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ABSTRACT Sensors are devices that quantify the physical aspects of the world around us. This ability
is important to gain knowledge about human activities. Human Activity recognition plays an import role
in people’s everyday life. In order to solve many human-centered problems, such as health-care, and
individual assistance, the need to infer various simple to complex human activities is prominent. Therefore,
having a well defined categorization of sensing technology is essential for the systematic design of human
activity recognition systems. By extending the sensor categorization proposed by White, we survey the most
prominent research works that utilize different sensing technologies for human activity recognition tasks.
To the best of our knowledge, there is no thorough sensor-driven survey that considers all sensor categories
in the domain of human activity recognition with respect to the sampled physical properties, including
a detailed comparison across sensor categories. Thus, our contribution is to close this gap by providing
an insight into the state-of-the-art developments. We identify the limitations with respect to the hardware
and software characteristics of each sensor category and draw comparisons based on benchmark features
retrieved from the research works introduced in this survey. Finally, we conclude with general remarks and
provide future research directions for human activity recognition within the presented sensor categorization.

INDEX TERMS sensor categorization, human activity recognition, public databases for human activity
recognition, physical sensors, sensor benchmark

. INTRODUCTION

"In physical science the first essential step in the direction of
learning any subject is to find principles of numerical reck-
oning and practicable methods for measuring some quality
connected with it. I often say that when you can measure
what you are speaking about, and express it in numbers, you
know something about it; but when you cannot measure it,
when you cannot express it in numbers, your knowledge is of
a meagre and unsatisfactory kind" by Lord Kelvin (William
Thomson) [1]. Sensors are devices that can help to detect and
quantify physical aspects of the world around us. They can
measure the intensity of light, translate the degree of heat
into temperature, or turn mechanical pressure into a force
quantity. Sensors are all around us. One of the highest rates
of growth of sensor deployment have been in the automotive
sector. A modern automobile is equipped with an average of
60 to 100 sensing devices with a rising trend mainly for func-
tional aspects, such as the engine operation, brakes, safety,
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or emission controls [2]. With the growing trend of smart
vehicles, the demand on more sensing units is expected. Also
in the smart home domain, miniaturized sensing devices are
widespread. The distributed sensors build up an invisible
wireless network connecting everything together.

In order to facilitate a sensor comparison and obtaining
a comprehensive overview of the sensing technology, re-
searchers try to categorize them into different categories.
Sensor classification scheme can range in its complexity.
Simple general schemes commonly conclude three sensor
categories based on the nature of the sensed property (phys-
ical, chemical, and biological) [3]. However, a more com-
plex categorization is often required when addressing distin-
guished applications. This work focus on the sensing technol-
ogy deployed in academic research and consumer products
for Human Activity Recognition (HAR). To build our sensor
categorization within this field, we adopt the classification
scheme proposed by White [3]. This scheme is accredited to
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FIGURE 1. The sensor categorization for HAR as presented in this work and
based (at the first categorization level) on the work by White [3]. We further
extended this definition to include the measuring methods, commonly used in
the domain of HAR.

be more flexible and intermediate in complexity. It is based
on the measurands or physical entity that a sensor actually
senses such as temperature, light intensity, or mechanical
stress. We present a first look at our categorization scheme in
Figure 1, where we show the first level categorization based
on the physical quantities followed by common sensor types
utilized to measure this appropriate physical quantity.
Although several surveys have been conducted for
HAR for specific sensor categories, such as surveys on
acceleration-based [4], [5], radar-based [6], radio-based HAR
[7] and camera-based HAR [8], these are all focusing on sin-
gle sensor technology based applications for a sub-domain of
HAR. A thorough comparison across these sensing technique
categories with a focus on the sensor advantages and disad-
vantages in specific tasks is still lacking. Other surveys focus
on algorithm-based methods (recent advances made in deep
learning [9], [10] and transfer learning [11] applied in the do-
main of HAR). Hussain [12] combined several surveys and
proposed the first survey covering almost all the sub-fields of
activity recognition using device-free sensors. However, this
work was application-driven (rather than sensor-driven) and
largely focused on RFID technology in activity recognition.
Unlike other surveys regarding tag-based RFID applications,
they promoted the current development of using RFID as
device-free solutions for HAR. In contrast to previous works,
we are presenting a wide sensor-driven overview on HAR
without limitation to a certain sub-application or a certain
sensing technology (e.g. ambient sensors). Instead of count-
ing sensor technologies on specific sub-domains of HAR
and thus under representing certain sensor categories, we
categorize sensors based on its physical properties to adjudge
its membership to sub-domains of HAR. Tasks may differ,
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but the sensor physical characteristics remain. The appropri-
ate sensor category to use is left as a design choice to the
application designers. Based on this survey, the application
designers should be able to consider the appropriate sensor
category with respect to specific task. This survey provides
useful insight for researchers and developers in the HAR
domain and provides a summary of existing works, including
insight into the current and future research directions.

This manuscript is organized as follows. In section II, we
present our sensor categorization scheme according to the
physical entity they measure and revise the most prominent
works utilizing these sensor categories in the domain of
HAR. In section III, we provide a detailed discussion of
public available databases intend to help developing applica-
tions in this research domain with the corresponding sensor
categories. In section IV, we present the common evaluation
metrics used in the literature to evaluate and compare the
performance of the developed algorithms and systems. This
is followed by a thorough discussion (Section V) on the hard-
ware and software limitations we identified for each sensor
category based on the literature research conducted within
this work. Finally, in section VI, we provide the reader with
insight into possible solutions to the previously mentioned
challenges and offer an overview on current and upcoming
future research directions in the domain of HAR with sensory
data.

Il. SENSORS

A sensor is in general a converter that turns a physical quan-
tity into electric values to be perceived by a digital system. Its
output changes according to the change of physical properties
on the input side. Sensors integrated in smart environments
can either unobtrusively perceive the environment or be
directly interacted with. Sensors that tend to sense the natural
human intention without direct interaction can be used to
design implicit interaction interfaces. Sensors that expect the
user to initiate a direct interaction is used to design explicit
interaction interface. To choose the appropriate sensor type
to design the corresponding interface requires a clear sensor
classification. Here we divide the sensor types into acoustic,
electric, mechanical, optical, and electromagnetic and intro-
duce its related physical sensing properties.

Typically, a sensor works in close collaboration with actu-
ators and control unit to build the full cycle of an automated
system, as illustrated in Figure 2. What a sensor measures
will be interpreted by a logic unit, which is the decision
making layer and leads to certain action triggered by it. An
actuator acts the correct response according to the measured
entity from the sensor.

In this survey, we only focus on the sensing part and
portray all possible physical entities, which are commonly
used to perform HAR. The miniaturization of sensing devices
and the cheap production cost make smart sensing devices
widespread in the smart home domain in an aim to simplify
our everyday life. Voice assistants such as Alexa, Siri, Cor-
tana and more [13] can listen to our voice command and
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FIGURE 2. A sensor plays an essential part in an automated system. It
senses certain properties of the environment and convert it to electric input
feed to the central control unit. The control unit makes a decision based on the
digital input data and makes the actuator act upon this decision.

control the lightening or other smart appliances. For human-
centred designs, it requires to understand the human actions
performed. Sensors can make the link between the human ac-
tions and the interpretation unit. The same human action can
be measured by various sensor types, but the pool of actions
is wide, which makes an action-based comparison more dif-
ficult. Therefore, in order to make a more easily comparison
across sensors, we make the sensor classification based on
the physical measures and provide related applications with
this type of sensor used in the sub-domains of HAR, such as
indoor localization [14]-[19], home behavior analysis [20]-
[26], quantified-self [27]-[29], gestures, postures recognition
[30]-[37] and sensing of physiological signals [32], [38]—
[41].

Physical quantities, such as sound, light and pressure can
be measured by acoustic sensors, optical sensors and pressure
sensitive sensors. In the following sub-sections, we present
some detailed works with regard to the sensor categorization
given in Figure 1. The common structure for each sensor
category is organized as follows:

1) introduce the physical sensing principle,

2) survey the most prominent research works that utilizes

the questioned sensing category in activity recognition,

3) conclude and discuss the utilization of the sensing tech-

nology, including the advantages and disadvantages
within the application domain,

4) a summery of the discussed works with a clear

table-structured presentation of the main take-home-
messages.

A. ACOUSTIC

Acoustic sensors can measure mechanical or acoustic waves
traveled through certain materials. The transmission speed
is affected by the different material properties over the
propagation path in the transmission channel. Mechanical
waves traveled through solid materials, can be detected by
a surface acoustic sensor. Typical representatives of a surface
acoustic sensor are built by piezo-electrical elements. These
sensors are mostly operated in passive mode. Seismograph
is a passive sensor, which could be used to measure the
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vibrations on the ground surface caused by a step signal.
Passive sensors are compact, cost efficient, easy to fabri-
cate, and have a high performance, among other advantages.
However seismic sensors need a robust ground coupling to
detect the vibrations traveled in the surface. The better the
coupling, the better will be the signal to noise ratio of the
received signals. Active acoustic sensor can measure sound
waves transmitted through the air channel. These sensors
can generate an electric signal, which will be converted to
mechanical oscillation by using a membrane to set the air
around the transducer into motion. This mechanical wave
is modulated by the object or obstacles close to the sensor
and the back reflection is sampled by an analogue digital
converter (ADC) converting the echo modulation back to
electric signal. In this subsection we will discuss three main
categories of this sensing technology: active acoustic, surface
acoustic, and ultrasonic sensors. This subsection will later
include an overall discussion of the technology and a final
conclusion.

1) Active acoustic sensors

Sound events such as clapping, coughing, laughing and
yawning, besides natural speech languages carry additional
information for perceptual aware systems. Schroeder [20]
proposed using a microphone to detect four acoustic events
(coughing, knocking, clapping and phone bell). Several sig-
nal processing steps and template matching from the fre-
quency spectral domain are necessary to extract useful pat-
terns to train the SVM classifier. Temko [21] focused on
identifying 16 types of meeting room acoustic events, such
as chair moving, door slam, coughing, laughing, etc.. Their
sources of sound samples are acquired both from the pub-
lic database, such as RWCP [42] , ShATR [43] database
and the world wide web. However the class distributions
are highly imbalanced, since the database with the targeted
classes are mostly imbalanced.

One drawback of these acoustic sensor is, that these sound
information collected by a microphone may also contain
speech information and thus raise privacy issues. A viable
solution is to use surface vibrations instead of sound signals.

2) Surface acoustic sensors

Pan [44] built a person identification system that utilized
footstep induced structural vibration. The system sensed floor
vibration caused by footstep without interrupting human
activities. Gait analysis based on the characteristics of indi-
vidual footstep was then exploited to achieve an identification
accuracy of 83 %. By further incorporating a confidence
level, the accuracy rate increased up to 96.5%. This was
done by using only the most confident traces above certain
threshold.

The signal to noise level of the received structural vibration
signal is highly dependent on the sensor coupling to the
ground and the surface materials. A sound coupling provides
a higher signal to noise ratio. However, it is also possible to
increase the detection accuracy by performing more signal
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FIGURE 3. On the right side, the principle of a surface acoustic wave is
depicted. Each footstep causes the surface to vibrate. This vibration can be
measured by a microphone or seismograph. On the left side, a pulsed
ultrasonic signal is depicted. Range information is unambiguous within two
subsequent pulses.

processing on the input stage. Since these acoustic events
contain high frequency component, neglecting the low fre-
quency components of the vibration signal further concen-
trates the signal energy to a smaller frequency bands and
thus further improves the signal to noise ratio. Mirshekari
[45] managed to improve the localization accuracy of indoor
footstep signals in this way. They were able to achieve an
average localization error of less than 21 cm, resulting in an
improvement of 13 times compared to the use of the raw input
data.

Alwan [22] proposed a work to detect the fall event by
leveraging a seismic sensor to catch the distinctive vibration
characteristic of a fall event. Falls are most common among
elders and are one of the leading cause of death for elders.
The authors worked to distinguish patterns from dropping
objects close to the sensor and simulated fall events from
a Rescue Randy up to 20 feet away from the sensor. The
detection of a fall event is based on the models according to
the vibration patterns, such as frequency, amplitude, duration,
and succession.

3) Ultrasonic Sensors

Ultrasonic sensors are active sensors, which actively transmit
and receive signal to remotely perceive its environment.
Ultrasonic spectrum starts from 20 kHz to 200 MHz, that is
just above the human audible range. Ultrasonic sensing can
be conducted in several classical forms. Acquiring distance
information only, a pulsed sensor can be used to transmit
high frequency pulsed signals and await for the reflected
pulse bounced back off the measuring object. The operation
frequency for most of the ultrasonic distance sensor are
chosen to be 40kHz. The time of flight, when the echo is
registered by the ultrasonic receiver are correlated to the
distance. The equation for calculating the object distance is
thus D = ”OT't, where the speed of ultrasonic wave through
the air is vg = 340" at a temperature of 20°C. Notice the 2
indicates the round-trip of the echo signal.

Acquiring motion information, such as the relative speed
or moving direction, the Doppler measurement is required.
To measure the quantity of Doppler broadening, a continuous
signal of 40kHz is emitted by the transmitter. The relative
motion of a moving object is modulated above this carrier
frequency. The amount of the Doppler in frequency shift
can be calculated by using the Doppler equation, which then
directly renders the information regarding speed and the sign
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TABLE 1. Table lists commonly used ultrasonic sensors used to build human
activity recognition system in indoor spaces. Det. Range is the detection
range, Field of view (FoV) and Op. Freq stands for operating frequency.

Sensor Det. Range FoV Op. Freq
HC-SR04 4cm - 400cm 15° -30° 40kHz
LV-MaxSonar-EZ0  15.2cm - 256 cm 33° 20kHz

is related to the direction of the relative movement.

Indoor activities, especially activities of daily living, such
as standing, sitting and falling, and quantified-self are the
most popular use-cases for using ultrasonic sensors. Notably,
for recognizing simple indoor activities, pulsed ultrasonic
sensors are often used to measure distance towards the in-
teracting object. Ghosh et al. [27], [46] mounted 4 HC-
SR04 sensors to cover a square of 70 cm x 70 cm with a LV-
MaxSonar-EZ0 in the middle to reduce the dead zone. Based
on the distance profile, they used the support vector machine
(SVM), k nearest neighbours (k-NN), and Decision Tree
approaches to classify the targeted activities. The activities
contain primitive activities such as sitting, standing and fall.
Using Hidden Markov Model (HMM), they later extended
their work to recognize these events for a group of multiple
person [47] and the transitions of these primary states. Patel
[48] targeted at a complete new set of activities of daily
living including (Nothing, Entered, Using Refrigerator, Used
Refrigerator, Appeared near burner, and Using burner) by
applying Fusion of sensor networks consisting of Infrared
Breakbeam Sensor, Ultrasonic sensor(HC-SR04) and Passive
Infrared sensor(HC-SR501). The sensor specifications for the
leveraged ultrasonic sensors are illustrated in Table 1. The
operation frequency of the sensor, its field of view and the
detection range are provided.

Physiological signals can likewise be detected by using
a ultrasonic signal measuring the distance modulation of
the chest movement during a respiration circle. Nandakumar
[38] developed a contact-free sleep apnea detector with an
oft-the-shelf smartphone. They transformed the phone to an
active sonar system by emitting linearly frequency modu-
lated sound signals (from 18kHz - 20kHz) and extracted
range information from the reflected echo signal caused by
the chest movement. Hand gesture recognition task using a
smartphone device is further targeted by the project Dolphin
[30] and FingerlO [31]. Due to the limited detection range
of a ultrasonic device, for close-range and fine-grained de-
tection such as hand gesture and chest movement, a mobile
application is more suitable than a fixed installation with a
pulsed ultrasonic device.

4) Discussion

As stated in previously cited works in Subsection II-A, acous-
tic sensors, such as microphone, are mostly used to detect
sound events, such as coughing, chair moving, door slam,
transmitted through air. They are mostly used to infer sound-
based events in private or public areas, such as a meeting
room. Acoustic sound event is one of the most informative
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source besides natural speech to interpret a scene containing
human beings and their interaction with the environment
[20], [21]. These sensors don’t require a solid coupling
between the transmit medium and the sensor itself. However
due to the nature of sound events, these sensors may raise
privacy issues, since the general speech could be interpreted
by the microphone.

Surface acoustic sensor measures the structural vibrations
transmitted through solid materials. Since the production cost
of these sensors are relatively low, they are often used to
build distributed systems. It is power-efficient and its sparsity
can further reduce the installation and computation costs.
Applications built with this sensor type are mostly focusing
on events causing vibrations on the ground surface, such
as step signals [44], object dropping or fall events [22].
These events form a primitive set of activities of daily living
in a household. However, sensors based on the structural
vibration require a solid coupling between the sensor and the
solid material. If the load on the ground surface is changed,
the vibration intensity and the pattern previously extracted
will also be deformed. These effects often lead to drops in
the detection performance and require sensor calibration.

Ultrasonic sensors overcome both disadvantages, by trans-
mitting and receiving high frequency signals to unobtrusively
perceive its environment. The operation frequency is above
the audible range of a human being and thus the audible
spectrum can be excluded for processing. Opposed to surface
vibration signals, no coupling to the ground is necessary.
Integrated into the environment, it can sense object up to
2m with a pulsed sensor operates at 40 kHz. Based on the
distance profile, activities such as sitting, standing, and fall
events can be recognized [47]. Operating in close range, it
can detect fine-grained activities, such as gestures [30], [31]
or even respiratory rate [38].

The usage of these sensor categories in the domain HAR
are three-folds,

1) sound events detection related to natural sounds from
activities of daily living with microphones,

2) surface vibration detection due to step signals with
surface acoustic sensors,

3) dynamic activity recognition with ultrasonic sensors.

5) Take-Home Massage

One can notice that most works related to activities of daily
living requires a network of this types of sensors. Due to the
limited detection range of this sensor type, a full coverage of
a room-scale requires multiple sensor fusion. Sound events,
such as coughing, chair moving, or door slam can be detected
by microphone arrays. Surface-bounded events, such as steps
or falls are mostly measured by surface acoustic sensors.
Fine-grained gestures or other delicate physiological signals
require a close sensing range and high resolute senor system.
For these applications, ultrasound sensors are preferred. An
overview of the cited literature can be found in Table 2,
where the previous works are introduced in terms of its ap-
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TABLE 2. Applications build on acoustic sensing.

plication area, sensing device, processing algorithm, sensor
behavioral, database and a concluding remark.

B. ELECTRIC

The strength of an electric field is related to the amount of
charge produced by an electrified object. When a detection
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electrode is placed close to an electrified body, an electric
charge proportional to the amplitude of the electric field is
induced in the detection electrode. This physical effect is
called electrostatic induction. The electric field can also be
modified due to capacitive coupling with conductive materi-
als or any other materials with a dielectric constant other than
air. In the following, this subsection will introduce two main
categories of this sensing technology: capacitive proximity
sensing and electrostatic sensing with electric potential sen-
sors. This subsection will later include an overall discussion
of the technology and conclude with some final thoughts.

1) Capacitive Proximity Sensing

Capacitive measurement is based on electric field proximity
sensing relying on the fact that an electric field is perturbed
by the existence of a nearby conductive object, such as part
of a human body. Therefore, this technology is often applied
for remote sensing in the field of HAR. Capacitive sensing
principle can be further divided into three operation modes,
ranging from loading modes, shunt mode, and transmit mode,
according to Smith [49]. In capacitive proximity sensing, the
sensing category applies voltage to one side of the sensing
electrode generating a constant electric field. The presence or
motion of a conductive object close to the sensing electrode
perturbs this electric field. The amount of the perturbation is
directly correlated with the interactive item placed close by
the sensing electrode. In Figure 4, the three operation modes
of an active capacitive measurement are depicted. In transmit
mode, the object acts as a transmitter and shortens the path of
the electric field lines and amplifies the electric field. When
the object is far from the receiver, the electric field weakens
with T%, since the object acts as a point source. Here 7 is
the distance between the object and the receiver. While the
distance decreases, the electric field weakens with %, as in
this case the object acts as a parallel plane object to the
receiver. In the shunt mode, electric field lines are partially
occluded by the object and the electric field strength is weak-
ened. In the loading mode, one can measure the displacement
current from a transmitter electrode to a grounded body part.
This mode is often used to get the relative distance from the
sensing platform to the object.

Nowadays, capacitive technology can be found in almost
every smartphone, tablet or touchscreen display. It is afford-
able and can detect the presence of fingers, hands or body
movement with high accuracy. The project Touché by Sato
[50] intended to enhance the touch interaction with capac-
itive sensing technique by leveraging the sweep frequency
capacitive sensing technique. Conventional capacitive sensor
operates at a certain frequency and can only detect touch
interaction based on the amplitude modulation. By leveraging
multiple frequencies, a more advanced profile can be built
to include a variety of information, such as distinguishing
between not touching, touching, pinching, and grasping.

Enhancing the touch modality, researchers design appli-
cations leveraging the proximity sensing ability of capacitive
sensing. Proximity enables a more natural form of interaction

6

compared to basic touch interactions. Braun [51] proposed
a driver’s seat enhanced with capacitive proximity sensing
to detect a wide range of physiological parameters about
the driver and his sitting postures for activity recognition in
automobile applications. Identifying lying postures in bed,
such as supine, right lateral, prone, and left lateral has been
proposed by Lee [52] using the ECG signal of 12 capac-
itive coupled electrodes horizontally integrated into a bed
cover. Rus [53] proposed similar lying posture recognition
with mutual capacitance as sensor grid deployed under the
mattress. These applications integrate the sensor electrodes
into individual objects close to the sensing body.

Large-scale systems can also be built using capacitive
sensing technique. Steinhage [14] proposed a smart floor
using capacitive sensing that can be embedded under any
non-conductive surfaces such as carpet or stone. Multiple
features, such as person identification, persons path or tra-
jectories tracking and fall detection are developed for this ap-
plication. These features are especially useful to elderly care
facilities. Similar work, TileTrack by Valtonen [15] based on
transmit mode, measured the capacitance between multiple
floor tiles and the receiver electrode to perform indoor 2D
localization. The system with an operation frequency of
10Hz can localize a standing human with an accuracy of
15 cm and a walking person within an error range of 41 cm.

Applications with capacitive sensing introduced so far
are commonly focusing on static or stationary measurement
such as sitting or lying postures and thus more stationary
information are provided. Dynamic nature of the whole-body
interaction and other remote activity recognition is sparsely
exploited. This is partly due to the physical principle of static
field measurement, but also a lack in this research direction.

2) Electrostatic Sensor

Electric potential sensor is an electrostatic sensor. Unlike ca-
pacitive sensing actively keeps a constant electric field to the
sensing electrode, electrostatic sensor works with stationary
electric charges. Electrostatic involves building up charge on
the surface of objects due to contact with other surfaces. This
charge induces an inverted charge on other opposite surface.
Therefore electric potential sensors can be operated more
power efficient due to the passive measurement of induced
charges. However this induced charge is only noticeable, if
the other surface has a high resistance to electrical flow and
thus making the process of discharge remains long enough
to be observed. Passive electric field measurement on the
opposite is strongly dependent on the dynamic nature. The
measurement solely based on body movement to generate
body charges induced onto the sensing device. In case of
electric field sensing, no constant electric field is applied on
the sensing electrode. The sensing is merely based on the
modulation of the existent ambient electric field caused by
charge redistribution due to human motion. Thus, this sensing
technology is strongly coupled to the ambient changes. The
advantage of the electric potential sensors are light weight,
large detection range, and high sensitivity. By using an ultra-
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FIGURE 5. Figure shows the working principle of an electric potential sensor
on the left and a typical step signal induced by the displacement current from
the body motion [16].

high impedance sensor at the input stage, even the smallest
displacement current caused by the body motion can be
reliably measured. The working principle of such an electric
potential sensor is viewed in Figure 5. The modulation of
body induced current is illustrated by using an oscillating
voltage source vp and it is changing over time. The dis-
placement current from the body motion is coupled between
the body’s surface and the sensor’s metal surface with a
capacitance C., which is typically in the order of 0.1 — 10 pF
[54]. This weak capacitive coupling requires a very high
input impedance to reliably detect the minor displacement
current generated by the body movement. Normally it is in
the order of 102 — 10'5€Q), to keep the output voltage v,
stable.

Prance [32] presented the ability of using an electric
potential sensor to remotely detect physiological signals,
such as the heart beat or respiration rate in a distance up
to 40cm from a seated subject. Rekimotor [55] built an
enhanced game-pad using electrostatic potential sensing to
allow whole-body input interactions such as (jumping, land-
ing, foot lifting and foot touch) besides the general key
press input modality. However, since the sensing principle is
based on body charge modulation via body motions, most
applications are focused on wearable designs, such as the
work by [56]-[58].

Cohn [33] used a human body as an antenna for whole-
body interaction in an indoor environment, by placing a
miniature device on the body to collect the existent envi-
ronmental "noises", such as AC power signal at 50 Hz or
60 Hz or other higher frequency signals from appliances and
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electronic devices. They leveraged the modulation of these
electronic signals specific to differentiate activities caused by
the body motion. They are able to sense 12 activities with an
accuracy of 93 %.

Remote and embedded installation for this sensing tech-
nology have been developed mainly for indoor localization
purposes, such as in the works [16], [17]. In the project
Platypus, Grosse-Puppendahl [17] showed that by installing
four ceiling mounted electric potential sensors covering an
area of 2 m x 2.5 m, they were able to track people in a nearly
empty office room around 16 m? with a mean localization
error of below 16 cm. They found out that the electric pattern
for each step for different person are distinctive within a short
time window. Thus making use of the pattern recognition
with handcrafted features by integrating priors from domain
expert knowledge and based on some common features from
literature regarding gait analysis, they are able to re-identify
four users with an accuracy of 94 % and 30 users with an
reduced accuracy of 75 %. Fu [16] deployed the measuring
electrode in a grid-wise layout under a non-conductive floor
covering to perform indoor localization. With a sensor elec-
trode spacing of 20cm and an system operation frequency
of 10 Hz only, they achieved a mean localization error below
12.7 cm by leveraging a weighted mean position estimation
method. The sensing area covers an area of 240 cm x 360 cm
in a simulated living laboratory environment. The author
stated, that this sensing technique is strongly dependent on
the foot-wear of the users. The strength of the induced charge
is strongly dependent on various aspects, such as the clothing,
weather condition and foot wear, which makes the sensing
system extremely susceptible to environment noise.

3) Discussion

According to the cited works in Subsection II-B, capacitive
proximity sensing is commonly used to sense direct inter-
action modality such as touch interactions. It can also be
applied to detect conductive objects up to 15-50 cm and thus
enabling other applications expand the touch interaction. The
sensing technique is well suited for measuring stationary
objects, such as postures or other stationary information in
close range to the sensing electrode. Thus for close range
activities and stable detection, the active capacitive technique
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is more preferable. Capacitive technology is widely used in
touch screen technologies of the most current smart screen
devices [59], such as smartphones, tablets or touch screens.
Besides the basic touch interaction, the most common usage
of capacitive proximity sensing is in static posture detection,
such as sitting postures [51], lying postures [53] or falling
events [14]. Large-scale installation is leveraged for indoor
localization task [15] or reasoned to build system performing
recognition of activities of daily living [14].

Technique of electrostatic sensing is used to better mea-
suring the dynamic activities. In this case, the sensing is
based on surface charge generation caused by movement. The
produced surface charge induces an inverted charge on the
opposite surface that is measured by a sensor with a relatively
high input impedance. This type of sensor is light-weight,
easy to deploy and power efficient, since no active electric
field is generated and only the existent ambient electric field
is exploited. This kind of sensor is applied in various use-
cases ranging from sensing of physiological signals [32], to
dynamic human activities [55], such as jumping, stepping
or walking. Room-scale activity recognition [16], [17] with
this kind of sensor is also possible. Even with a relatively
low system operating frequency of only 10Hz, an accurate
indoor positioning system is achievable. Build upon this
trajectories, researchers can easily conduct other extended
researches such as gait analysis or behavioural analysis of
the inhabitants. Combined with a reasoning system, Kirch-
buchner [60] carried out predictions for early detection of
dementia or other mental deceases based on these position
contexts.

The usage of this type of sensors in the domain of HAR
are two-folds:

1) close-range postures and stationary action detection

with proximity capacitive sensors,

2) passive, far-range dynamic activity detection with elec-

trostatic sensor.

4) Take-Home Message

Capacitive sensing technique is commonly used to detect
stationary activities in close range, either direct touch or
proximity up to 15 cm. Most common applications are finger
touches, human postures or indoor localization. The reso-
lution and detection range is directly related to the size,
material and applied voltage on the sensing electrode. Capac-
itive sensor can produce ambiguous measurements. Placing a
small object close-by results in the same measurement as a
large object placed at a distant distance. This problem should
be considered during the design phase. However the signals
are consistent, such that it provides reproducible signals for
same object under same measuring condition.

Electrostatic measurement of the electric potential sensor
is commonly used to detect dynamic changes, such as body
movements. The detection range of up to 2m based on
the hardware application is huge with respect to capacitive
proximity measurement. However, the disadvantage of this
sensing technique is that it is extremely susceptible to en-
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vironment noise, which should be considered in the data
processing stage. The signal patterns within a very short win-
dow is only reproducible, thus making it difficult to extract
robust features directly from the signal pattern in time. The
binary information of movement or non-movement can be
leveraged to build precise indoor localization systems. Based
upon the trajectories further applications can be researched.
An overview of the cited literature can be found in Table
3, where the previous works are introduced in terms of
its application area, sensing device, processing algorithm,
sensor behavioral, database and a concluding remark.

C. MECHANICAL

Mechanical signal often indicates the force applied to a
surface. The quantity of surface deformation is hence related
to the impact of the interactive object. This can be expressed
by the term P = %, where P is the pressure, F' is the
force applied in the normal direction to the surface and A
represents the area of contact. The force induced deformation
of the sensing surface, generates an electric signal, which is
sampled by an analogue to digital converter to a quantitative
measure. There have been many developments of pressure
sensors in the past, which vary in terms of performance,
technology, design and cost [61]. Its main application areas
can be found in industrial monitoring, such as flow mea-
surement or leakage detection [61]. In this subsection we
will discuss two main categories of this sensing technology:
resistive pressure sensing, and room-scaled pressure sensing
with piezoelectric or fiber optical sensors. This subsection
will discuss these two categories and later include an overall
discussion of the technology and a final conclusion.

1) Resisitive Pressure Sensing
Applications for HAR with pressure-based sensing has been
proposed in [23], [28], [62]. Xu et al. designed a eCushion to
detect sitting postures. They used the resistive technology to
measure the surface deformation by integrating fiber-based
yarn which is coated with piezoelectric polymer [63]. The
initial resistance of an unstressed surface is relatively high.
With force applied to the textile, the intra-fiber distance is
squeezed which makes the resistance to drop. By performing
signal matching with dynamic time warping method, they
achieved an overall recognition accuracy of 85.9 % for 7
sitting postures.

For quantified-self applications, Sundholm [28] developed
a flexible textile equipped with a thin layer of conductive
polymer fiber sheet consists of resistive pressure sensor ma-
trix. The conductive sheet is positioned between 80 paral-
lel stripes of conductive foil on each side (horizontal and
vertical), resulting in a 80cm X 80cm sensor mat. The
volume resistance of the fiber sheet changes locally, when
the material is pressed. As output, a 80 x 80 pixel frame of
the applied pressure can be sampled at 40 Hz. They recorded
10 exercises of 7 users, each exercise repeated 10 times over
2 different sessions per subject. These exercises included
workouts such as push-up, quadruped, abdominal crunch,
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TABLE 3. Applications build on electric field sensing.
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bridge, etc, and additional weight training such as chest press
with dumbbell and biceps curl with dumbbell. An overall
classification accuracy of 88.7 % for the person dependent
and 82.5 % for the person independent case were achieved
with a k-NN classifier. Template matching with dynamic time
warping method was applied to count the repetitions. An
average counting accuracy of 89.9 % across different subjects
was achieved.

2) Room-scale Integrated Pressure Sensing

Other installed and embedded applications are focused on
indoor positioning or detection of activities of daily living
[64]. Integrating pressure sensors into furniture and floors
in home environment, Lim [24] was able to recognize daily
activities such as meal, sleep, exertion, go-out, and rest based
on the object usage information. If anomalies in a healthy
daily living style were detected, a warning sign was provided
to care-givers or doctors without intrusion.

Similarly the GravitySpace [18] is an instrumented space
used to track the user’s location and their poses based on
the physical imprints of the human force impact left on the
sensing ground. Integrated with other modalities such as
marker-based motion capture systems, audio-sensing equip-
ment and video-sensing technology, Srinivasan [34] provided
the pressure information as an additional input modality to
enhance the application for interactive media usages.

Finally, the pressure can be measured not only with resis-
tive technology, but also with fiber optics, as demonstrated
in multiple works [65]-[67]. Feng [65] used floor pressure
imaging for posture-based fall detection with fiber optic
sensor grid-layout embedded under the floor space. People
identification based on gait analysis problem has been tar-
geted in the work by Qian [68]. Using a large area, high
resolution, pressure sensing floor, they were able to provide
3D information of each footstep (containing the quantity of
force and the 2D positional information). Applying the fisher
linear discriminant classifier on the collected patterns from
these 3D data points over time for each participant, they
obtained an average recognition rate of 94 % and a false
alarm rate of 3 % by using pair-wise footstep data from 10
subjects.

3) Discussion

Based on previously discussed works in Subsection II-C, we
identified that pressure sensor arrays integrated into flexible
textiles can be used in the applications for posture sensing
or activity sensing. Build upon sitting posture recognition,
researchers retrieve high-level contexts based on these pri-
mary information. Mota [69] tried to associate these naturally
occurring postures and corresponding effective states relate
to a child’s interest level while performing a learning task on
a computer. Features were extracted by leveraging a mixture
of 4 Gaussian to express the force distribution on the back of
a chair. A 3-layer feed forward network was used to train the
classifier for nine postures and an overall accuracy of 87.6 %
was achieved for testing on new subjects excluded from the

9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.2991891, IEEE Access

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

training set. A set of independent Hidden Markov Models
was used to link to three categories related to a child’s level
of interest. An overall performance of 82.3 % with posture
sequences from known subjects and 76.5 % with unknown
subjects were realized.

Textiles-based prototypes are flexible and easy to trans-
port, however, they suffered from the problem of maintain-
ability. Since the force is directly applied to the sensing
surface, a flexible surface could be slightly deformed every
time, it is used. Cheng [23] also noted that every time the
Smart-Surface is installed and used, it was twisted slightly
differently, which leads to a different default pressure dis-
tribution asserted by its own weight and folding. Further
problems of textile sensors noted by Almassri [70] such as
non-linearity, drifting and hysteresis could also influence the
generality of the developed model for the target application.

Pressure sensors embedded under any floor covering or
integrated into furniture as part of a distributed sensor net-
works can provide large-scale sensing in contrast to portable
systems. They can be used to sense room-scaled indoor
information such as location or other activities of daily living.
Integrated into furniture or objects, theses objects can provide
usage information to be accessed for smart home applica-
tions. Based on footstep force profiles, Orr [71] proposed a
floor-based system to identify users in their everyday living
and working environments. Creating user footstep models
based on footstep profile features allowed them to achieve
a recognition accuracy of 93 %. They’ve further shown, that
the effect of footwear is negligible on recognition accuracy,
in contrast to other sensor types, such as electrostatic sensing
technique. Thus pressure sensors installed as a floor-based
system enables a more robust and natural identification of
users.

The usage of this sensor category in the domain of HAR
are two-folds:

1) close-range posture, or action detection with flexible,

resisitive textiles ,

2) room-scale sensing with either distributed pressure

sensor networks or installed floor-based applications.

4) Take-Home Messages

Mechanical sensor works with pressure profiles caused by
impact. Hence direct interaction is required. It is similar to
active capacitive measurement by leveraging stationary force
impact. Therefore, mechanical measurements are ideally
used to measure postures or stationary activities. However,
the proximity sensing would provide more information, in-
cluding close range interaction as an additional input modal-
ity complementing the direct touch. Compared to passive
electric field measurement, the foot-wear is negligible on the
recognition accuracy for pressure sensing applications [71].
Thus this type of sensing technique is more error-resistant to
the surrounding environmental noise, but bears the inherent
problem of easier deformation. An overview of the cited
literature can be found in Table 4, where the previous works
are introduced in terms of its application area, sensing de-
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vice, processing algorithm, sensor behavioral, database and a
concluding remark.

D. OPTICAL

Optical sensors can quantify the intensity of light. Opti-
cal spectra cover a wide frequency range, from ultraviolet
(280 nm - 360 nm) to visible (380 nm - 750 nm) to infrared
(800nm - 1000 nm). Invisible infrared light spectrum can
be detected by infrared sensors, while visible light can be
measured by the charge-coupled device (CCD) of a standard
camera. In this subsection, we concentrate on the imaging
ability of these optical sensing devices with the focus on
HAR. We discuss three main categories of this sensing
technology: visible imaging, depth imaging, and thermal
infrared imaging. This subsection will later include an overall
discussion of the technology and a final conclusion.

1) Visible Imaging

Vision-based HAR is probably one of the most well re-
searched area in the field of computer vision, for enhanc-
ing the human machine interaction interface. Vision input
compared to time series from sensor data provides more
contextual information. From outdoor security applications
[73], integrated with virtual reality techniques for entertain-
ment purposes [74], monitoring and analysing sport activities
[75]-[77], to medical applications [78], the demand on ma-
ture computer vision algorithms is growing.

Starting from segmentation [79] and recognition of human
poses [80], towards continuous HAR [81], the full chain has
been well studied. The most difficult part is to find feature
representations in images to help developing robust human
action modeling and thus improving the ability of algorithm
to classify the correct activities. Unlike 2D image space, chal-
lenges in video sequence classification may include different
appearances, shapes and poses in video frames over time and
problems of occlusion from subsequent frames. From care-
fully handcrafted feature representations with expert prior
knowledge [82]-[85], to the earlier stage of the deep learning
era, a lot of efforts were made on developing robust models
and generalized feature representations for accurate activity
classification. Convolutional neural networks (CNN) like
AlexNet [86], showed its superior ability to automatically
extract useful feature representations from the underlying
data structures. Other generative models, such as sparse
autoencoders [87], and generative adversarial networks [88],
are representatives of methods able to automatically learn the
embedding representations of data.

Tran [89] studied a deep learning architecture for video
action classification by extending a conventional 2D-CNN
with a third convolution direction over time. The structure
is called C3D. Their work demonstrated that this type of
network is especially designed to extract features that model
appearances and motion simultaneously. Input to the network
is video clips of the dimension [xwxh, where [ represents
the number of frames per clip, wxh stands for the width and
height of a frame and the output is the class probabilities of
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each activities. The network consists of several consecutive
convolution and pooling layers to extract the high level ap-
pearance features and expand the field of view of the locally
connected convolution features. However, it is to note that
the first pooling layer only reduces the spatial dimension,
but not the time dimension in order to preserve the temporal
information further in the network. The performance was
evaluated on three public available video databases: Sports-
1M [90], UCF101 [91] and YUPENN [92].

Another common design for video classification is the
Two-Stream approach by Diba [93]. They showcased a simi-
lar model using two streams of 3D CNN. Such architectures
are intended to solve the problem of insufficient training
data as well as noise introduced by different view points,
perspectives and variation in motions. The first branch, re-
ferred as the appearance stream, implemented the regular
C3D network, while the second one, referred as the motion
estimation stream, used optical flow as input. The features
from the two streams were concatenated and feed to a soft-
max layer to infer the probability distribution of the classes.
While testing on the UFC101 dataset [91], the two stream
model outperformed the C3D network by 5 % with a 20 %
decrease in processed frames per second. It confirmed the
assumption that using optical flow helped the network rec-
ognize motion and complemented the appearance and spatio-
temporal features learned by the standard C3D, however at
the cost of decreased computational performance.

2) Depth imaging

The skeleton offers a more compact representation of the
human body and enables simplified segmentation task and
estimation of pose. Commercial products such as Microsoft
Kinect makes visible images with depth information afford-
able. These devices can be used to capture human motions
and provide the 3D coordinates (z, y, z) and the angle of the
joints of the skeletons. The development of these skeletons
over time in successive frames can be used to classify human
activities of subjects within the measuring area. Compared to
2D images, the depth information facilitates the extraction of
fore- and background.

Mostly, Microsoft Kinect is used to provide a depth chan-
nel in addition to visible channels. Official algorithm are
provided to determine the skeletons and joint positions as
features for various activity recognition tasks. Mettel [94]
introduced a fall detection service using a single depth cam-
era installed on the ceiling. Combining static and dynamic
methods, a fall detection service was achieved by using a
Microsoft Kinect. A random sample consensus (RANSAC)
method was used to estimate the ground plane. Static de-
tection verified whether the person was lying on the floor
by tracking posture based on skeleton joint data. Dynamic
detection examined whether a person is previously falling to
the ground by thresholding the speed of the previous joint
motion towards the ground plane. However, by placing only
one single depth sensor in the room, the sensing area was
restricted thus leading to performance degradation, when
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the skeleton tracking was occluded by obstacles within the
sensing area. Author proposed to use fusion of multiple in-
stallations to reduce false positives. Cippitelli [95] proposed
an activity recognition framework to exploit skeleton data
extracted by RGB-depth camera for recognizing activities
relevant for assisted living. Their promoted use-case was to
provide help to monitor aged people in home environments.
Their main contribution was able to automatically extract
key poses without a learning algorithm. The key poses were
extracted using a clustering algorithm to assign each human
posture to the most important posture for certain activity.
The key poses were then concatenated to build a feature
vector that was used for the multiclass SVM to perform
activity classification. The proposed algorithm was evaluated
on five public available databases (KARD [96], CAD-60
[97], UTKinect [98], Florence3D [99], and MSR Action3D
[100]) and showed promising results especially on a subset
of basic activities designated from ambient assisted living
scenarios.

GymCam [29] is a camera installation in a unconstrained
environment, such as a university gym, which are then
able to unobtrusively and simultaneously recognize, track
and count fitness exercises performed by multiple persons.
The promoted use-case is for quantified-self applications.
It involves several computer vision tasks such as correctly
segmenting exercises from other activities, recognizing and
tracking users performing the exercise by following the
trajectories of the interest points and counting the number
of repetitions. Based on motion trajectories from key-points
tracking using dense Optical Flow method, they were able
to classify different activities from these features extracted
by these motion trajectories. The repetition counting was
based on template matching with an average trajectory of
each exercise.

3) Thermal imaging

Images from visible light spectrum, such as visible images,
may face a problem in object segmentation, if the appear-
ances of the human subject, e.g. the color of the clothing
is indistinguishable from the background. Thermal infrared
imaging is resistant to this effect and can provide comple-
mentary advantages. Thermal cameras are passive sensors to
measure infrared radiations emitted by any warm objects.
Therefore, human motion can be easily detected from the
background regardless of lighting conditions and appearance
changes [101].

To use computer vision in pervasive health care is not new.
Camera system installed in a living environment to detect
activities of daily living is introduced in the work [25], [102],
[103]. Person identification can be realized not only based on
biometric trait such as face images, but may also based on
soft biometric traits, such as gait pattern [104] or postures.
To reduce the privacy concern regarding using cameras in do-
mestic environments, low resolution thermal imaging method
can be applied to achieve the detection of activities of daily
living without revealing a wide range of private information.
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Shelke [26] used two low-resolution (4x16) and contact-
free thermal imaging sensors (MLX90621) to classify four
different activities such as stand, sit on chair, sit on ground,
and lay on ground. For static activities, such as sitting on a
chair or standing still, frame-wise classification were applied
using conventional multiclass classifiers. Dynamic changes
were observed via shape changing effect from consecutive
frames due to motion relative to the sensor according to lens
projection equation. The shape was detected by using con-
nected component labeling approach [105] to group the cor-
responding pixels. The disadvantage of using the MLX90621
thermal sensor is its limited field of view (FOV). It has a
120° horizontal FOV, but only 25° vertical FOV. Therefore,
a careful arrangement of sensor placement is required to
achieve good performance.

Hevesi [106] leveraged a cheap (30USD), small, low
power sensor array of 8x8 thermal sensors to unobtrusively
and remotely detect a wide range of activities of daily living.
The system can track people within the accuracy range below
Im and detect the usage of electric appliances, such as
toaster, water cooker or egg cooker. Basic activities, such as
opening a refrigerator, the oven or taking a shower can also be
detected. Due to the sparse sensor resolution by 8x8 pixels,
the authors claimed that the system can be installed in the
bathroom to recognize bathroom activities without invading
privacy.

Kawashima [107] proposed a Deep Learning-based ap-
proach for action recognition method with an extremely low-
resolution thermal image sequence. The hardware used is
a grid of 16x16 far-infrared sensor array (Thermal sensor
D6T-1616L by OMRON Corp.) mounted on the ceiling
(around 220 cm above the floor) of a room. They focused on
recognizing daily activities, such as walking, sitting down,
standing up etc. and abnormal activities (e.g. falling down).
The authors combined feature extraction method based on
shallow CNN structure (consisting of only 3layers), with a
sequence layer based on long short term memory (LSTM) for
extracting spatio-temporal representation. With a frame rate
of 10 fps, the overall accuracy for the targeted activity classes
were 85.75 %. Data collection consisted of sequences from
day and night times. The superiority against visible light is
that the night vision for thermal imaging can make a "falling
down" action in the dark visible in contrast to a total black
visual input in visible light spectrum.

4) Discussion

In accordance with the cited works in Subsection II-D, cam-
era systems provide richer information compared to other
non optical sensors accompanied with the cost of more com-
putation efforts. Recent advances made in computer vision
domains ignite more interests in this field. Especially, faster
progress was made in object detection and localization with
algorithms such as YOLO [108] to faster YOLO [109], and
Fast R-CNN [110] to Faster R-CNN [111]. The tendency
is to work on faster algorithms, which can be embedded
on hardware with limited resources. The development from
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semantic segmentation with Mask R-CNN [112] and Eye-
MMS [113] to instance segmentation with DeepMask [114]
also allows for more precise information retrieval for separat-
ing instances from the same class. Video sequence processing
with C3D network or attention network for sequence input
[115] make activity recognition in complex scene possi-
ble. Despite the advanced algorithms, challenges such as
occlusion, change of appearance and prone to illumination
changes, are only partly resolved for camera systems.

To reduce the negative effect of illumination changes, ad-
ditional channel of depth can be integrated. The information
of depth is used to resolve the ambiguity in two dimen-
sional image space. Commercial products from Microsoft
and Intel make depth camera accessible for researchers to
conduct experiments in the field of computer vision with
depth channel. Microsoft Kinect automatically comes with
the joint positions of the skeleton model. The skeleton
representation is more sparse and compact, thus enabling
more efficient processing on embedded hardware entities.
Skeleton-based processing is commonly applied for human
action recognition. Based on handcrafted features extracted
and well-designed classifiers, human skeleton can be used to
extract spatial structure and temporal dynamics specific from
human actions. Lately, research interests shift to consider
end-to-end learning to avoid handcrafted features and model
construction with prior knowledge. Du [116] proposed an
approach based on hierarchical recurrent neural network to
learn representations of skeleton poses hierarchically fused
from sub-nets to automatically form action models fitted for
the separate action classes. Skeleton-based approaches for
HAR to build assisting system for elderly monitoring was
introduced in [94], [95]. Activities of daily living, such as
sitting, standing, walking, and falling are the most often
targeted classes.

Thermal infrared imaging is another sensing form oper-
ating with near to far infrared light spectra. The operating
wavelengths enable the system to observe radiations emit-
ted by objects with a temperature above zero. Therefore it
facilitates the segmentation process from human object to
background. Night vision capability of infrared sensors even
enable action recognition in the dark opposed to image data
from visible light spectrum. It also enables the reconstruction
of visible-like images from thermal captures [117]. Infrared
sensor arrays used in the cited works are mostly sparse
and can be applied to reduce the resolution to protect users
privacy. Sensor array of 4x16, 8x8 or 16x16 pixels are used.
These installations are often applied in home environments to
build systems for tracking and evaluating activities of daily
living.

The usage of these sensor categories in the domain HAR
are three-folds,

1) camera-based action recognition in public areas,

2) depth-based action recognition and tracking on embed-

ded hardware platforms,

3) low resolution thermal infrared imaging in home envi-

ronments to build ambient assisted living systems.
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5) Take-Home Message

Action recognition in computer vision can be performed on
images, videos, or life streams. Each of the target domain
bears its own challenges. Image covers only one instance
in time and thus context can be missing if the decision is
based on only one single image. Action recognition in video
requires more complex network architecture to integrate the
time component. Real-time assessment of human activities
can enable robots to operate intelligently in interaction with
humans. Part of these challenges have been already solved
by the modern deep learning methods. By using 3D network
structures or sequence modelling methods, the aspect of
time is considered. Knowledge distillation [118] or network
pruning [119] can decrease the model capacity and make
real-time assessment possible.

Despite the rapid development in computer vision, one
of the biggest drawbacks of camera based solutions is the
low user acceptance in private sectors, as cameras typically
raise concerns about privacy [120]. Therefore, either using
depth channel or using thermal imaging can help resolve
some of the mentioned challenges for visible spectral input.
An overview of the cited literature can be found in Table
5, where the previous works are introduced in terms of
its application area, sensing device, processing algorithm,
sensor behavioral, database and a concluding remark.

E. RADIATION

Radiation, in the form of electromagnetic waves, works with
high frequency electric field modulations. Common custom
radar in the automotive domain operates at a typical fre-
quency of 24 GHz [121] and 76 GHz [122]. On the other
hand, according to WiFi standard 802.11n [123], domestic
WIFI frequency bands operate at 5 GHz for close range and
2.4 GHz for far range. The operating frequency of 2.4 GHz
grants for better penetration through solid objects and thus
provides a wide coverage of WIFI signals. In the following,
this subsection will introduce two main categories of elec-
tromagnetic sensors: radar sensors and WiFi sensors. This
subsection will later include an overall discussion of the
technology and conclude with some final thoughts.

Sensor devices generating a high frequent electromagnetic
field, such as a radar, can operate in two different modes,
in continuous wave (CW) mode and frequency modulated
continuous wave (FMCW) mode. In the CW mode, only
relative speed toward the receiver can be measured, while
the FMCW can also provide distance information with the
time beacon information encoded in the start frequency. In
Figure 6, the two operation modes of radar are visualized. For
continuous wave radar depicted on the left, if the transceiver
and the distant object are both stationary, the received signal
is not modulated. If the distant object is moving with a
speed of v relative to the receiver, then a positive or negative
Doppler shift can be measured for an approaching or depart-
ing object. Since there is no timing information available,
only the relative speed represented by a Doppler profile
can be extracted from the continuous signal. For frequency
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modulated continuous wave case depicted on the right, based
on the time shift of the received signal with respect to the
transmitted signal, a distance profile can be generated in
addition to the speed information.

WiFi sensing also depends on similar sensing protocols.
However, it can further access the channel state information
to infer HAR. Channel state information (CSI) describes the
channel property between the transmitter and the receiver.
Radio signal from the transmitter can travel directly to the
receiver (LOS), but may also be scattered by objects or
reflected by walls and ceiling before reaching the receiver.
CSI can be represented by the channel transmission matrix,
describing these different effects, such as fading, scattering,
and multi-path fading, by the physical environment between
transmitter and receiver. Common WiFi systems use Orthog-
onal Frequency-Division Multiplexing (OFDM) [124] to di-
vide the wide spectrum band into around 30 non-overlapping
subcarriers. In this case, CSI contains complex values, which
represents the channel properties of each subcarrier. Take a
WiFi channel in the 2.4 GHz band with multiple inputs and
multiple outputs (MIMO) mode, containing 3 Transmitter
and 3 Receiver antennas, the CSI Tool can capture 30 OFDM
subcarriers, resulting in 3x3x30 CSI data points in each
received packet for processing [125] at each time instance.
By collecting these CSI data points over time, we can build
a CSI profile used to capture the changes in the physical
environment. A moving object such as a human being in
the receiving path can affect the channel response and be
measured on the receiver side.

1) Radar sensors

We start introducing the radar sensing, which has the ad-
vantages of insensitivity to environment conditions and ro-
bustness in different weather conditions. This makes radar
applications in HAR a suitable candidate. It can transmit
signal through walls, thus no direct line of sight is needed
compared to vision-based systems. Using millimeter waves,
the resolution is so fine that it can even detect the smallest fin-
ger movement in the order of sub-millimeter. Motion sensing
with Soli [35], a tiny radar chip to detect and recognize hand
gestures developed by Google has now been commercialized
and integrated into Google’s new smartphone Pixel 4 [126].
Rahman [39] proposed yet another contact-free measurement
of respiration rate by leveraging the phase shift in Doppler
radar signal caused by the chest movement and allow person
identification based on the subtle body kinematics of six
individuals. A 2.4 GHz quadrature system is used to reduce
the DC offset to allow more amplification and thus increasing
the dynamic range of detection.

Seifert [127] used radar-based applications to perform
unobtrusive person identification based on In-home gait anal-
ysis. A K-band radar was used to collect data from four
test subjects. K-band operates in the frequency range of
18-26,5 GHz, the radar used here is at 24 GHz. In their pro-
posed work, different walking styles were further clustered
into five different gait classes including normal, pathological
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and assisted walks. By leveraging the radar micro-Doppler
signatures, an average identification accuracy of 93.8 % was
achieved across the classes and a classification rate of 98.5 %
was achieved for a single gait class. A performance drop
to 80 % accuracy was expected for unknown individuals.
Features from both the spectrogram and cadence velocity
diagram were extracted based on prior expert knowledge.
A simple classifier using nearest neighbour (NN) approach
was applied to the handcrafted features condensed by the
principle component analysis technique (PCA).

Liu [128] leveraged a dual Doppler radar system for fall
detection operating at 5.8 GHz covering a detection range
of 6 m. They used the Mel-frequency cepstral coefficients
(MFCC) [129] to extract features from the Doppler signa-
tures caused by different activities. The decision of fall/non-
fall detection was then based on fusion of multiple trained
classifiers output.

Deep learning technique has also found its way to radar
signal processing as in computer vision applications. Most
of these methods are directly applied on time-frequency
spectrum (spectrogram). Similar to computer vision tasks,
where CNN is applied on images to extract features for object
recognition, CNN can analogously be used on spectrum
images to extract spectral patterns resulting from specific
activities. Kim [130] proposed a deep convolutional neural
network architecture for human detection and activity classi-
fication based on Doppler radar operating at 7.25 GHz for
outdoor and 2.4 GHz for indoor activity recognition with
direct line of sight. This network jointly learned the fea-
ture representations and classification in one single network
based on the raw Doppler spectrum. Activity classes included
running, walking, walking while holding a stick, crawling,
boxing while moving forward, boxing while stand in place,
and sitting still.

Similar to time series for natural language processing,
recurrent neural networks (RNN) can support the decision
making stage of activity classification by considering the
time aspect of the signal progress. However for radar images,
a 2D-CNN layer is often applied prior to the RNN layer
in order to extract robust features from the time-frequency
spectrogram. The follow up work of using Soli, a customized,
miniaturized radar chip to resolve sub-millimeter gesture
motions, showed such a network structure in [36]. Their
network consisted of two stages including the representation
learning stage by using a CNN network, followed by the
dynamic sequence modelling stage of using a long short term
memory (LSTM) network prior to the classification stage
with a Softmax layer. They achieved a per frame accuracy
of 79 % and a per sequence accuracy of 88 % on a set of 11
hand gestures across 10 different users.

Ultra-wide band (UWB) is a radio technology that is used
at short-range, high-bandwidth communications. It has been
widely used in radar imaging domain. Compared to CW
radars, it exceeds in terms of range resolution. Compared
to FMCW radars, the UWB transmission is able to send
very short pulses mitigating the multi-path inference prob-
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FIGURE 6. Figure shows the two operation modes of a radar. On the left side, if both transmitter and object are stationary, then no Doppler shift can be measured.
In case of a moving object with a speed v, a positive or a negative Doppler broadening will be measured relative to the motion direction to the transmitter. On the
right side, the FMCW mode is depicted. Based on the time shift, the distance of the object towards the transmitter can be calculated using the time of flight. The

transmitter signal is shown in red, while the receiver signal is depicted in green.

lem. UWB operates commonly in the frequency spectrum
of 3.1GHz to 10.6 GHz, a broad frequency bandwidth of
more than 500 MHz and a very short pulse duration of (<1 ns)
[131]. This property makes the signal hard to detect and thus
it is immune from detection, jamming, and interference. Lai
[132] leveraged a UWB random noise radar to characterize
human activities and through-wall imaging. So-far, the use-
cases for radar imaging with UWB radars are mostly concen-
trated for military purposes or served for law-enforcement.
They can be used in the search and rescue operations.
Ding [133] conducted a thorough investigation on a large
number of motion types based on an UBW radar system.
They clustered different motions into two main categories of
motion, including in situ motions and non-in situ motions.
They leveraged physical empirical features for classifying
in situ motions, such as standing, bowing, squatting etc.,
and the PCA-based feature extractions for inferring non-in
situ motions, such as walking, jogging, jumping forward and
falling forward. They reported a final classification accuracy
of up to 94.4% and 95.3 % for in situ motions and non-in
situ motions, respectively. They claimed that their proposed
method could be used in smart homes and senior care do-
mains.

Radar is good for dynamic activity recognition, because
of its robustness and its high resolution, as they operate
at several gigahertz range, but it comes with the price of
high power consumption and complex hardware design. WiFi
devices are much more power efficient compared to radar
sensors, if one can accept the comparable lower resolution.

2) WIFI sensors

Most radar comes with a high specialization and integration
between hardware and software packages. In order to fulfill
certain task specification, a separation between the software
layer and hardware layer are often needed. This makes
embedded radar packages difficult to be specialized for a
broad range of applications in the HAR domain. Therefore,
researcher tried to find a replacement which has similar
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physical behaviours, but are easier to modify and access. Re-
searchers state that the channel state information (CSI) from
a WiFi signal can be leveraged to passive and unobtrusively
monitor the presence or motion of a human being. Popular
application of using wireless devices for indoor localization
based on WiFi fingerprint is quite common, such as intro-
duced in [19]. When a person comes in the way between a
WiFi transmitter and receiver, it changes the received signal
strength (RSS) transmitted to the receiver. This modulated
RSS profile can be used to extract useful information with
respect to activity classification.

WiGest [37] is a ubiquitous wifi-based gesture recognition
system to sense in-air hand gestures by leveraging the mod-
ulation in WiFi signal strength around a mobile device, such
as a consumer smartphone. Based on three basic primitives,
such as approaching, removing, and holding above the de-
vice, they were able to composite high level gestures without
training for gesture recognition. With only one Access Point,
they were able to detect the basic gestures with an accuracy
of 87.5 %. To further include three Access Points, they were
able to increase the accuracy to 96 %. Adding preambles
as the start of a intended gesture, additionally improved
the recognition accuracy and reduced the interference from
multi-user scenario.

Accessing only the CSI of a WiFi signal, Zeng [40] built
an application to monitor human respiration even when the
target is far away from the WiFi transceiver pair. Common
WiFi based application needs the object to be close to the
transceiver, because the attenuation of radio frequency (RF)
signal operating at 2.4 GHz is around 6 dB for a solid wood
door with 1.75 inches and almost 9 dB for an interior hollow
wall with a depth of 6 inches [41]. Instead of working directly
with the raw CSI signal, they leveraged the CSI signals from
two transmitters to cancel out the environmental noises and
benefited from the phase information of the cleaned signal.

WifiU [134] is a gait recognition system that uses an
commercial off-the-shelf (COTS) WiFi devices to leverage
the channel state information to capture fine-grained gait
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patterns for person identification. In contrast to expensive
Doppler radars, the channel state information can provide
similar information such as motion from echos caused by
back-scattering from different body parts. WifiU consisted of
a router and a receiver to collect the modulated CSI due to
human motions. A WiFi device sends continuously signals
to its environment which are scattered by moving objects,
such as a human within the transmission path. The scattered
signals are then received by a laptop. A PCA-based tech-
nique is used to reduce the environmental noise signals by
extracting the principle components from the correlated CSI
signals. The true movement resulted in dominant components
within each sub-carriers and uncorrelated noise components
were suppressed by using the PCA method. After applying
PCA, the time echo was still composed of reflections from
various body parts. The decomposition of such a time signal
was performed by using a frequency-time spectrum (STFT)
method. The reason of using Fourier transformation on the
time signal was that different body part moves at different
speed resulting in different Doppler shifts. The main goal
was thus to transform the received CSI signals to the Doppler
spectrum similar to other radar-based applications with high
fidelity to extract Doppler motion information. Higher speed
corresponded to higher Doppler shift and vice versa. Feature
extraction was then performed on the cleaned Doppler shift
profiles.

WiSee [135] is another application for sensing whole-body
gesture recognition by leveraging wireless signals in an office
environment or a two-bedroom apartment. Pu leveraged the
frequency-time Doppler shift profile from various body parts
while performing specific tasks, to achieve an recognition
accuracy of 94 % on a set of nine gestures such as push, pull,
circle, dodge, drag, punch, strike, kick, and bowling. Adib
[41], developed by MIT researchers, showed various interest-
ing use-cases by leveraging COTS WiFi devices. They were
able to count persons, locate their relative positions, measure
vital signs such as respiration rate and heart beat rate even
from an adjacent room or behind closed doors. By treating a
moving human as a moving antenna array, they were able to
build an inverse synthetic aperture radar (ISAR) technique to
enable radar-like vision. They can scan the movement of the
human in time by only using one single antenna.

WiFi-based activity recognition utilizes existing wireless
transceiver infrastructure in the environment to measure ac-
tivity induced WiFi signal variations. Compared to radar-
based applications, WiFi application is more power efficient
and preserves user’s privacy, since no physical sensing mod-
ule is required except the already existing WiFi communica-
tion route.

3) Discussion

As reported by the cited works in Subsection II-E, electro-
magnetic sensors are resistant to different weather conditions
or environmental noise at certain operating frequencies. In
contrast to optical vision-based system, high frequency elec-
tromagnetic waves do not require a direct line of sight and
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can even penetrate through walls. In addition their robust-
ness, safety, and reliability make them perfect to serve as
an effective device for contact-free and ubiquitous motion
monitoring of objects in the surrounding.

Due to its robustness against extreme weather conditions
and large detection range, radar-based applications are al-
ready widespread in automotive sector for environment sens-
ing and perception. Operating in the sector of HAR, the op-
erating frequency and the transmit power should be reduced
to adapt to indoor applications. Most use-cases work with
radar sensors operated around 5.8 GHz, 7.25 GHz or 24 GHz.
Human motions such as gait [127] or other whole-body
interactions [130] can be leveraged to developed human-
centered smart home appliances. Even sub-centimeter reso-
Iution of finger gestures can be observed with the specialized
and miniaturized radar device Soli [35] integrated into a
smartwatch or smartphone device.

For close range radar applications, UWB radar are often
applied. Its advantages include low power consumption and
is more secure due to extreme short pulses, high transmission
rate , noise resistant due to ultra wide-band. Related to its
superior physical properties, UWB can be used to perform
exact indoor localization. The short duration of UWB pulses
make them robust to multipath effects, since the identification
of the main path from other multipath signals is more evident
and thus allowing a more precise detection of the time of
flight [136]. Through the wall object imaging [132] is another
useful task for UWB imaging radar, especially in situations
where a direct line-of-sight is not possible. For example, it
can be used in rescue operations or finding tracked person in
a collapsed buildings.

WiFi application is more power efficient compared to
general radar applications or UWB radars. Most WiFi-based
applications work with modified WiFi access points. Com-
pared to integrated hardware and software solutions of most
radar applications, it is easier to modify the WiFi access
points to adopt to specific tasks designed for HAR. Common
applications build with modified WiFi devices are targeted
at tracking and recognition of indoor activities. Close range
applications include near device in-air hand gesture recogni-
tion [37]. Room-scaled applications are commonly focusing
on indoor localization [19] and tracking of human [41].
Based on Doppler profiles, whole-body gestures [135] can
be targeted even when the sensor is placed behind the walls.
Applied for localization tasks, the maximum detection range
is up to 250 m outdoor and 35 m indoor [136].

The usage of these sensor categories in the domain HAR
is three-folds:

1) dynamic fine-grained whole-body activity recognition
with radar-based sensors,

2) close-range fine grained activity recognition and imag-
ing with UWB radar,

3) more power efficient whole-body activity recognition
with WiFi signals.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.2991891, IEEE Access

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

4) Take-Home Message

Radar applications are mostly used in outdoor environments
with large operation frequencies, large detection range and
high operating power such as environment sensing and per-
ception of a vehicle on a motorway. Applications in indoor
environments in case of human activity classification need to
operate with lower frequencies and lower operating power.
Most use-cases work with radar sensors operated around
5.8 GHz, 7.25GHz, or 24 GHz. In case of CW radar or
FMCW radar, a continuous signal is transmitted all the time,
making these applications less power efficient. For close
range detection and sensing UWB radars are often applied
due to its preferable physical properties.

However, most radar hardware are difficult to build. Com-
mercial radar solutions have hardware and software packages
strictly coupled such that an easy modification of radar
software adapting to specific use-case is not accessible. One
alternative is to use the channel state information of a com-
mercial WiFi system. WiFi signals are easy to access and
more power efficient compared to radar based applications,
but operate at much narrower operation frequency bandwidth
of only 20 MHz compared to 1.79 GHz for a FMCW radar,
resulting in lower time resolution than radar applications.
An overview of the cited literature can be found in Table
6, where the previous works are introduced in terms of
their application area, sensing device, processing algorithm,
sensor behavioral, database and a concluding remark.

F. OTHERS SENSOR TYPES

Other physical quantities, such as temperature, chemical
composition, and magnetic field modulation can be measured
by dedicated sensors. However these sensors are not often
used as a single sensing entity in the field of HAR [137]. Hu-
man activity is complex and it requires to capture information
from multi-sensor networks to infer the correct actions [138].
Variables such as temperature may add low level information
to the process of activity reasoning, however, information
fusion is needed to integrate the data in the high level decision
making process. Magnet sensors can be placed on furniture,
drawers, or doors to provide binary information when users
directly interact with these objects [139]. Temperature, light,
pressure, humidity, or CO2 sensors are all components that
can be used to build a wireless sensor network for smart home
systems [140]. ZigBee [141], for example, is used as a low
cost, low power, less complex wireless communication stan-
dard to connect such sensor nodes with the main processing
unit in a smart home system.

Applications integrating magnetic sensors into MEMS
placed in initial measurement units (IMUs) are used for pose
and acceleration measurement, mostly in wearable devices,
such as smartphones, smartwatches, or other miniaturized
on-body devices. Altun [142] used five body worn sensors
placed on the chest, the arms, and the legs to classify daily
and sports activities of eight subjects. Each sensor integrates
a triaxial gyroscope, a triaxial accelerometer and a triax-
ial magnetometer. Combining feature dimension reduction
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techniques, such as PCA and sequential forward feature
selection (SFFS) methods with Bayesian decision making
classifier, they were able to balance between a high correct
classification rate with relatively low computational cost with
regard to real-time application.

Fusion multiple sensor categories to infer human actions is
advantageous, because different sensor type provides differ-
ent context (place, time, situation, etc). To ease the decision
making process, a richer context is beneficial. Even combin-
ing multiple sensors from the same category, such as combin-
ing multiple acceleration-based sensors on the human body
can increase the recognition accuracy of complex human
activities. Maurer [143] investigated the classification accu-
racy of wearable sensor on different body position. Results
demonstrated that the sensor placement strongly affected the
recognition performance and could lead to misclassification
if not properly placed.

Bao [144] revealed that two out of five bi-axial accelerom-
eters were enough to recognize a set of 20 activities including
ambulation and daily activities such as scrubbing, vacuum-
ing, watching TV, and working at the PC. By only using the
sensors on the hip and wrist as a sub set of all locations, the
accuracy only decreased around 5 %. An increased accuracy
of 25 % was achieved over the best performing single accel-
eration sensor. The fusion was performed on the feature-level
by concatenating extracted raw features from the acceleration
data time windows. However activities such as stretching,
scrubbing, riding escalator and riding elevator were often
confused. To overcome this issue, they required additional
sensor modalities. Heart rate data can for example reveal the
intensity of physical activities and GPS location data can
provide the information whether the individual is at home or
at work, and thus add a probability measure to certain set of
activities.

Chernbumroong [145] proposed a multisensor framework
for activity recognition with genetic algorithm (GA) [146]
to determine the fusion weights of the multisensor platform.
The multisensor platform consists of accelerometer, temper-
ature sensor, and an altimeter on a CC430F6137 Microcon-
troller with MSP430 CPU from Texas Instruments. Pressure
sensor, gyroscope, barometer, and light sensor are integrated
on Gadgeteer FEZ Cerberus board. In addition, a heart rate
monitor is fixed on the chest with a chest strap. The sensor
fusion was performed both on the feature and decision-
level (classification-level). To compensate for sensors that
are less dependant in making decisions by themselves, such
as altimeter and temperature due to their low-level context,
these outputs were fused at feature-level to provide a richer
context. The used feature selection was based on the feature
importance. On the decision-level fusion, the outputs of mul-
tiple classifiers were fused using GA method to fine-tune the
fusion weight parameters. The sum fusion on the decision-
level improved the classification accuracy from 96.9662 %
of the best single classifier to 97.3096 %. In 98 % of the
experiment trials, the GA fusion method outperforms the one
best single classifier.
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TABLE 6. Applications build on electromagnetic sensing.
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Similar fusion methods are reported in the field of multi-
biometric fusion [147], where other methods that take ad-
vantage of multi-decision coherence [148], variations in in-
formation source trust [149], or relative relation between
confidence levels in multiple sources [150], can be mapped
into the multi-sensor fusion in HAR applications.

Therefore, the context provided by one sensor category is
limited. To infer complex human actions, richer context is
required which can only be done by fusion of different sensor
modalities. Integrating additional sensor or sensor categories
can boost classification accuracy by achieving the following
gains as reported in [151] and initially defined by Bellot et al.
[152]:

1) Accuracy gain: accuracy of decisions and represen-
tations after the fusion process is improved. Noise
and errors are reduced in comparison to single source
information.

2) Completeness gain: the information after the fusion
process is less redundant and more complete.

3) Representation gain: the information after fusion is
more granular compared to each of the single fused
sources.

4) Certainty gain: the belief in the fused information is
increased.

lll. POPULAR DATABASES

In this section, we introduce several publicly available
databases for the task of HAR, which are commonly used
as baseline for researchers. They can be divided — based on
our discussed sensor categories — into three groups: the single
non-vision sensor category, the multiple sensor category, and
the vision-based datasets. An overview of these databases can
be found in Table 7.

1) Datasets using only one single sensor category

In the Intel Research Lab dataset [158], the authors used
the RFID technology to recognize routine morning activities.
They installed 60 RFID tags in the kitchen on objects touched
by the user during a practice trial. The user wore two gloves
built by Intel Research Seattle to detect that an object has
been touched. However, unlike bar-codes, RFID tags can
not specify uniquely which instances of objects have been
touched, rather that some objects have been touched.

The UCI daily and sport dataset (DSADS) [154] con-
sists of 8 subjects performing 19 different activities by
wearing acceleration sensors on 5 body parts. Besides the
more stationary classes such as sitting, standing, or lying,
they also include dynamic exercises such as ascending and
descending stairs, and exercising on a stepper or a cross
trainer. However this dataset is only restricted to on-body
wearable devices, where each wearable has a gyroscope, an
accelerometer and a magnetometer.

The PAMAP2 dataset [155] aims at physical activities
such as walking, cycling, playing soccer, etc. It composes of 9
subjects performing 18 activities with 3 inertial measurement
units and a heart rate monitor. Compared to DSDAS, this
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dataset fused another sensor category by integrating the heart
rate monitor to provide additional information. As stated in
[145], fusion of several sensor modalities can provide richer
context to improve the performance of recognition on more
complex human actions.

2) Datasets using multiple sensor categories

Previous cited databases are either ubiquitous or wearable.
However they only used one single sensing category and
thus the provided context was limited. Thus, other databases
also use a composite of object sensors and ambient sensors
to further incorporate more sensing modalities. The MIT
PLIA dataset [157] are collected in a real experimental
environment of 1000 sq.ft. apartment. PlaceLab is a new live-
in laboratory for studying ubiquitous technologies in home
settings. Approximately 214 sensors such as state sensors,
accelerometer, camera, ambient sensors and object sensors
were installed in the laboratory environment. During a 4-hour
period, 89 activities are manually labeled from the collected
sensor data.

The CMU-MMAC dataset [163] is another database lever-
aging multi-modal sensor data input for detecting tasks in-
volving cooking and food preparing. Modalities collected
are video, audio, motion capture, IMUs and two wearable
devices. The dataset consists of five subjects cooking five
recipes, in average 15 minutes/recipe. In this database, people
and objects are visually instrumented and thus making the
videos less realistic. The limited number of only 5 dishes
with very similar ingredients and tools lead to restricted data
variances.

The MPII Cooking Activities Dataset [164] tried to close
this gap of limited and constrained variations by providing a
large database with more realistic, fine-grained activities. The
database contains 65 different cooking activities performed
by 12 participants. Instead of recording individual activity,
the participants were asked to perform actions in sequence
and recorded by video to reflect a more realistic behavior.

The TUM Kitchen dataset [139] aims to provide a com-
prehensive collection of sensory input data, to serve re-
searchers in the field of marker-less human motion capture,
segmentation and activity recognition. It collects of video
data with four fixed overhead cameras, RFID tag readings
and magnetic sensors detecting when a door or drawer is
opened. All four subjects perform the same high level activity
of setting a table. The dataset was constructed such, that it
tackled challenges which is not covered in other available
datasets. Those challenges are such as inter-class variability,
change of human silhouette while interacting with objects,
human performing several actions in parallel, occlusion by
furniture, and subtle actions.

The Amsterdam dataset [156] records the in house activ-
ity data of a 26 year old man, living alone in a three-room
apartment monitored by 14 state change sensors placed in
different locations, such as on doors, cupboards, refrigera-
tors, and a toilet flush sensor. Authors stated that the upgrade
ability of their system is advantageous compared to other
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datasets [157] where sensors should be installed during the
contraction time for intended locations especially build for
research purposes. They claimed that if people are living
in an unfamiliar environment, the action collected are not
representative. Their solution is to leverage sensor network
consists of wireless network nodes to which simple off-the-
shelf sensors can be integrated. In such a way, they can easily
upgrade the user’s living environment with wireless sensor
networks. However, the dataset of only one person is limiting
the results of its general validity.

The Opportunity database [153] is often used as a base-
line dataset for HAR collected from wearable, object, and
ambient sensors. It consists of 4 users performing activities
of daily living in an indoor environment. They deployed a
wide range of 72 sensors of 10 different modalities in 15
wireless and wired networked sensor systems. The authors
claimed that most existing datasets [156], [157] are not suffi-
cient enough to investigate opportunistic activity recognition,
where a large amount of sensors is required not only in the
environment, but also on the body and in objects.

3) Vision-based dataset

Image based databases for HAR tasks are not rare. Datasets
with constrained whole-body interactions, or the target on
outdoor sport activities are provided in [160], [161], [165].
The KTH database [160] currently contains 2391 sequences
and is collected under four different scenarios with 25 person
performing six different activities, including walking, jog-
ging, running, boxing, hand waving, and hand clapping. This
dataset only includes simple, isolated actions in staged data.
No complex actions or multiple person case are targeted in
this dataset. The data acquisition process is performed under
constrained scenarios. The task of simple action recognition
can be considered as "solved", since most techniques already
report nearly perfect results [166], [167].

Compared to the KTH database, the URADL dataset
[162] contains high resolution video sequences of complex
actions. It includes 10 different activities such as answer
phone, chop banana, drink water, eat snack, look up in phone
book, etc., and are collected with high-resolution videos
installed overhead. Even some classes are very similar, thus
introducing more inter-class similarity, the scenes per video
are constrained and each containing only one specific task.

Fully unconstrained datasets in the wild are collected in
[90], [91]. The Sports-1M is a database [90] collected from
the web, containing 1,133,158 video URLs, which has been
automatically annotated with 487 labels. Also, the UCF101
dataset [91] consists of 101 action classes, over 13k clips
and 27 hours of video data. This dataset contains user up-
loaded activities with unconstrained data collection process,
containing camera motion and cluttered background. The
unconstrained setting poses a challenging task for precise
action recognition with computer vision methods.

Research in vision-based action recognition has made a lot
of progress with the advances in deep learning and computer
vision methods. Researchers moved on from recognizing
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simple, constrained actions to more complex actions or in-
teractions with multiple person under unconstrained environ-
ments. Therefore, such databases containing unconstrained
conditions and multiple complex scenarios, are considered to
be more useful in this regard.

4) Discussion

Datasets with only single sensor category provide limited
context and thus making it difficult to tackle more complex
human actions. Therefore, databases composited of multiple
sensor modalities or even the same sensing modality on mul-
tiple locations help to solve more naturalistic and complex
human actions. Common hybrid databases use composition
of sensor modalities with low level information, such as state
sensors, acceleration sensors, temperature sensors, and RFID
tags. Image-based or video-based databases can provide rich
context, however, often suffer from the problem of occlusion
and privacy issues. If taken in private sectors, users may feel
observed and thus do not act naturally or not representative
of their usual behaviours.

Capacitive sensors or radar sensors can provide complex
high-level information without violate the privacy. However,
most of radar application did not make their databases public.
Ideally, a composition of these high-level information rea-
soned from capacitive, radar or WiFi sensors can be fused
with low-level binary sensors instead of using vision-based
systems, especially given the privacy concerns connected to
vision-based sensors. The ability of these sensor to observe
activities even through walls, makes them strong against
occlusion and the line-of-sight problem. High frequency
radar devices could resolve fine-grained action within sub-
centimeter range and thus making the recognition of fine-
grained and more complex actions possible.

IV. EVALUATION METRICS

HAR can be treated as a pattern recognition problem, with the
patterns related to specific actions. A list of the commonly
used classifiers in the literature separated according to its
categories can be found in Table 8. The most used classifiers
and action detection methods in HAR can be divided in three
large categories,

« Generative models: A generative model is a probability
based method to learn the statistical distribution of the
underlying data distribution. Generative model is able to
create new samples based on the learnt statistics of the
data distribution.

o Deterministic models: Deterministic models are static
classifiers trying to learn the hidden feature represen-
tations from the labeled training data. Discriminative
model is intended to determine the membership of each
sample to a certain class.

e Others: Other methods include non-parametric meth-
ods. Non parametric methods make no assumption of
statistic distribution from the given data. They try to
draw conclusions about the data from data with similar
patterns.
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Novel methods like the compressed sensing based HAR
classification methods are currently drawing more and more
attentions. These methods work with sparse representation
and benefit from correlations in data to increase the pro-
cessing speed and enable designers to place applications on
devices with limited computing power. Examples of that
are the works [168] and [169] where the authors explored
compressed sensing based HAR classification methods and
achieved satisfactory results.

Evaluation metrics are needed to compare different ap-
proaches and performances of action recognition systems.
Though, the most metrics are defined for binary classification
problem, they can be easily extended to fit multiclass classi-
fication problem. In this case, the multiclass problem can be
divided into several binary classification problems. In Table
9, the most used evaluation metrics are given. As reported
by Ward et al. [180], a valid methodology for performance
evaluation should fulfil two main criteria:

1) The metric should be objective and unambiguous. The
outcome should not dependent on random assumption
or parameters.

2) It should provide a quantitative measure to give a hint
to the strengths and weakness of the system or method.

V. DISCUSSION

Physical sensors are limited by its hardware and software
characteristics. In the following, we discuss the hardware
features related to the introduced sensor categories. We then
identify some general challenges while performing software
processing for these sensor categories.

A. SENSOR HARDWARE CHARACTERISTICS

Each sensor technology has its own advantages and disadvan-
tages, limiting its use in various specific target applications.
To select the appropriate sensor category or a combination of
sensor categories for specific task is a design choice based
on various aspects. To better compare sensor categories to
each other, standardized sensor specifications can be taken
into considerations. In Table 10, we introduce some feature
matrix denoting capabilities required for a certain rating. We
grade the features into five categories, ranging from (——,
—, 0, +, to ++4). The scoring is based on the research
papers collected in this manuscript and sensor specifications
found from sensor data sheets. Some features depend on the
use-cases and the form factor of sensor categories. Power
efficiency for instance, is thus strongly dependent on the
underlying system setup and not solely on the sensor tech-
nology. Similarly, the sensitivity is also a feature strongly
related to how the sensor is applied in the specific system
setup. Some of the discussed features are not quantitatively
evaluated in previous works or are not measurable as a scalar.
Therefore, we introduce our ranking for these features as a
relative measure based on the description of the user expe-
rience. These features are, such as calibration complexity,
weather dependency, form stability, electric noise coupling
and occlusion. According to the assessment criteria presented
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in Table 10, the different sensor categories is graded in Table
11.

Acoustic sensors can work both contact-based or contact
free according to the specific task requirements. Contact-free
sensors, such as microphones can classify human activities
by leveraging acoustic events, but may raise privacy issues
similar to a vision-based imaging system. Ultrasonic sensors
on the other hand work in close range up to Sm even in
darkness. Thus, it is invariant to illumination changes and
weather resistant. However, since these systems are active,
the power efficiency is worse than other electric field mea-
surement sensors, such as capacitance sensor or electric
potential sensors.

Active capacitive sensing can work up to 15cm in close
range, but it is more noise prone, as noisy detection in far
range can not be resolved by the sensing system. Passive elec-
tric field measurement is purely passive and is sensitive up
to 2m in range. Electrostatic sensors work purely passively
and are thus more power efficient. As the sensor is extremely
sensitive to the ambient electric field, the system is prone
to electric appliances or ambient power lines. This requires
hardware filters in the electronics design phase to reduce the
power-lines coupling around 50 Hz.

Mechanical sensors respond to direct touch and are thus
less susceptible towards power-lines or other ambient noise.
Pressure signals are reproducible when the same force is
applied, unlike electrostatic sensor depending strongly on
the varying ambient electric field. On the other hand, me-
chanical sensors are more susceptible towards form stability.
Especially, pressure sensors integrated into flexible textiles
are prone to deformation. Deformation may easily break the
pressure sensor or lead to performance degradation.

Vision-based systems are one of the hottest research areas
for HAR. With techniques based on deep learning and large
amount of online image resources, researchers are able to
build robust segmentation and action detection algorithms.
But the hardware limitation of the imaging system in visible
spectrum, such as incapability of illumination resistance, oc-
clusion, and change in object appearances over time, makes
vision-based system still a challenging topic.

Electromagnetic sensors are more resilient to environment
coupling than any other treated sensor categories. They are
robust against weather or climate changes operating at certain
frequencies. They can cope with changing illumination or
even occlusion cases, because signals can even penetrate
through walls at certain operating frequencies. The hardware
is designed such that the life span is long and the form
stability is high. To reduce the power consumption of radar-
based devices, a modified WiFi access point can be leveraged
to perform similar dynamic activity recognition tasks. Com-
mon commercial radar sensors closely connect hardware and
software solutions together, such that an easy modification
of the software with respect to a custom specification is
not possible. WiFi devices, on the contrary, can be easily
modified to gain access to the channel state information. The
resolution accuracy of WiFi devices is lower in comparison
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TABLE 8. Some of the most popular algorithms used for action recognition and classifiers in HAR along with examples of the works that utilized them.

Category [ Abbreviation | Algorithm name [ Source
Generative HMM Hidden Markov model [64], [170]
Generative DBN Deep Belief Network [171], [172]
Generative NB Naive Bayesian [170], [173]
Generative GMM Gaussian Mixture Model [21], [174]
Generative denoise AE denoise Autoencoder [170]
Discriminative SVM Support Vector Machine [27], [46]
Discriminative CRF Conditional Random Field [175]
Discriminative LR Logistic Regression [176]
Discriminative CNN Convolutional Neural Network [36], [89], [130]
Discriminative LSTM Long Short Term Memory [36]
Discriminative RNN Recurrent Neural Network [36]
Discriminative ANN Artifical Neural Network [26], [177]
Others k-NN k-Nearest Neighbours [27], [46], [71], [170]
Others DT Decision Tree [178]
Others LDA Linear Discriminant Analysis [179]
Others DTW Dynamic Time Warping [28], [62]
Others FLD Fisher Linear Discriminant [68]
Others compressed sensing Compressed Sensing [168], [169]

TABLE 9. Some evaluation metrics commonly used in HAR along with examples of the works that utilized them.

Application | Metric [ Definition [ Source
number of positives for all genuine match within

Identification top-1 accuracy the top 1 returned candidate list [134]
number of positives for all genuine match within

Identification top-k accuracy the top k returned candidate list [134]
area under the receiver operating characteristic (ROC) curve

Classification AUC indicating the performance of a binary classifier system [178]
ratio between number of correct predictions to

Classification Accuracy total number of predictions [36], [62]

Classification Recall proportion of actual positives to correctly identified [181]

Classification Precision proportion of positive identifications to actually correct [181]

Classification F1-score a weighted measure between recall and precision [182]
indication of how well each class preforms

Classification | Confusion Matrix | and gets confused with [371, [39]

TABLE 10. Feature matrix denoting capabilities required for a certain rating. List of Features are Resolution (res), Update Rate (upd), Detection Range(det),
Unobtrusiveness (unob), Processing Complexity(proc), Calibration Complexity (calco), Sensitivity (sens), Life span(ls), Weather Dependency (wi), Form stability
(fs), Electric noise coupling (enc), Occlusion (occ), Power Efficiency (pe).

feature [ —— [ - [ o [ + [ ++

res <8m <100cm <30cm <20cm <10cm

upd <l Hz <10Hz 25Hz >50Hz >100 Hz

det touch <l m <5m <20m >20 m

unob open large open small hidden, hidden, invisible
system system large exposure | noticeable exposure

proc single sensor 10+ sensors single sensor, 10+ sensors no further
CPU CPU embedded chip | by single chip processing

calco very hard hard normal easy very easy

sens insensitive less sensitive | normal sensitive highly sensitive

Is <3 years <Syears S years >10years >15 years

wi dependent less robust neutral robust invariant

fs deformable less stable stable robust rigid

enc highly sensitive | sensitive normal less sensitive insensitive

occ fatal prone neutral stable invariant

pe >1000 mW >750 mW 300 mW <220 mW <25mW
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TABLE 11. Benchmark sensor system with respect to feature matrix given in Table 10.

[ Sensor [ res [upd [ det [ unob [ proc [ calco [ sens [ Is | wi [ fs [ enc | occ [ pe |
Microphone + ++ ++ - - —— ++ - —— T ++ T+ —+ T
Vibration Sensor + + o + —_— + + ++ o —_ ++
Ultrasonic Sensor + ++ o o + ++ - +=+ | —— - o
Piezo-electric ++ - —— ++ - ++ —— —— ++ - ++ o ++
Fiber-optical ++ - - ++ - ++ —— + ++ - ++ o -
Capacitive - + - ++ o + + ++ - + — + +
Electrostatic + + o ++ + + ++ +H+ | = | | = | 4+ ++
RGB cameras ++ o + - o - o — - ++ ++ —— -
Infrared imaging - + o - + o - + + ++ | ++ - +
Radar - + ++ + o [ ++ ++ + ++ ++ ++ ——
WiFi - + ++ + o 0 + ++ 0 ++ | ++ ++ | ——

to high frequent radar applications, but with much reduced
power consumption.

Therefore, how to choose the appropriate sensor category
is strongly dependent on the design choice. According to
range, obtrusiveness, robustness, and resolution, multiple
sensor categories can be leveraged. Complementary sensor
categories can be fused to provide richer context information
to adapt to more complex human actions.

B. SENSOR SOFTWARE CHARACTERISTICS

Regarding the software processing step, data-driven mod-
els extremely rely on the underlying data distribution. The
performance is thus directly related to the data availability
and data acquisition process. We identified some data-related
challenges and software design issues encountered in the
domain of HAR with sensor data. The following challenges
are mainly divided into

« computation time,

« data acquisition process,

« database availability,

o data distribution,

« data augmentation ability,

« the intra-class and inter-class variability.

These aspects are considered to be important while de-
signing a robust model to perform HAR with sensor data.
In general, the process of data acquisition and the labeling
task for HAR system are tedious and expensive. Extensive
manual labelling and expert knowledge are required. While
image-based data are easy to acquire from the web or public
databases, other non-visual data is less frequently available.
There are several officially available databases with the focus
on activity recognition for image or video data as introduced
in section III. Images can be easily augmented using simple
computer vision techniques, such as rotation, zooming, ran-
dom cropping or applying noise filters to increase the amount
of the training data. But it is not the case for time series.
Time series are special, because the sequential information
encoded in the time series can not be easily ignored. During
the research phase, we identified that most of the applications
with non-visual sensors collected their own database within a
moderate test study and have not made it publicly available.
Therefore, either unsupervised machine learning techniques
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TABLE 12. Research fields in human activity recognition with some common
applications.

Research field [ Applications
Quantified-self [27]-[29]
Home behavior analysis (ADL) | [20]-[26]
Gesture recognition [30]-[37]

Video Surveillance/ Analysis
Gait analysis

Posture estimation
Physiological signal sensing
Indoor Positioning

[731, [75]-[77]

[44], [45], [68], [104], [128], [134]
[511-[53], [62], [63], [65], [183]
[32], [38]-[41]

[14]-[19]

should be applied to cope with the problem of missing labels,
or shared database as benchmarks especially for time series
data is desirable.

VI. CONCLUSION AND FUTURE RESEARCH
DIRECTIONS

HAR is the key to enable human-centered application and
natural interaction in a smart environment. To solve this chal-
lenge, the ability to learn the knowledge about human activity
from raw sensor inputs is of vital importance. Therefore, we
revised various research activities in this area and defined a
number of sensor categories to perform this task. In Table 12,
sensor-driven applications with respect to the target domain
in the area of HAR are depicted.

According to the surveyed most prominent research works
in this manuscript, we summarize in Table 13 the different
sensor category used for certain applications in the domain
of HAR. Given an illustration like this, it is easy to identify
missing application domains and provide some ideas for
future research directions.

We further identify some challenges to be faced in this
research field of action recognition with the previously in-
troduced sensor categories. The main challenges can be cate-
gorized as follows:

1) Real-time detection, instead of offline processing: This
requires smaller models, which can be applied on
embedded devices with less computation powers. The
capacity of the models should still be big enough to
catch the underlying data representation.

2) Online-learning: Most of the machine learning models
trained today are based on a fixed amount of training
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TABLE 13. ltillustrates the sensor categories used for each application in the domain of human activity recognition. We can easily identify missing application
domains with certain types of sensor categories and future research directions.

3)

4)

Application Domains [ Acoustic | Ultrasonic | Capacitive | Electrostatic [ Pressure [ Camera [ Radar | WiFi

Activity of daily living X X X
Physiological signals X X
Quantified-self

Postures Detection X
Gestures Detection X X
Gait Analysis X X
Indoor Localization X X X

X X X X
X X
X X X X
X X
X X
X X
X X X X

data and thus do not generalize well on new data. The
ability to cope with new, unseen data, without the need
to train the model again is thus a new requirement on
the current model. The model should possess the ability
of progressive learning.

Transfer learning and cross domain adaptation: The
process of labeling HAR tasks is tedious and expen-
sive. Therefore, if we can transfer knowledge from
existing domain into a new domain with only less or
mostly unlabeled data, it will save a lot of time and
human resource of labeling.

Target the problem of inter-class and intra-class vari-
ability: Human motion is highly complex and possess a
high degree of freedom. This can be expressed with the
term user-diversity. Therefore, to design a robust model
to cope with every possible situations, researchers
should first target the problem of reducing the intra-
class variability and increase the inter-class variability.

With the recent advances in computer vision and deep
learning, we are convinced that the above mentioned chal-
lenges can be efficiently targeted and solved. Different sensor
categories provide its own advances and disadvantages. Dur-
ing the design phase, researchers should weigh their choices
according to the design goals required. Fusion of comple-
mentary sensor categories can sometimes also increase the
performance and provide additional information to overcome
their individual limitations.
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