
A publication by Fraunhofer IESE

Knowledge Management of Software
Engineering Lessons Learned

Technical Report

Authors:
Andreas Birk,
Carsten Tautz

Abridged version accepted for publication 
by the 10th International Conference of 
Software Engineering and Knowledge 
Engineering (SEKE ‘98)

IESE-Report No. 002.98/E
Version 1.0
July 1998

Fraunhofer Einrichtung
Experimentelles

IESE

Software Engineering





Fraunhofer IESE is an institute of the 
Fraunhofer Gesellschaft. 
The institute transfers innovative software 
development techniques, methods and 
tools into industrial practice, assists com-
panies in building software competencies 
customized to their needs, and helps them 
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern





vCopyright © Fraunhofer IESE 1998

Executive Summary

Reuse of lessons learned from past software projects promotes good software 
development practices and prevents the repetition of mistakes. However, the 
lessons learned during a software project remain far too often isolated in the 
minds of the project participants. There is a need to systematically gain, store, 
disseminate, and apply them. 

This report presents a method for integrated knowledge management of les-
sons learned in software engineering that covers all these aspects. The method 
bridges the gap between those people and situations that gain lessons learned 
and those that need them. This requires the transformation of arbitrary experi-
ence statements into well-structured and explicitly represented lessons learned. 

The report describes how to structure and represent lessons learned. It also pre-
sents a technical infrastructure for storing, disseminating, and applying them. 
Requirements and architecture for a knowledge management system are 
described, and an organizational infrastructure for knowledge management of 
lessons learned is suggested. 

The method can be tailored to arbitrary organizational environments and usage 
scenarios. It can be gradually extended towards a comprehensive knowledge 
management system. Recommendations for managerial aspects are given that 
should be considered when lessons learned management is put into practice. 
The presented method has been developed and evaluated through three appli-
cation cases in academic and industrial environments.



vi Copyright © Fraunhofer IESE 1998



viiCopyright © Fraunhofer IESE 1998

Table of Contents

1 Introduction 1

2 Application Cases for Lessons Learned 3
2.1 Application Case 1: Systematic Inspections 3
2.2 Application Case 2: Requirements Engineering 3
2.3 Application Case 3: GQM-Based Measurement 4
2.4 Summary of Application Cases 5

3 Gaining and Packaging Lessons Learned 6
3.1 Application Case 1: Systematic Inspections 6
3.2 Application Case 2: Requirements Engineering 7
3.3 Application Case 3: GQM-Based Measurement 9
3.4 Approach to Gaining and Packaging Lessons Learned 10

4 Representing and Using Lessons Learned 14
4.1 Application Case 1: Systematic Inspections 14
4.2 Application Case 2: Requirements Engineering 15
4.3 Application Case 3: GQM-Based Measurement 18
4.4 Approach to Representing and Using Lessons Learned 19

5 Storing and Disseminating Lessons Learned 22

6 Putting Management of Lessons Learned into Practic
24

7 Related Research 27

8 Summary and Outlook 30

9 Acknowledgments 31

10 References 32



viii Copyright © Fraunhofer IESE 1998



1

Introduction

Copyright © Fraunhofer IESE 1998

1 Introduction

Lessons learned that are gained during software projects remain far too often 
isolated in the minds of the project participants. Sometimes, post-mortem meet-
ings are performed for exchange of lessons learned between team members. 
But even then, later reuse of relevant lessons learned throughout the entire soft-
ware organization can not be achieved systematically because the lessons 
learned stay invisible for the rest of the organization. When reused systemati-
cally, lessons learned promote good practices and prevent the repetition of mis-
takes.

What is needed is an effective approach to gaining, storing, disseminating, and 
applying lessons learned from software projects. Lessons learned programs1 can 
be set up that improve guidance of present and future software developments 
throughout an organization. Lessons learned are gained from software projects 
and processed (“packaged”) in order to make their later retrieval and use as 
easy as possible. 

Lessons learned management2 can very well serve as a catalyst towards estab-
lishing comprehensive knowledge management systems in software organiza-
tions. It picks up a latent need for more effective use of existing experiences. A 
knowledge management system can be developed that is integrated in the reg-
ular business processes and that can grow gradually from paper-based docu-
ments via on-line documents to formal knowledge representation. As the 
degree of formalization grows and personnel gets used to handling explicitly 
represented knowledge, it will be possible to gradually introduce higher levels of 
automated knowledge-based support.

Lessons learned management aims at building a bridge between persons who 
gain experience and persons who can benefit from these experiences. It also 
bridges the gap between situations in which lessons learned are gained and 
those in which they are needed. A set of coherent solutions to close these gaps 
constitutes a method for lessons learned management: Formalisms for gaining, 
packaging, disseminating, and using (i.e., applying) lessons learned, comple-
mented by knowledge representation and technical infrastructure (i.e., storage) 

1 A lessons learned program is an initiative of a software development organization to capture software
engineering lessons learned and to make use of them. It can be seen as part of a more comprehensive
process improvement program.

2 In this report lessons learned management and knowledge management of lessons learned are used as
synonyms.



2

Introduction

Copyright © Fraunhofer IESE 1998

for lessons learned management. This report presents such a method. In addi-
tion, it gives recommendations for implementing effective lessons learned man-
agement and provides an automated support infrastructure. 

The report is structured through three application cases in which we have devel-
oped and evaluated our method. Section 2 introduces the cases while Section 3 
elaborates on the specific problems and solution possibilities for gaining and 
packaging lessons learned. Procedures for gaining and packaging lessons 
learned are derived from the individual cases. Representation and usage of les-
sons learned are addressed in Section 4. A model is developed by starting with 
the application cases. Storage (i.e., the technical infrastructure) and dissemina-
tion of lessons learned are subject of Section 5. Section 6 addresses the applica-
tion of lessons learned management for arbitrary situations in software engi-
neering. It describes how the presented method can be tailored to specific 
application contexts. This report is concluded by comparing the presented les-
sons learned management to related approaches.



3

Application Cases for Lessons 

Learned

Copyright © Fraunhofer IESE 1998

2 Application Cases for Lessons Learned

This section presents three application cases in which we have developed spe-
cific lessons learned management solutions: The implementation of systematic 
inspections at a large German company, application of a requirements engineer-
ing technique in the software laboratory of the University of Kaiserslautern, and 
usage of the GQM approach for goal-oriented measurement at European soft-
ware companies in the context of three ESPRIT and ESSI projects. For each appli-
cation case, the specific difficulties and implementation possibilities for lessons 
learned management are demonstrated.

2.1 Application Case 1: Systematic Inspections

In this case we have introduced systematic inspections to a large German com-
pany. Inspections are a static analysis technique to find defects in software 
development documents [GG93]. During the performance of inspections, some 
unexpected discoveries were made requiring immediate, project-specific solu-
tions. For instance, during the inspection of a requirements document it was dis-
covered that the document contained too many defects to be discussed during 
a single inspection meeting. Therefore, the defects identified by the readers 
were grouped into seven categories. For each category (representing one prob-
lem type), a solution was devised.

We investigated these problem/solution situations further, generalized them – 
where possible –, and thus derived (generalized) lessons learned. These help 
future projects to detect problem situations early or to avoid them entirely. 
Another benefit is that solutions for similar problems may be derived from past 
problem/solution situations [AP94].

In order to use lessons learned they have to be organized in a way that they can 
be found on demand. In this case the lessons learned were collected in a report 
and grouped according to the topics “inspections” and “requirements”. This 
report can be read by project managers enabling them to recognize and correct 
problems early or avoiding them entirely. The installation of an on-line retrieval 
system over the intranet based on WWW technology is planned.

2.2 Application Case 2: Requirements Engineering

With this case we have started our work on lessons learned management. A set 
of experience statements had been produced by a software development 
project in the software engineering laboratory at the University of Kaiserslaut-



4

Application Cases for Lessons 

Learned

Copyright © Fraunhofer IESE 1998

ern. This project had used some state-of-the-art software engineering technolo-
gies and tried them under project conditions. Particular focus was put on the 
NRL requirements engineering method [CP93, vS93]. Experiences from using 
NRL were collected in a post-mortem meeting. It turned out that these experi-
ences were not yet in reusable form. There also were different categories of 
experiences. In our case study, we categorized the experiences, developed a rep-
resentation structure for each category, packaged the experiences for reuse, and 
developed a prototype experience base tool for input, storage, and retrieval of 
lessons learned via the web.

2.3 Application Case 3: GQM-Based Measurement

Lessons learned with software measurement programs have been gained during 
several European applied research projects1. The measurement programs were 
conducted according to the Goal/Question/Metric (GQM) approach [BCR94, 
BDR97]. We have started to systematically process these lessons learned in order 
to supply a new level of guidance for the GQM process. The GQM process is 
defined in a handbook as a stepwise procedure that accompanies software 
projects. Each process step can have one or more refinement levels [GHW95]. 
Lessons learned are now attached to the process steps. They provide recom-
mended solutions for specific situations and difficulties based on the experi-
ences of past measurement programs.

1 E.g., ESPRIT projects PERFECT (no. 9090) and PROFES (no. 23239), and ESSI project CEMP (no. 10358).



5

Application Cases for Lessons 

Learned

Copyright © Fraunhofer IESE 1998

2.4 Summary of Application Cases

Table 1 summarizes the application cases.

Table 1:Summary of 
application cases

Application Case 1:
Systematic Inspections

Application Case 2:
Requirements Engineering

Application Case 3:
GQM-Based Measurement

Goals Recognize problem situa-
tions early

Prevent recurrence of prob-
lems

Solve problems effectively

Process experiences for use 
in later projects

Improve technology

Achieve scientific results

Evaluate method

Improve method

Guide future usage of 
method

Input Memos from the project 
team (narrative text)

Recording from post mor-
tem meetings (narrative 
text)

Presentation material, 
reports, interview results, 
questionnaire results

Output Report (structured text) Report (structured text) 
and object-oriented knowl-
edge representation

Report (handbook-style) 
and hypertext (process 
guidelines)



6

Gaining and Packaging Lessons 

Learned

Copyright © Fraunhofer IESE 1998

3 Gaining and Packaging Lessons Learned

Based on the three cases presented in the previous section, an approach for 
gaining and packaging lessons learned is derived. We subsume all activities 
regarding the recording of lessons learned which are directly related to normal 
project work (e.g., writing minutes of project meetings) under “gaining lessons 
learned”. We refer to all activities as “packaging” which are related to making 
lessons learned reusable for future projects. While the software development 
teams of an organization are heavily involved in gaining lessons learned, the 
packaging of lessons learned is typically done by people outside the develop-
ment team because making lessons learned reusable for other projects is not of 
interest to an ongoing development project (see Section 6 for details).

3.1 Application Case 1: Systematic Inspections

During the reading of a requirements document many inspection items were 
found which were to be discussed during the upcoming inspection meeting. As 
it turned out, there were many similar inspection items, which could be 
grouped. For each group an associated problem type was postulated. For exam-
ple, for the group “low comprehensibility” the problem “requirements which 
are not completely understood may hide technical problems” was postulated. 
The solution devised was that the requirements which were not completely 
understood by the development team should be discussed between Mr. X (the 
project manager of the software development team) and department Y (repre-
senting the authors of the requirements which were not part of the software 
development team). Possible technical problems which would become apparent 
should then be resolved in individual negotiations.

Even though this solution seems natural, the recognition of the described poten-
tial problem alone may save lots of rework in other projects if it is captured as a 
lesson learned. For this purpose, the project-specific experience statement 
gained must be packaged in a way that it is of interest for other projects.

• Input: Informal project-specific decisions.

• Process description:

1 Abstract from project-specific information (“decontextualize”). For the 
example given above, the people’s and departments’ names have to be 
removed and be replaced by their functions.

2 Complete lessons (e.g., who negotiates solutions to technical problems?)



7

Gaining and Packaging Lessons 

Learned

Copyright © Fraunhofer IESE 1998

3 Make lessons consistent; use a standard vocabulary (e.g., the same terms 
should have the same meaning across all lessons learned, synonyms 
should be avoided)

• Output: set of lessons learned.

The major characteristic of this packaging process is that project-specific infor-
mation is removed from the informal statements supplied by a project which in 
turn may require a completion or generalization of the statements. In addition 
all lessons learned should have a uniform style as to avoid misunderstandings at 
usage time.

3.2 Application Case 2: Requirements Engineering

The experience statements were collected during a project post-mortem meet-
ing. The statements from the project participants were recorded by a modera-
tor. An example experience statement was:

“Internal functions (e.g., ‘next’) can not be distinguished by their form from 
user-defined functions. It is not known to me whether there exists a list of the 
predefined functions in NRL and how these are defined.”

This statement shows several characteristics that limit its reusability: It addresses 
multiple aspects or facets of information (form of “internal functions” in NRL 
and whether the “internal functions” have been made known to the develop-
ment team); it contains uncommon terminology (“internal functions” is not a 
common term in NRL; “predefined functions” would be appropriate); there is 
no hint for a later user about when this lesson learned can be useful and when it 
should be made known to other developers; finally, it is not fully clear at a first 
glance whether the identified issue is actually a problem or due to a misunder-
standing of the developer (i.e., a validation of the experience statement is 
needed). These deficiencies needed to be removed by the packaging process.

The packaging process makes some assumptions about the representation. Basi-
cally, these consist of different categories of lessons learned where each cate-
gory serves a different purpose, i.e., a different usage scenario. The categories 
differ in the facets (title, topic addressed, context situation in which the lesson 
learned is relevant, etc.) associated with them. This representation is described 
in more detail in Section 4.2. Given these assumptions, the packaging process 
has been as follows:

• Input: Informal experience statement as it was recorded in a project post-
mortem meeting



8

Gaining and Packaging Lessons 

Learned

Copyright © Fraunhofer IESE 1998

• Given: Representation that distinguishes several categories of experience 
statements and lessons learned according to their information contents 
where several facets are associated with each category of lesson learned

• Process description

1 Validate and if needed correct or discard the experience statement

2 Identify types of information contained in the experience statement

3 Split experience statement such that each resulting part only addresses 
one type of content information

4 Assign each resulting partial statement to the category of experience 
statements that corresponds to its content information type

5 Rephrase each partial statement such that it is a complete sentence

6 Standardize the terms used in the experience statements

7 Supply all information to each statement that is needed to make it self-
contained (“decontextualize”)

8 Supply to each statement an explicit description of the context situation1 
in which it is relevant

9 Distribute the information in each statement over its category’s facets and 
provide still lacking information for those facets that are not yet filled

10 Rephrase the statements such that they have a uniform style (this 
enhances readability in the later reuse situation)

• Output: A structured set of reusable lessons learned

Major characteristics of this packaging process are that experience statements 
are validated; that they are made self-contained, clearly understandable, and 
uniform; that they are assigned to predefined categories according to certain 
information types; that they are supplied with a definition of the context situa-

1 An experience statement is only valid in the context it was gained in. The context is typically described
by the (a) characteristics of the project (e.g., size of the project team, duration of the project) and (b) the
status of the project (e.g., the design is finished). This is different from the project-specific information
(e.g., specific names of people on the project team) which is removed as part of “decontextualize”.



9

Gaining and Packaging Lessons 

Learned

Copyright © Fraunhofer IESE 1998

tion in which they are relevant; and that they contain various facets of informa-
tion that should be marked explicitly in order to facilitate their reuse.

3.3 Application Case 3: GQM-Based Measurement

The experiences were reported in various forms: as statements during feedback 
meetings, through questionnaires, in reports, or through application presenta-
tions. They had arbitrary form ranging from vague statements to well-structured 
problem/solution pairs with context description.

For instance, in the project reports, the experiences1 were reported as list items. 
The individual items were a few sentences in plain English with arbitrary struc-
ture and content type. They were reported from different application projects by 
different people.

Using these inputs, the following packaging process was used initially:

• Input: Arbitrary experience statements

• Given: A GQM process model describing how to plan and perform measure-
ment programs.

• Process description:

1 Review the experience statements from each project

2 Discard those with low relevance

3 Assign the remaining ones to the process steps of the GQM process 
model

4 Give statements a uniform style (i.e., decontextualize and rephrase)

5 Merge the lessons learned from the individual projects into one com-
pound experience report

• Output: Compound experience report containing a set of lessons learned 
ordered according to the steps of the GQM process model.

1 These were experience statements about GQM-based measurement programs from six application
projects of ESPRIT project PERFECT. The experience statements were at that time not yet represented as
problem/solution pairs. The objective was to identify action points for needed refinements of the GQM
process description.



10

Gaining and Packaging Lessons 

Learned

Copyright © Fraunhofer IESE 1998

In a later stage, the selected experience statements were reformulated as prob-
lem/solution pairs and integrated with the existing GQM process model in form 
of a handbook with then integrated, experience-based guidelines.

Major characteristics of this packaging process are that it associates with each 
lesson learned an object (in this case a GQM process step), and that the result is 
not a set of individual lessons learned but rather a compound experience 
report.1

3.4 Approach to Gaining and Packaging Lessons Learned

This section provides the summarized findings and results for gaining and pack-
aging lessons learned in software engineering. First, it addresses the underlying 
issue of the logical structure of lessons learned. Afterwards, procedures for gain-
ing and packaging lessons learned are presented.

3.4.1 Logical Structure of Lessons Learned

In order for the processes explained in the next subsections to be meaningful 
certain assumptions about the representation of lessons learned have to be 
made. We call the set of these assumptions the logical structure of lessons 
learned.

The three application cases have shown that the management of lessons 
learned requires to consider and represent at least the following concepts:

• Object of lesson learned

• Problem

• Solution

• Context

Object of a lesson learned is the software engineering artifact that the lesson 
learned is about. It can be a process, a product, a technique or method, some 
policy, etc. Problem and solution are the core parts of a lesson learned. Context 

1 From the knowledge engineering point of view, this presents a way of generating detailed general
knowledge by taking general knowledge (process model) and case-specific knowledge (lessons learned),
structuring and reformulating the case-specific knowledge, and finally merging them.



11

Gaining and Packaging Lessons 

Learned

Copyright © Fraunhofer IESE 1998

describes the situation in which a problem/solution pair is relevant (e.g., small 
maintenance projects or large projects with stringent time requirements).

Depending on the objectives of the lessons learned program, the concrete man-
ifestation of these concepts may vary. For instance, in the inspections case, les-
sons learned were represented explicitly as problem/solution pairs in order to 
provide support for trouble shooting when problems with inspections occurred. 
Whereas in the requirements engineering case, focus was on avoiding problems 
by providing improvements of the requirements engineering method and direct 
usage guidelines. This led to focus on the solution side and not emphasize the 
problem side in the structure. Of course, these aspects can also be integrated 
into a comprehensive knowledge representation. We will go into more detail in 
Section 4.4.

A concrete representation will also associate certain facets to the concepts such 
as the title of a lesson learned or information about how it has been derived. In 
the following subsections we abstract from these facets.

3.4.2 How to Gain Lessons Learned

There are three basic strategies to gaining experience statements:

• Use available technical (i.e., non-human) knowledge sources. Rely on already 
existing experience reports that are not yet processed into reusable form. 
Such experience reports can be project memos, presentation slides, the min-
utes from project post-mortem meetings or GQM feedback sessions 
[GHW95], or the results from project or technology evaluations.

• Use goal-oriented knowledge acquisition (centralized knowledge elicitation). 
Conduct investigations specifically for the purpose of identifying lessons 
learned. Such investigations can utilize interviews, questionnaires, surveys, 
brainstorming meetings, capturing of ad-hoc statements during project 
work, etc.

• Accumulate knowledge during everyday work (decentralized knowledge elic-
itation). Establish a framework and tool environment where people can enter 
already well-structured and readily reusable experience statements whenever 
they encounter them during their regular project work.

The latter strategy is the ultimate goal of lessons learned management. It is the 
vision of a knowledge management system that is fully integrated with its orga-
nizational context and represents a prototype infrastructure for learning organi-
zations. However, the usual case to start lessons learned management is to 
acquire already existing experiences that are not yet in reusable form and pack-



12

Gaining and Packaging Lessons 

Learned

Copyright © Fraunhofer IESE 1998

age them as lessons learned. This approach can then be extended gradually 
towards an integrated knowledge management system.

3.4.3 How to Package Lessons Learned

Based on the three application cases a packaging process can be synthesized. 
The packaging process converts arbitrary experience statements into structured 
lessons learned. Figure 1 depicts this process. While application case 2 gives a 
detailed description on how to package informal experience statements, the 
application case 3 emphasizes that each experience statement is about some 
kind of object which has to be captured. The object of the lesson learned offers 
a simple way to filter out irrelevant lessons learned at usage time. For instance, 
when dealing with requirements, lessons learned about the architectural design 
may safely be ignored. Also, application case 3 goes one step further than sim-
ply deriving lessons learned. There, the lessons learned produced are integrated 
into a handbook together with a description of the objects the lessons learned 
are about. This handbook is very effective for training people because it contains 
both the way a technology (e.g., GQM) should be applied and company-specific 
pitfalls (lessons learned about certain aspects of the technology). Another 
option for storage is an on-line repository for lessons learned as a prerequisite 
for tool support (cf. application case 2).

In summary, the packaging process must convert arbitrary experience state-
ments into structured lessons learned where the structure is defined by the cate-
gories of the lessons learned and their facets.



13

Gaining and Packaging Lessons 

Learned

Copyright © Fraunhofer IESE 1998

Figure 1:Process for 
packaging lessons 
learned

validate:
• filter out irrelevant (i.e., incorrect or too project-specific) statements

structure:
• identify object of lesson learned
• split statement into problem and solution
• add context

make consistent:
• complete fragments/fill out empty fragments
• standardize terms
• decontextualize
• specify facets
• make writing style uniform

store:
• merge lessons learned with description of their objects
• integrate new lessons learned with already existing lessons learned

object context

problem solution

lessons learned
repository

arbitrary
experience
statements

structured
lessons
learned

handbook



14

Representing and Using Lessons 

Learned

Copyright © Fraunhofer IESE 1998

4 Representing and Using Lessons Learned

In this section we introduce a representation for lessons learned based on the 
usage requirements of the application cases because ultimately the way lessons 
learned are used determines what an adequate representation looks like. This 
also means that it is not possible to develop a knowledge representation which 
can be used in all cases. However, there is common ground among all represen-
tations, and it is the aim of this section to point it out. The result is a representa-
tion which can be easily adapted to specific needs.

4.1 Application Case 1: Systematic Inspections

The lessons learned from the inspections are used as guidelines (for avoiding 
problems which occurred in past projects) and as suggestions on how to solve 
problems occurring in the project. In the first case, relevant guidelines are 
selected apriori (e.g., at the start of an inspection) by checking whether the 
problem addressed might become relevant for the project. The selected guide-
lines then become project guidelines. In the latter case, relevant problem/solu-
tion pairs are selected on demand by matching the description of the actual 
problem at hand with the problem descriptions of the lessons learned. In this 
case, the problem description must include a description of the problem situa-
tion because the way a problem can be solved depends upon the context the 
problem occurred in. For example, solutions for technical problems concerning 
the implementation of requirements need not to be negotiated between differ-
ent parties if the requirements are written by the same team as the system is 
implemented by.

In our application case we used the form illustrated in Figure 2 for the represen-
tation of lessons learned. The issue summarizes the contents of the lesson 
learned. This allows a coarse-grained search to find out whether the lesson 
learned is potentially applicable. Context and status describe the problem situa-
tion, i.e., they define in detail when the lesson learned is (known to be) applica-
ble. The effects state problems which have occurred in the past as a result of the 
described situation. The (suggested) correction is a proposed solution on how to 
handle the problem situation properly. Finally, the guideline suggests how to 
avoid the problem all together.



15

Representing and Using Lessons 

Learned

Copyright © Fraunhofer IESE 1998

Figure 2:Form used 
for recording lessons 
learned

The storage chosen for the lessons learned was – as mentioned in Section 2.1 – 
in form of a report. For finding relevant guidelines, the list of lessons learned has 
to be flipped through. For each lesson learned its applicability is decided by mak-
ing assumptions about the probability that the described problem situation may 
actually occur. If the probability is rated as high, the stated guideline becomes 
part of the project guidelines. Similarly, if a problem (situation) occurs (e.g., 
poorly understood requirements), the lessons learned are flipped through to see 
whether a lesson learned is applicable. If so, its solution is adapted to the needs 
of the current project and the modified solution is applied. Note, that a problem 
description may also be found under “status” because a problem situation may 
lead to a problem. Applying the lesson learned when the situation described 
under “status” has been detected will prevent the occurrence of the problem 
described under “effects”. Thus, the occurrence of the problem situation can be 
interpreted as a (minor) problem itself.

4.2 Application Case 2: Requirements Engineering

The representation that has been gained for the NRL case is depicted in Figure 3.

Issue: Poorly understood problems may hide technical problems.

Context: <company/division/department> <project>

Status: The requirements documents (not written by the development team) 
contain many requirements which are not completely understood by the devel-
opment team.

Effects: The poorly understood requirements may lead to unrecognized tech-
nical problems for the implementation.

(Suggested) correction: The project manager of the development team dis-
cusses the poorly understood requirements with the authors of the require-
ments documents. Technical problems recognized through these discussions 
should be negotiated between all ‘consumers’ of the requirements documents.



16

Representing and Using Lessons 

Learned

Copyright © Fraunhofer IESE 1998

Figure 3:Categories 
of lessons learned as 
they have been 
identified in the 
requirements engi-
neering case

It contains four categories of lessons learned: issue report, usage guideline, 
improvement suggestion, and technology effect. Issue reports are warnings and 
descriptions of problems that have occurred during application of the software 
development practice. Usage guidelines are hints to later users of the software 
development practice that aim at avoiding possible problems. While usage 
guidelines and issue reports should be read before using a technology, improve-
ment suggestions address updates and refinements of the definition of the soft-
ware development practice in order to facilitate later applications. Such 
improvements remove the root cause of occurred problems and thus prevent 
the recurrence of these problems. Technology effects refer to impact and inter-
relations that the software development technology has on other aspects of the 
software process, e.g., particular contributions to achievement of certain prod-
uct qualities (e.g., high reliability) or impact on time and effort needed for soft-
ware development (e.g., a particular software development practice improves 
the domain knowledge of the engineers and thus reduces further communica-
tion needs, development time, and effort).

The categories of the lessons learned have been developed through the follow-
ing process:

• Input: A set of experience statements as they were recorded in a project post-
mortem meeting

• Process description:

1 Identify future usage needs and requirements for the lessons learned

2 Define conceptual model of the usage context of the lessons learned 

3 Identify categories of lessons learned by aid of usage needs and concep-
tual model

4 Categorize the experience statements and evaluate the categorization 
scheme

5 If needed, modify and refine the characterization 

lesson learned

issue report usage guideline improvement suggestion technology effect

is-ais-ais-a is-a

prevents
avoids



17

Representing and Using Lessons 

Learned

Copyright © Fraunhofer IESE 1998

• Result: A categorization of lessons learned

In a next step, there was defined an internal facet structure for each category of 
lessons learned. The facets could easily be derived from the identified usage 
needs and the conceptual model. Objective was to achieve a uniform and easy 
to perceive representation. Finally, the actual representation schema was 
defined using an object-oriented formalism.

A prototype software tool has been developed for storing the lessons learned. It 
is implemented in Java and uses an object-oriented representation formalism. It 
offers user interfaces for input and retrieval of lessons learned. Figure 4 depicts a 
window for displaying a lessons learned of type usage guideline and shows the 
facets used for structuring the information. The tool is designed such that it can 
be integrated in web pages and become part of a company-wide intranet.



18

Representing and Using Lessons 

Learned

Copyright © Fraunhofer IESE 1998

Figure 4:Window for 
displaying retrieved 
lessons learned of 
category usage 
guideline as pro-
vided by the proto-
type knowledge 
management sys-
tem for the require-
ments engineering 
case

4.3 Application Case 3: GQM-Based Measurement

The completely processed lessons learned have seven facets (cf. Figure 5): (1) the 
title of the lesson learned, (2) a reference to a step of the GQM process, (3) the 
element of the process step that is addressed in the lessons learned (e.g., one of 
the input documents or a role involved in the process step), (4) the addressed 
aspect or problem with the process element (e.g., size of the input document 
exceeds a certain threshold or a needed resource is available only part-time), (5) 
the context situation in which the lesson learned has occurred and is supposed 
to be valid (e.g., in a large multi-site project in which a measurement program is 
run for the first time), (6) the solution suggested to the problem in that situation 
(e.g., a rule for how to split the input document or a suggested software tool for 
supporting a part-time resource), and at last (7) notes and comments that do 
not fit into one of the other facets.



19

Representing and Using Lessons 

Learned

Copyright © Fraunhofer IESE 1998

Figure 5:Structure of 
lessons learned for 
guiding the GQM 
process

The lessons learned on GQM-based measurement programs are integrated with 
a definition of the GQM process. Each lesson learned is attached to the process 
step to which it refers. Each process step is described in textual and graphical 
form as a section of a process handbook. It contains parts such as objective, 
required resources, input and output products, entry and exit criteria, sub-pro-
cesses, and activity description. The lessons learned are added as an additional 
part called guidelines.

The handbook is to be used mainly for three purposes: Teaching and training of 
GQM, priming of personnel before the start of a measurement program, and as 
reference book.

4.4 Approach to Representing and Using Lessons Learned

In this section we will detail the logical structure introduced in Subsection 3.4.1 
and show how the refined structure can be used to support packaging and 
automate retrieving relevant lessons learned.

The previous sections imply that there are several types of knowledge entities 
(description of problem situations, problems, solutions, guidelines, etc.). How-
ever, these entities are not independent of each other. Rather, the entities form 
a complex network with semantic relationships. Figure 6 shows the semantic 
network we suggest for lessons learned. Such a semantic network is important 

Process
step 1

Process
step 2

Process
step 3

Process
step 4

Process
step 3.1

Process
step 3.2

Lesson learned

Title: Too long reporting periods
Object: Plan Data Collection (Step 3.1)
Aspect: Measurement Plan
Problem: Subjective measures with data

collection at “end of phase” might
have too long reporting period
so that accuracy of data decreases.

Context: Projects with long phase duration;
Measurement programs with
subjective measures

Solution: Double-check all measures with 
data collection at “end of phase” 
and possibly shorten reporting 
period.

Notes: Consider that during holiday time
phase duration can increase.

Process structure:



20

Representing and Using Lessons 

Learned

Copyright © Fraunhofer IESE 1998

for writing (e.g., ensuring a uniform structure) and using lessons learned (e.g., 
to aid retrieving). From the lesson learned form of application case 1 (cf. 
Figure 2) we learn that a lesson learned is made up of an issue, project identifi-
cation, problem situation (= status), effects, (suggested) correction, and a guide-
line. Project identification and problem situation together constitute the context 
in which the lesson learned is (known to be) applicable. Therefore, they are 
merged into the concept “context”. The “has-part” relationship shows what 
types of information have to be given if a new lesson learned is to be written. 
The other relationships derived from application case 1 (causes, solves, resolves, 
avoids) are used to reach the goals enumerated in Section 2.1. For instance, for 
choosing applicable guidelines, all lessons learned with similar projects in their 
context are retrieved. From the context the associated guidelines (via the 
“avoids” relationship) are recalled. If during the performance of a project a 
problem situation is diagnosed, the (suggested) correction can be recalled via 
the “resolves” relationship.

Application case 2 interprets the different types of knowledge (issue report, 
usage guideline, improvement suggestion, technology effect) as valuable infor-
mation on their own (cf. Figure 3). This is represented by the “is-a” relationship.

Finally, application case 3 emphasizes that each lesson learned is about some 
kind of object. The object of a lesson learned is not restricted to a process step1, 
i.e., an activity. This is expressed in Figure 6 by the concept “object of lesson 
learned”. Other possible types of objects are products, resources, etc. In this 
sense, the semantic network can be further extended.

In order to find applicable2 lessons learned intelligent retrieval is necessary 
because only seldom an actual problem situation matches exactly a problem sit-
uation of the past. For this purpose, characterization schemes may be used 
which are made up of facets and describe the properties of the knowledge 
types. For example, a process step can be described by its objective, required 
resources, input and output products, entry and exit criteria as well as by its 
activity description (cf. Section 4.3).

1 In application case 3 the object of the lesson learned is actually described by a pair: the corresponding
process step and the element of the process step associated with the lesson learned (e.g., a resource or
description of the activity).

2 A lesson learned is “applicable” if its contents are useful to solve the problem at hand. Usually this use-
fulness is modeled by the similarity between the context of the lesson learned and the context of the
problem at hand. This means that both the characteristics (e.g., team size) and the status of the projects
(e.g., design finished) must approximately be the same.



21

Representing and Using Lessons 

Learned

Copyright © Fraunhofer IESE 1998

Figure 6:Semantic 
network of types of 
knowledge entities 
for lessons learned

Based on such characterization schemes the retrieval of applicable lessons 
learned can be automated using similarity functions which compute the similar-
ity between the characterizations of the lessons learned in the repository and 
the characterization of the wanted lesson learned [Prie91, OHPB92, TA97].

lesson learned

 issue context effects (suggested)

(usage) guideline
project problem

situationidentification

informal
experience

object of
lesson learned

process

GQM process

improvement
suggestion

technology
effect

= issue report correction

has-part

is-about

has-

has-part
has-parthas-

causes

has-part has-

solves

resolves

partpart

avoids

avoids

is-a

may-be-a
has-
subprocess

prevents

is-a

has-part

is-a
is-a

part



22

Storing and Disseminating 

Lessons Learned

Copyright © Fraunhofer IESE 1998

5 Storing and Disseminating Lessons Learned

Tightly coupled with the representation of lessons learned is the storage of les-
sons learned. The employed technical infrastructure used for storing determines 
to a large degree the way lessons learned are to be disseminated within an 
organization:

• If no tool support is available, lessons learned may be collected in binders and 
flipped through on demand (cf. application case 1). This requires that new 
lessons learned are copied and distributed to project managers which are 
expected to use them.

• An alternative is to write a report which describes both some object (e.g., the 
GQM process) and the lessons learned related to the object (cf. application 
case 3). An improvement is to have this report on-line because then the 
update/distribute cycle can be shortened.

• At the end of the spectrum lies specialized tool support which allows access 
over a net (e.g., WWW-based) and takes advantage of a knowledge repre-
sentation like the one presented in the previous section. Dissemination is 
done automatically as new lessons learned become available when they are 
entered into the system.

The main requirements for automated support of lessons learned usage are as 
follows:

• Most of the core functionality is related to retrieval; for a given problem and 
context situation one or more existing solution cases need to be retrieved.

• Data processing is not really needed for the core functionality; it can become 
relevant for providing additional functionality.

• Problem solving is also not needed for the core functionality; it can become 
relevant for supporting the adaptation of solutions at a later phase of a les-
sons learned program.

• Relationships to various other kinds of objects (e.g., process models, project 
characterizations, narrative experience reports) need to be represented (as 
links).

• The similarity function expressing the applicability of a lessons learned needs 
to deal with arbitrary types of data, ranging from formal data to fully infor-
mal, narrative text.



23

Storing and Disseminating 

Lessons Learned

Copyright © Fraunhofer IESE 1998

• Over time the amount of data will become very large. Therefore, the tool 
infrastructure must be scalable.

• A lessons learned management system needs to be integrated into possibly 
already established on-line information systems (e.g., WWW-based corporate 
intranets).

Hence, support for lessons learned usage needs to offer strong retrieval func-
tionality, be able to integrate data processing and problem solving functionality, 
and allow for handling a wide variety of data types and similarity functions. We 
have evaluated several implementation technologies and concluded that com-
mercially available case-based reasoning (CBR) systems provide the most appro-
priate platform for lessons learned management [GABT98, TA97]. CBR can be 
utilized to fulfil the requirement of finding applicable lessons learned using char-
acterization schemes as they have been introduced in Section 4.4 [GRA+98, 
Sar95]. Therefore we plan to enhance the existing system described in Section 
4.2 by a CBR component using CBR-Works by tecInno (Kaiserslautern, Germany) 
[Alt97, Tec98].

Figure 7:Architec-
ture of a knowledge 
management sys-
tem for lessons 
learned

Figure 7 shows a suggested architecture of a knowledge management system 
for lessons learned. It uses a CBR system as platform technology that provides 
access to an underlying database of lessons learned and related information 
(“experience base”). For the two major task areas (“usage of lessons learned” 
and “input/maintenance of lessons learned”) customized software packages are 
provided. The proposed architecture is capable of handling informal data and 
guarantees a smooth transition towards formal knowledge representation.

user librarian/supporter

lessons learned
usage manager

lessons learned
input/maintenance manager

experience base
(database)

platform (CBR system)



24

Putting Management of Lessons 

Learned into Practice

Copyright © Fraunhofer IESE 1998

6 Putting Management of Lessons Learned into Practice

If a lessons learned program is put into practice, it is not enough to know how 
to gain, package, represent, store, disseminate and use lessons learned. In addi-
tion, managerial aspects have to be considered. Management is responsible for 
setting up and running such a program. Figure 8 shows the general organiza-
tional infrastructure.

Figure 8:General 
organizational infra-
structure for a les-
sons learned 
program

The initial decisions to be made when setting up a lessons learned program are 
all made by the manager and include:

• Define objectives. The objectives will determine who needs access to the les-
sons learned management system as well as how the lessons learned man-
agement system is to be used.

lessons learned

librarian:
• updates cat-

alog
• distributes 

catalog

user:
• reuses/applies lessons 

learned
• gains lessons learned in 

form of experience 
statements

supporter:
• assists/trains users
• packages lessons 

learned
• reviews lessons 

learned
• evaluates lessons 

learned

manager:
• defines objectives
• specifies technical infra-

structure
• defines structure of repos-

itory
• defines organizational in-

frastructure
• assigns resources

lessons
lessons

queries

contents of

catalog

initiatives, rules

initia-

experience

organizational unit responsible for

project organizations

tives,
rules

updates

lessons learned

statements

learned
learned

knowledge
mgmt. system

lessons learned program



25

Putting Management of Lessons 

Learned into Practice

Copyright © Fraunhofer IESE 1998

• Specify technical infrastructure. The technical infrastructure involves the kind 
of storage system used (e.g., reports or specialized tools) and determines 
how the lessons learned are disseminated and how the users can access 
them.

• Define structure of repository. Depending on the objectives, certain types of 
knowledge entities have to be considered for storage. Figure 6 can be used 
as a starting point. The definition of the structure also includes the definition 
of characterization schemes as indicated in Figure 1 and pointed out in Sec-
tion 4.4.

• Define organizational infrastructure. The organizational infrastructure 
requires the establishment of a logical and/or physical organizational unit 
which is dedicated to the lessons learned program, i.e., a unit which pack-
ages lessons learned and supplies them on demand to projects. This includes 
technical aspects like updating and distributing the catalog of lessons learned 
as well as consulting and quality assurance functions such as assisting and 
training users, helping in gaining of lessons learned, packaging, reviewing 
and evaluating lessons learned. Part of the definition of the organizational 
infrastructure is also the definition of rules and processes on how to gain, 
package, evaluate, store, and use lessons learned.

• Assign resources. Finally, people have to be assigned to the above mentioned 
functions. Note that Figure 8 shows only (logical) roles. At the beginning of a 
lessons learned program a single person may be responsible for all functions 
(manager, supporter, librarian). As the program grows more and more peo-
ple may be added to the new organizational unit.

Once a lessons learned program is set up, the manager starts initiatives as well 
as improves rules and processes on how to gain, package, evaluate, store, and 
use lessons learned. New initiatives and rules are typically based on lessons 
learned about the lessons learned program. Here are some of the lessons we 
have learned (some of which have already been addressed in the previous sec-
tions):

• Lessons learned are not a by-product of project work. Rather dedicated effort 
is necessary to make informal statements reusable for future projects (cf. Sec-
tion 3).

• The dedicated effort has to be carried out by people who are assigned to the 
lessons learned program (at least part-time), i.e., an organizational unit 
responsible for the maintenance of the lessons learned repository has to be 
established. Otherwise, no one will feel responsible for gaining and packag-
ing lessons learned. Moreover, a small maintenance group ensures that les-
sons learned are written in a consistent manner.



26

Putting Management of Lessons 

Learned into Practice

Copyright © Fraunhofer IESE 1998

• Users need to be willing in supplying their experience in form of informal 
statements, project decisions, reports, etc. If people are not willing, they will 
only give irrelevant experience. This means that the organization must pro-
vide an environment in which people are happy to share their experience 
with others. This can be done, e.g., via incentives. In this case the lessons 
learned program becomes an improvement suggestion program for software 
development.

• Lessons learned management systems can be used as a communication 
means. Even if only problem situations and their effects are known (but no 
solution for them), this information can be entered into the lessons learned 
management systems, e.g., as issue reports (see Section 4.2) together with 
the “experience provider”. Other people experiencing the same difficulties 
can now contact the original “experience provider” making up a team which 
might be able to find satisfactory solutions using synergy effects.



27

Related Research

Copyright © Fraunhofer IESE 1998

7 Related Research

While this report tries to give a comprehensive view of all aspects of lessons 
learned management, other approaches focus on particular aspects for specific 
purposes. For example, Gresse von Wangenheim et al. [GRA+98] present a 
detailed case-based representation for lessons learned about goal-oriented mea-
surement programs together with specific usage scenarios. In their work the 
solution part of a lesson learned contains a justification which provides an 
explicit rationale for the selection of the solution. Such a justification is a first 
step towards supporting the adaptation of a solution if a retrieved lesson 
learned is about a similar problem. In addition, an outcome assessment states 
explicitly if the problem was successfully solved by the solution or failed. If the 
solution did not solve the problem, a failure explanation is given. This is the 
result of the more formal representation used by Gresse von Wangenheim et al. 
Using our representation a failure would also be recorded as a solution. How-
ever, in this case the solution would not be constructive, but rather prohibitive, 
e.g., “if you do not understand the requirements completely (problem), then do 
not start design (solution)”.

For the lessons learned program at NASA’s Goddard Space Flight Center [Sar95] 
specific guidelines for formulating lessons learned have been developed. Among 
the criteria to decide whether to store a lesson learned in a central repository are 
its relevance, comprehensibility, utility, validity, and realizability. A detailed 
description for filling out lesson learned forms is also given. Using these guide-
lines new lessons learned are reviewed. A prototype based on case-based rea-
soning technology allows storage and retrieval of the lessons learned.

Houdek and Kempter present in their work the quality patterns approach 
[HK97]. They show how the quantitative results of a goal-oriented measurement 
program can be packaged in so called quality patterns. A quality pattern has a 
problem-solution pair at its core which is enhanced by further information giv-
ing it its pyramidal form (see Figure 9). This way a potential user does not have 
to read the complete lesson learned to decide whether it is applicable. The 
explanation gives (similar to the justification of [GRA+98]) an explicit rationale 
for the stated solution. An example and references to related experiences pro-
vide more detailed information if the reader needs more background informa-
tion to understand the problem-solution description. This example shows that 
an explicit structure for lessons learned (such as the one presented in Section 
4.4) is important.



28

Related Research

Copyright © Fraunhofer IESE 1998

Figure 9:Structure 
used for quality pat-
terns

A more informal approach to lessons learned is presented by Kleiner and Roth 
[KR97]. Their approach is based on the observation that people in organizations 
act collectively, but learn individually. Organizational learning, however, requires 
that individual perspectives are merged and discussed within the organization. 
Therefore, people are interviewed for their opinions why certain projects failed 
or were better than expected. These opinions are carefully screened and assem-
bled into a learning history (a special type of report) which can be read like a 
short story. The learning history is copied and disseminated to managers. The 
approach has been used for evaluating project management issues. It has not 
been developed explicitly for software development. Thus, it is unclear whether 
it can be applied for technical problems in software development. Nevertheless 
it shows that lessons learned can be handled informally and still be perceived as 
being valuable. This underlines that it makes sense to start with a small technical 
infrastructure. However, learning histories have to be read completely to find 
out whether they are applicable. If lessons learned are to be used as an aid to 
solve everyday problems, a finer granularity of lessons learned is needed. This 
can lead to large numbers of lessons learned requiring more technical infrastruc-
ture as we have proposed in this report.

In the previous section we gave an example how the organization can benefit 
from increased communication. While most lessons learned programs aim at 
preventing the repetition of past failures and promote the recurrence of good 
practices, only a few state the objective to improve communication explicitly, 
e.g., “discuss old ways of thinking that led to mistakes” [KR97] and “increase 
communication and teamwork” [Sar95].

Other approaches extend the scope even further by aiming at the provision of all 
information relevant to local development practices that cannot be learned in 
school [Hen97]. Output of Henninger’s approach are not only lessons learned, 
but also custom languages, organization and project-specific programming con-
ventions, policies and guidelines concerning tool usage. All of these are accessi-
ble via a system named BORE. In this approach lessons learned are perceived as 
an important part of an organization-wide repository showing that the lessons 

classi-
fication
abstract

problem solution
context
example

explanation
related experience

administrative information



29

Related Research

Copyright © Fraunhofer IESE 1998

learned management can actually act as catalyst for establishing comprehensive 
knowledge management systems in software organizations (as mentioned in 
the introduction).



30

Summary and Outlook

Copyright © Fraunhofer IESE 1998

8 Summary and Outlook

An integrated method for lessons learned management has been presented that 
takes arbitrary experience statements from software projects as input. It makes 
them reusable and establishes a comprehensive reuse infrastructure for lessons 
learned. A tool architecture has been suggested for implementing the reuse 
infrastructure. 

The method for lessons learned management involves four major parts: (1) a 
process model for packaging lessons learned and procedures for gaining, stor-
ing, and using them; (2) a knowledge representation for lessons learned and 
guidelines for tailoring it to specific application contexts; (3) a tool architecture 
of a knowledge management system for lessons learned management; (4) rec-
ommendations for setting up lessons learned programs.

The method has been derived from three application cases. They already pro-
vided a first evaluation of the approach. For instance, the packaging process has 
been evaluated in the inspections and requirements engineering cases (Cases 1 
and 2). An integrated storage has been established in the GQM case (Case 3). 
Case 2 has provided a prototype implementation of the tool architecture’s user 
modules on top of an object-oriented modeling framework. Usage-centered 
design of an adequate representation has also been elaborated in Case 2.

Future developments will concentrate on providing tool support and implemen-
tation of the developed experience bases. Currently, a group at Fraunhofer IESE 
is about to develop the first version of the knowledge-based system for experi-
ence management using and tailoring a commercial case-based reasoning sys-
tem. The experiences from the lessons learned programs have contributed a sig-
nificant set of requirements for that work. In ESPRIT project PROFES, additional 
GQM experiences are currently collected. They will be provided on-line and inte-
grated later into the experience base. 



31

Acknowledgments

Copyright © Fraunhofer IESE 1998

9 Acknowledgments

The authors would like to thank Stefan Vorwieger who gave us many valuable 
insights into the special research project for application case 2. Without them 
the lessons learned program for the requirements engineering application could 
not have been set up. Also, we would like to express our gratitude to Klaus-
Dieter Althoff, Erik Kamsties, and Dietmar Pfahl for reviewing an earlier version 
of this report. Part of this work has been conducted in context of ESPRIT projects 
PERFECT (no. 9090) and PROFES (no. 23239) with support of the CEC.



32

References

Copyright © Fraunhofer IESE 1998

10 References

[Alt97] Klaus-Dieter Althoff. Evaluating case-based reasoning systems: The 
Inreca case study. Postdoctoral thesis (Habilitationsschrift), Univer-
sity of Kaiserslautern, July 1997.

[AP94] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational 
issues, methodological variations, and system approaches. AICom - 
Artificial Intelligence Communications, 7(1):39–59, March 1994.

[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Goal 
Question Metric Paradigm. In John J. Marciniak, editor, Encyclope-
dia of Software Engineering, volume 1, pages 528–532. John Wiley 
& Sons, 1994.

[BDR97] Lionel C. Briand, Christiane Differding, and H. Dieter Rombach. 
Practical guidelines for measurement-based process improvement. 
Software Process Improvement and Practice Journal, 2(3), 1997.

[CP93] P.-J. Courtois and D. L. Parnas. Documentation for safety critical 
software. In Proceedings of the Fifteenth International Conference 
on Software Engineering, pages 315–323. IEEE Computer Society 
Press, May 1993.

[GABT98] C. Gresse von Wangenheim, K.-D. Althoff, R. M. Barcia, and 
C. Tautz. Evaluation of technologies for packaging and reuse of 
software engineering experiences. To be published, 1998.

[GG93] Tom Gilb and Dorothy Graham. Software Inspection. Addison-Wes-
ley Publishing Company, 1993.

[GHW95] Christiane Gresse, Barbara Hoisl, and Jürgen Wüst. A process model 
for GQM-based measurement. Technical Report STTI-95-04-E, Soft-
ware Technologie Transfer Initiative Kaiserslautern, Fachbereich 
Informatik, Universität Kaiserslautern, D-67653 Kaiserslautern, 
1995.

[GRA+98] Christiane Gresse von Wangenheim, Alexandre Moraes Ramos, 
Klaus-Dieter Althoff, Ricardo M. Barcia, Rosina Weber, and Alejan-
dro Martins. Case-based reasoning approach to reuse of experien-
tial knowledge in software measurement programs. In Lothar Gierl, 
editor, Proceedings of the 6th German Workshop on Case-Based 
Reasoning, Berlin, Germany, 1998.



33

References

Copyright © Fraunhofer IESE 1998

[Hen97] Scott Henninger. Capturing and formalizing best practices in a soft-
ware development organization. In Proceedings of the 9th Interna-
tional Conference on Software Engineering & Knowledge 
Engineering, pages 24–31, Madrid, Spain, June 1997.

[HK97] Frank Houdek and Hubert Kempter. Quality patterns – an approach 
to packaging software engineering experience. Software Engineer-
ing Notes, 22(3):81–88, May 1997.

[KR97] Art Kleiner and George Roth. How to make experience your com-
pany’s best teacher. Harvard Business Review, 75(5):172–177, Sep-
tember/October 1997.

[OHPB92] Eduardo Ostertag, James Hendler, Rubén Prieto-Díaz, and Christine 
Braun. Computing similarity in a reuse library system: An AI-based 
approach. ACM Transactions on Software Engineering and Method-
ology, 1(3):205–228, July 1992.

[Prie91] Rubén Prieto-Díaz. Implementing faceted classification for software 
reuse. Communications of the ACM, 34(5):89–97, May 1991.

[Sar95] Charisse Sary. Recall prototype lessons learned writing guide. Tech-
nical Report 504-SET-95/003, NASA Goddard Space Flight Center, 
Greenbelt, Maryland, USA, December 1995.

[TA97] Carsten Tautz and Klaus-Dieter Althoff. Using case-based reasoning 
for reusing software knowledge. In D. Leake and E. Plaza, editors, 
Proceedings of the Second International Conference on Case-Based 
Reasoning Research and Development, (ICCBR97). Springer Verlag, 
1997.

[Tec98] CBR-Works. URL http://www.tecinno.de/tecinno_e/ecbrwork.htm, 
1998. tecInno GmbH, Germany.

[vS93] A. John van Schouwen. The a-7 requirements model: Re-examina-
tion for real-time systems and an application to monitoring systems. 
CRL Report No. 242, McMaster University, CRL, Hamilton, Ontario, 
Canada, February 1993.



34

References

Copyright © Fraunhofer IESE 1998



Copyright 1998, Fraunhofer IESE.
All rights reserved. No part of this publication may 
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including, 
without limitation, photocopying, recording, or 
otherwise, without the prior written permission of 
the publisher. Written permission is not needed if 
this publication is distributed for non-commercial 
purposes.

Document Information

Title: Knowledge Management 
of Software Engineering 
Lessons Learned

Date: July 1998

Report: IESE-002.98/E
Status: Final
Distribution: Public


