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Abstract. The high complexity of manufacturing processes and the continuously growing
amount of data lead to excessive demands on the users with respect to process monitoring, data
analysis and fault detection. For these reasons, problems and faults are often detected too late,
maintenance intervals are chosen too short and optimization potential for higher output and
increased energy efficiency is not sufficiently used. A possibility to cope with these challenges
is the development of self-learning assistance systems, which identify relevant relationships
by observation of complex manufacturing processes so that failures, anomalies and need for
optimization are automatically detected. The assistance system developed in the present work
accomplishes data acquisition, process monitoring and anomaly detection in industrial and
agricultural processes. The assistance system is evaluated in three application cases: Large
distillation columns, agricultural harvesting processes and large-scale sorting plants. In this
paper, the developed infrastructures for data acquisition in these application cases are described
as well as the developed algorithms and initial evaluation results.

1. Introduction
Due to increasing demands, manufacturing processes are getting more and more complex [1]. For
this reason, users often fail to get an overview of the current system status since data is spread
over different computer subsystems or hierarchies. The increasing complexity of manufacturing
processes and the permanently growing amount of data lead to an overload of the user with
respect to process monitoring, data analysis and fault detection. Therefore, problems and failures
are often detected too late, maintenance intervals are not chosen correctly and optimization
potential with respect to throughput and energy efficiency is not sufficiently exploited.

The following problems with respect to data acquisition, process monitoring and anomaly
detection have to be solved:

e Data acquisition: Data in industrial and agricultural applications is stored in a distributed
way, without sufficient time synchronization and without any definition of semantics.

e Process monitoring and anomaly detection: The amount of data and real-time requirements
render a manual analysis, which is e.g. based on displayed signals, impossible, even if the
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data is already integrated, time-synchronized and augmented with semantics. For these
problems, algorithmic solutions exist. However, such approaches are not frequently used
in industrial practice because they are not yet suitable for the required processing of big
amounts of data.

In the present work, an intelligent assistance system is developed to cope with these challenges
(see Fig. 1). The proposed assistance system allows to analyze the available information and to

process monitoring
data | visua-
. anomaly detection .
acquisition lisation
anomaly analysis

process data -
assistance system

Figure 1. Data analysis of manufacturing processes

detect anomalies. Integration of the assistance system into different manufacturing systems is
achieved by suitable data acquisition approaches and flexible methods for process monitoring,
which can be adapted with model-learning approaches to changing process behavior. One
contribution of the present work is the development of data acquisition approaches for complex
distributed manufacturing processes and the integration of big data from several heterogeneous
data sources. Furthermore, approaches to process monitoring and anomaly detection in complex
manufacturing systems have been developed.

The developed approaches have been evaluated in three application cases, which cover a wide
range of agricultural and industrial processes:

e Production processes in distillation columns.
e Anomaly detection in agricultural harvesting processes

e Optimal process control of large-scale sorting plants

The remaining part of this paper is structured as follows: The application cases, which have
been investigated in this work, are outlined in section 2. State of the art with respect to data
acquisition and anomaly detection in complex industrial and agricultural processes is outlined
in section 3. Data acquisition in the described application cases is considered in section 4. The
investigated methods for process monitoring and anomaly detection are outlined and evaluated
in section 5. Finally, a conclusion and an outlook are given in section 6.

2. Application Cases

2.1. Anomaly detection in complex processes of chemical industry

Large scale continuous production processes in chemical industry typically manufacture,
produce, or process materials in continuous operation with infrequent maintenance shutdowns.
The continuous diagnosis of the functionality, the early detection of potential failures and the
monitoring of the underlying physical process itself is essential for the cost-effective operation
of such production processes. Chemical production processes are typically dominated by a
complex system behavior with a high system order, e.g. industrial column processes in chemical
industry can have up to 120 state variables. In this work, a large scale distillation process is
considered (see Fig. 2 a)). This process is typical for chemical industry and is characterized by
a high complexity and a large number of measured process states (temperatures, pump speed,
pressures, etc.). Efficient plant operation requires an early detection of failures such as sensor



12th European Workshop on Advanced Control and Diagnosis (ACD 2015) IOP Publishing
Journal of Physics: Conference Series 659 (2015) 012055 doi:10.1088/1742-6596/659/1/012055

failures or blockages of valves, pumps, etc. in order to prevent damages of the plant or production
losses.

Figure 2. Application cases: a) Distillation tower b) Agricultural harvester c) Sorting plant

2.2. Process control for mobile agricultural harvesters

The productivity of agricultural harvesters (see Fig. 2 b)) depends on extremely heterogeneous
and dynamic conditions such as conditions of field and harvested crop, adjustment of machine
parameters and manual skills of the machine operator. For these reasons, many agricultural
processes are unstable and low-deterministic. Comparison of several harvesters in the same
region and with similar constraints shows performance deviations of more than 20% (tons of
crop in a given time unit) between the particular machines. Modern agricultural harvesters
provide extensive data streams with a multitude of sensor information with high acquisition
rates. Automatic anomaly detection and analysis of performance deviations by evaluation of
continuous data streams allow for economic operation of the harvesters in this application case.

2.8. Monitoring of large-scaled sorting plants

The company Tonsmeier operates a lightweight package sorting plant in Porta Westfalica (see
Fig. 2 ¢)) where secondary raw material is extracted from garbage collections. Optimal process
control of sorting plants with respect to the quality of the extracted raw materials and the
energy consumption of the plant as well as the reduction of downtime of the plant require
immediate detection and repair of anomalies. Typical anomalies or causes for anomalies in this
application case are sensor failures, decreased pressure in separation units, material jams or too
slow operation of spiral conveyors in the sorting plant.

3. State of the art

3.1. Data acquisition

The large amount of data in industrial processes is acquired at several layers of the automation
pyramid. At field and control level, IEC 61131-3 function blocks are usually applied for
communication (e.g. TCP/IP or SQL) [2]. In this layer, data loggers can be installed in
networks to extract sensor signals and signals of actuators (see e.g. [3]). Agricultural harvesters
are equipped in most cases with CAN 2.0 networks and GSM-based loggers, which send the
acquired data web servers (see [4]). In distributed automation systems, Supervisory Control
and Data Acquisition (SCADA) systems employ a multitude of solutions for data acquisition,
which are in many cases based on web services (see [5] for an overview). Furthermore, real-time
middle-ware such as CORBAe [6] and OSA+ [7] exists. An overview on agent-based control and
computer-based manufacturing technology (HMS) is available in [8]. Widespread protocols at
the layer of Manufacturing Execution Systems (MES) are Object Linking and Embedding for
Process Control (OPC DA, OPC HDA etc.) [9] and the OPC Unified Architecture (OPC UA)
[10]. The acquisition of energy data requires either a real-time bus system or technologies such as
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ProfiEnergy [11]. Data is described with information models such as CAEX [12] or CIM [13]. The
combination of the described methods and protocols leads in industrial practice to heterogeneous
networks with industry-sector-specific structures. So far, no unified data acquisition approach
exists, which allows for universal application of the considered data mining methods.

3.2. Anomaly detection
Generally speaking, two classes of algorithmic approaches exist for the detection of anomalous
situations: model-based approaches and data-driven approaches.

Model-based approaches employ a model to simulate the normal behavior of the
manufacturing process. If the actual measurements vary significantly from the simulation results,
the behavior is classified as anomalous (see e.g. [14], [15]). Self-learning of process models
from data leads to considerable simplification of model creation and configuration. Industrial
and agricultural systems are in general hybrid systems, which are composed of both discrete
and continuous system parts. Several algorithms for the self-learning of automata for discrete
system parts exist, e.g. RTI+ [16], BUTLA [17] and OTALA [18]. Besides, a lot of research
is conducted in the related field of model-learning for continuous systems and application to
anomaly detection. Clustering-based methods create groups of strongly related objects and find
objects which do not strongly belong to any cluster [19]. Self-organising feature maps (SOM) are
capable of generating a topology-preserving mapping of a high-dimensional feature space into
an output space of a lower dimensionality [20], which can be utilized as an anomaly detector.
By applying the so-called UMatrix representation to a self-organizing map, it is possible to
perform a classification or a clustering of the feature space [21] where the clusters correspond
to typical process phases. Neural networks and regression-based methods have been used to
approximate the functional dependency between continuous process variables [22]. Sensor signals
are predicted according to this functional dependency and significant deviations of predicted
signal values from the observations are reported as anomalies. Statistical approaches to anomaly
detection are predominantly based on building a probability distribution model and considering
how likely objects are under that model [23]. In most of these approaches, state variables are
employed for modeling the temporal transitions of hidden process variables, which are related
to the measurements with a measurement model. Common approaches are Kalman filters (e.g.
[24], [25], [26]) and particle filters [27].

Data-driven anomaly detection methods have been receiving considerable attention in recent
years as they do not require an analytical model, depending only on the measurable process data
[28]. Examples are principal component analysis (PCA), partial least squares (PLS) regression,
subspace-aided approach (SAP), etc. [29]. Furthermore, a variety of unsupervised statistical and
proximity based methods for the direct detection of anomalies in raw data has been developed
in recent years, e.g. k-NN anomaly detectors [30], LOF [31], LOCI and aLLOCI [32]. By means
of these methods, additional anomalies that are currently not obvious from domain knowledge
or that cannot be discovered using model-based approaches, are detected. Fast algorithms have
been developed for anomaly detection in large scale data sets, such as HBOS, LDCOF and
FastLOF (see [33] for an overview).

4. Data Acquisition

Data analysis in the application cases is based on centralized and synchronized data acquisition.
Big amounts of data from several heterogeneous data sources such as energy data, process
data, MES data or ERP data have to be analyzed in a central infrastructure. Therefore, data
acquisition in distributed manufacturing has to cope with the following challenges:

e Heterogenous manufacturing processes: In the manufacturing processes, products of
different vendors, proprietary network protocols and different MES are used.
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e Time synchronization: Data, which is used for process analysis must be related to the
same time instance. Therefore time synchronization of data, which is acquired at different
positions in the manufacturing processes, is required.

e Data integration and standard interfaces: Data shall be integrated in a system-wide
infrastructure with standard interfaces. Furthermore, the interfaces should contain meta
data about the acquired data.

It is outlined in the following sections, how these challenges are met in the particular application
cases.

4.1. Distillation columns

In chemical distillation columns, data is gathered on different levels and for different purposes.
For safety and control of the product quality, the process data is directly used on the control level
for automation. Additionally, the data is used in management execution systems (MES) and
enterprise resource planning (ERP) systems for the control of the general production process.
Different software tools are used for the different purposes with a set of relevant and well
established interfaces, namely OPC-DA, OPC-HDA, OPC-UA and SQL. Due to the sensitive
nature of the production plants, the access on the process data is secured and strictly limited.
Depending on the level of I'T security, any form of OPC can be blocked and SQL remains as only
generally allowed interface. The process data, which is available in the considered distillation
columns, consists of temperatures, pressures, flow rates and control values. The measuring
points are not equidistant with respect to the time and can differ, depending on the measured
value.

4.2. Agricultural harvesters

The infrastructure for the agricultural application case is depicted in Fig. 3. Core of the
environment are harvesters equipped with embedded data units for acquisition, pre-processing,
time-synchronization and transmission of process data (the embedded system in Fig. 3) and
a powerful back-end, which is composed of a Hadoop cluster and a data mining tool) for
finding patterns in data being delivered by machines and other parts of the infrastructure.
The embedded system is configured in a way that data for subsequent analysis is defined as well

Embedded System Hadoop Cluster Data Mining Tool

Data-Logger || Data-Files| || .
Internal
Application
Y Rapidminer
C Kafka Client >

GPS Data >__
can Data )
seril Data )|

s

Figure 3. Infrastructure for machine analytics

Internal
Application
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as specified rules for acquisition (e.g. "record position if the driving direction deviates more
than five degrees”). For 2015 harvest season, 10 combine harvesters are equipped with such
technology, which provides approximately 3000 different attributes. Data is captured from each
available interface (Global Positioning System (GPS) data, CAN bus, serial data, etc.) and
sent via a Kafka client to the back-end. In addition, a subset of combine harvesters had been
equipped with cameras to provide imagery information of the machine’s surrounding, since no
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sensors or information sources are available to characterize the crop respectively the harvesting
conditions in detail. On the back-end side, the Hortonworks distribution is installed to provide
a Hadoop based cluster. Important components are the Kafka server for secure and reliable
reception of machine data, the Storm server for fast processing of data and deposition, HDFS
as distributed file system, and REST and Hive for data access by analytic tools like R and
RapidMiner. The physical infrastructure consists of six servers (five data nodes and a name
node). Environment data like field boundaries and digital terrain models were integrated into
the cluster to serve as filters in analytic processes.

4.8. Sorting plant
Data acquisition in the sorting plant is accomplished according to Figure 4. Data is collected
from three sources:

e TiTech Analysis Kits
e Syperion Flow Meters
e Programmable logic controllers (PLCs).

The TiTech Analysis Kits provide measurements with respect to the material and the
composition of the volume flow. The shape and extension of the volume flow is measured
by the Syperion Flow Meters. The TiTech Analysis Kits and the Syperion Flow Meters are
connected to a central control unit (CCU) and an industry PC (IPC), respectively. Further
data is collected from the PLCs of the sorting plant. APIs have been developed in the present
work to connnect TiTech analysis kits and Syperion flow meters to the central infrastructure,
respectively. The PLC provides an OPC DA interface and is connected via an OPC DA/UA
wrapper in the MES API. Due to different data sources, time synchronization has been applied
to obtain suitable data sets.

{

Flow rate

OPC UA Server
measurement

Flow rate
measurement API|

- M

time sync

PLC

Sorting Plant

1l

Figure 4. Data acquisition in the sorting plant.

5. Algorithms

In the present work, several model-based and data-driven anomaly detection algorithms have
been investigated. Distance based methods compute the distances of potential anomalies to the
nearest neighbors in the set of fault-free data. Regression models and self-organizing maps are
used to predict observations and to compare the predicted values with the actual observations.
Furthermore, PCA-based methods have been investigated.
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5.1. Distance based approaches
Initial evaluations have been conducted with distance based methods, which are based on the
k-Nearest-Neighbors (k-NN) algorithm (see e.g. [34]). In these approaches, each instance
x = (z1,...,Ty) in a set X of n data points is assessed with respect to the subset Ni(z) C X
of the k nearest neighbors of x. In doing so, a chosen distance function d, e.g. the Euclidean
distance, is used. A score based on the average distance of nearest neighbors is the k-NN Global
Anomaly Score (GAS) [30]:
> d(z,0)

0EN ()
Instances © € X with the highest GAS are considered as potential anomalies. The Local Outlier
Factor (LOF) [35] of the instance is defined as the ratio of the average inverse GAS of its
neighbors and the inverse GAS of x:

1 “1
>, [GASpnn(0)]
M@ 2

LOF,(z) = CAS T : (2)

If the densities of an instance are comparable to those of its neighbors the LOF score is
approximately equal to 1. An instance with a low density yields a high LOF score and can
be considered an outlier. A minimal LOF value of 1.2 is chosen to label an instance as an
outlier.

Fig. 5 a) shows the result of the k-NN Global Anomaly Score algorithm applied to the sensor
data of three combine harvesters. The x-, y- and z-axis represent motor rotation (x), driving
speed (y) and throughput (z) respectively. The colorbar displays the outlier score. The blue
instances are considered normal whereas the red and yellow points indicate outliers. The outlier
classification highly depends on the user-chosen parameters k and p.

L] L
;' ;.. 7
° °
[ [
3 °8 3 ° 8 6
° )
°® °®
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Figure 5. Outlier classification based on k£ = 10: a) GAS score b) LOF score. Outliers are
indicated by red and orange circles.

Applying the LOF score on the same dataset as above, we obtain the results shown in Fig.
5 b). In this setup, LOF detects one anomaly more than GAS and allows for more reliable
discrimination between anomalies and fault-free data points.
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5.2. Regression models
In a regression analysis, the relationship between a specific dependent sensor signal and a set
of independent sensor signals has been exploited. Application of linear regression for outlier
detection is based on strongly correlated sensor signals. In this case, different attributes, which
are represented by the sensor data, are usually generated by the same underlying process in
closely related ways [36].

Table 1 shows the correlation between the throughput y of an agricultural harvester and
some highly dependent sensor signals x1,...,z,, in terms of the magnitude of the correlation
coeflicient.

Table 1. Absolute correlation coefficient |p, .| between throughput y of a harvester and the
correlated sensor signals x (for signals with |py .| > 0)

Sensor signal x Py, Sensor signal x Py,
peripheral reel speed 0.74 motor speed 0.47
fan speed 0.56 shredder 0.44
working position 0.55 water content in grain 0.42
return speed 0.55 average water content 0.36
threshing drum speed 0.53 crop type 0.27
motor load 0.52 lower sieve position 0.25
shaker speed 0.52 upper sieve position 0.24
revolving drum on/off 0.50

The magnitude of the correlation coefficient has a value of 1 for completely correlated signals
and a value of 0 for uncorrelated signals. Based on correlation analysis, a linear model

m
Y(z1, .oy Tm) =a0+zai$i (3)
i=1

has been established for m highly correlated signals with respect to y. Outliers are selected as
those instances that exhibit a large deviation from the model.

Fig. 6 displays the outliers (red triangles) found from the successive linear regression method
[37], which is based on this model. The x axis is general position system (GPS) latitude, the

anomaly
> no

A yes

GPS Longitude

GPS Latitude

Figure 6. Outliers found from the linear successive regression method
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y axis is the GPS longitude. It can be observed that the outliers often lie near corners, field
boundaries or crowded regions. In the present work, the linear regression method has further
been extended to quadratic regression models. Furthermore, system states with individual
regression models assigned to each state have been identified. The system states have been
obtained by the OTALA algorithm [18]. For each system state, a particular quadratic regression
model has been determined by least squares estimation. Both model learning algorithms -
OTALA and the learning of QRMs - have been parallelized by application of MapReduce
technology. Initial results have been published in [38]. The MapReduce version of OTALA allows
to distribute the workload on |E| edges, by processing the edges E of the created automaton in
parallel. For the MapReduce version of QRM, distribution of workload on |S| nodes is possible by
processing the states S of the automaton in parallel. Furthermore, online algorithms have been
proposed, which efficiently handle novel observations to update the models, which have been
created from large historical data sets. In the next step, more complex nonlinear regression
models with dependent variables, such as neural networks, have to be evaluated in order to
improve the prediction accuracy and to fully exploit the large amounts of data.

5.8. Self-organizing maps

In this approach, a data-driven model of the system in the form of a self-organizing map is
generated. With the aid of the UMatrix transformation [21], the various process phases or
operating states of the system (e.g. emptying containers or filling containers) were identified
using the Watershed transformation. An an example, the experimental demo plant, illustrated
in Fig. 7 a) is used, which consists essentially of two containers between which liquid is pumped
around in cycles at varying pumping powers and valve positions. The obtained Watershed

Fill Level

Flow Rate Valve

ES l—»q k S — K
Temperature Pressure V
Pump A

Figure 7. a) Demo plant b) self-organizing map

Stationary
Process Phases

Transient
Process Phases

transformation for this process is depicted in Fig. 7 b). Based on the trained self-organizing
map an online-diagnosis of the process behavior is performed. Interventions in the process
behavior of the system are clearly revealed in the curve of the quantization error (Qerror) of the
map by applying a threshold evaluation. The concept is currently evaluated to very large-scale
datasets from industrial distillation columns - first results show, that the proposed concept can
successfully be applied to real-world applications.

5.4. PCA-based anomaly detection

The PCA-based anomaly detection method that is used in this project [39] works on a data base.
Each point in this data base represents the complete sensor data at a given time instance. This
interpretation leads to a high-dimensional problem, which can be reduced by dimensionality
reduction. Dimensionality reduction leads to a compact representation of system behavior. In
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the next step, patterns are extracted, which represent the normal behavior of the system. Fig.
8 shows the data of PCA transformed data of the sorting plant on the left hand side. The area
of normal operations is depicted with green points, while known errors are shown as red points.
The interference is small so that the green cluster can be used as model of the normal plant
operation. Deviations of the learnt model of normal operation can be related to failures. The
distance

d(Ypea(k); Tpea(k)) = [Ypea(k) = Tpea (k)| (4)

of PCA-transformed measurements yp.,(k) with respect to PCA-reduced data points zp, of the
normal behavior has been assessed by application of Marr-Wavelets

2 2\ _ dwpea(t)iapea(k)
\Ij<yPCtl(k)axpca(k)) - 1-— — e 202 . (5)

1
3om4 o

The standard deviation o of the Marr-Wavelets is obtained from training data.  For
U (ypea(k); pea(k)) > 0, a normal process state is assumed at time instance k.
U (ypea(k); pea(k)) < 0 indicates potential faults, which are displayed to the user.

The PCA-based anomaly detection method has been used to detect and predict a process
anomaly in the sorting plant. Based on a test dataset, an initiating process anomaly could be
detected approximately 1-2 minutes beforehand.

Figure 8 shows the visualized PCA on the left hand side and the raw data on the right hand
side. Further it can be seen that the data points pointing at a process anomaly (yellow/red) are
clearly separated from the data points representing the normal behavior (green). The status of
the plant (for each sorting module) is visualized using a traffic light.

As a benefit, the error cause can be determined at an early stage by analyzing which signals

from the raw data lead to a certain warning.
First warning
possible
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Figure 8. Using the PCA in the sorting plant, the error could be predicted approximately 1-2
minutes beforehand.

6. Conclusion and outlook

In the present work, three industrial and agricultural application cases for big data analysis
have been investigated. In these application cases, heterogeneous networks and protocols
required the development of convenient data connectors between the central infrastructures
and the manufacturing systems. Data analysis in the central infrastructure was accomplished
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independently of the particular application cases. For this purpose, several application-
independent anomaly detection algorithms have been investigated in the present work. The
distance-based anomaly detection method LOF outperformed the GAS score in the investigated
agricultural application case. Furthermore, regression-based anomaly detection methods were
observed to find anomalies at reasonable positions in this application case. MapReduce
algorithms have been developed for efficient learning of hybrid system models, which are based
on quadratic regression models. A further step on the research agenda is the development of
non-linear regression methods, which are based on neural nets and support vector machines.
Self-organizing maps have been shown in the present work to be suitable for anomaly detection
in a demo plant of the chemical industry and have to be extended to large-scale plants. A
PCA-based method showed promising results for anomaly detection in a large-scale production
plant, where process anomalies could be detected 1-2 minutes beforehand.

So far, initial evaluations of the developed algorithms have been conducted in particular
application cases, respectively. However, the proposed algorithms are designed to work in each
of the three application cases. Systematic evaluation of the proposed algorithms is a further
step on the research agenda.
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