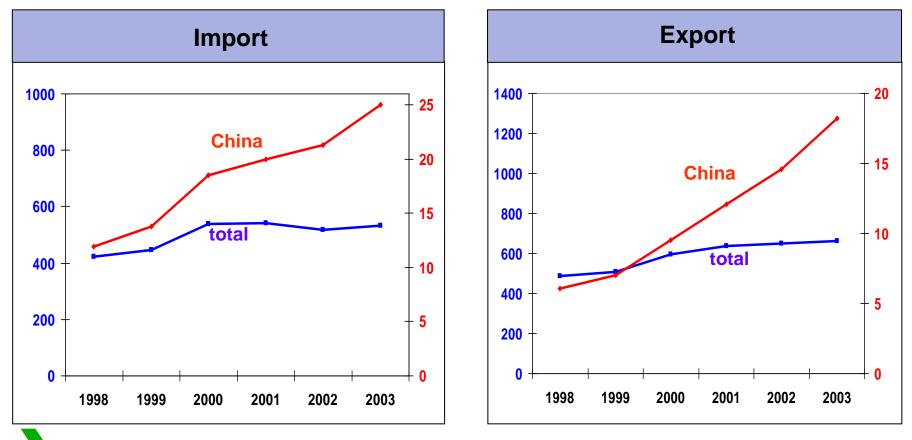
"Logistics, Traffic and Environment"

Professor Dr.-Ing. Uwe Clausen, Director, Fraunhofer Institute for Material Flow and Logistics (IML) Dortmund – Germany Chairman, Fraunhofer Transport Alliance (Verbund Verkehr)


Guangzhou 14.11.2005



© 2005 – Prof. Clausen

Verkehr

Germany's trade with China grows by more than 19% p.a.

source: Statistisches Bundesamt

© 2005 – Prof. Clausen

Fraunhofer Institut Materialfluss und Logistik

Fraunhofer _{Verbund} Verkehr

Increase of global trade requires optimized logistics

Globalization worldwide

increase of needed goods transport services

Internet

 a chance for communication, especially among logistic network partners

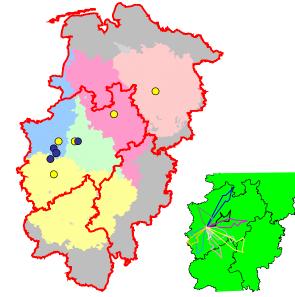
Logistics locations and networks

- airport logistics
- ports and logistic parks

Industrially sustainable development

- fuel efficiency
- optimized logistics structures
- saving resources by a closed-loop-economy

© 2005 – Prof. Clausen


Fraunhofer Institut Materialfluss und Logistik

Fraunhofer _{Verbund} Verkehr

Optimization of the ThyssenKrupp Schulte GmbH warehouse and distribution logistics

Research fields:

- steel trade
- storage and transshipment techniques

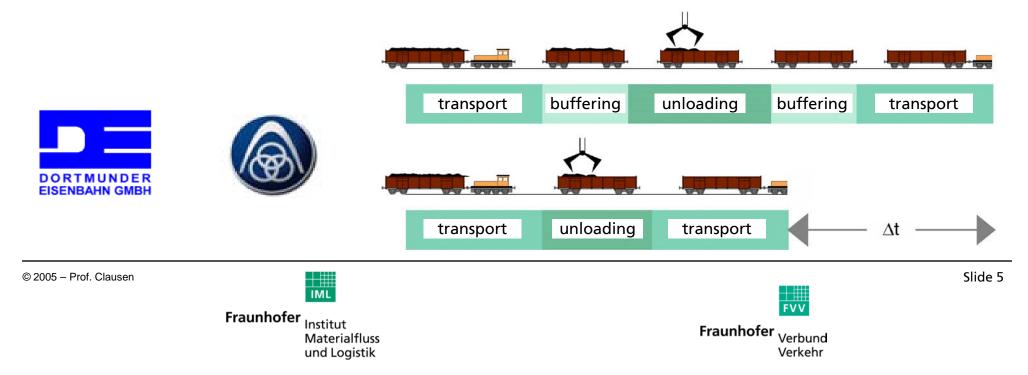
warehouse planning

- industry-specific warehouse and transport optimization
- resource, personnel and freight cost calculations
- development of realizable solution: new distribution structure including specific locations of the external logistic

service provider

- infrastructural systems
- warehouse management
- vehicle routing and scheduling

© 2005 – Prof. Clausen



Fraunhofer Institut Materialfluss und Logistik

Optimization of the material and information flow aiming at the reduction of demurrage

- weak point analysis of the waste metal transports
- measures on the cost reduction and elimination of the bottlenecks
- improvement of the information flow
- design of interfaces production transport recycling

Innovative mobile identification and information technologies for railway transportation (mRail-Business)

Proceeding:

- demonstration of the processes of the Stahlwerke Bremen (Germany) factory railway
- analysis of mobile device functionality for railway logistics
- Targets:
- improved IT support of operational processes
- improved information flow from the personnel outside up to the dispatch processes in the headquarter
- reduction of waiting and handling times in factory railway operations

© 2005 - Prof. Clausen

Fraunhofer Institut Materialfluss und Logistik

Fraunhofer _{Verbund} Verkehr

Bundesministerium für Bildung und Forschung

Procurement and disposal logistics within production

e. g. on behalf of a foundry premises (Fritz Winter Eisengießerei GmbH & Co. KG)

Initial situation

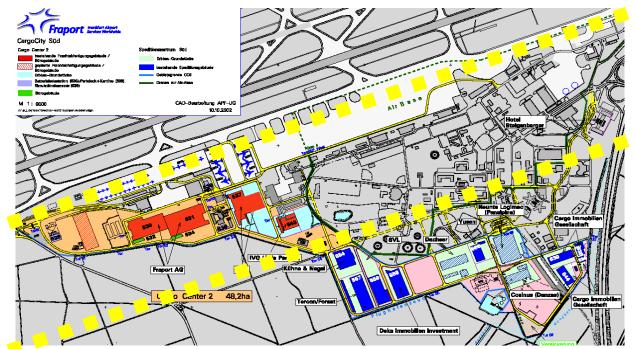
- german federal railway (DB Railion) disassociates from more than 500 inefficient siding tracks, private railways operate many of these in cooperation with DB Railion
- truck traffic within works premises needs space and is obstructing in-plant logistic processes

Result of Research Project

- avoidance of 432,000 truck-km/a by using recycling plants (foundry waste sand, core sand) situated close to location
- shift of 1,100,000 truck-km/a to transport mode rail (new sand, coke, silicon carbide) instead of truck
- improved safety of staff on premise

© 2005 - Prof. Clausen

Fraunhofer Institut Materialfluss und Logistik

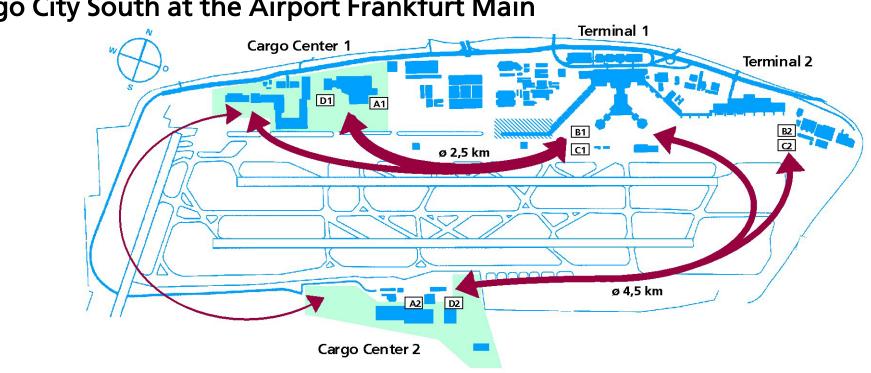


Airport logistics - Master Plan for the "CargoCity South" at Frankfurt Airport

• First Line:

Cargo terminals with direct access to apron

- Second Line: Forwarder terminals
- Result of Research Projekt :


Definition of the location and utilisation concept of CargoCity South – building and integrating air cargo facilities - checked by simulation of the entire cargo processes at the airport

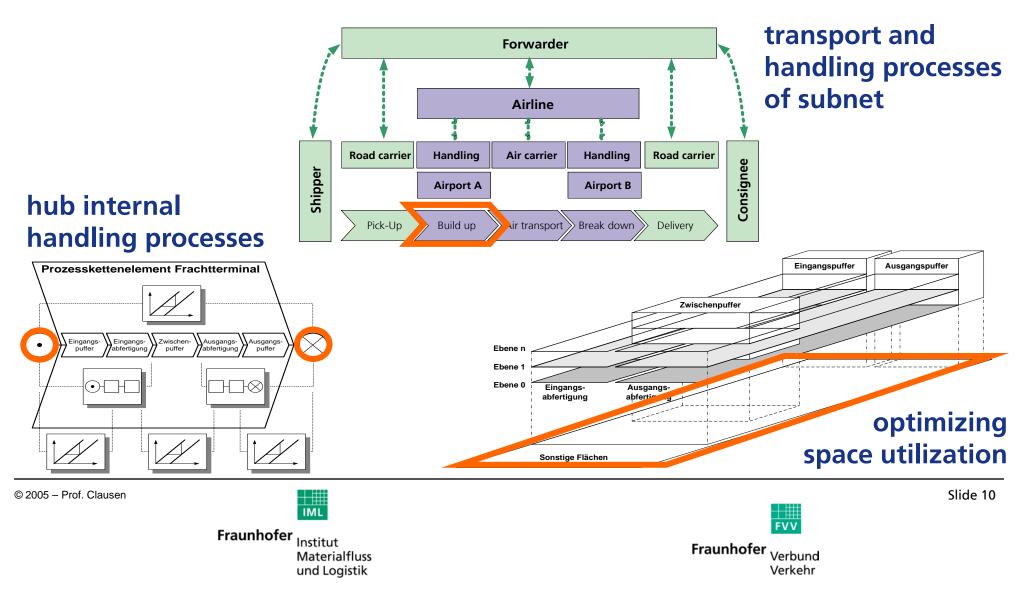
© 2005 - Prof. Clausen

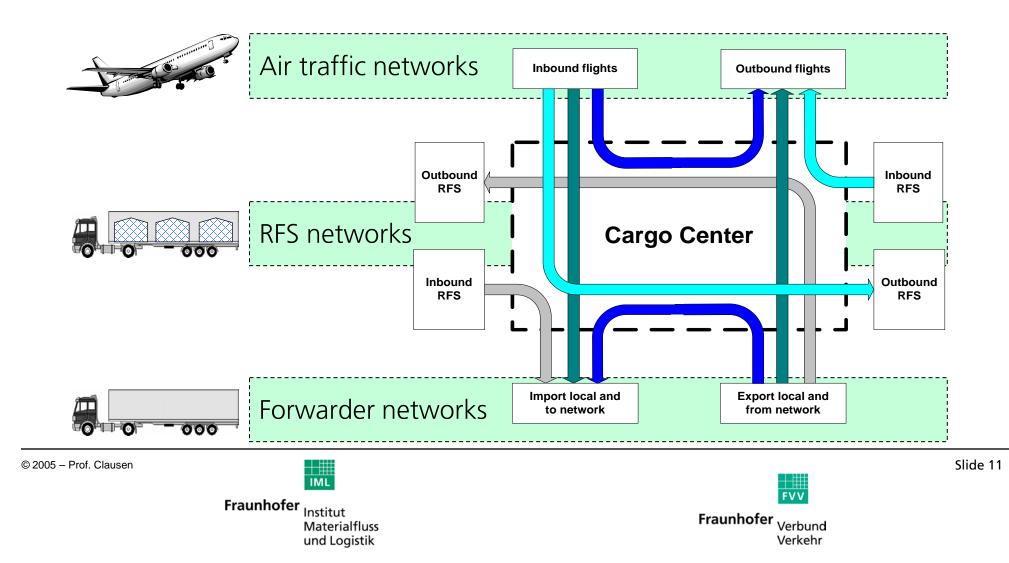
Fraunhofer Institut Materialfluss und Logistik

Cargo City South at the Airport Frankfurt Main

- Development concept regarding operational buildings and dummy areas for cargo handling as a basis for planning of traffic tying and development
- Determination of the dimensional and functional requirements as a basis for architectonical and constructional design of the cargo facilities

© 2005 - Prof. Clausen


Fraunhofer Institut Materialfluss und Logistik


Slide 9

Fraunhofer Verbund Verkehr

Airport logistics - Conceptual Design of Cargo Terminals

Airport logistics - Optimisation of Interfaces between Networks

Logistics Location Planning - Research focus and Procedures

Location Evaluation

- Analysis of strengths and weaknesses
- Consideration of different target groups
- Including future requirements

Location Development

- Determination of development guidelines
- Determination of investment needs
- Strategic positioning, organisation and cooperation types

Implementation Planning

- Development of time and cost plans
- Selection of an operator concept
- Recommendation of realisation schedules

© 2005 – Prof. Clausen

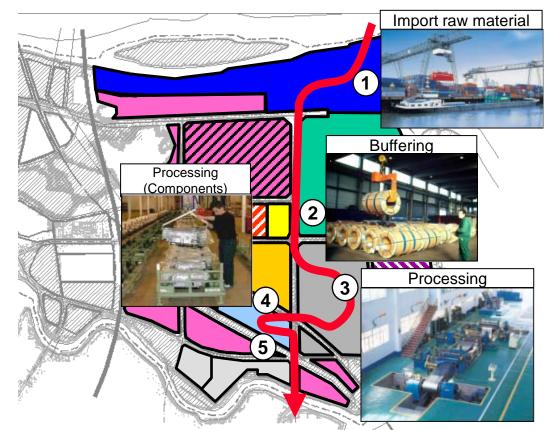
Fraunhofer Institut Materialfluss und Logistik

Slide 12

Optimization of the logistical infrastructure - example Nanhai 三山国际物流园区 "Sanshan International Logistics Park"

Results

- Market analysis of the requirements of the local industry
- Strategic planning of the logistic functions for specific areas
- Strategic development and marketing concept
- Business model for the development enterprise including a cost benefit analysis

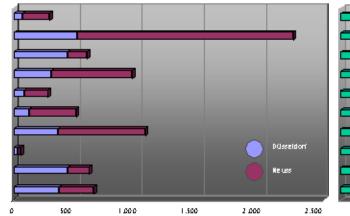

Generalisation

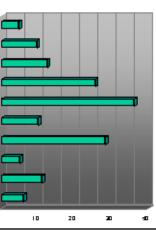
 A proper functional planning results in competition advantages and enables a better focus for the aspired user goups

© 2005 – Prof. Clausen

Fraunhofer Institut Materialfluss und Logistik

Fraunhofer _{Verbund} Verkehr


Cooperation of ports - example Düsseldorf and Neuss (in Germany)



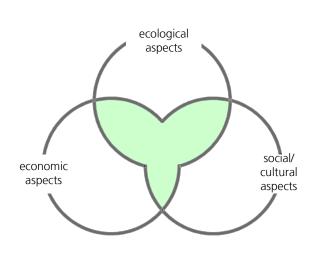
Schiffsgüterumschlag der Häfen Düsseldorf/Neuss [1000t] 1999 -

Determination of the strengths and weaknesses of both ports

- Recommendations for new business areas and logistic services
- Derivation of long term development guidelines
- Identification of synergy potentials based on the cooperation

Grenzüberschreitender Güterverkehr

Sinnenschifffehrtgesemt (Mio. t)


© 2005 – Prof. Clausen

Fraunhofer Institut Materialfluss und Logistik

Industrially sustainable development is characterized by...

- **E** higher fuel efficiency which results in reduced CO₂ emissions and lower fuel costs
- **C** the development of **a closed-loop economy** (recycling) which saves resources and reduces the amount of waste
- optimized logistics structures which reduce kilometers driven, vehicles used and time needed to perform a specific service

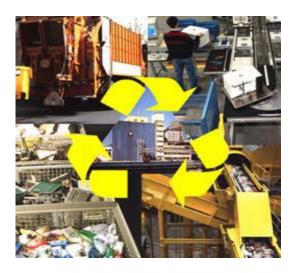
➔ Innovative logistics includes all three items and can foster industrially sustainable development putting both, the environment and China's growing economy into a win- win situation.

Why establishing redistribution systems?

24 R&D projects in Germany proved that annually more than 36 m truck kilometres and approx. 20.5 m € vehicle costs can be saved in the closed-loop economy.

Source: Dr. Kremer, TÜV Management Systems GmbH

© 2005 - Prof. Clausen


Fraunhofer Institut Materialfluss und Logistik

- Avoiding unnecessary transports
- Shifting road transports to eco-friendly transport modes rail or waterway, and relief of the overstrained transport mode road
- Development and utilization of networks within the closed-loop and waste management to feed as much waste as possible to a recycling according to state of the art and to dispose of as little waste as possible
- Opening-up development potentials in vehicle, container and handling systems to increase efficiency
- reduction of environmental pollution as well as environmental hazards

How can redistribution systems be established?

Basic principles – legislatory frameworks

- Product responsibility: Manufacturers and distributors are obliged to take back, and re-distribute their products in the European Union
- Waste hierarchy: Avoiding waste instead of recycling waste before disposal

Task of Manufacturers

- Designing products suitable for recycling (eco-design)
- Installation of product take-back systems
- Recycling, treatment and disposal of returned products
- Minimization of environmental load

© 2005 - Prof. Clausen

Fraunhofer Institut Materialfluss und Logistik

Fraunhofer _{Verbund} Verkehr

Reduction of road transports for used glass

Bundesministerium für Bildung und Forschung

Funded by

Initial situation

- Transport relations have grown complex over long distances
- 98% of transports for used glass initially takes place on the road

Objective

 Reducing and avoiding transports for used glass on the road by assignment optimization, shift to alternative transport modes, and application of new information technologies (planning & scheduling tools)

Results

- Avoiding transport of used glass via road by approx. 30% with aid of a software planning tool and application of IT to reduce transport volumes
- Development of new vehicles the Vario-Collector[®] with separate, flexible compartments for collecting different types of glass

© 2005 - Prof. Clausen

Fraunhofer Institut Materialfluss und Logistik

Fraunhofer _{Verbund} Verkehr

Production-Integrated Environmental Protection Check (PIUS-Check)

Initial situation

 Use of raw materials and occurrence of residues in the production process, which have different detrimental effects on the environment

What is the PIUS-Check?

- Survey of the relevant material flows and state of the art in production
- Showing possible improvements in production regarding economic and ecological aspects

Objectives

 Minimization of residues and saving resources in production, closing the loop in the production process and recovery of value substance

© 2005 - Prof. Clausen

Fraunhofer Institut Materialfluss und Logistik

Production-Integrated Environmental Protection Check (PIUS-Check)

Example: PIUS-Check in the surface treatment industry

- Optimization of a production line by improved procedure organization in the rinse process (reduction of water and chemical use by 20%),
- Reduction of fresh water use by usage of rain water (substitute fresh water by rain water up to 80%)
- Optimization of fresh water inflow in the rinse baths (reduction of the water use by 5%)
- Reduction of surface losses of heating boilers (reduction of energy use by 10%)
- New conception of the cooling water cycle of an induction plant (reduction of the water use up to 50%).

© 2005 - Prof. Clausen

Fraunhofer Institut Materialfluss und Logistik

Fraunhofer _{Verbund} Verkehr

logistic development of New Fair Munich

- Dynamic parking and traffic management system

- Development of a traffic related concept for a dynamic and freely programmable traffic management system on the motorway and the downstream road network
- Public transport system
- Development of concepts for shuttlebuses between rapid-transit railway station, airport and parking places and the exhibition center
- Logistic concept for the delivery traffic
- Development of a heavy goods vehicle-pool concept for a coordinated traffic cycle at the deliverycourts

© 2005 - Prof. Clausen

Fraunhofer Institut Materialfluss und Logistik

Fraunhofer _{Verbund} Verkehr

Identification of Traffic Situations

- Camera systems for visual traffic data acquisition
- Picture analysis algorithms for determination of the traffic situation
- WLAN for data coverage of urban agglomerations
- Algorithms and know-how for the combination and interpretation of different types of traffic process data
- Competencies in the field of interface design related to computer-based operations control centers and passenger information system

Fraunhofer IVI, Dresden

© 2005 - Prof. Clausen

Fraunhofer Institut Materialfluss und Logistik

Slide 22

Traffic Information Systems

- Intermodal traffic information including public transport
- Real-time identification, dynamic routing
- Tourist and city information

Fraunhofer IVI, Dresden

Mobility and traffic information systems based on floating car data (FCD)

NOKIA

- Use of location and speed data from few cars to estimate overall traffic
- Development of Passenger information and infotainment systems

Fraunhofer IPK (Berlin)

© 2005 - Prof. Clausen

Fraunhofer Institut Materialfluss und Logistik

非常感谢!

Dortmund

Beijing

Thanks for your attention!

Prof. Dr.-Ing. Uwe Clausen Director Fraunhofer Institute for Material Flow and Logistics Joseph-von-Fraunhofer-Str. 2 – 4 44227 Dortmund Telefon: +49 231/9743-400 Telefax: +49 231/9743-402 E-Mail: uwe.clausen@iml.fraunhofer.de

房殿军 博士 Dr. DianjunFang 德国弗劳恩霍夫物流研究院 Fraunhofer IML 中关村大街18-3 号 1901 – 1903 室 电话:010 8253 8100

http://www.iml.fraunhofer.de fang@iml.fraunhofer.de

© 2005 - Prof. Clausen

Fraunhofer Institut Materialfluss und Logistik

