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Abstract: The optimization over long time horizons in order to consider long-
term effects is of paramount importance for effective sensor scheduling in
multi-sensor systems like sensor arrays or sensor networks. Determining the
optimal sensor schedule, however, is equivalent to solving a binary integer
program, which is computationally demanding for long time horizons and
many sensors. For linear Gaussian models, two efficient long-term sensor
scheduling approaches are proposed in this report. The first approach deter-
mines approximate but close to optimal sensor schedules via convex optimiza-
tion. The second approach combines convex optimization with a branch-and-
bound search for efficiently determining the optimal sensor schedule. Both
approaches are compared by means of numerical simulations.

Notation
x, x deterministic variable/vector
x,x random variable/vector
x̂, x̂ mean value of random variable/vector

xk, x1:k vector at time step k / sequence of vectors from time step 1 to k
A general set
A general matrix
|A| matrix determinant

N (x; x̂,C) multivariate Gaussian density with mean x̂ and covariance C
u1:k, u

∗
1:k sensor schedule for time step 1 to k / optimal sensor schedule

ul
1:k, u

u
1:k sensor schedule obtained via:

convex optimization (real-valued, provides lower bound) /
conversion (binary-valued, provides upper bound)

J(u1:k) objective function value of sensor schedule u1:k
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1 Introduction

Recent developments in wireless communication and sensor technology facilitate
building up and deploying sensor systems for a smart and persistent surveillance.
For instance, sensor networks consisting of numerous inexpensive sensor nodes
are a popular subject in research and practice for monitoring physical phenomena
including, e.g., temperature and humidity distributions, biochemical concentra-
tions, or vibrations in buildings [ASSC02]. For many of such sensor systems it
is necessary to balance between maximizing the information gain and minimizing
the consumption of limited resources like energy, computing power, or communi-
cation bandwidth. Sensor scheduling, which is also referred to as sensor selection,
allows trading off these conflicting goals and forms the basis for an efficient and
intelligent processing of the sensor data.

A sensor schedule specifies a time sequence of sensors to be allocated for per-
forming future measurements. The main objective is to allocate the sensors in a
most informative way, which requires making decisions involving multiple time
steps ahead. In this report, sensor scheduling for linear Gaussian dynamics and
sensor models is studied, where one out of a set of sensors is selected at each time
instant for performing a measurement. For such models, one of the first works
on long-term sensor scheduling can be found in [MPD67]. It is shown that a sep-
aration principle holds, i.e., the sensor schedule can be determined independent
of the control of the observed system and independent of the measurement val-
ues. The optimal sensor schedule then results from off-line traversing a decision
tree consisting of all possible sensor sequences. In order to avoid enumerating all
schedules in a brute force fashion, which is of exponential complexity, optimal or
suboptimal pruning techniques are employed. Optimal techniques yield the opti-
mal sensor schedule by all means without the need of examining all schedules (see
for example [LI99, HH08]). Suboptimal methods as those in [GCHM04] allow
more significant savings in computational demand by abdicating the guarantee of
conserving the optimal schedule. Greedy, or myopic, scheduling algorithms rep-
resent an extreme case of suboptimal search, where a series of one-step ahead
solutions is calculated [Osh94, QKS07].

Alternatively to traversing the decision tree, which corresponds to solving a bi-
nary integer program, convex optimization approaches have recently been pro-
posed for solving sensor selection problems, i.e., problems of selecting the best
n-element subset from a set of sensors (see [CMPS07, JB09]). These approaches
can significantly improve the efficiency of determining informative sensor sched-
ules, but they are so far not appropriate for optimal long-term sensor scheduling
for arbitrary linear Gaussian dynamics and sensor models.
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Both long-term sensor scheduling approaches proposed in this report overcome
these restrictions. At first a general sensor scheduling problem for linear Gaus-
sian models is formulated in Section 2. In Section 3 it is shown that this sensor
scheduling problem is a convex optimization problem when employing continu-
ous relaxation of the decision variables. The first approach directly solves the
resulting convex program, which leads to suboptimal but valuable sensor sched-
ules without demanding many computations and memory. In order to provide
the optimal sensor sequence, the second approach described in Section 4 utilizes
branch-and-bound search for traversing a decision tree. To exclude complete sub-
trees containing suboptimal sensor schedules as early as possible, the solution of
the convex optimization is used for calculating tight lower and upper bounds to the
subtrees’ values. The performance of the proposed approaches is demonstrated by
means of simulations in Section 5, while in Section 4 conclusions and an outlook
to future work are given.

2 Problem Formulation

In this report, the sensor scheduling problem for discrete-time linear Gaussian
models is examined. The dynamics model of the observed system is given by

xk+1 = Ak ·xk +wk . (2.1)

A finite set S of sensors is considered for performing measurements, where mea-
surement zik from sensor i ∈ S = {1, . . . , S} is related to the system state xk via
the measurement model

zik = Hi
k ·xk + vik .

Both Ak and Hi
k are time-variant matrices. The noise terms wk and vik are zero-

mean white Gaussian with covariance matrices Cw
k and Cv,i

k , respectively. A mea-
surement value ẑik of sensor i ∈ S is a realization of zik. The initial system
state x0 ∼ N (x0; x̂0,C

x
0) at time step k = 0 is Gaussian with mean x̂0 and

covariance Cx
0 .

The aim of long-term sensor scheduling is to minimize the covariance Cx
k of

the state xk and thus, to minimize the uncertainty of the state estimate under
the consideration of the future behavior of the observed dynamical system and
long-term sensing costs. For this purpose, the optimal sensor schedule u∗1:N =[
(u∗1)

T
, . . . , (u∗N )

T]T ∈ {0, 1}S ·N is determined over a finite N -step time hori-
zon. Here, u∗k = [uk,1, . . . , uk,S ]T encodes the index of the sensor scheduled
for measurement at time step k, i.e., if sensor i is scheduled at time step k then
uk,i = 1 and uk,j = 0 for all j 6= i.
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For determining the optimal sensor schedule u∗1:N , the constraint optimization
problem

u∗1:N = arg min
u1:N

J(u1:N ) (2.2)

subject to
N∑
k=1

cTk ·uk ≤ C , (2.3)

1T ·uk = 1 , k = 1, . . . , N , (2.4)

uk ∈ {0, 1}S , k = 1, . . . , N (2.5)

is formulated, where J(u1:N ) =
∑N
k=1 gk(u1:k) is the cumulative objective func-

tion to be minimized. In (2.3), ck = [ck,1, . . . , ck,S ]T contains the sensor costs
ck,i, e.g., energy or communication, of selecting sensor i at time step k. With this
constraint it is guaranteed that a feasible sensor schedule does not exceed a maxi-
mum cost C. The scalar functions gk( · ), i.e., the summands of J(u1:N ), quantify
the uncertainty subsumed in Cx

k(u1:k). They can be

• the trace operator trace (Cx
k(u1:k)), whose minimization corresponds

(graphically spoken) to minimizing the perimeter of the rectangular region
enclosing the covariance ellipsoid,

• the root-determinant
√
|Cx

k(u1:k)|, which leads to the minimization of the
volume of the covariance ellipsoid, or

• the maximum eigenvalue λmax (Cx
k(u1:k)), whose minimization corre-

sponds to minimizing the largest principal axis of the covariance ellipsoid.

The covariance itself is given by the information form of the Kalman filter
covariance recursion (see for example [KSH00])

Cx
k(u1:k) =

((
Ak−1 · Cx

k−1(u1:k−1) · AT
k−1 + Cw

k−1

)−1

+
S∑
i=1

uk,i ·
(
Hi
k

)T
·
(
Cv,i
k

)−1
· Hi

k

)−1

, (2.6)

commencing from Cx
0 .

The constraints in (2.4) and (2.5) together ensure that one sensor per time step
is selected for measurement. This restriction is made for brevity and clarity rea-
sons. The extension to selecting multiple sensors per time step can be achieved by
replacing the right hand side of (2.4) with the desired number of sensors. Alterna-
tively, by modifying (2.2) and (2.3), is is also possible to minimize the sensor costs
regarding a maximum allowed value of J( · ), i.e., a maximum allowed uncertainty.
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3 Convex Relaxation

The optimization problem in (2.2)–(2.5) is a so-called binary integer program.
Problems of this type are known to be NP-hard (see [Kar72]) and thus, obtaining
the optimal solution for large N and/or large S is computationally prohibitive in
general. However, by replacing the binary non-convex constraints in (2.5) with
the linear constraints uk ∈ [0, 1]S for k = 1, . . . , N , a convex relaxation of the
original problem (2.2) is obtained. To see this, it is important to note that the con-
straints (2.3) and (2.4) are already convex. Furthermore, as shown in the following
theorem, the sum to be minimized in (2.2) is now convex as well.

Theorem 1 (Convex Objective Function) The objective function J(u1:N ) in (2.2)
is convex in terms of u1:N ∈ [0, 1]S ·N .

PROOF. To prove the convexity of gk(u1:k) and thus of J(u1:N ), it must be shown
that (see for example [BV08])

gk(λ ·u1:k + (1−λ) · ũ1:k) ≤ λ · gk(u1:k) + (1−λ) · gk(ũ1:k) (3.1)

for k = 1, . . . , N , ∀u1:k, ũ1:k ∈ [0, 1]k ·S , and ∀λ ∈ [0, 1].

At first, it is proven by induction that the covariance recursion (2.6) is a con-
vex function of u1:k. The induction starts with Cx

1(u1). Defining Mi
k :=(

Hi
k

)T
·
(
Cv,i
k

)−1
· Hi

k and P1(u1) :=
(
A0 · Cx

0 · AT
0 + Cw

0

)−1
+
∑
i u1,i · Mi

1

and utilizing the results in [Kra36] on matrix convex functions, it follows from the
matrix convexity property of the matrix inversion that

Cx
1(λ ·u1 + (1−λ) · ũ1) = (λ · P1(u1) + (1−λ) · P1(ũ1))

−1

≤ λ · P−1
1 (u1)︸ ︷︷ ︸

=Cx
1 (u1)

+(1−λ) · P−1
1 (ũ1)︸ ︷︷ ︸

=Cx
1 (ũ1)

∀u1, ũ1 ∈ [0, 1]S and ∀λ ∈ [0, 1]. Defining the predicted covariance
Cp
k(u1:k−1) := Ak−1 · Cx

k−1(u1:k−1) · AT
k−1 + Cw

k−1, it generally holds that

Cx
k(λ ·u1:k + (1−λ) · ũ1:k)

=
(
Cp
k

(
λ ·u1:k−1 + (1−λ) · ũ1:k−1

)−1
+

S∑
i=1

(λ ·uk,i + (1−λ) · ũk,i) · Mi
k

)−1

(a)

≤
(
λ ·
(
Cp
k

(
u1:k−1

)−1
+

S∑
i=1

uk,i · Mi
k

)
+ (1−λ) ·

(
Cp
k

(
ũ1:k−1

)−1
+

S∑
i=1

ũk,i · Mi
k

))−1
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(b)

≤ λ · Cx
k(u1:k) + (1−λ) · Cx

k(ũ1:k) (3.2)

for k = 2, . . . , N , ∀u1:k, ũ1:k ∈ [0, 1]k ·S , and ∀λ ∈ [0, 1]. Here, (a) results
from the induction hypothesis that Cx

k−1(u1:k−1) is convex in u1:k−1, from the
convexity of the matrix inversion, and from rearranging terms; (b) is the result of
a repeated application of the convexity of the matrix inversion.

As the trace is a linear matrix function and the root-determinant as well as the max-
imum eigenvalue are convex matrix functions (see for example [BV08]), the in-
equality in (3.1) holds if these three functions are applied on (3.2). Thus, gk(u1:k)

is convex and the nonnegative sum J(u1:N ) =
∑N
k=1 gk(u1:k) is convex as well,

which concludes the proof. �

It is important to note that the sensor scheduling problem formulated by (2.2)–(2.5)
and its convex relaxation proven in Theorem 1 extends existing convex approaches
[CMPS07, JB09] in many ways. Instead of one-step time horizons, i.e., myop-
tic/greedy scheduling, arbitrarily long time horizons are possible. Furthermore,
the dynamics model in (2.1) need not to be restricted to regular system matrices
Ak and to system noise covariances Cw

k = 0. Especially the latter is of paramount
importance for realistic sensor scheduling problems. Finally, there is no restriction
to a specific scalar function gk( · ) as in [CMPS07]. Instead, various functions for
evaluating the quality of a sensor schedule are considered here.

3.1 Solving the Relaxed Problem

The computational complexity of optimally solving the original binary integer pro-
gram is inO(SN ). Various methods are available for efficiently solving the convex
relaxation of the sensor scheduling problem, e.g., interior-point methods [BV08].
These methods typically require only a few tens of iterations for calculating the op-
timal solution even for large problem sizes, e.g., length of time horizon and number
of sensors beyond 10. The computational complexity of one iteration is polyno-
mial in the number of variables in u1:N , which is S ·N . The derivation of the
gradient of J(u1:N ) necessary for interior-point methods is shown in Appendix A.

The solution ul
1:N of the convex problem, however, only approximates the optimal

solution u∗1:n of the original scheduling problem. More specifically, ul
1:N is no

longer binary and the objective function value J l := J(ul
1:N ) is a lower bound of

the optimal value J(u∗1:N ). The latter finding follows directly from the convexity
of the relaxed problem and from the fact that the relaxed solution set [0, 1]S ·N

contains the binary set of the original problem.
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3.2 Conversion into Binary Solution

In order to allow selecting sensors for measurement, ul
1:N has to be converted into

a binary vector by employing an appropriate conversion or rounding method. The
value Ju := J(uu

1:N ) of the resulting (binary) sensor schedule uu
1:N has to be as

close as possible to the optimal one in order to provide informative sensor mea-
surements. In the following, two appropriate conversion methods are introduced.
Independent of the chosen conversion method, the value Ju of the converted sensor
schedule provides an upper bound to the optimal value J(u∗1:N ).

3.2.1 Sampling

Each component ul
k of ul

1:N can be interpreted as a discrete probability distribution
over the set of sensor indices S. This is due to the constraint in (2.4), whereby the
elements ul

k,i, i = 1, . . . , S of ul
k are within the interval [0, 1] and sum up to

one. Hence, a sensor i corresponding to an element ul
k,i with a large value can be

considered as being more likely in the optimal sensor schedule than sensors with
small values.

To convert ul
1:N into a feasible binary vector, for each k = 1, . . . , N a (single) sen-

sor is randomly selected according to the distribution ul
k. For being feasible, the re-

sulting converted schedule uu
1:k has to satisfy the cost constraint (2.3). Otherwise,

the schedule is discarded. This procedure is repeated multiple times, where only
the currently best feasible schedule, i.e., the schedule that satisfies (2.3) and pro-
vides the currently smallest objective function value Ju is stored. The sampling-
based conversion method can be terminated for example after a predefined number
of trials or when the currently best value Ju remains unchanged for a predefined
number of trials.

3.2.2 Swapping

To improve a converted schedule uu
1:N , the swapping method proposed in [JB09]

can be adapted. A modified sensor schedule is derived from uu
1:N by swapping a

scheduled sensor with one of the unselected sensors for each time step. The choice
of an unselected sensor at time step k is deterministically guided according to the
probabilities represented by ul

k, i.e., the sensors are selected in descending order
of the values in ul

k. If the modified schedule is feasible and improves the objective
function value Ju, it is used for initializing the next swapping trial.

In order to start the swapping method with a feasible schedule, the sensor schedule
that selects at each time step k the sensor i = arg minj ck,j with the smallest cost
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is chosen initially. The method must terminate because there is only a finite but
very large number of swapping possibilities. To bound the computational demand,
the number of swapping trials is limited by means of a predefined value.

4 Optimal Scheduling

Determining the optimal sensor schedule and thus, directly solving the binary in-
teger program given by (2.2)–(2.5) can be considered as searching a decision tree
with depthN and branching factor S. The problem here is that the optimal solution
often can be found at an early stage when employing appropriate search methods,
while the proof of its optimality requires evaluating most of the suboptimal sensor
schedules, which is infeasible for large problem sizes. In this section, the previ-
ously introduced convex optimization approach is combined with efficient search
methods for decision trees for early eliminating (pruning) suboptimal schedules.

4.1 Branch-and-Bound

A search technique common for classical decision problems like traveling-
salesman or knapsack is branch-and-bound (BB) search. The basic idea of BB
is to assign lower and upper bounds of the achievable objective function value to
any visited node. Based on these bounds, nodes and thus complete subtrees can be
pruned under the guarantee that the pruned node is not part of the optimal sensor
schedule.

For a particular node that was reached during the search by employing the sensor
schedule u1:k ∈ {0, 1}k ·S , the objective function can be written according to

J(u1:N ) = J(u1:k)︸ ︷︷ ︸
known

+ J(uk+1:N )︸ ︷︷ ︸
unkown

, (4.1)

where only the value of the first summand is already evaluated and thus known.
While the value of the second summand is not calculated yet, a lower and upper
bound can be easily assigned to it by exploiting the results of Section 3.1 and
Section 3.2. The value of the optimal solution ul

k+1:N of the convex relaxation for
minimizing J(uk+1:N ) serves as lower bound and the conversion of ul

k+1:N into
a binary-valued vector uu

k+1:N provides an upper bound. Hence, the inequality

J(u1:k) + J(ul
k+1:N ) ≤ J(u1:N ) ≤ J(u1:k) + J(uu

k+1:N )

holds for the objective function value in (4.1).
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Algorithm 4.1 Initially Jmin =∞. For a given sensor schedule u1:k do:
1: if leaf node, i.e., k = N then
2: Jmin ← J(u1:N ) // Global bound of currently best schedule u0:N−1

3: else
4: U ← ∅ // List of sensors to expand
5: for all sensors i ∈ {1, . . . , S} do // u1:k and uk+1,i = 1 fixed
6: if costi ≤ C and Ji ≤ Jmin then
7: J l

i ← Solve convex optimization problem
8: Ju

i ← Calculate upper bound via conversion
9: U ← U ∪ {i}

10: end if
11: end for
12: U ← sort(U) // Sort sensors based on J l

i

13: for all sensors i ∈ U do
14: if J l

i ≤ Jmin and ∀ j ∈ U : J l
i ≤ Ju

j then
15: Expand i // Set uk+1,i = 1, call Algorithm 4.1
16: end if
17: end for
18: end if

It is worth mentioning that a valuable upper bound, i.e., a tight one, normally can-
not be provided for branch-and-bound for sensor scheduling tasks (see for example
[CMPS06, Hub09]). Here, the solution of the convex relaxation allows calculating
tight upper bounds in a straightforward fashion. These further reduce the size of
the search space.

4.2 Search Algorithm

The combination of BB search with convex optimization is illustrated in Algo-
rithm 4.1, which basically employs a depth-first search. For a given sensor sched-
ule u1:k it is checked, which child nodes should be expanded, i.e., it is checked
whether an element uk+1,i, i ∈ S of uk+1 could be set to one or not. Therefore,
for each child node i ∈ S the minimum cost possible is computed as

costi :=
k∑

n=1

cn ·un + ck+1,i +
N∑

n=k+2

min
j
cn,j .

Furthermore, the value Ji := J(u1:k+1) and the bounds J l
i := Ji + J(ul

k+2:N ),
Ju
i := Ji + J(uu

k+2:N ) are calculated, where uk+1,i = 1 and uk+1,j = 0 for
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all j 6= i. Based on these values, a node i is expanded only if following four
requirements are fulfilled:

1. The cost constraint can be met, i.e., a feasible solution exists (line 6).

2. The value Ji of the node is below the value Jmin of the currently best sensor
schedule (line 6).

3. The lower bound J l
i is below Jmin (line 14).

4. The lower bound is below the upper bounds of all neighboring nodes j 6= i
(line 14).

Obviously, the third requirement implies the second one. But in order to avoid
an unnecessary calculation of the lower and upper bound, the second requirement
is checked separately together with the first requirement (line 6–10). To further
accelerate the search, the remaining sensors in U are sorted in descending order
according of their lower bounds (line 12)1. In doing so, the search is continued
with the most promising sensor first in order to force a stronger reduction of the
currently best value Jmin. This value is automatically reduced once a leaf node is
reached (line 1–2).

5 Simulation Results

The effectiveness of the proposed sensor scheduling methods is demonstrated in
the following by means of a numerical simulation from the field of target track-
ing. The state xk = [xk, ẋk,yk, ẏk]T of the observed target comprises the two-
dimensional position [xk,yk]T and the velocities [ẋk, ẏk]T in x and y direction.
The system matrix and noise covariance matrix ofwk of the dynamics model (2.1)
are

Ak = I2 ⊗
[
1 T
0 1

]
and Cw

k = q · I2 ⊗

[
T 3

3
T 2

2
T 2

2 T

]
, (5.1)

respectively, where In indicates an n × n identity matrix and ⊗ is the Kronecker
matrix product. In (5.1), T = 1 s is the sampling interval and q = 0.2 is the scalar
diffusion strength. Mean and covariance of the initial statex0 are x̂0 = [0, 1, 0, 1]T

and Cx
0 = 10 · I4, respectively.

1Alternatively, U can be sorted in ascending order with respect to the upper bounds.



Convex Optimization Approaches to Long-Term Sensor Scheduling 11

BBZ, C2

BBC, C1

1 2 4 6 8 10
10

0

10
1

10
2

10
3

10
4

10
5

N→

#
 n

od
es
→

BBC, C2

BBL, C2

BBL, C1

BBZ, C1

Figure 5.1: Number of nodes in the decision tree when applying the branch-and-
bound-based scheduling methods BBC (black lines), BBL (green), and BBZ (red)
for different time horizons lengths N and for two different maximum cost
functions C1 (dashed) and C2 (solid) in log-scale.

A sensor network observes the target. It consists of six sensors with measurement
matrices

H1
k = H3

k =
[
1 0 0 0

]
, H2

k = H5
k =

[
0 0 1 0

]
,

H4
k =

[
0 0 0 1

]
, H6

k =
[
0 1 0 0

]
,

noise variances Cv,1k = 0.2, Cv,2k = Cv,3k = Cv,4k = 0.1, Cv,5k = Cv,6k = 0.05,
and costs ck = [1, 1, 2, 1, 2, 2]T for each k. Furthermore, it is also possible to omit
a measurement. This option can be considered as having a seventh sensor with
infinite noise variance. Performing no measurement is free of cost, i.e., ck,7 = 0.
Altogether, the set S comprises S = 7 sensors. The scalar functions gk( · ) are set
to the root-determinant for each k.

For comparison, five different scheduling methods are considered: (1, denoted in
the following by CONVEX) The approach described in Section 3, which directly
solves the convex optimization problem and employs the swapping method for
conversion. (2, BBC) The BB approach described in Section 4. For determining
the upper bounds via conversion, the swapping method is employed. (3, BBL)
Like BBC but without utilizing upper bounds for pruning. (4, BBZ) BB search that
employs no upper bounds and bounds the second summand in (4.1) from below
with zero. (5, GREEDY) The sensors are scheduled in a greedy (one-step looka-
head) fashion (see for example [KG05]). For CONVEX and BBC, the number of
swapping trials is set to S ·N .

In Figure 5.1, the search performance of the three BB methods is compared. For
this purpose, two different maximum costsC1(N) = round

(
3
4 ·N

)
andC2(N) =
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20
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35
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J
→ BBC
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GREEDY

Figure 5.2: Objective function values J of the scheduling methods BBC (black,
solid), CONVEX (green, dotted), and GREEDY (red, dashed) for maximum cost
function C1.

2 ·N are considered, which depend on the change of the time horizon length N =
1, . . . , 10. The maximum cost function C2(N) allows sensor scheduling without
omitting a measurement. With the proposed optimal scheduling method BBC, the
number of nodes in the decision tree can be kept on a low level. Here, the search
performance clearly benefits from the tight lower and upper bounds provided by
the convex optimization and the conversion, respectively. This can be seen in
particular for C2, where BBC only visits at most 92 nodes, while the complete
decision tree contains

∑N
k=1 7k < 3.3 · 108 nodes. The higher number of visited

nodes for cost function C1 compared to C2 results from the effect that the more
restrictive cost constraint provided by C1 leads to looser bounds.

Without considering upper bounds for pruning as it is the case for BBL , the number
of visited nodes increases significantly. But still, the search performance of BBL is
much better than BBZ as the lower bound provided by the solution of the convex
optimization is closer to the true values of the subtrees.

Since calculating lower and upper bounds by means of convex relaxation is com-
putationally more demanding than calculating the simple bound used for BBZ , the
runtime of BBZ is lower for short time horizons even if BBZ leads to larger deci-
sions trees. But with increasing length of the time horizon, the difference in run-
time between BBZ and the other BB methods becomes smaller and at some point,
both methods outperform BBZ. For example, with the current, barely optimized
implementation based on MATLAB version 7.9, BBC outperforms BBZ from hori-
zon length N = 9 on for cost function C1. It is expected that employing an op-
timized implementation, outperforming BBZ occurs for significantly shorter time
horizons.
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In Figure 5.2, the objective function values of BBC are compared with
GREEDY and CONVEX for the costsC1(N). The GREEDY method is the compu-
tationally cheapest one, but provides highly suboptimal results. Due to the myopic
planning, GREEDY is not able to anticipate the long-term effect of early select-
ing costly sensors. In this simulation example, GREEDY omits measurements at
the last time steps of the horizon and not in between in order to meet the maxi-
mum cost constraint. The proposed suboptimal CONVEX method provides sen-
sor schedules close to the optimal ones, whereas the computational demand is
significantly smaller compared to BBC, especially for very long time horizons.
CONVEX trades scheduling quality off against scheduling complexity, which is
desirable for computationally constrained sensor systems.

6 Conclusions and Future Work

Employing convex optimization for determining long-term sensor schedules is a
promising approach. In this report, a general sensor scheduling problem for linear
Gaussian models was formulated and the convexity of its relaxation was proven.
Based on this result, two scheduling methods utilizing convex optimization have
been proposed. The first approach directly solves the relaxed sensor scheduling
problem in order to provide suboptimal but computationally cheap solutions. The
second approach provides the optimal sensor schedule, where convex optimiza-
tion is utilized for eliminating suboptimal sensor schedules at an early stage of
branch-and-bound search. Compared to existing approaches on sensor scheduling
via convex optimization, general linear Gaussian sensor scheduling problems are
covered. Furthermore, both proposed scheduling methods are appropriate for long
time horizons and many sensors, where choosing the better suited approach for a
given scheduling problem depends on the requirements on estimation quality and
computational capabilities.

Future work is mainly devoted to three aspects: improving search speed for
branch-and-bound search, incorporation of nonlinear dynamics and sensor mod-
els, and applying model-predictive/moving horizon control. Further improving
search speed can for example be achieved by incorporating so-called Gomory’s
cuts, i.e., additional inequality constraints that reduce the size of the search space
[SM99]. By this means the proposed branch-and-bound search would be extended
into a branch-and-cut search. A completely different way of solving the sensor
scheduling problem would be to employ so-called outer approximation [FL94].
Here, the convex relaxation of the sensor scheduling problem is transformed into a
series of linear programs that finally leads to the optimal (binary) sensor schedule.
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A comparison of branch-and-cut search and outer approximation with respect to
computational demand would by of particular interest.

The incorporation of nonlinear models can be achieved by employing a conversion
of the nonlinear models into linear ones via linearization, e.g., first-order Taylor
series expansion or statistical linearization as in [Hub09]. This linearization can
be combined with model-predictive control in order to facilitate sensor scheduling
for very long or even infinite time horizons.

Appendix

A Analytical Expression of the Gradient

Since interior-point methods employ Newton’s method, the computation time of
solving the relaxed sensor scheduling problem can be significantly reduced by pro-
viding an analytical expression of the gradient of the objective function J(u1:N ).
The gradient is given by

∇J(u1:n) =
∂J(u1:N )

∂u1:N

=

N∑
k=1

∂g(u1:k)

∂u1:N

,

which boils down to calculating the derivatives

∂g(u1:k)

∂u1:N

=

[(
∂g(u1:k)

∂u1:k

)T

︸ ︷︷ ︸
1:k

,

(
0T

)
︸︷︷︸
k+1:N

]T

(A.1)

for k = 1, . . . , N .

The partial derivative ∂g(u1:k)
∂u1:k

in (A.1) requires determining the derivative ∂Cx
k

∂u1:k

with Cx
k according to (2.6).2 With the differential identity (see [PP08])

∂X−1 =−X−1 · ∂X · X−1 , X ∈ Rn×n (A.2)
and defining

Cp
k := Ak−1 · Cx

k−1 · AT
k−1 + Cw

k−1 ,

Mi
k :=

(
Hi
k

)T
·
(
Cv,i
k

)−1
· Hi

k ,

Pk := (Cx
k)
−1

= (Cp
k)−1 +

∑
i

uk,i · Mi
k ,

2The argument u1:k is omitted in the following for clarity.
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the desired derivative of Cx
k accords to

∂Cx
k

∂u1:k

=
∂P−1

k

∂u1:k

(A.2)
= −Cx

k ·
∂Pk

∂u1:k

· Cx
k

(A.2)
=

Cx
k · (Cp

k)−1 · ∂Cp
k

∂u1:k−1
· (Cp

k)−1 · Cx
k

Cx
k ·
(

∂
∂uk

∑
i uk,i · Mi

k

)
· Cx

k

 . (A.3)

The first row in (A.3) can be written in recursive form as

Cx
k · (Cp

k)−1 ·
∂Cp

k

∂u1:k−1

· (Cp
k)−1 · Cx

k =

Cx
k · (Cp

k)−1 · Ak−1 ·
∂Cx

k−1

∂u1:k−1

· AT
k−1 · (Cp

k)−1 · Cx
k

commencing from ∂Cx
1

∂u1,i
= −Cx

1 · Mi
1 · Cx

1 for i = 1, . . . , S. For each element

i = 1, . . . , S of the second row in (A.3) holds ∂
∂uk,i

∑
i uk,i · Mi

k = Mi
k .

As the function g( · ) can be the trace, root-determinant, or the maximum
eigenvalue (see Section 2), the identities

∂ trace(X) = trace(∂X) , (A.4)

∂
√
|X| = 1

2

√
|X| · trace

(
X−1 · ∂X

)
, (A.5)

∂λi(X) = vT
i · ∂X · vi (A.6)

from matrix calculus in differential form have to be applied to each partial deriva-
tive ∂g(u1:k)

∂uk,i
for concluding the derivation of ∂g(u1:k)

∂u1:k
. In (A.4)–(A.6), X ∈ Rn×n

has to be replaced by Cx
k . (A.4) and (A.5) can be found in [PP08]. In (A.6), λi is

the i-the eigenvalue of X and vi is the corresponding i-th normalized eigenvector,
with λ1 ≤ λ2 ≤ . . . ≤ λn (see [OW95]).
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