determined by our
algorithm. Apparently, they indeed resemble 2D Fourier ba-
sis elements and are pairwise (almost) perpendicular.

To best of our knowledge, this is the first time that a data
matrix of this proportion is reported to have been factorized
using a non-negative factorization approach. It has a size of
79, 302, 017 × 384 = 30, 451, 974, 528 elements. Using the
algorithm proposed in this paper, it takes about 4 hours to
compute a single basis vector on a single core machine.

5. APPLICATION: DIGITAL FORENSICS
In an ongoing project on social media analysis, we ex-

amine the structure of data collected from micro blogging
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Figure 2: The first 10 basis vectors found from applying SiVM to gist feature vectors of 80 million Internet
images. The leftmost image corresponds to the 1st basis vector, the image to its right corresponds to the
2nd basis vector, etc. The image can be understood as natural realizations of simple sinusoids of different
orientation, phase and frequency. This accords with the geometric structure of the gist feature space where
images are represented by means of linear combinations of elementary Fourier and Gabor functions.

Thinking we can cut oil consumption by 2.5 mil-
lion barrels of oil per day and take 50 million cars’
worth of pollution off the road by 2020

0.370

In Chicago, heading to Change
Rocks Concert with Macy Gray, Jeff
Tweedy, Stephan Jenkins & Jill Sobule
http://my.barackobama.com/gochicago

0.225

For #FollowFriday #ff: @WhiteHouse and
@DemocratsDotOrg

0.010

Humbled. 0.014
RT @chelliepingree We won!!!! 0.008
RT @JimOberstar: Health Care Reform Passes!!!
220 to 215

0.0135

Happy New Year! 0.004
”It is because of the spirit and resilience of Amer-
icans that I have never been more hopeful about
Americas future than I am tonight” #SOTU

0.141

Watch highlights from today’s #HCR meeting:
http://bit.ly/b1nA7w; http://bit.ly/cFnJVS;
http://bit.ly/bP01bn

0.160

Yes we can. 0.051

Table 1: Basis tweets found for Barack Obama.

services such as Twitter. We apply statistical methods to
the problem of authorship analysis, in particular, we aim
at determining whether or not there is a single person or a
team of authors blogging under a single pseudonym.

In our experiments, we examine large collections of tweets
associated to particular famous users. One of the benefits
of SiVM for latent component analysis is, that the resulting
basis vectors are readily interpretable even to non-experts.
By extracting the most extreme instances of a data set,
SiVM yields basis elements that are well distinguishable data
points. If we capture the style of a tweet in appropriate fea-
tures, it is likely that differences due to different authors are
immediately visible in the resulting latent components.

Here, we consider a data set of 1.5 million twitter tweets of
more than 300 popular twitter users (including tweets from
Ashton Kutcher, Barack Obama, Britney Spears among oth-
ers). From each tweet we compute a set of 30 stylistic fea-
tures. These mainly indicate the ratios between adverbs,
verbs, signs, own words, or punctuation signs, etc. and the
length of a tweet. For each user as well as for the com-
plete data we extract a number of basis vectors using the
proposed algorithm. Computing all these basis vectors re-
quires only a few seconds. An example of the resulting basis
vectors, i.e. the corresponding most extreme tweets, for an
exemplary user are listed in Table 1. Next to each tweet we
show to which degree that basis vector contributes to the
overall reconstruction (e.g. a value of 0.5 indicates that this

tweet represents a style of writing that can be found among
50% of all tweets of this user).

With only 10 basis tweets per twitterer, we can already
gain interesting insights. For example, for Barack Obama,
we see noticeable differences. It is because of the spirit and
resilience of Americans that I have never been more hope-
ful about America’s future than I am tonight tells a different
story than his rather short status messages. More or less sur-
prisingly, the popular slogan Yes we can. was also detected
among the first 10 basis vectors. Note again that at this
point we do not apply any linguistic or semantic analysis.
Rather, it is the extreme nature of the latent components
found through SiVM that suggest different authors.

6. CONCLUSION
We presented a novel method for finding latent compo-

nents in massive data-sets. Based on principles of distance
geometry we have shown that for convexity constrained fac-
torizations minimizing the Frobenius norm is equivalent to
maximizing the volume of a simplex whose vertices cor-
respond to basis vectors. The proposed approach allows
for factorizing data matrices of several billion entries. To
the best of our knowledge, the factorization of the matrix
of 80,000,000 images presented this paper constitutes the
first instance of a factorization of matrices of this size that,
though carried out on a single computer, did not have to
resort to sophisticated subsampling techniques.
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