
Technische Universität Berlin

Institut für Telekommunikationssysteme

Fachgebiet Architektur der Vermittlungsknoten

Fakultät IV
Franklinstrasse 28-29

10587 Berlin
http://www.av.tu-berlin.de

Master Thesis

Design and Implementation of

a Device Management Solution for

Standard Compliant M2M Platforms

Ranjan Shrestha

Matriculation Number: 0359791
19.1.2015

Supervised by
Prof. Dr. Thomas Magedanz

Assistant Supervisor
Dipl.-Ing. Andreea Ancuta Corici (Fraunhofer FOKUS, Berlin)

FOKUS Institute
Kaiserin-Augusta-Allee 31

10589 Berlin

This dissertation originated in cooperation with the Fraunhofer Institute for Open Com-
munication Systems (FOKUS).

First of all I would like to thank Prof. Dr. Thomas Magedanz, Chair AV, TU Berlin for
giving me the opportunity to carry out state of the art research in this field.

A very special thanks to my assistant supervisor Dipl.-Ing. Andreea Ancuta Corici
and whole NGNI/OpenMTC team for their excellent supervision and guidance. I am
grateful to Ronald Steinke for helping me to translate Abstract page to German.

Furthermore, I would like to thank my parents Associate Prof. Raghubar Shrestha
and Anjani Shrestha, my sister Dr. Sanjibani Shrestha and whole Shrestha family for
their continuous encouragement and love. Last but not the least, I thank fellow students
at EIT ICT Labs Master School for their kind support.

Hereby I declare that I wrote this thesis myself with the help of no more than the
mentioned literature and auxiliary means.

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig
sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten
Quellen und Hilfsmittel angefertigt habe.

Berlin, 19.1.2015

. .
(Signature [Ranjan Shrestha])

Abstract

The Internet of Things(IoT) is a growing and most interesting category of technology
of this present and future times. It is a major element of the Future Internet domain
and defined as a global network infrastructure containing physical and virtual ”things”
having proper identities, attributes and able to communicate and exchange information
using intelligent interfaces. The IoT composed of physical objects, sensor/controller-
s/actuators and internet infrastructure that has potential to change the aspect of the
economy, society and environment. The scale of the IoT is quite large and predicted
to reach 50 billion devices connected to the internet by 2020. The key factors responsi-
ble for this rise are due miniaturization of electronic devices, affordability of electronic
components due mass production and low cost and de-wireization due efficient wireless
technologies[Fel14]. The IoT and M2M system deployment can be seen in industrial
management, smart city/home, security and safety, e-health and tele-medicine etc. For
the management of wide range of embedded and connected smart devices for M2M com-
munication, a well designed standard is required. Based on ETSI M2M and oneM2M
standards, OpenMTC is being developed by NGNI group at Fraunhofer FOKUS, an
important middleware for M2M communication.

While facilitating large number of connected devices, it is necessary to monitor, control
and exchange information between them. Whether it is related to store device infor-
mation or controlling devices remotely, Device Management plays an important role.
Hence, this thesis focuses on designing an efficient Device Management(DM) service
enabler. The DM Server-Client model is based on OMA LightWeight M2M(LWM2M)
standard. It features a defined architectural design, a simple and scalable object data
model, UDP based Constrained Application Protocol(CoAP) messaging. This well de-
signed standard is particularly interested in managing large and growing category of
connected devices called Constrained Devices. They are characterized by simple struc-
ture, low capacity, low power, low range communication capability. The CoAP is a
web transfer protocol, specifically intended for M2M applications and to be used with
constrained devices and constrained networks. The CoAP is compared against HTTP
by having less header overhead. Hence, LightWeight M2M standard provides a robust
solution for Device Management. There are eight standard Management Objects(MO)
proposed by OMA LightWeight M2M that characterize the device. Fraunhofer FOKUS
is interested to propose a MO TransportMgmtPolicy and oneM2M standard also pro-
poses a MO DeviceCapability that are implemented in this thesis. An efficient resource
model based on LWM2M standard is implemented that manages the MO. A number of
proposed DM operations can be performed on the MO and their resources by exchanging
CoAP messages.

Zusammenfassung

Das Internet der Dinge (IoT) ist eine wachsende und eine der interessantesten Kate-
gorien der Technik in gegenwärtigen und künftigen Zeiten. Es ist ein wichtiges Element
der Future Internet-Domäne und ist definiert als globale Netzwerkinfrastruktur, die ph-
ysische und virtuelle ”Dinge” beinhalten Diese ”Dinge” haben geeignete Identitäten und
Eigenschaften und sind in der Lage die Kommunikation und den Informationsaustausch
mit intelligenten Schnittstellen durchzuführen. Das Internet der Dinge, das aus physis-
chen Objekten, Sensoren/Controllern/Aktoren und der Internet-Infrastruktur besteht,
hat das Potenzial den Aspekt der Wirtschaft, Gesellschaft und Umwelt zu verändern.
Das Ausmaß des IoT ist recht groß und voraussichtlich werden 50 Milliarden Geräte mit
dem Internet 2020 verbunden sein. Ausschlaggebend für diesen Anstieg verantwortlich
sind die Erschwinglichkeit von elektronischen Komponenten durch Massenproduktion
und die Miniaturisierung von elektronischen Bauelementen sowie die niedrigen Kosten
und die Reduzierung drahtgebundener Verbindungen durch effiziente drahtlose Tech-
nologien [Fel14]. Das Internet der Dinge und die M2M-Systembereitstellung finden sich
im Industriemanagement, in Smart City / Smart Home, in der Sicherheit, in E-Health,
in der Telemedizin usw. Für die Verwaltung vieler integrierter und verbundener intel-
ligenter Geräte für M2M-Kommunikation ist ein gut gestalteter Standard erforderlich.
Basierend auf den Standards ETSI M2M und oneM2M wurde OpenMTC von der NGNI-
Gruppe am Fraunhofer FOKUS entwickelt, einer wichtigen Middleware für die M2M-
Kommunikation.

Bei der Bereitstellung einer Vielzahl von angeschlossenen Geräten ist es notwendig, zu
überwachen, zu kontrollieren und Informationen zwischen ihnen auszutauschen. Device
Management spielt eine wichtige Rolle beim Speichern von Geräteinformationen oder der
Steuerung von Geräten aus der Ferne. Daher konzentriert sich die vorliegende Arbeit auf
die Gestaltung eines effizienten Device-Management (DM) Service-Enablers. Das DM
Server-Client-Modell basiert auf dem OMA Lightweight M2M (LWM2M) Standard. Es
verfügt über eine definierte architektonische Gestaltung, ein einfaches und skalierbares
Objektdatenmodell und eine UDP Constrained Application Protocol (CoAP)-basierte
Nachrichtenvermittlung. Der gut gestaltete Standard behandelt besonders die Verwal-
tung großer und wachsender Gruppen von angeschlossenen Geräten, die Constrained
Devices (begrenzte Geräte) genannt werden. Sie zeichnen sich durch eine einfache Struk-
tur, geringe Kapazität, geringem Stromverbrauch und einer geringen Bereich der Kom-
munikationsfähigkeiten aus. CoAP ist ein Web-Übertragungsprotokoll, das speziell für
M2M-Anwendungen bestimmt ist, und bei begrenzten Geräten und Netzwerken verwen-
det wird. CoAP hat im Gegensatz zu http einen geringeren Header-Overhead. Daher
bietet der LightWeight M2M Standard eine robuste Lösung für die Geräteverwaltung.
Es gibt acht Standard-Management-Objects (MO), die von OMA Lightweight M2M
vorgeschlagen sind und das Gerät kennzeichnen. Fraunhofer FOKUS ist daran inter-

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

essiert, ein MO TransportMgmtPolicy vorzuschlagen und auch der oneM2M-Standard
schlägt ein MO DeviceCapability vor. Beide sollen in dieser Arbeit implementiert wer-
den werden. Ein effizientes Ressourcenmodell auf Basis des LWM2M-Standards wird im-
plementiert, das die MOs verwaltet. Eine Reihe von vorgeschlagenen DM-Operationen
können auf der MO und ihrer Ressourcen durch den Austausch von CoAP-Nachrichten
durchgeführt werden.

x Master Thesis, TU Berlin, Fachgebiet AV, 2015

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Motivation . 2

1.2 Objective . 3

1.3 Scope . 4

1.4 Outline . 7

2 State of the Art 9
2.1 M2M Standardization Bodies . 9

2.1.1 ETSI . 9

2.1.2 oneM2M . 12

2.1.2.1 oneM2M support for Device Management 14

2.1.2.2 Management of Device Resources 15

2.1.3 Comparison between ETSI M2M and oneM2M 15

2.2 Device Management Protocol Standards 15

2.2.1 OMA Device Management . 17

2.2.1.1 OMA DM Architectural Model 18

2.2.1.2 Hyper Text Transport Protocol 19

2.2.2 OMA LightWeight M2M Device Management 20

2.2.2.1 Basic LWM2M Architecture 21

2.2.2.2 LWM2M DM Resource Model 22

2.2.2.3 Proposed New Management Objects 23

2.2.2.4 Constrained Application Protocol 24

2.2.2.5 Messaging Model in CoAP 24

2.2.2.6 Request and Response Model in CoAP 24

2.2.2.7 Observation and Notification in CoAP 25

2.2.2.8 Comparison between HTTP and CoAP 26

2.3 Related Work . 27

3 Requirements 29
3.1 Use Cases . 29

3.1.1 Smart Metering: Monitor Power Quality Data 29

3.1.2 E-Healthcare and Tele-medicine . 30

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

3.1.3 Connected Consumer . 31
3.2 Technical Requirements . 32

4 Design and Specification 35
4.1 OMA LWM2M Device Management . 36

4.1.1 Device Discovery and Registration Interface 36
4.1.2 Bootstrap Interface . 37
4.1.3 Device Management and Service Enablement Interface 37
4.1.4 Information Reporting Interface 40

4.2 OMA LWM2M Device Management Resource Model 42
4.3 OpenMTC Middleware Platform . 42
4.4 Adapters . 44
4.5 Device Management Web GUI . 45
4.6 Cloud Infrastructure . 45

5 Implementation 47
5.1 Environment . 47

5.1.1 Ubuntu 12.04 LTS . 47
5.1.2 Python 2.7 . 47
5.1.3 Komodo 8 IDE . 47
5.1.4 Gevent 1.0 . 48

5.2 Project Structure . 48
5.3 Important Implementation Aspects . 49

5.3.1 LWM2M Device Management Server 50
5.3.2 LWM2M Device Management Client 50
5.3.3 Adapters . 51
5.3.4 Organization of Management Objects in Resource Model 52
5.3.5 LWM2M Device Management Operations 52

5.3.5.1 Client Registration . 52
5.3.5.2 Resource Discovery . 54
5.3.5.3 Resource Observation and Notification 54

5.3.6 Use Case Additions . 54
5.3.6.1 Applications . 55
5.3.6.2 Emulated Devices . 55
5.3.6.3 Device Management Web GUI 56

5.4 Documentation . 56

6 Evaluation 59
6.1 Test Environment . 59
6.2 Scalability . 60
6.3 Congestion Control . 61
6.4 Performance Measurements . 61

6.4.1 Total Round Trip Time of Requests 62
6.4.2 Average Re-transmissions per Request 62

xii Master Thesis, TU Berlin, Fachgebiet AV, 2015

7 Conclusion 69
7.1 Summary . 69
7.2 Dissemination . 71
7.3 Problems Encountered . 71
7.4 Outlook . 72

List of Acronyms 73

Bibliography 75

Annex 77

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

xiv Master Thesis, TU Berlin, Fachgebiet AV, 2015

List of Figures

1.1 Timeline View of Expected IoT Explosion 1

1.2 Motivational Factors for an Efficient Device Management Solution 3

1.3 Applications of IoT and its Ecosystem . 4

1.4 High Level Diagram of OMA LWM2M Device Management Integration
with OpenMTC . 5

1.5 Interactions in LWM2M Enabler . 6

1.6 Requirement of Adapters for Message Translations 7

2.1 ETSI M2M Functional Architecture . 10

2.2 ETSI M2M Management Object Model 12

2.3 oneM2M Functional Architecture . 13

2.4 OneM2M Device Management Architecture 14

2.5 Structure of mgmtObj and mgmtCmd Resources 16

2.6 OMA DM 2.0 Device Management Architecture 18

2.7 Basic LWM2M DM Architecture . 22

2.8 LWM2M Device Management Resource Model 23

2.9 Observing Resource as Request and Notifications as Response 26

3.1 High Level Diagram for Remote Patient Monitoring using eHealth Services 31

3.2 High Level Diagram for Remote Control of Home Appliances 32

4.1 Device Management Concept Design . 35

4.2 Activity Diagram depicting Device Registration 37

4.3 Activity Diagram depicting Resource Observation 42

4.4 Activity Diagram depicting Resource Update Notification 43

4.5 High Level Concept Design of Transport Policy Handling for M2M Traffic 46

5.1 Project Structure Implementation Hierarchy 48

5.2 Resource Model in Device Management 53

5.3 Components for Scalability Test in Device Management 55

5.4 Device Management Web GUI . 56

5.5 GUI showing Emulated Devices Resource Updates 57

6.1 Overall Setup for Emulation of Devices in Device Management for Scala-
bility Test . 60

6.2 Total RTT of Client Registration for 300 Emulated Devices in Local Machine 63

6.3 Total RTT of Client Registration for 300 Emulated Devices in Virtual
Machine . 63

6.4 Total RTT of Client Registration for 600 Emulated Devices in Local Machine 64
6.5 Total RTT of Client Registration for 600 Emulated Devices in Virtual

Machine . 64
6.6 Total RTT of Client Registration for 1000 Emulated Devices in Local

Machine . 65
6.7 Total RTT of Client Registration for 1000 Emulated Devices in Virtual

Machine . 65
6.8 Average Retransmissions per Request in Local Machine 67
6.9 Average Retransmissions per Request in Virtual Machine 67
6.10 Average Retransmissions per Request with Uniform Back-off Timer 68
6.11 Average Retransmissions per Request with Random Back-off Timer . . . 68

List of Tables

2.1 LWM2M DM logical operations . 22

4.1 Operation Create . 38
4.2 Operation Delete . 38
4.3 Operation Discover . 39
4.4 Operation Read . 39
4.5 Operation Write . 39
4.6 Operation Execute . 40
4.7 Operation Write Attributes . 40
4.8 Operation Observation . 41
4.9 Operation Notify . 41

5.1 Types of Requests and Associated LWM2M Operations 50

1 Introduction

This chapter describes about the role of Internet of Things(IoT) and Machine to Ma-
chine(M2M) communication from technical and business prospects and the need of hav-
ing a robust Device Management enabler. As quoted in [Fel14] , Jim Chase of Texas
Instruments offers the definition of IoT:[Cha13] ”The IoT creates an intelligent, invisi-
ble network fabric that can be sensed, controlled and programmed. IoT enabled products
employ embedded technology that allow them to communicate, directly or indirectly, with
each other or the Internet”. It is estimated that there will be around 25 billion and 50
billion connected devices to the internet by 2015 and 20201 respectively which is shown
in the figure 1.1 in the form of timeline.

Figure 1.1: Timeline View of Expected IoT Explosion

According to Kellmereit and Obodovski, three major factors are responsible for the rise
of IoT[KO] as quoted in [Fel14]. The advanced fabrication process leads to Miniatur-
ization of the electronic devices. The devices become smaller in size, more powerful,
energy efficient. The cost of electronics decrease due to mass production and easy pro-
cess leads to Affordability. The wireless communication is gaining popularity and easy to
connect feature leads to De-wireization[KO]. So, what does IoT consist of? Regarding
the composition of IoT, McEwen and Cassimally propose a simple equation[MC] quoted
in [Fel14]: Physical Object + Controllers, Sensors and Actuators + Internet = Internet
of Things. From the equation, it is seen that the spectrum of IoT is quite large. It
has a huge impact in future technology and businesses. The McKinsey Global Insti-
tute predicts IoT would contribute to global economy from $2.7 trillion to $6.2 trillion
annually by 2025[Ins13]. The Machine-to-Machine(M2M) is the ability of devices to
communicate with each other and share raw or processed data and the services. The

1http://share.cisco.com/internet-of-things.html

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

IoT can be visualized as a superset and considered as a global IP based network that
enables M2M communication and its services and further incorporating the concept of
Machine to Human(M2H) and Human to Human(H2H) interactions as a whole. More
and more intelligent sensor devices having IP connectivity(preferably IPv6) and other
devices connected via gateways to reach the internet exchanging huge amount of infor-
mation. The need of managing these huge number of connected devices provisioned the
requirement of a robust Device Management(DM) platform. There exists DM platforms
for the remote management of devices from Open Mobile Alliance(OMA)2 that are al-
ready operating such as TR-069, OMA-DM(v1.3, v2.0) and the most recent one OMA
Lightweight M2M(v1.0) which is particularly of interest in this thesis.

1.1 Motivation

The need of devices automation give birth to the concept of IoT. The devices are intel-
ligent sensors that sense and produces analog/digital data that can be processed to give
some relevant information with meaning. It started with machine to machine interact-
ing and exchanging information. Now, in IoT, in a broader spectrum, it involves any
imaginable objects interacting with themselves, possessing IP connectivity to access the
mesh networks(e.g. internet) and involves human interactions. With more devices con-
nected to the networks and internet everyday, it is desirable to have a proper bandwidth
managed transport mechanism for information transfer and organized, light device man-
agement enabler to control all these devices. The million of devices that makeup the
M2M system which are part of IoT need to be configured, updated with latest firmware,
monitored, queried for data, recovered from error conditions, repairing connectivity is-
sues and all these happen remotely. Hence, an efficient solution for management of
devices and applications is required which contains various elements as shown in the
figure 1.2.

The possibility of remote monitoring, controlling, machine automation leads to rapid
development in the field of IoT and M2M communication. The concept of IoT can be ex-
ploited and has a huge research and business prospects in the application fields of Smart
City, E-Health, Smart Home, Efficient Energy, Safe Automobiles, Security/Surveillance
and etc. The wearable technologies embedded in the smartphone, smart-watch helps to
monitor the health of the people. The need of automobiles communicate with each other
and the satellites using GPS for navigation and controlling and possibly avoiding road
accidents. The need of having energy efficient systems and avoiding possible leakage of
energy. Every citizen deserves all kind of security. Upon threat such as earthquake,
natural calamities and other accidents, auto-activation of devices is necessary to contact
emergency services. Such possibilities can be envisioned in IoT domain.

Related to my Thesis topic on Device Management, there already exists device man-

2A standardizing body that develops open standards for mobile phone industry.
www.openmobilealliance.org

2 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Figure 1.2: Motivational Factors for an Efficient Device Management Solution

agement enabler standards in operation such as OMA DM, TR-069. But, these industry
standards for the remote management of devices such as routers and smartphones may
not be interesting and efficient for the management of large and growing category of
connected devices, often referred to as constrained devices which have limited network
bandwidth, computing power and memory, limited battery lifetime and etc. Hence,
to address the low cost remote management and service enablement mechanism for
constrained devices, a need of simple, lightweight, robust, object oriented complying
with RESTful architecture, and designed with state of the art architecture known as
OMA Lightweight M2M (LWM2M) is proposed in 2013. This device management en-
abler would be able to deal with the requirements of constrained devices. This M2M
management and service enablement platform has some significant characteristics that
makes it special such as extensible and simple object oriented data model, designed for
constrained devices, supports efficient data transfer standard called CoAP and REST-
ful architecture. The CoAP against HTTP is based on UDP which is lightweight and
mainly focuses on constrained devices having low bandwidth.

1.2 Objective

The number of connected devices from different manufacturers are increasing rapidly.
A better selection of connectivity based on location, time, requirements, a light device
management enabler, proper use of intelligent sensors and lots of application fields would
help to build an efficient IoT platform. The figure 1.3 shows the objective of having an
efficient IoT ecosystem with various involving modules. For the proper organization,
management and control of these devices, efficient device management enabler can be
the best solution. The traditional device management solutions like OMA DM, TR-069
are most likely to be used for remote router configuration and for mobile devices. Some
are used for cellular devices and mostly they are proprietary. But the new issues are

Master Thesis, TU Berlin, Fachgebiet AV, 2015 3

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

Figure 1.3: Applications of IoT and its Ecosystem

handling the constrained devices. Now-a-days, sensor devices are gaining popularity
which are considered as constrained devices because of their behaviour. These are low
powered devices, limited battery lifetime, generates less data and hence low bandwidth.
Hence, an efficient, lightweight, state of the art device management architecture is re-
quired that can address the issues of constrained devices. The solution could be the
use of OMA Lightweight M2M. Because of the properties it holds, it can be easily inte-
grated and behaves well in constrained environment. Hence, this thesis describes about
the implementation of OMA LWM2M for device management for managing devices. Af-
ter the implementation of OMA LWM2M, the aim is to find the performance of this
technology in constrained environment, to find the robustness, efficiency under different
environment conditions.

1.3 Scope

The figure 1.4 shows the bigger picture of the integration of Device Management plat-
form with OpenMTC. The M2M Server and M2M Gateway are the prime components
of OpenMTC implementation. The LWM2M DM Server is a plugin to the M2M Server

4 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Figure 1.4: High Level Diagram of OMA LWM2M Device Management Integration with
OpenMTC

and is responsible for managing management objects of the LWM2M DM Clients that
are associated with the M2M Devices. These management objects are responsible for
characterizing, monitoring and controlling the M2M devices. The LWM2M DM Client
is associated with the M2M Device and responsible for managing it. The M2M Devices
interact with the M2M Gateway to access the global network. Usually the interaction
is done using short range communication technology. The M2M Network Applications
receive processed data coming from M2M Devices/Sensors in form of graph, table etc
for visualization and can send commands to control them.

The implementation of LWM2M Device Management is a major spotlight of this thesis.
The LWM2M consists of DM Server and DM Client based on its specification. The im-
plementation involves a number of clients connected to the DM server. The DM Client
represents the M2M Device and to manage that device, it exposes a number of manage-
ment objects approved by OMA, few proposed by third parties SDOs and Fraunhofer
FOKUS is also willing to propose one management object. An efficient resource model
is used to store the resource information of those management objects in both client

Master Thesis, TU Berlin, Fachgebiet AV, 2015 5

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

and server side. The resource model is composed of endpoints, objects, object instances,
resources and resource instances. Each resource is uniquely identified by a Resource ID.
The DM Server and DM Client exchange requests based on four interfaces such as Boot-
strap, Client registration, Device management & Service enablement and Information
reporting. All the requests use CoAP over UDP which is a scalable connectionless ori-
ented protocol supported with reliability. The figure 1.5 shows the LWM2M DM Server
and LWM2M DM Client interactions.

Figure 1.5: Interactions in LWM2M Enabler

To integrate the LWM2M Device Management with OpenMTC , there is a need of
adapter that translates the CoAP messages to ETSI M2M compliant messages on Gate-
ways(on DM Client side) and M2M Server (on DM Server side). So, two adapters are
also implemented. The figure 1.6 shows the requirement of the adapters for translating
messages.

There are number of operations that can happen between a DM Server and a DM
Client. First of all, the DM Client registers to the DM Server with all of its registration
parameters. The DM Client can send periodic registration updates to the DM Server to
inform that the DM client is alive. On request from the Network Application, the DM
Server can send requests such as creating objects/resources in the client, writing new
values to the resources and their attributes, subscribing to the resource. When there
is an update on the DM Client, the DM Server is informed with a notification system
about the update of that resource if the resource is subscribed.

6 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Figure 1.6: Requirement of Adapters for Message Translations

1.4 Outline

This section gives a brief introduction to the main chapters of the work.

This thesis is separated into 7 chapters.

Chapter 2 is related to the ’State of the Art’. The relevant topics related to stan-
dards and recent technologies that are closely associated to this thesis are discussed
here. An elaborate discussion on LWM2M Device Management, CoAP would be the
interesting topics.

Chapter 3 starts with some use cases in smart metering, e-health and telemedicine,
connected consumer and the need of Device Management. It is followed by the technical
requirements of the Device Management component.

Chapter 4 is related to the proposed design concept of LWM2M Device Management
and its integration with OpenMTC middleware platform. The involved components of
LWM2M Device Management are minutely discussed.

Chapter 5 describes the implementation of the proposed design concept of LWM2M
Device Management. This chapter explains the implementation of involved components.

Chapter 6 is related to evaluation and performance measurements. The evaluation
setup is discussed and graph plots are used to measure various elements for performance
of the implemented components. The scalability of the system is discussed with the
support of graph plots.

Master Thesis, TU Berlin, Fachgebiet AV, 2015 7

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

Chapter 7 is related to summary of the thesis work. This chapter summarizes the
overall work and the role of Device Management. It is followed by some discussion on
the targeted group and some future work.

8 Master Thesis, TU Berlin, Fachgebiet AV, 2015

2 State of the Art

The goal of this chapter is to introduce the technologies and standards that are directly or
indirectly related to designing and implementing Device Management in M2M platform
and Open Machine Type Communication(OpenMTC)[Fra14]. These standards are base
for the development of these platforms.

2.1 M2M Standardization Bodies

The standards helps to maintain inter-operability and quality. They help hardwares
and softwares communicate and produce an expected result. When many parties are
involved for building of a platform, technical specifications and standards are the basic
necessities. These standards are developed by standardization bodies. These bodies are
described below which are related to this Thesis.

2.1.1 ETSI

The European Telecommunication Standards Institute(ETSI)1 is an independent, non-
profit standardization organization. It’s main responsibilities include standardizing tools
for Information and Communication Technologies. Founded on 1988 and officially rec-
ognized by European Commission, it has over 750 members in 63 countries including
hardware manufacturers, network operators, administrators, service providers and re-
search bodies[ETSb].

The ETSI M2M provides a framework for developing services independently of the
underlying network. Its architectural design provides a generic set of capabilities for
M2M services. It facilitates deployment of vertical domains like e-health, smart home
and etc. ETSI M2M adopts RESTful architecture style and standardizes the resource
structures residing in the M2M Service Capability Layer(SCL). The M2M application
or M2M SCLs exchange information by means of these resources over defined reference
points[ETSb][ETSa].

ETSI TS 102 690: This specification[ETS10b] describes the high level architecture
as shown in the figure 2.1. Broadly, it consists of a Device and Gateway Domain and a
Network Domain.

1http://www.etsi.org/

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

Figure 2.1: ETSI M2M Functional Architecture

The Device and Gateway Domain consists of the following elements[ETS10b]:

M2M Device: A device that runs M2M application using the M2M service capabili-
ties. It can connect the Network Domain via Access Network or via M2M Gateway. In
most cases, M2M device can’t connect directly, hence, M2M Gateway acts as a proxy
to provide services that are hidden from Network Domain. The M2M Devices can be
serviced via multiple M2M Gateways.

M2M Area Network : It provides connectivity between M2M Devices and M2M Gateways
in a short distance. The examples include Personal Area Network(PAN) technologies
such as IEEE2 802.15.1, Zigbee3, Bluetooth4 and etc.

2Institute of Electrical and Electronics Engineers: https://www.ieee.org/
3www.zigbee.org
4http://electronics.howstuffworks.com/bluetooth.htm

10 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

The Network Domain is composed of the following elements[ETS10b]

Access Network : It is an entry point in the Network Domain for M2M devices to access
to the Core Network. It includes W-LAN, WiMAX5, xDSL and etc.

Core Network : It provides service and network control functions.

M2M Service Capabilities: A set of M2M functional interfaces are exposed that are
shared by different applications. It simplifies and helps to optimize application develop-
ment by concealing network complexity.

M2M applications: The applications that run the service functions exposed by M2M
service capabilities.

Network Management Functions: It consists of functions required to manage the Access
and Core Networks.

M2M Management Functions: It consists of the functions required to manage M2M
Service Capabilities in the Network Domain.

ETSI M2M MgmtObjs for Device Management

ETSI M2M offers hierarchical way of storing the information. All the elements are
considered as resources which are uniquely addressable entities in the RESTful archi-
tecture. It is addressed using URI and can be manipulated using Create Read Update
Delete(CRUD) methods. The sub-resource is referenced in the parent resource to access
it. The lifetime of the sub-resource is associated and dependent on the lifetime of the par-
ent resource. All the attached devices are represented by the attachedDevices resource.
It is used to collect management information of all M2M D’ devices that are attached
to a M2M Gateway. Here, D’ represents the attached device. Under each attachedDe-
vice, there is mgmtObjs resource. The mgmtObjs resource contain mgmtObj resources.
The mgmtObj resource holds the management data representing an entity that can be
M2M device/gateway. Multiple mgmtObj resources can be created that characterize
M2M device/gateway and for different management purposes. The mgmtObjs model is
supported by well defined attributes and parameters as shown in the figure 2.2. The
mgmtCmd resource is used to model non-RESTful management commands[ETS10c].

The mgmtObjs can be created at multiple places of <sclBase>tree[ETS10d].

• <sclBase>/scls/<scl>/mgmtObjs is used to manage service capabilities and for
other management functions of single <scl>resource.

5http://www.wimaxforum.org

Master Thesis, TU Berlin, Fachgebiet AV, 2015 11

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

• <sclBase>/scls/<scl>/attachedDevices/<attachedDevice>/mgmtObjs is used for
management of each D’ device attached to M2M Gateway represented by <scl>resource.

• <sclBase>/scls/<scl>/attachedDevices/mgmtObjs is used to manage M2M Area
Network Management of each D’ device attached to M2M Gateway.

Figure 2.2: ETSI M2M Management Object Model

2.1.2 oneM2M

oneM2M6 was launched in 2012 by seven Standards Developing Organization(SDO)’s
Association of Radio Industries and Businesses(ARIB), Telecommunication Technol-
ogy Committe(TTC), Alliance for Telecommunications Industry Solutions(ATIS), Te-
lecommunication Industry Association(TIA), China Communications Standards Associ-
ation(CCSA), ETSI, Telecommunications Technology Association (TTA). Later OMA,
Home Gateway Initiatives and Continua Health Alliance joined as partners. By 2014,
the number of partners and members reached to 208[one][one14a].

6www.onem2m.org

12 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

The oneM2M functional architecture[one14c] as shown in the figure 2.3 is split into
Field Domain and Infrastructure Domain. It comprises of the following functions.

Figure 2.3: oneM2M Functional Architecture

Application Entity(AE): It represents an instance of application logic for end to end
M2M solutions. Each AE is equipped with a unique AE-ID. Some examples of AE could
be remote blood sugar monitoring application, power metering application.

Common Services Entity(CSE): It represents an instance of set of common functions
of M2M environment. Such service functions are exposed to other entities through refer-
ence points Mca and Mcc. The Mcn reference point is primarily used to access underlying
network service entities. Each CSE is equipped with a unique CSE-ID. Some examples
could be Device Management, Data Management, M2M Subscription Management.

Network Services Entity(NSE): This entity provides services from underlying network to
CSEs. The examples could be device management, location services, device triggering
and etc.

The reference points acts as bridges between different entities in the system. It rep-
resents the communication flow between the entities.

Mca Reference Point : It represents the communication flow between AE and CSE cross

Master Thesis, TU Berlin, Fachgebiet AV, 2015 13

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

the Mca reference point. It enables AE to use the services supported by CSE and for
CSE to interact with AE.

Mcc Reference Point : It represents the communication flow between the CSEs cross
the Mcc reference point. It enables one CSE to use the service of another CSE.

Mcn Reference Point : It represents the communication flow between CSE and NSE
cross the Mcn reference point. It enables a CSE to use the services exposed by NSE.

Mcc’ Reference Point : It represents the communication flow between two CSEs in in-
frastructure nodes that are based on oneM2M standard and are placed in different M2M
SP domains across the Mcc’ reference point. It enables a CSE of an infrastructure node
residing in Infrastructure Domain of M2M service provider to communicate with a CSE
of another infrastructure node residing in Infrastructure Domain of another M2M service
provider to use the supported services.

2.1.2.1 oneM2M support for Device Management

The Device Management(DMG)[one14b] supports management of device capabilities on
gateways and M2M devices, also on the devices that reside within M2M Area Network
as shown in the figure 2.4.

Figure 2.4: OneM2M Device Management Architecture

The DMG can utilize the existing device management technologies like OMA-LWM2M,
OMA-DM, in addition to organization of Management Resources across Mcn reference
point. A functional component known as Management Adapter is used for both mes-
sage translations and adaptations. The Management Adapter in DMG of M2M Server
(M2M server - DM- MA) performs the adaptation between DMG and Management

14 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Servers, while the Management Adapter in DMG of M2M Device (M2M device - DMG-
MA) performs translation and adaptation between DMG and Management Client. The
Management Adapter uses the la interface to communicate with Management Client
for the discovery of external management objects supported by Management Client.
The Management Adapter maps between external management objects to the resources.
The DMG in the M2M Device can create those resources in the M2M Server and that
can be used for managing devices. The mc interface bridges Management Server and
Management Client and is subject to device management technology being used. The
Management Server and Management Client can be implemented as an entity external
to the node or they can be implemented as entity embedded within the node. The
M2M Device has device management proxy functionality that can interact with Proxy
Management Client using mp interface[one14b].

2.1.2.2 Management of Device Resources

oneM2M DMG implements the management of devices using well defined resources.
There are operations for the creation, update, deletion of the resources. The mgm-
tObj resource contain management data characterizing the M2M device. The oneM2M
DMG can further be mapped to external device management technologies like OMA-
DM, OMA-LWM2M. Each instance of mgmtObj has the following structure as shown
in the figure 2.5. The mgmtObj has attributes and sub-resources. Also shown in the
figure 2.5 is the mgmtCmd resource hierarchy. It represents management procedures to
model the commands and to execute on the specified resources. It is also comprised of
attributes and sub-resources. The number on each attribute/sub-resource indicates the
instances that can be created[one14b].

2.1.3 Comparison between ETSI M2M and oneM2M

oneM2M is a global standardization body for machine to machine communication. There
are defined names for M2M server as IN, gateways are MN and devices are either ADN
or ASN in oneM2M. The interfaces are also named different. The ETSI mId would be
Mcc in oneM2M. Similarly, ETSI dIa and mIa interfaces are equivalent to Mca interface.
The Mcn interfacing CSE and NSE is new.

oneM2M is an expanded version of ETSI covering other standardizing bodies too in order
to bring uniqueness and inter-operability. oneM2M has elaborated the mgmtObj resource
structure over ETSI with few more attributes like objectID, ResourceID, mgmtLink.

2.2 Device Management Protocol Standards

With the introduction of Internet of Things(IoT), huge number of devices are inter-
connected to the internet via different network channels. The concept of machine to
machine communication is becoming interesting and essential with little or no human
intervention. While facilitating the large number of connected devices, it is necessary

Master Thesis, TU Berlin, Fachgebiet AV, 2015 15

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

Figure 2.5: Structure of mgmtObj and mgmtCmd Resources

to keep track, control and exchange information between them. Whether it is related
to storing device information or controlling/handling the devices remotely, Device Man-
agement plays a major role.

Device Management refers to the management of device configurations and other man-
aged objects of devices. It includes setting initial configuration of the devices, updates
of information in the devices, retrieval of device information, execution of commands on
devices and etc.

The Open Mobile Alliance7 is a pioneer in Device Management. The OMA Device
Management Working Group specifies the protocols and mechanisms to achieve the
management of mobile and connected devices. The list of active OMA Members8 in De-
vice Management includes Alcatel-Lucent, China Mobile, Ericsson, Gemalto N.V., Intel,
Interop Technologies, LG Electronics Inc., NEC, Oberthur Technologies, Red Bend Soft-
ware, Samsung, Sony Mobile Communications AB, Telecom Italia S.p.A, Vodafone and
Sensinode Ltd.

7http://openmobilealliance.org/technology
8http://openmobilealliance.org/membership/current-members/

16 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

2.2.1 OMA Device Management

OMA Device Management9 is a protocol specified by OMA DM Working Group and
Data Synchronization Working Group. The OMA DM is a successful standard for con-
nected device management, preferred by customers and used in millions of devices in
this field. The release version 1.2 addresses the protocol and mechanism that allows
third parties to carry out procedures like configuring devices on behalf of the end user.
The third parties would indicate operators, service providers etc. With the help of DM,
third party can remotely set parameters, do troubleshooting servicing, install and up-
grade software. It mainly consists of the three parts in version 1.2 as quoted in version
2.0[OMA13b]:

Protocol and Mechanisms: The protocol used between a management server and a de-
vice.
Data Model : The model for hierarchical storage of device information.
Policy : The policy decides if the particular object can be accessed in the device.

The design of the architecture follows OMA architecture principle of Network Technology
Independence by separating bearer-neutral requirements from bearer specific bindings.
There are three parts of the object schema that separates the more general and more
specific parameters i.e. a top level Management Object which is a bearer neutral, a set of
bearer specific parameters, sub-trees for exposing vendor specific parameters in version
1.2 as quoted in version 2.0[OMA13b].

In OMA DM version 1.3[OMA12], it reused the same architecture from version 1.2. Ad-
ditionally, it introduced new notification and transport protocol and a new DM server
to DM server interface.

In OMA DM version 2.0[OMA13b], it reused the Management Objects designed for
version 1.3. This new version integrated new client-server protocol, simplified transac-
tion model of DM command and introduced web based user interaction using SHOW
command and management data delivery using HTTP.

The OMA DM 2.0 protocol runs by launching a DM session. DM sessions are always
initiated by DM client, but, it can be triggered by DM server using DM notification to
the DM client. The DM server can send DM commands and receives responses from the
DM client. The DM client informs the DM server about all the activities taking place in
the device via Generic Alerts. The DM server can terminate the DM session by sending
END command to the DM client[OMA13b].

The management data delivery is carried out using HTTP. The DM server is in synchro-

9http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-
releases/dm-v1-3

Master Thesis, TU Berlin, Fachgebiet AV, 2015 17

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

nization to web pages and enables web based interaction with the user. Using HTTP,
there are defined DM commands, DM server can send to DM client for retrieving or
sending management data to/from the data repository. It supports the notion of DM
packages. The sender should wait for response before sending another DM package as
the processing can consume unpredictable amount of time. The OMA DM protocol
doesn’t specify any timeouts between DM packages[OMA13b].

2.2.1.1 OMA DM Architectural Model

The below figure 2.6 shows the Device Management architectural diagram offered by
OMA DM 2.0[OMA13b].

Figure 2.6: OMA DM 2.0 Device Management Architecture

Functional components and Interfaces
DM Client : It is a component that reflects the device and helps communicate with the
other components in the architecture.
DM Server : It manages all the resources of the devices and sends commands to manip-

18 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

ulate the devices.
Web Server Component : It is responsible to deliver web contents for UI interaction. It
is not specified in the enabler.
Web Browser Component : It is responsible for providing the UI interaction functionality
to the DM client. It is not specified in the enabler.
Data Repository : It is a logical server for management of data storage and retrieval using
HTTP or other transport methods.
DM-1 Server to Client Notification Interface: It is used by server to send device man-
agement notification to the clients to initiate a device management session.
DM-2 Device Management Protocol : It is used by server to send device management
commands to clients and in response, clients return status and alert information to the
servers. It may use HTTP or HTTPS for communication.
DM-3 Retrieving Bootstrap Information: It provides interface to retrieve bootstrap in-
formation.
DM-4 Delivering BootStrap Information from Smartcard : The data stored in the smart-
card maybe needed for DM Client for bootstrapping. This is one way interface.

2.2.1.2 Hyper Text Transport Protocol

The Hyper Text Transfer Protocol10 is a standardized application level protocol running
over reliable TCP connections. The principle is based on request-response in client-server
computing model. The coordination between Internet Engineering Task Force11(IETF)
and World Wide Web Consortium12(W3C) resulting in series of publication of RFCs,
most notably RFC 2616 that defines commonly used HTTP/1.1[HTT].

In client-server model, the client requests a webpage by providing the resource address in
form of Universal Resource Locator(URL) and the server responses with the requested
page if the resource path is correct.

HTTP defines methods to perform actions on the interested resources. The HTTP/1.0
specification defined GET, POST and HEAD methods and HTTP/1.1 specification
added five new methods OPTIONS, PUT, DELETE, TRACE and CONNECT[HTT].

The status codes are an important part of HTTP standard. It describes how the requests
are handled by the server. HTTP status codes are primarily divided into five groups to
explain request-response in client-server model as Informational 1XX, Successful 2XX,
Redirection 3XX, Client Error 4XX and Server Error 5XX.

Persistent Connection: In HTTP/0.9 and 1.0, the active connection is closed after a
single request-response. So, each time a request is made, a new TCP connection has to

10http://www.w3.org/Protocols/rfc2616/rfc2616.html
11https://www.ietf.org/
12www.w3.org

Master Thesis, TU Berlin, Fachgebiet AV, 2015 19

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

be established. This results in increase of latency of the overall action and degrades the
performance. In HTTP/1.1, a keep-alive mechanism keeps the connection existing and
can be re-utilized for more than one request-response. Such persistent connection reduce
the latency as there is no need of a new TCP three way handshake connection after a
first request. HTTP/1.1 is more bandwidth optimized over HTTP/1.0. In HTTP/1.1
introduced chunked transfer encoding allowing content to be streamed rather buffered.
HTTP pipelining allows simultaneous requests to be sent and reduces lag time as they
don’t have to wait for the responses. Another improvement is byte serving where server
transmits a portion of the resource requested by the client[HTT].

An example to HTTP request-response:

Request :
GET /pub/WWW/TheProject.html HTTP/1.1
HOST: www.w3.org

Response:
HTTP/1.1 301 Moved Permanently
Date: Thu, 23 August 2014 10:44:32 GMT
Server: Apache/2
Location: http://www.w3.org/TheProject.html
Cache-Control: max-age=21600
Expires: Thu, 23 August 2014 18:24:33 GMT
Content Length: 241
Content-Type: text/html; charset=iso-8859-1

<! DOCTYPE HTML PUBLIC ”-//IETF//DTD HTML 2.0//EN”>
<html><head>
<title>301 Moved Permanently </title>
</head><body>
<h1>Moved Permanently</h1>
<p>The document has moved. <p>
<href=”http://www.w3.org/TheProject.html”>here</p>
</body></html>

2.2.2 OMA LightWeight M2M Device Management

OMA LightWeight M2M version 1.0 emerged as a new technical standard for remote
management of constrained devices and provides service enablement and application
management for them. It is a communication protocol understood by LWM2M clients
available in M2M devices and the central LWM2M server. The architecture and de-
sign principle of LWM2M protocol is to create a mechanism that can handle con-
strained devices having low network bandwidth, works well in unreliable and lossy net-

20 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

works, low power, low cost sensor devices with fewer aspects that can be remotely
managed[OMA13a].

The RESTful architectural style is used to make the protocol easily understandable.
The items to be managed on a remote device are considered as resources. Each resource
is equipped with an address and identified using the URL. The similar resources are
grouped together and managed by objects. Hence, LWM2M standard defines an orga-
nized, efficient, scalable and simple object model. The LWM2M client-server interaction
is done using the underlying data transfer protocol over UDP or SMS known as CoAP.
The CoAP is standardized by IETF Constrained RESTful Environment(CoRE)[IET12]
working group as a variation to HTTP. The main goal of CoRE Working Group is to
keep small message overhead, support multicast, data fragmentation and a simple pro-
tocol for M2M communication. Hence, the CoAP is optimized for communication in
constrained environment. The LWM2M specification comes with a set of predefined ob-
jects and resources that can be easily handled during client-server interaction. The set
of objects is extensible as organizations can define and propose the need of new objects
that could be important for a robust device management platform[OMA13a].

The first release of OMA LWM2M standard specifies an initial set of objects for de-
vice management[OMA13a].

LWM2M Security : It is for handling security aspects between servers and client on
the devices.
LWM2M Server : It is for defining data model and functions related to management
servers.
Access Control : It is for defining access rights for each data object on the client.
Device: It is for detailing resources on M2M device related to device specific information.
Firmware: It is for detailing resources on M2M device for firmware upgrades.
Location: It is for grouping the resources that provide geographic and positional infor-
mation of the M2M device.
Connectivity Monitoring : It is for grouping the resources that monitors the connectivity
status of the network connections.
Connectivity Statistics: It is for grouping the resources that holds the statistics of the
existing network connection.

2.2.2.1 Basic LWM2M Architecture

According to the LWM2M architecture, there are mainly four interfaces as shown the fig-
ure 2.7: Device Registration and Discovery, Bootstrap, Device Management and Service
Enablement and Information Reporting. The logical operation on these interfaces can be
classified as uplink and downlink operations[OMA13a]. The device registration, discov-
ery of all the available devices and notifications upon information changes of subscribed
devices are of particular interest as shown in Table 2.1

Master Thesis, TU Berlin, Fachgebiet AV, 2015 21

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

LWM2M Client

Resource Hierarchy

LWM2M Server

Resource Hierarchy

Stack
-Efficient Payload
-CoAP Protocol
-DTLS Security

-UDP or SMS bearer

Interfaces:
-Bootstrap

-Client Registration
-Device Management and

Service Enablement
-Information Reporting

M2M Device

Figure 2.7: Basic LWM2M DM Architecture

Interface Direction Logical Operation

Device Discovery and Registration Uplink Register, Update and De-register

Device Discovery and Registration Downlink Discovery

Device Management and Service Enablement Downlink Read, Create, Delete, Write, Execute

Information Reporting Downlink Observe, Cancel Observation

Information Reporting Uplink Notify

Table 2.1: LWM2M DM logical operations

2.2.2.2 LWM2M DM Resource Model

The figure shows the resource model of the LWM2M Enabler that consists of Ob-
jects, Object Instances, Resources and Resource Instances. There are eight prede-
fined objects. Some of the objects can have multiple instances. Each of the object
instance has fixed set of well defined resources that describe the client/device and its
behavior. Some resources may have resource instances too. Hence, a well defined re-
source tree can be visualized with the help of these elements. Any of the resources in
the resource tree can be easily accessed by using hierarchical path structure like ob-
ject id/object instance id/resource id/resource instance id[OMA13a].

22 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Figure 2.8: LWM2M Device Management Resource Model

2.2.2.3 Proposed New Management Objects

Apart from the management objects proposed in LWM2M Device Management speci-
fication, oneM2M in ”Management Enablement(OMA)”[one14d] proposed a new man-
agement object called DeviceCapability dedicated to manage capabilities of devices like
USB devices, webcams, actuators and etc. It includes resources describing the Property
name, Attached status of the devices, Enabled status, DenyUserEn indicating if the user
is denied the device capability enablement, NotifyUser to indicate if the user should be
notified upon the Enabled status change and opEnable/opDisable to enable or disable
the device capability.

Similarly, Fraunhofer FOKUS also has a new management object called as Transport-
ManagementPolicy object. It stores the policy information of the network applications.
When the sensor measurement data has to be sent to a desired application, the policy
stored in this object is used to retarget to the correct application. It has resources like
IP, Port for retargeting to the desired application and appidPolicyMapping, InitProtocol,
FinalProtocol to decide on the policy.

Master Thesis, TU Berlin, Fachgebiet AV, 2015 23

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

2.2.2.4 Constrained Application Protocol

The Constrained Application Protocol(CoAP) running over UDP is a request-response
protocol for machine to machine applications. It is designed to be used with constrained
nodes and constrained networks. The constrained nodes refer to low power, low capacity,
low computing capability devices. The constrained networks refer to IPv6 over low power
wireless personal area network having higher packet error rates and low throughput. It
supports the specialized requirements like multicast, very low overhead and simplicity
for constrained environments[ZSB14].

The features of CoAP are:

• Fulfills the requirements of constrained behavior of M2M applications

• UDP bindings

• Asynchronous message exchanges

• Low header overhead and parsing complexity

• Security bindings with DTLS

2.2.2.5 Messaging Model in CoAP

The CoAP uses a fixed four bytes header which can be extended to binary options and
payload. The message format is applicable to both requests and responses. Each message
contains a message ID to avoid duplicates during re-transmissions. The size of message
ID is fixed to 16 bits and is randomly generated for each request. Each request-response
pair is assigned a unique token ID independently from underlying messages[ZSB14].

The CoAP has optional fields such as URI path, media type, payload and etc that
can be included in the same message. To a response of a request, same message ID
is used. Here, the response refers to an ACK or a message reply piggybacked with the
ACK. CoAP exchange messages asynchronously over a datagram oriented transport such
as UDP[ZSB14].

The reliability of messaging is defined by four types of messages. Confirmable(CON),
Non-Confirmable(NON), Acknowledgment(ACK), Reset(RST). The confirmable mes-
sage expects an acknowledgement. This is to confirm that the recipient correctly re-
ceived the message. A reset message is expected when the server can’t process the
request. The acknowledgement can be sent separate or piggyback on a response mes-
sage. The non-confirmable message doesn’t expect an acknowledgement. Those mes-
sages which are repeatedly sent to the application, such as sensor readings, don’t need
acknowledgments[ZSB14].

2.2.2.6 Request and Response Model in CoAP

The client requests an action using predefined method code on a resource identified
by a URI path on the server. The server replies with a response using a predefined

24 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

response code. The client requests contain GET, PUT, POST, DELETE methods to
manipulate the resources. The response depends on whether the request is confirmable
or non-confirmable. The confirmable message expects to receive a response message pig-
gybacked in the acknowledgement. If the message can’t be processed, a reset message
is sent in a response. If the server isn’t able to respond to the confirmable request, it
should send an empty acknowledgement message. When the server has the response
ready, it sends another confirmable message which is called separate message[ZSB14].

The example showing CoAP confirmable request-response:
Request:
CON [0xbc90]
GET /temperature
(Token 0x71)

Response:
ACK [0xbc90]
2.05 Content
(Token 0x71)
”25.9 C”

2.2.2.7 Observation and Notification in CoAP

The client which desires information regarding a particular resource sends an observe
value set in the request to the server. The server responses with an acknowledgement
with the observe option value set to confirm that this particular resource is under ob-
servation. The server retains a list of observed resources. Hence, whenever there is an
update in the resource content, the client is notified of its changes. The notification
could be periodic or random and infrequent[Har14]. The observation to a particular
resource is set by assigning observe option to zero (observe=0). When it is set, it mod-
ifies the GET method so it doesn’t only retrieve a representation of the current state
of the resource identified by the requested Universal Resource Identifier(URI), but also
add the client to the list of observers of the requested resource. The server responses
with an acknowledgement containing the present status of the resource. The response
contains the same token ID and media type as that of the request is maintained. Also,
the observe option is assigned a value which is the time stamp value from the point of
starting of observation. Upon changes in the observed requests, notifications are gen-
erated as content messages having same token ID and observe option value equivalent
to the timestamp value. Notifications have a 2.05 response code (for content) in most
cases[Har14]. A simple observation-notification system in CoAP is shown in the figure
2.9.

When there is no need to observe the resource anymore, a request can be sent with
observe option value equal to 1(observe=1). This ensures the client is no longer inter-

Master Thesis, TU Berlin, Fachgebiet AV, 2015 25

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

Figure 2.9: Observing Resource as Request and Notifications as Response

ested in that resource updates, hence, the server removes the resource from its observed
list[Har14].

2.2.2.8 Comparison between HTTP and CoAP

The CoAP is introduced as a simpler alternative to HTTP for connecting constrained
devices. The advantage of using CoAP are it has simpler hardware requirements reducing
the cost and power consumption, UDP based transport and communication overhead
of the protocol is small and compact. The support of the asynchronous information
push when there is a change in the resource, thus, allowing objects to be asleep and
hence reducing the power consumption. The CoAP specifies a minimal subset of REST
requests, supports resource caching and built-in discovery, provides reliability with re-
transmission mechanism. On the other hand, HTTP is usually based on TCP, has a
larger header size for reliable transmission and can’t deal with the constrained devices.
Hence, with the appealing features that supports the constrained devices, CoAP is best
suited for M2M communication[TLS].

26 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

2.3 Related Work

After the release of OMA LWM2M 1.0 standard in 2013, there have been several attempts
to design Device Management based on it. The implementation13 of this standard in
C is done by Intel Corporation. The lwm2mclient features four LWM2M objects: De-
vice, Server, FirmwareUpdate and Test. The Erbium’s CoAP engine14 is modified and
utilized in this implementation. The lwm2mclient opens UDP port 5683 and registers
to the LWM2M Server at 127.0.0.1:5684 which features a basic command line inter-
face. Leshan15 is a Java implementation of OMA LWM2M by Julien Vermillard. The
Eclipse Leshan is based on Eclipse IoT Californium project for CoAP and Datagram
Transport Layer Security(DTLS) implementation. It provides a Device Management
Server library, Client library, a web user interface displaying a list of connected clients
and their resources, and a bootstrapping server16. Wakaama17 is an implementation
of OMA LightWeight M2M protocol. It is written in C and contains files to be built
with an application. There are two modes: LWM2M CLIENT MODE enables LWM2M
Client interfaces and LWM2M SERVER MODE enables LWM2M Server Interfaces. It
provides APIs for server application to send commands to registered LWM2M Clients.
On the other hand, on client applications side, Wakaama checks for the syntax and ac-
cess rights of received commands18. After the compilation of the server, it listens on
UDP port at 5683. The client defines four LWM2M objects such as Server, Device,
FirmwareUpdate and Test (with some definition). The client opens udp port 56830 and
tries to register to the server at 127.0.0.1:568319.

13https://github.com/01org/liblwm2m
14http://people.inf.ethz.ch/mkovatsc/erbium.php
15https://github.com/jvermillard/leshan
16https://projects.eclipse.org/proposals/leshan
17https://github.com/eclipse/wakaama
18www.eclipse.org/proposals/technology.liblwm2m
19https://github.com/eclipse/wakaama

Master Thesis, TU Berlin, Fachgebiet AV, 2015 27

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

28 Master Thesis, TU Berlin, Fachgebiet AV, 2015

3 Requirements

This section discusses about the requirements for building an effective M2M system and
Device Management platform for handling intelligent devices. The requirements can be
seen from different use cases in different scenario.

3.1 Use Cases

The Use Cases illustrate practical applicability of M2M system and Device Manage-
ment in real life scenario. There are different fields where Device Management plays an
important role.

1. Smart Metering: Monitor Power Quality Data

2. E-Healthcare and Tele-medicine

3. Connected Consumers

3.1.1 Smart Metering: Monitor Power Quality Data

Smart Metering is an intelligent way of improving the end user energy consumption. It
consists of the utility meters(electricity, gas, water, heat meters) that makes customers
aware of the energy consumption and helps to make smarter decisions on their usage,
provides the distributors with efficient tools for monitoring and managing the energy
distribution networks. Among the many use cases of Smart Metering, Monitor Power
Quality Data[ETS10a] is chosen. It deals with the monitoring of energy from point of
production to point of consumption including various factors such as weather, quality
of wiring, device malfunction, failing or energy loss in power delivery, operational issues
which might affect the quality of supply. It deals with the Smart Metering Information
System to provide information on power quality data.

The Distribution Network Operator request for information regarding power quality
to the Smart Metering Information System. After all the related information are re-
trieved along with time-stamps, it is sent to the Distribution Network Operator. Then,
the customers receive the requested power quality information. This is the basic flow of
information. If the Smart Metering Information System can’t process the request, error
details are sent back. It is also possible that Smart Metering Information System fails
to retrieve data due to hardware failure which is then reported to Distribution Network
Operator. It becomes easy to address the issue[ETS10a].

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

There are few potential requirements for an efficient monitoring system. A secure and
accurate time synchronization M2M system should be present for accurate results. A
periodic reporting time can be assigned by M2M application for some specific M2M
device(s). The M2M system should be able to retrieve scheduled and on demand in-
formation for the customers. Authentication and authorization should be maintained
throughout to avoid leakage and tampering of information[ETS10a].

3.1.2 E-Healthcare and Tele-medicine

One of the major application areas for M2M systems can be found in E-healthcare sector.
It includes the remote monitoring of the patient health and fitness information through
use of various appropriate sensor devices, triggering of alarms when critical conditions
are detected, remote controlling of certain medical devices for treatment. The person
being monitored usually wears one or more sensor devices that record health and fitness
indicators such as blood pressure, body temperature, heart rate, weight and etc. These
sensor devices can collectively send information to a device/gateway(e.g. a cellphone
acting as a gateway device) through short range communication. These information are
then sent to a backend entity(M2M server, device management server) by the gateway
device via WiFi or LTE/3G networks that is supposed to store and possibly react ac-
cording to the sensor information. Sometimes the sensors themselves have connectivity
capabilities to create a WAN link with the backend server without the need of a gateway
device[ETS13a].

The use case for E-Healthcare can be Remote Patient Monitoring(RPM)[ETS13a]. This
use case focuses on monitoring the patient’s health condition based on the information
collected from the sensor devices attached to him. The whole M2M system involves
bi-directional transfer of messages, network availability during critical situations, infor-
mation and device security and etc. The figure 3.1 shows the high level architecture for
RPM concept using eHealth services.

The monitoring sensor devices attached to the patient are first registered to the central
back-end server(e.g. M2M server and device management server). The registration
includes the potential to maintain the information describing the remote monitoring
of devices, the patient being monitored and M2M applications which constantly keep
track of the data. These sensor devices collect various information of interest from the
patient. The patient measurements could be done in hospital or at home, work or while
travelling. These information maybe sent to the gateway device(e.g. cellphone) that has
WAN connectivity via LTE, WiFi or RFID tag networks . Since these sensor devices
are low powered, less complex, so, they likely to be accompanied by a gateway for
communication. The device management server can instruct the devices how frequently
and through which route these devices should send data. The applications under clinical
supervision monitor the information received from the devices attached to patient’s body.
Based on the measurements, an alert or emergency can be declared upon the radical

30 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Figure 3.1: High Level Diagram for Remote Patient Monitoring using eHealth Services

change or high fluctuations in the monitored values or if it falls out of the predetermined
safe levels. The device management server can issue command to initiate to find current
GPS location of the patient(based on attached device information), calling emergency
services or remote controlling of the devices. The device management enabler along with
connectivity services should be able to route the critical information via a secure and
reliable channel for timely delivery[ETS13a].

3.1.3 Connected Consumer

The Connected Consumer [ETS13b] refers to the humans who are equipped with commu-
nication tools that allow monitoring and remote control of the devices via M2M services
and applications. The use case related to this scenario could be the Remote control
of Home Appliances. The home appliances with communication capabilities which act
as M2M devices and can do short range communication can be interfaced into M2M
network. They are generally connected to M2M gateway to access the WAN. The ap-
plication acting as a remote service such as a website, remote device equipped with
connectivity features, that receives and sends information and commands to control
home appliances via device management server. The home appliances can be registered
to the backend server with all the appropriate details. With the regular data available
from the sensor devices in the home, the devices can be remotely monitored and con-
trolled such as turn on/off the heating system, downloading movies from the remote
media server, downloading recipes to prepare special dish for dinner, activating alarm
system and etc. The figure 3.2 shows the high level architecture for the remote control

Master Thesis, TU Berlin, Fachgebiet AV, 2015 31

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

of home appliances.

Figure 3.2: High Level Diagram for Remote Control of Home Appliances

3.2 Technical Requirements

The following subsections describe the technical requirements of M2M system and Device
Management.

1. Scalability
The number of M2M devices are increasing very rapidly because of their usability
in every sector. Hence, the M2M system should be able to cope with the ever
increasing number of M2M devices that want to connect to the system. The
device management server-client model based on LightWeight M2M architecture
could be the best effort to address these all low powered, less capacity devices called
constrained devices. The UDP based CoAP reduces the payload size making easy
and quick transport of messages. The handling of all the resources of thousands
of devices seem easy with the hierarchical resource tree model of LWM2M Device
Management Server. Hence, the overall system should be able to scale according
to the need.

2. Interoperability
The components of the M2M system are based on ETSI M2M, Device Manage-
ment implementation is based on Lightweight M2M, the M2M devices maybe from
different vendors, the communication between the components maybe based on

32 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

different protocols/standards. But, when they are combined together, they should
be able to communicate with each other. Hence, all the components of the whole
system should be strictly standards based, so that, they can be made interoperable.

3. Link Quality
For the transport of messages in the M2M system, the link quality should be less
lossy. The LWM2M device management enabler also has confirmable and non-
confirmable message types to indicate if the message delivery is acknowledged or
not. Beside these, it stores a list of IP addresses in connectivity management
object to route messages using a less congested path. In emergency scenario like
fire hazard, accidents, disease outbreak, natural calamities, the messages should
be delivered to the system quickly and reliably so that the M2M system can react
to it quickly and remotely control the devices or report to the concerned authority.

4. Information Privacy
The sensor devices generate huge amount of data; that maybe from patient’s body
like heart rate, blood pressure, sugar level etc, from different parts of the vehicle like
current location, engine performance, fuel consumption rate etc, from household
appliances like status of the appliances-period of operation, energy consumption
and etc. These information are critical and M2M system should ensure that these
information should be recorded securely. So, there are implementations of access
rights and local policies for authorization and authentication of users to control
access to critical components and protects information from illegal use.

5. Compatibility
The M2M system should be flexible enough to work with older components which is
backward compatibility and should be able to address possible changes in the future
which is known as forward compatibility. As the components are completely based
on standards and defined protocols, the compatibility issue should be minimum.

6. Easy Configuration
The M2M devices should be easily or in most cases, auto configured and get regis-
tered to M2M server and LWM2M device management server. The LWM2M device
management server should send regular firmware updates to keep the devices upto
date.

7. Tolerance Level
The M2M system should be aware of the possible faults that can occur in the
system such as loss of connection, congestion in the network. Besides these, some
messages are critical and should be reported to the system so that it can act
quickly.

8. Availability of Resources
The M2M system resources should be made available to critical messages. When
critical messages are generated that demand quick action like during earthquake,

Master Thesis, TU Berlin, Fachgebiet AV, 2015 33

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

cyclones, accidents, the M2M system should give priority to it and process accord-
ingly. The device management enabler should issue commands to activate/deacti-
vate devices and inform the concerned authority.

9. Energy Efficiency
The LWM2M protocol which is based on CoAP aim to reduce the size of payloads
which contributes to enhance the spectrum efficiency. As the transmission time is
reduced due to payload size reduction, the energy and time efficiency are enhanced.

10. Low Cost Solutions
The low complexity of the solutions contributes to reduce the cost of devices.

34 Master Thesis, TU Berlin, Fachgebiet AV, 2015

4 Design and Specification

This chapter introduces the detailed architectural design concept of OMA LightWeight
M2M Device Management, operation types, components description and integration
with OpenMTC[Fra14] which is based on ETSI M2M and oneM2M standards. There
are various operations that can occur between the LWM2M DM Server and LWM2M
DM Client. For the components to understand and exchange ETSI compliant messages
and DM messages, there are the need of adapters that translate between them. The DM
GUI is also an important part that gives the visual representation of devices and their
characteristics involved. The figure 4.1 gives an overall picture of the whole concept.

Figure 4.1: Device Management Concept Design

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

4.1 OMA LWM2M Device Management

The OMA LWM2M Device Management consists of a DM Server and DM Clients. There
are four interfaces through which the DM Server and DM Clients exchange CoAP mes-
sages to carry out various possible operations as specified in the OMA LWM2M v1.0
specification. These logical operations in the interfaces can be uplink (direction: client
to server) and downlink(direction: server to client) which is already presented in Ta-
ble 2.1. The LWM2M specification[OMA13a] identifies several objects and resources as
main components of its resource model. Each object and its resources are identified by
unique ID and several characteristics.

The four interfaces proposed in the LWM2M specification are

1. Device Discovery and Registration

2. Bootstrap

3. Device Management and Service Enablement

4. Information Reporting

4.1.1 Device Discovery and Registration Interface

This interface is used by a LWM2M DM Client to register its registration parameters,
maintain registration status and de-register with a LWM2M DM Server.

1. Client Registration
While registering, the client sends its endpoint name which is unique in the server,
lifetime period that it expects to be alive and list of objects that it supports
during registration. The list of objects and object instances paths are described
using CoRE Link Format[IET12] and payload format used is application/link-
format which are included in the payload of the request and rest of the registration
parameters are in the query of the request. Also, along with these registration
information, DM Server keeps track of the IP addresses of the clients. The payload
supporting Device, Firmware, Location objects and their object instances would
simply be </3/0>, </5/0>, </6/0>. The registration is soft state which is
indicated by registration lifetime, and once the lifetime period is exceeded, the
client registration is removed from the DM server. Hence, the client has to re-
register again to the server[OMA13a]. The activity diagram illustrates the process
of client registration in figure 4.2.

2. Registration Update
The client can send its registration parameters like lifetime, binding mode and
others with the updated values. This also ensures that the client is active and
interested to interact and exchange messages with the server[OMA13a].

36 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Figure 4.2: Activity Diagram depicting Device Registration

3. De-register
If the client is no more interested or not needed to be associated with the server,
it can do de-register by sending the request to the server to remove its registration
information from its database[OMA13a].

4.1.2 Bootstrap Interface

This interface is used to provision essential information of the LWM2M client to make
the LWM2M client be able to register to a LWM2M DM server[OMA13a].

4.1.3 Device Management and Service Enablement Interface

This interface is used by LWM2M Server to access resources available from LWM2M
Client. There are number of proposed operations such as Create, Read, Write, Delete,

Master Thesis, TU Berlin, Fachgebiet AV, 2015 37

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

Execute, Discover that a LWM2M Server can use to get service related to resources from
LWM2M Client.

1. Create
This operation is used by the DM Server to create the object instances and re-
sources in the DM Client. The information is sent in the payload of the request.
It has following parameters as shown in Table 4.1[OMA13a].

Parameter Required Default
Value

Notes

Object ID Yes - Indicates Object

Object Instance
ID

No - Indicates Object Instance. If this isn’t specified,
client decides ID of Object Instance

New Value Yes - New value is included in the payload to create object
instance

Table 4.1: Operation Create

2. Delete
This operation is used by LWM2M Server to delete an object instance in the
LWM2M Client. The object instance that is deleted using this operation must
have been created using the Registration operation. It has following parameters
as shown in the Table 4.2[OMA13a].

Parameter Required Default
Value

Notes

Object ID Yes - Indicates Object

Object Instance
ID

Yes - Indicates Object Instance to delete

Table 4.2: Operation Delete

3. Discover
This operation is used to discover the resources implemented in the object. It
is also used to discover the attributes of the individual resource, resources of an
object instance or all object instances of an object. The response to this request
includes list of resources as described in CoRE Link Format (RFC 6690) along with
their attributes.It has following parameters as shown in the Table 4.3[OMA13a].

4. Read
This operation is used to access the value of a resource, an array of resources, an
object instances. It has following parameters as shown in the Table 4.4[OMA13a].

38 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Parameter Required Default
Value

Notes

Object ID Yes - Indicates the Object.

Object Instance
ID

No - Indicates Object Instance.

Resource ID No - Indicates the Resource.

Table 4.3: Operation Discover

Parameter Required Default
Value

Notes

Object ID Yes - Indicates the Object

Object Instance
ID

Yes - Indicates Object Instance. If resource ID isn’t speci-
fied, whole object is returned.

Resource ID No - Indicates the resource to read

Table 4.4: Operation Read

5. Write
This operation is used to change the value of a resource, an array of resource
instances or multiple resources from the object instances at once. It has following
parameters as shown in the Table 4.5[OMA13a].

Parameter Required Default
Value

Notes

Object ID Yes - Indicates the Object

Object Instance
ID

Yes - Indicates Object Instance. If resource ID isn’t speci-
fied, the included payload is an object instance con-
taining resource values to be written.

Resource ID No - Indicates the resource to be written. The value of the
resource is contained in the payload.

New Value Yes - The new value in the payload to update the resources.

Table 4.5: Operation Write

6. Execute
This operation is used to carry out some action and performed on individual re-
source. It contains following parameters as shown in the Table 4.6[OMA13a].

7. Write Attributes
This operation is used to update the attributes of the object instances and resource
instances. There are six attributes defined such as Maximum period, Minimum
period, Greater than, Less than, Step and Cancel. It has following parameters as

Master Thesis, TU Berlin, Fachgebiet AV, 2015 39

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

Parameter Required Default
Value

Notes

Object ID Yes - Indicates the Object

Object Instance
ID

Yes - Indicates Object Instance.

Resource ID Yes - Indicates the resource to execute.

Table 4.6: Operation Execute

shown in the Table 4.7[OMA13a].

Parameter Required Default
Value

Notes

Object ID Yes - Indicates the Object

Object Instance
ID

Yes - Indicates Object Instance.

Resource ID Yes - Indicates the resource to execute.

Table 4.7: Operation Write Attributes

4.1.4 Information Reporting Interface

This interface is used by a LWM2M Server to observe any changes in a resource present
in a LWM2M Client and receiving notifications when new values are available. The
LWM2M Server sends an observation request to the LWM2M Client for observing an
object instance or resource instance. This operation may contain a number of optional
attribute settings that defines how the notifications should reach the LWM2M Server.
An observation ends when cancel observation operation is performed on that object
instance or resource instance in the LWM2M Client[OMA13a].

1. Observation
The LWM2M server initiates an observation by sending a request to monitor a
specific resource, resources within an object instance or all the object instances
of an object with LWM2M client. The observation request is dependent on few
attributes that are illustrated in Table 4.7 and can be modified using the Write
Attribute operation as discussed above. It has following parameters as shown in
the Table 4.8[OMA13a][Har14].

2. Notify
This operation is executed from the LWM2M Client to the LWM2M Server if
there is a change or an update in the observed object instance or resource. The
notification message should include the updated values in the object instance or
resource along with other information like same token id as that of the request,

40 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Parameter Required Default
Value

Notes

Object ID Yes - Indicates the Object

Object Instance
ID

No - Indicates Object Instance to observe. If not specified,
all object instance of the object are observed and
resource IDs must not be specified.

Resource ID No - Indicates the resource to observe. If not specified,
whole object instance is observed.

Table 4.8: Operation Observation

observation time and etc. While sending the notification, it should meet all the
criteria specified in the attributes of object instance or resource as shown in Table
4.7. It has following parameters as shown in the Table 4.9[OMA13a][Har14].

Parameter Required Default
Value

Notes

Updated Value Yes - The new value is about object instance or resource.

Table 4.9: Operation Notify

When an observation is sent on an object or a resource, a Token ID is maintained
besides a Message ID in the request message. When notifying back upon the
observed resource being modified, same Token ID is used. Also, observe time,
which is the time taken to send a notification after the observation started, is
also sent along with the response. The figure 4.3 and figure 4.4 show the activity
diagrams for General and Specific Observation and Notification[OMA13a][Har14].

3. Cancel Observation
If the object instance or resource observation is no more required, it can be can-
celled by sending a Cancel Observation request from the LWM2M DM Server to
the LWM2M DM Client. This operation doesn’t contain any parameters at the
LWM2M layer. The LWM2M Server can do this operation in two ways[OMA13a][Har14].

• By sending ”Cancel Observation” operation
When the LWM2M Server is no more interested being notified about the
object instance or resource updates, the LWM2M Server can send a Cancel
Observation request to end the observation.

• By sending ”Write Attributes” with cancel parameter
If the LWM2M Server executes the ”Write Attributes” operation with cancel
parameter to a certain URI in the LWM2M Client, the LWM2M Client must
cancel observation for that specified URI.

Master Thesis, TU Berlin, Fachgebiet AV, 2015 41

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

Figure 4.3: Activity Diagram depicting Resource Observation

4.2 OMA LWM2M Device Management Resource Model

The resource model plays an important role in the organization of data stored in the
memory or the database. It is directly related with the scalability, accessibility in short
time, readability, organization and management of data. According to the specification,
resource model is a hierarchical system consisting of Objects, Object Instances, Re-
sources, Resource Instances <object id/object instance id/resource id/resource instance id>.
The concept is to use the python dictionary to store the data and class objects in JSON
format in each hierarchical level to reduce the access time. The time complexity is O(1)
in almost all operations related to dictionary except the iteration which is O(N)1. The
figure 5.2 shows the design and implementation of DM resource model.

4.3 OpenMTC Middleware Platform

OpenMTC[Fra14] is a standard compliant implementation of ETSI M2M and further
extended to meet the need of oneM2M standard. It is a middlware platform enabling
generic M2M communication and acts as a facilitator between different service platforms.

1https://wiki.python.org/moin/TimeComplexity

42 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Figure 4.4: Activity Diagram depicting Resource Update Notification

The core network allows flawless communication management of different terminals, sen-
sors, actuators and etc. It is designed to act as a horizontal convergence layer for machine
type communication that supports multiple vertical application domains[Fra14]. It ex-
tends its support in M2M market segments such as smart city building(TRESCIMO2

project), e-Health(FI-STAR3 project), automotive, surveillance and monitoring and etc.

OpenMTC consists of service capability layers such as Gateway Service Capability
Layer(GSCL) and Network Service Capability Layer(NSCL). Additionally, it also sup-
ports Device Service Capability Layer(DSCL) for devices that don’t need gateway for
communication with the core networks and applications.

OpenMTC supports Management Objects(mgmtObjs) as part of its resource tree as de-
fined in the standards. These resources are part of Network Reachability, Addressing and

2www.trescimo.eu
3www.fi-star.eu

Master Thesis, TU Berlin, Fachgebiet AV, 2015 43

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

Repository(NRAR) capability and also deals with the Device Management[Fra14][ETS10d].
The mgmtObjs can be located under scl paths such as

• <sclBase>/scls/<scl>/mgmtObjs is used to manage service capabilities and for
other management functions of single <scl>resource.

• <sclBase>/scls/<scl>/attachedDevices/<attachedDevice>/mgmtObjs is used for
management of each D’ device attached to M2M Gateway represented by <scl>.

• <sclBase>/scls/<scl>/attachedDevices/mgmtObjs is used for M2M Area Net-
work Management of each D’ device attached to M2M Gateway.

M2M Server

It refers to M2M service capabilities in the network domain and is employed as a back-end
component in the cloud. It provides a managed resource tree for the front-end compo-
nents such as GSCLs and DSCLs which are registered. The M2M devices which needs
public connectivity access can be registered to a Gateway which is further registered
to M2M Server in the backend under attachedDevices resource. Similarly, the devices
with connectivity access can directly register as scl resource in the M2M Server[ETS10d].

In connection to the Device Management, M2M Server allows mgmtObjs and its ETSI
defined resources and attributes/parameters to be placed in various locations as men-
tioned in section 4.3 and in the figure 2.2. Further, the resources that are compliant to
the LWM2M objects are placed under respective mgmtObjs as flexible attributes.

4.4 Adapters

The main idea to have Adapters in the design and concept is to translate the messages
that are compliant to ETSI M2M (understood by OpenMTC) and LWM2M Device
Management (understood by LWM2M DM Server and Client). There are two adapters:

1. M2M Gateway DM Adapter : between M2M Gateway and LWM2M DM
Client.

2. M2M Server DM Adapter : between M2M Server and LWM2M DM Server.

The LWM2M DM Server and Client understand CoAP aligned messages and objects
which use custom built APIs to hide the underlying mechanisms. The type of the
messages sent are POST, PUT, GET and DELETE. The OpenMTC platform uses Re-
questIndication objects that use APIs such as CreateRequestIndication, UpdateRequestIndi-
cation, DeleteRequestIndication to create, update and delete the ETSI resources same
as REST interfaces. So, there is the need of above listed adapters that translate infor-
mation and create messages and objects that handle the resources respectively to avoid
the compatibility issues.

The adapters use internal events to subscribe to the ETSI defined resources such as

44 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

scl, attachedDevice, mgmtObj, mgmtCmd and etc. When a new resource is created
or updated in the M2M Server/M2M Gateway resource tree, the adapter gets notified
about the changes. Then, the adapter translates this message compliant to LWM2M
standard in order to push the changes in the LWM2M Device Management Server and
Client. On the other hand, these adapters are also subscribed LWM2M Device Manage-
ment Server and Client via General and Specific subscriptions to get notified about the
changes in the Device Management. Similarly, the adapters push the changes by using
RequestIndication API calls and RequestIndication objects.

4.5 Device Management Web GUI

The web GUI gives a visual depiction of devices and gateways registered in the Device
Management Server with all the important details using an easy interface. It is a good
way of knowing about the status of devices and gateways connected to the system.
Furthermore, the interfaces in the GUI that helps to remotely control the devices by
sending the commands using buttons would be interesting, e.g. turning on/off the remote
devices(sensors/actuators) by pressing buttons on the GUI.

4.6 Cloud Infrastructure

The concept for including cloud infrastructure is to check the viability of running large
number of components in virtual environment. With the components deployed in the
cloud, lot of advantages can be observed such as reduction in operational cost, sharing
of processing units, storage and network infrastructures. The OpenSDNCore4 which is
the implementation for Cloud based services based on ETSI Network Functions Vir-
tualisation(NFV)5 standards, and is used for demonstrating the scalability of Device
Management concept in FOKUS FUSECO Forum 2014. It receives the topology request
describing a set of service/network functions and the Device Management Server and
Device Management Clients running emulated devices are deployed in virtual machines
using OpenStack6. The orchestrator does the management and provide an uninterrupted
communication between them. Each virtual machine can be designated with different
flavors which contain certain number of processing cores, memory size as per the avail-
ability of resources. A number of network applications are also deployed as per need in
the cloud. The whole concept is more detailed in section 5.3.6 and Chapter 6 and a high
level design showing policy handling for transporting M2M traffic is shown in the figure
4.5.

4www.opensdncore.org
5http://www.etsi.org/technologies-clusters/technologies/nfv
6www.openstack.org

Master Thesis, TU Berlin, Fachgebiet AV, 2015 45

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

Figure 4.5: High Level Concept Design of Transport Policy Handling for M2M Traffic

46 Master Thesis, TU Berlin, Fachgebiet AV, 2015

5 Implementation

This chapter provides the insights to the implementation of Device Management enabler.
It starts with the description of the needed environment, project structure, implementa-
tion of the Device Management components based on the concept discussed in Chapter
4.

5.1 Environment

For the implemention, the following environment is used.

5.1.1 Ubuntu 12.04 LTS

The operating system Ubuntu1 12.04 LTS which is a widely used GNU Linux distribu-
tion is chosen and the workstation with hardware configuration of Quad-core processor
and 4 GB of DDR3 RAM are used. This version of Ubuntu is quite stable and has
a good support for programming languages. Easy access to its own repositories, third
party repositories, availability and support for large number packages are the features
for choosing this distribution. Also, JDK/JRE 1.7 packages are used for ubuntu envi-
ronment.

5.1.2 Python 2.7

Python2 2.7 is a widely used high level, general purpose, object oriented programming
language. The flexibility of its syntax allows programmers to express the concept in
fewer lines of codes than would be possible in other programming languages such as
C++ or Java. Python 2.7 comes as pre-installed package in Ubuntu 12.04 LTS.

5.1.3 Komodo 8 IDE

Komodo3 8 Integrated Development Environment(IDE) is a text editor for many popular
programming languages. This editor is used to write Python 2.7 based library functions
and plugins related to Device Management. It supports user customization through
plugins and macros. The ability to find out syntax errors related to Python 2.7 and easy
interface makes it a better choice among developers.

1www.ubuntu.com
2www.python.org
3www.komodoide.com

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

5.1.4 Gevent 1.0

Gevent4 1.0 is an event based library providing asynchronous I/O API and can scale its
number of execution units known as greenlets, according to processing load. It features
more consistent API, simpler implementation and better performance.

5.2 Project Structure

The Device Management modules are the part of OpenMTC and run as plugins. The
root folder of OpenMTC is openmtc-python. All the library modules, plugin modules
and configuration files related to Device Management are located under this folder. The
figure 5.1 shows the folders hierarchy.

Figure 5.1: Project Structure Implementation Hierarchy

1. Library Modules
All the library modules related to Device Management can be found under openmtc-
python/openmtc/lib/lwm2m lib. The lwm2m lib folder is further sub-divided into
three folders:

• api: This folder contains the list of functions related to LWM2M Device
Management operations. These functions are used by LWM2M Server and
Client for sending POST, PUT, GET, DELETE requests based on LWM2M
operations.

• data model: This folder contains files related to resource model for LWM2M
Device Management.

4www.gevent.org

48 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

• operations: This folder contains files related to various LWM2M operations.

2. Plugins
All the plugins related to Device Management can be found under openmtc-python/openmtc-
pyscl/src/pyscl/plugins.

• lwm2m dm client: This folder contains files related to LWM2M Device
Management Client and M2M Gateway Adapter.

• lwm2m dm server: This folder contains files related to LWM2M Device
Management Server.

• m2m server adapter: This folder contains files related to M2M Server
Adapter that resides between M2M Server and LWM2M Device Management
Server.

3. Configuration Files
The configuration files contains information about the plugins and the initial pa-
rameters related to plugins can be modified using these files. These files are JSON
formatted. There are atleast two configuration files to launch a M2M Server
and a M2M Gateway. These basic configuration files are located at openmtc-
python/openmtc-gevent. Other configuration files used for the purpose of evalua-
tion will be stated in the respective section.

• config-nscl.json: This configuration file is used to launch the M2M Server.
./run nscl -f path to server configuration file

• config-gscl.json: This configuration file is used to launch the M2M Gateway.
./run gscl -f path to gateway configuration file

Listing 5.1: Portion of Configuration file

{
”name ” :” lwm2m dm server ” ,
” package ” :” pysc l . p lug in s . lwm2m dm server ” ,
” d i s ab l ed ” : f a l s e ,
” c o n f i g ” :{

” lwm2m dm server ip ” : ” 1 2 7 . 0 . 0 . 1 ” ,
” lwm2m dm server port ” :5684 ,
” c l i e n t i p ” : ” 1 2 7 . 0 . 0 . 1 ” ,
” c l i e n t p o r t ” :38000

}
}

5.3 Important Implementation Aspects

This section describes the important building blocks for the implementation of LWM2M
Device Management. All the components need a listener and client for handling CoAP

Master Thesis, TU Berlin, Fachgebiet AV, 2015 49

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

requests. So, during the implementation phase, they are assigned the address local-
host:port where port is defined in the configuration files. Based on the concept design
on figure 4.1, below are the components and operations descriptions.

5.3.1 LWM2M Device Management Server

The LWM2M DM Server is used for handling requests, sending requests and managing
the management objects. The Gevent version of Datagram server is created to listen for
the CoAP requests at standard port 5684. The server handles CoAP confirmable(POST,
PUT, GET, DELETE) and non-confirmable requests. An acknowledgement is sent upon
the request is handled. The table shows the type of requests and the associated LWM2M
operations that are handled by the server. A CoAP client is used to send the requests to

Request Type LWM2M Operations

POST Registration, Create, Execution, Notification

PUT Registration Update, Write, Write Attributes

GET Discovery, Read, Observation(observe=0), Cancel Observation(observe=1)

DELETE Delete

Table 5.1: Types of Requests and Associated LWM2M Operations

other listeners. The client port starts from 38000. Every request is sent with a unique
port(i.e. port number is incremented by 1). This is not a mandatory requirement. But,
when the listener is flooded with the requests using same port number, before any of
them is acknowledged, there exists some socket issues to handle the acknowledgments.
This is the limitation of CoAP implementation.

The LWM2M DM Server maintains a Resource Tree for hierarchical storage of objects
and resources. It uses python dictionary data structure to store them. The information
retrieval in dictionaries with key:value pair is quite fast with time complexity of O(1) in
most dictionary operations.

5.3.2 LWM2M Device Management Client

The LWM2M DM Client represents a M2M Device. It is used to manage the device.
A listener is implemented using Gevent Datagram server to listen the CoAP requests
coming from the LWM2M DM Server. It also handles the LWM2M operations specific to
the associated device as discussed in the Table 5.1. A CoAP Client is also used to send
the requests to the LWM2M DM Server. Each client is assigned a unique port for the
listener and CoAP Client. The client also stores the objects and resources information
relevant to the associated device.

50 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

5.3.3 Adapters

The Adapters are implemented between M2M Gateway and LWM2M DM Client called
as M2M Gateway Adapter, also between M2M Server and LWM2M DM Server called
as M2M Server DM Adapter. The adapters address the need of translating the CoAP
and ETSI compliant messages for compatibility.

In order to receive the CoAP messages, a listener is created using Gevent Datagram
Server listening at port 5911 for M2M Server DM Adapter. The requests are handled
as discussed in above sections. A CoAP client is also needed to send the request to
LWM2M DM Client and Server by the respective adapters. The client port for M2M
Server DM Adapter starts from 35000 and is unique for each request sent.

The adapters are subscribed to various Events such as scl(created, updated), attached-
Devices(created, updated), mgmtObjs(created, updated), mgmtCmd(created, updated)
and etc. For each event, a handler is created. Upon the trigger due to any of the events,
the handler function is called. These handlers manipulate the RequestIndications and
extract information. On the other hand, there are functions to send the RequestIndica-
tions such as CreateRequestIndication, UpdateRequestIndication to create the resources
in the M2M Server and M2M Gateway.

Example of CreateRequestIndication
mgmt object = mgmtObj(id=”DeviceCapability 0”, moID=”urn:oma:lwm2m:ext:4200”, Prop-
erty=”Pulse”, Enabled=True)
request = CreateRequestIndication(
path=”/m2m/scls/gscl/attachedDevices/PulseOximeter/mgmtObjs”, resource = mgmt object)
response = self.api.handle request indication(request)

Request
curl -X GET localhost:14000/m2m/scls/gscl/attachedDevices/PulseOximeter/mgmtObjs/
DeviceCapability 0

Response

Listing 5.2: Curl Response

{
”mgmtObj” :{

” paramete r sCo l l e c t i on ” : {
”namedReference ” : []

} ,
” Property ” :” Pulse ” ,
”Enabled ” :” True”
” creat ionTime ”:”2014−12−07T11 :55 :23 .662642+00 :00”
”moID” :” urn : oma : lwm2m: ext :4200”

Master Thesis, TU Berlin, Fachgebiet AV, 2015 51

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

” s e a r c h S t r i n g s ” :{
” s ea r c hS t r i ng ” : []

}
” expirat ionTime ”:”2014−12−07T12 :55 :23 .662642+00 :00”
” s u b s c r i p t i o n R e f e r e n c e ” :”/m2m/ s c l s / g s c l / attachedDevices /

PulseOximeter /mgmtObjs/ Dev i ceCapab i l i ty 0 / s u b s c r i p t i o n s ”
}

}

5.3.4 Organization of Management Objects in Resource Model

The LWM2M DM standard specifies objects and resources hierarchy. So, in the imple-
mentation, all the objects and resources are python class objects with a set of attributes
associated with each of them. The data structure Dictionary is used to store these ob-
jects. It is used for the quick retrieval of objects as the time complexity is constant,
i.e. O(1). Hence, the resource tree contains information about the endpoints, associ-
ated objects & object instances, and resources and resource instances. The implemented
objects and their resource details are illustrated in Annex. The figure 5.2 shows the
implemented resource model of OMA LWM2M Device Management. The endpoint dic-
tionary maintains a list of registered endpoints to the LWM2M DM Server in a form of
key:value pair. It is further extended to store the Location of the registered endpoints
so that the Location can be used for object update/delete later. The object dict stores
a list of registered objects to each of the endpoint in the form of key:value pair. It also
stores the object instance which contains various properties related to resources, object
attributes(pmax, pmin) and object observation instance. The resource id dict stores list
of python class objects that contain properties for LWM2M resources(name, id, type
and few other descriptors), resource attributes(pmax, pmin and etc) and resource ob-
servation instance. The object names and resource names are extended by ” X” where
X represents the instance id if they support multiple instances which are discussed in
LWM2M specification. For example, Device 0, Location 0 indicate the first instance of
that management objects. Hence, this resource model addresses the LWM2M objects
and resources by providing a robust and scalable system.

5.3.5 LWM2M Device Management Operations

The LWM2M DM operations are maintained in separate python files as library compo-
nents. The LWM2M DM Server and LWM2M DM Client use these library functions to
do LWM2M operations. The request and response are sent using CoAP Client objects
from CoAP Client library. Some of the important DM operations are described below.

5.3.5.1 Client Registration

The LWM2M Client registers to the LWM2M DM Server with an unique endpoint name,
registration parameters. The unique endpoint name and registration parameters can be

52 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Figure 5.2: Resource Model in Device Management

used from the configuration file. A ClientEndpoint is implemented as a Python class.
Each object of this class associates a number of object attributes such as the endpoint
name, its registered location, sender and listener IPs and ports. A Python Dictionary
data-structure is used to associate each endpoint with its endpoint object. The LWM2M
Client uses a CoAP Client and library function to send the registration request to the
LWM2M DM Server. The request is of type POST. On successful registration, the
LWM2M DM Server responses with a unique 15 digit location address as the request is
a Confirmable(CON) message. This unique location address is further used to send the
updates on registration parameters or delete the Client if not required anymore.

Client Registration
client = CoapClient(”coap://” + server ip port, client port=client port)
response = client.post(path+query, payload, timeout=10000, content type=content type)
return response

Master Thesis, TU Berlin, Fachgebiet AV, 2015 53

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

5.3.5.2 Resource Discovery

It is used to discover the registered clients along with associated resources and their
attributes. Two types of discoveries are proposed in this implementation. If the dis-
covery is done in an entry point which is a string ”/.well-known/core”, the LWM2M
DM Server returns all the endpoint links. Attributes information of a registered ob-
ject/resource can be accessed by requesting a discovery on a particular resource path.

Resource Discovery
query=”?method=discover”
client = CoapClient(”coap://” + server ip port, client port=client port)
response = client.get(path+query, data=payload, timeout=10000, con-
tent type=content type)
return response

5.3.5.3 Resource Observation and Notification

When an object or resource is being observed, a Token ID is assigned to that observation.
The request is of type GET and it contains an optional parameter observe which is set
to 0 to indicate the request is observation. A CoAP Client is used to send the request.
When there is an update in that observed resource, the same Token ID is used for the no-
tification. Also, the observation time is returned in the response. It is the time elapsed
since the observation request is processed. This ensures the observation-notification
pair. In this implementation, two types of observations are considered. General Obser-
vation and Specific Observation. A General Observation is subjected to all the resources
change and uses a single Token ID for notification. A Specific Observation is specific
to a particular object or resource and a different Token ID is used for each of them.
To cancel the observation, the operation Cancel Observation can be used. A CoAP
client is used to send GET request on that observed resource with observe set to 1.
This cancels the observation and no further updates on that resource are notified.

Resource Observation
client = CoapClient(”coap://” + server ip port, client port=client port)
response = client.get(path, data=payload, timeout=10000, observe=observe, con-
tent type=content type)
return response

5.3.6 Use Case Additions

For realizing and evaluating the scalability of the emulated devices, some more com-
ponents are implemented. The figure 5.3 shows the design and implementation of the
components5 for scalability test that use cloud infrastructure.

5These components are used for 5th FOKUS FUSECO Forum 2014, Berlin

54 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Figure 5.3: Components for Scalability Test in Device Management

5.3.6.1 Applications

Two applications are created: back-end connectivity application and back-end applica-
tion. The back-end application is created when it is registered to the M2M Server. This
application forwards the transport policy information such as IP, Port, Transport proto-
col type via orchestretor of the OpenSDNcore to the back-end connectivity application
registered at M2M Server. The back-end connectivity application stores these infor-
mation as the resource attributes of the TransportMgmtPolicy mgmtObj object. This
action triggers the M2M Server DM Adapter to handle this mgmtObj updates. The
detailed evaluation setup analysis is done in Chapter 6.

5.3.6.2 Emulated Devices

A 1000 emulated devices are registered in the front-end as DSCLs. Along with the
basic registration, three management objects are also created such as TransportMgmt-
Policy(proposed by FOKUS), and other two registered at OMA LWM2M: Device and
Location. When they are created, M2M Gateway DM Adapter listening on the events
of scl and mgmtObj create/update gets triggered and handled accordingly to create

Master Thesis, TU Berlin, Fachgebiet AV, 2015 55

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

LWM2M DM Client and getting them registered at LWM2M DM Server.

5.3.6.3 Device Management Web GUI

An interface to visualize the registered emulated devices and their mgmtObj attributes
in the web-browser is developed using JavaScript and JQuery. The web GUI uses Open-
MTC Socket IO plugin to establish connection with the M2M Server to extract infor-
mation from it. The GUI component is subscribed to the M2M Server for changes in
the mgmtObj. Whenever there is an update on the mgmtObj resources, the component
gets triggered and then updates the GUI with new values. In this implementation, GUI
is only used to monitor the mgmtObj changes. But, it can be further extended to send
the commands to carry out some actions in the devices. The figure 5.4 shows the De-
vice Management web GUI in a browser. The figure 5.5 shows 1000 emulated devices
represented by square boxes and IDs. They change color whenever the emulated devices
resource updates are triggered.

Figure 5.4: Device Management Web GUI

5.4 Documentation

The important function documentation is added in the python files. Further documen-
tation is also added in internal OpenMTC wiki page.

56 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Figure 5.5: GUI showing Emulated Devices Resource Updates

Master Thesis, TU Berlin, Fachgebiet AV, 2015 57

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

58 Master Thesis, TU Berlin, Fachgebiet AV, 2015

6 Evaluation

In this chapter, the implementation of LWM2M Device Management is evaluated using
a setup which is discussed in the section 6.1. It is followed by some data analysis and
performance measurements under different environments.

6.1 Test Environment

A demo setup related to Device Management at FOKUS FUSECO1 Forum 2014 is used
to carry out tests for the evaluation and performance measurements. The figure 6.1
illustrates the demo setup.

The virtual machines in the OpenStack are used to run the M2M Server and Emulated
devices in different datacenters managed by OpenSDNCore/Orchestrator. Unlike local
machine that uses localhost, these virtual machines use 172.19.0.0/16 for communication.

A 1000 emulated devices are registered along with three management objects Trans-
portMgmtPolicy, Device and Location in a short span of time. This triggers the internal
events in the M2M Gateway DM Adapter. Then, 1000 LWM2M DM Clients are cre-
ated which are registered to the LWM2M DM Server. The M2M Server DM Adapter
translate these messages in CoAP to ETSI compliant messages to be registered in M2M
Server. The web GUI displays the information regarding all the emulated devices in web
browser when it is notified of the updates on mgmtObjs.

When there is a Network Application(NA) topology request, the Orchestrator in the
OpenSDNCore deploys it and when the state becomes Ready, the transport policy in-
formation is forwarded to the Connectivity M2M application. The container Transport-
Management of Connectivity M2M application contains all the information about trans-
port policy which is further saved in the TransportMgmtPolicy object under mgmtObjs
resource. This update triggers a handler in the M2M Server DM Adapter which trans-
late the information and sends a CoAP message with Write Operation to the LWM2M
DM Server. The LWM2M DM Server updates its resource tree and forwards the Write
operation request to the LWM2M DM Client. The Client also updates its resource tree.
The transport policy is further sent to Transport Domain via the M2M Gateway DM
Adapter. Now, the Transport Domain has the information about which NA to send the
data from the device. When the device generates the data, the Transport Domain retar-
gets it to the correct NA. Furthermore, all these information updates on the management

1http://www.fokus.fraunhofer.de/fb1668ca4a126cd2/5th-fokus-fuseco-forum

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

Figure 6.1: Overall Setup for Emulation of Devices in Device Management for Scalability
Test

objects can be visualized in the web GUI attached to the M2M Server.

6.2 Scalability

The setup in the figure 6.1 is to test the scalability of LWM2M Device Management to
handle the devices. A 1000 emulated devices are generated that depict the real devices
with instantiation of three management objects that characterize these emulated devices.
Initially there were issues with the sockets being re-used. It was resolved using semaphore

60 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

to allow every CoAP request to have different ports. So, every time a port is assigned
from a pool of ports to each module. This really enhanced in scaling the number of
emulated devices that can be used. As the 1000 emulated devices start their registration
almost all together, there is a huge traffic on the LWM2M DM Server to handle the
simultaneous requests coming from the Clients. Hence, few of the requests aren’t served.
The CoAP library has a feature to re-transmit the requests. This is explained in the
section 6.3. Also, instead of sending small payload sized request every time, bundling of
the messages can be done but not to exceed the size of payload too high in every request.
This reduces the port usage and the number of requests sent to the LWM2M DM Server.
Hence, the use of different ports for requests, re-transmission feature, randomized back-
off timer, bundling of messages to make appropriate sized payload are some of the
possible ways that we encounter which helps to scale the number of emulated devices.

6.3 Congestion Control

The congestion can be observed at the server side when there are many requests arriving
at the same time. This causes the request queue size to be full and additional incoming
requests get lost. Hence, these requests are never acknowledged. In the client side, a
time-out is maintained in the CoAP library after each request is sent, after which if not
acknowledged results in the re-transmission of the request. The re-transmission of the
request is done after a certain time interval and it is randomized using a small math-
ematical formula. Every time there is a re-transmission, the waiting time is increased
for that particular request. This randomization in time cause the re-transmission of the
requests to be spread over time, making them possible to reach the server at different
times. This reduces the load in the server at any instant of time. This increases the
efficiency of the server and less re-transmission of the requests is achieved. This also
helps to reduce the utilization of the network bandwidth.

6.4 Performance Measurements

The performance evaluation and measurement helps to know the quality of the system.
It can be done in various ways by plotting the data and showing them in graphs, in
tabular form, data comparisons and etc. The Wireshark2, Tshark3 and TCPDump4 are
used to collect the packets and process during the analysis.

There are two scenarios considered to evaluate the performance. The same experiment is
carried out in the local machine and between the virtual machines in the OpenStack un-
der different conditions such as with uniform back-off timer and random back-off timer.
This helps to understand the behavior of the system in different environments. All the
experiments are repeated three times and their average are taken into account. A total

2www.wireshark.org
3https://www.wireshark.org/docs/man-pages/tshark.html
4www.tcpdump.org

Master Thesis, TU Berlin, Fachgebiet AV, 2015 61

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

of 60(20× 3) wireshark traces for each case resulting to 240(60× 4) wireshark traces for
four different cases are processed to generate the results. To calculate the total round
trip time of requests, a bash script is used.

6.4.1 Total Round Trip Time of Requests

The total round trip time of a request is the aggregation of RTT for the basic registration
and the registration of the three management objects as mentioned before. The six plots
are created with 300, 600, 1000 emulated devices, three with uniform+random back-off
timer in local machine, three with uniform+random backoff timer in virtual machines.

Comparing the plots in the figures 6.2, 6.3 and 6.4, 6.5 and 6.6, 6.7, we observe that as
the number of emulated devices increase, the total RTT also increase from around 0.5
seconds to 20 seconds. This is because of the more re-transmissions of the requests as
the server becomes overloaded at one point and can’t acknowledge back before the time-
out period. It is also interesting to see that total average RTT is less in local machine
compared to virtual machine. In general, in the local machine, the requests reach the
server quite fast, get processed and are acknowledged back before the time-out period
preventing most re-transmissions.

Each plot consists of two curves based on random back-off timer and uniform back-
off timer. The random back-off timer helps to randomly distribute the sending of the
requests over time to lower the load in the server. The uniform back-off timer also
distributes but the block of requests over time which might affect the server performance.
It can’t be determined exactly at which point the re-transmissions occur heavily but
from the figures 6.2, 6.3 and 6.4, 6.5 and 6.6, 6.7, it can be observed that at certain
intervals, there are peak points indicating loss of the requests(server overloads) resulting
into more re-transmissions and ultimately higher average RTT. It can be seen that using
the random back-off timer improves the performance by random distribution of requests
and hence, lowering the total average RTT in almost all cases.

6.4.2 Average Re-transmissions per Request

When the acknowledgement isn’t sent back as a response within a specified time-out
period defined in CoAP library, the request has to be re-transmitted. It could be be-
cause of several reasons like the request is lost on its way or never reached the server,
limitation in the server’s request queue size. In this experiment, the latter reason is
quite dominating. The maximum number of re-transmissions per request is set to 15. It
means each request can be re-transmitted maximum 15 times upon failure. The experi-
ments are carried out in Local Machine and in Virtual Machines deployed in OpenStack.
Two scenarios are considered: Uniform back-off timer and Random back-off timer to
study the behavior of re-transmissions. Each experiment is performed three times to
have a better average data readings. The total time taken for each experiment isn’t

62 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 50 100 150 200 250 300

A
ve

ra
ge

 T
ot

al
 R

T
T

 p
er

 C
lie

nt
(in

 s
ec

on
ds

)

Number of Emulated Devices(Clients)

Average Total RTT for Registration in Local Machine

Uniform Back-off Timer
Random Back-off Timer

Figure 6.2: Total RTT of Client Registration for 300 Emulated Devices in Local Machine

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200 250 300

A
ve

ra
ge

 T
ot

al
 R

T
T

 p
er

 C
lie

nt
(in

 s
ec

on
ds

)

Number of Emulated Devices(Clients)

Average Total RTT for Registration in Virtual Machine

Uniform Back-off Timer
Random Back-off Timer

Figure 6.3: Total RTT of Client Registration for 300 Emulated Devices in Virtual Ma-
chine

Master Thesis, TU Berlin, Fachgebiet AV, 2015 63

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600

A
ve

ra
ge

 T
ot

al
 R

T
T

 p
er

 C
lie

nt
(in

 s
ec

on
ds

)

Number of Emulated Devices(Clients)

Average Total RTT for Registration in Local Machine

Uniform Back-off Timer
Random Back-off Timer

Figure 6.4: Total RTT of Client Registration for 600 Emulated Devices in Local Machine

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600

A
ve

ra
ge

 T
ot

al
 R

T
T

 p
er

 C
lie

nt
(in

 s
ec

on
ds

)

Number of Emulated Devices(Clients)

Average Total RTT for Registration in Virtual Machine

Uniform Back-off Timer
Random Back-off Timer

Figure 6.5: Total RTT of Client Registration for 600 Emulated Devices in Virtual Ma-
chine

64 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 T
ot

al
 R

T
T

 p
er

 C
lie

nt
(in

 s
ec

on
ds

)

Number of Emulated Devices(Clients)

Average Total RTT for Registration in Local Machine

Uniform Back-off Timer
Random Back-off Timer

Figure 6.6: Total RTT of Client Registration for 1000 Emulated Devices in Local Ma-
chine

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 T
ot

al
 R

T
T

 p
er

 C
lie

nt
(in

 s
ec

on
ds

)

Number of Emulated Devices(Clients)

Average Total RTT for Registration in Virtual Machine

Uniform Back-off Timer
Random Back-off Timer

Figure 6.7: Total RTT of Client Registration for 1000 Emulated Devices in Virtual Ma-
chine

Master Thesis, TU Berlin, Fachgebiet AV, 2015 65

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

taken into consideration for this case. Also, the launch time of the DSCLs that emulate
500 devices each also varies for each experiment which might slightly affect the outcomes.

The plot in the figure 6.8 compares the average re-transmission per request experi-
mented in local machine. It can be seen that using random back-off timer, the average
re-transmission per request is less. In uniform back-off timer, a block of requests are
re-transmitted at the same time causing the server to handle all of them at almost the
same time. The random back-off timer spreads the arrival of the requests to the server
over time, which reduces the load in the server. Hence, less re-transmissions per request
can be achieved. The higher spike at around 900 emulated devices can be explained by
the fact that at that time, more re-transmissions occurred which is totally a random case.

The plot in the figure 6.9 compares the average re-transmission per request experimented
in virtual machine. Here, also, the experiment with the random back-off timer proven to
produce better results against the uniform back-off timer. At around 200-250 emulated
devices, the re-transmissions per request is observed to be high as can be estimated that
it reached its bottleneck. The peaks in the curve represent more re-transmissions of
requests at those points that occur at certain intervals as the server gets overloaded.
Later at higher number of emulated devices, the re-transmitted requests are spread over
time reducing the average re-transmission per request to a lower value.

The plot in the figure 6.10 and 6.11 compare the average re-transmission per request
in local and virtual machines experimented using uniform back-off timer and random
back-off timer respectively. In both cases, the average re-transmissions per request in
local machine seem less which indicates to a better performance. A series of peaks can
be observed in figures 6.10 and 6.11 at intervals which indicate more re-transmissions
and server overload. In local machine, the response is sent quite quickly and in most
cases, the acknowledgments reaches the clients before the time-out period. Thus, there
are less re-transmissions lowering the average re-transmission per request.

66 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

et
ra

ns
m

is
si

on

Number of Emulated Devices

Average Percentage of Retransmissions using Local Machine

Uniform Backoff Timer
Random Backoff Timer

Figure 6.8: Average Retransmissions per Request in Local Machine

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

et
ra

ns
m

is
si

on

Number of Emulated Devices

Average Percentage of Retransmissions using Virtual Machine

Uniform Backoff Timer
Random Backoff Timer

Figure 6.9: Average Retransmissions per Request in Virtual Machine

Master Thesis, TU Berlin, Fachgebiet AV, 2015 67

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

et
ra

ns
m

is
si

on

Number of Emulated Devices

Average Percentage of Retransmissions using Uniform Back-off Timer

Local Machine
Virtual Machine

Figure 6.10: Average Retransmissions per Request with Uniform Back-off Timer

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

et
ra

ns
m

is
si

on

Number of Emulated Devices

Average Percentage of Retransmissions using Random Back-off Timer

Local Machine
Virtual Machine

Figure 6.11: Average Retransmissions per Request with Random Back-off Timer

68 Master Thesis, TU Berlin, Fachgebiet AV, 2015

7 Conclusion

This chapter concludes the overall thesis work. It summarizes the concept of machine
to machine communication in the field of Internet of Things, detailed implementation
and importance of device management platform for controlling the sensor devices, other
logical implementation that makes device management more scalable and robust. The
summary is followed by other sections that discuss about the implementation fields of
the components in real project, problems encountered and limitations, and future work.

7.1 Summary

The Internet of Things is a major breakthrough in the field of technology. The ma-
chine to machine communication and machine automation are the promising concepts
for the current and future generation. The scope of the IoT is so wide that there is huge
potential in every field like Smart Home/City, Surveillance and Security, E-Health and
Tele-medicine, Automobiles and Traffic Control and etc. From the business prospective,
there is a huge revenue potential. Many research institutions like Fraunhofer FOKUS,
T-Labs etc and companies like Cisco, Deutsche Telekom etc are working on ways to
make IoT a major success.

The machine to machine communication involves automation of devices. These sen-
sor devices collect information from the environment and send it to the central system
through some proper channel like gateways where it is processed and disseminated to
the applications that are subscribed to them. These sensor devices are generally char-
acterized by low-powered, low capacity, low communication range of few meters. Hence,
in order to reach to the global internet, they should be accompanied by gateways. The
gateways manage the attached devices and the part of the front-end of the system. The
gateways are connected to the back-end of the system through the internet.

The OpenMTC middleware is a platform for generic machine to machine communi-
cation and is based on ETSI M2M and oneM2M standards. It acts as a bridge between
different service platforms and the core network to enable seamless communication man-
agement of sensors and actuators. It is designed as a horizontal convergence layer for
machine type communication and supports vertical application domains. The typical
M2M market vertical segments can be deployed as a part of common platform. It con-
sists of service capability layers such as gateway service capability layer and network
service capability layer[Fra14]. The components are implemented as the plugins which
can be managed using configuration files. One of the components is related to device

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

management which is the topic of this thesis.

As the domain of the IoT is quite huge, the number of sensor devices connecting to
the internet is also increasing rapidly. This raises the issue of handling these devices
in a more scientific and systematic way. Hence, the need of Device Management en-
abler is a must for managing and controlling these devices. There are different flavors
of device management enablers like OMA-DM, TR-069 that are likely to manage and
configure remote devices with high capacity and uses HTTP and TCP for transport.
These technologies are still in practice but to support the ever increasing number of
devices which are also called constrained devices because of its characteristics being low
powered, low capacity, less communication range, there is a need of a different standard.
This standard is OMA LightWeight M2M. The OMA LWM2M is characterized by an
efficient and scalable object model, supports constrained devices, REST architecture,
CoAP using UDP, designated resource descriptions of the objects and etc. Based on this
OMA LWM2M standard, the Device Management enabler is written in Python 2.7 and
implemented as plugin to the OpenMTC platform.

The OMA LWM2M Device Management consists of Device Management Server and
Clients. The DM Clients are connected to the LWM2M DM Server. They exchange
CoAP messages to share the management objects information or to send the control
information. Each device is represented by a DM Client and characterized by several
pre-defined management objects. Both of them maintain an efficient objects hierarchy
to store and retrieve the management object information. The Python dictionary data-
structure is used for it and its time complexity for data retrieval being O(1) for most
operations is an advantage. Both the DM Server and DM Clients maintain listener and
client ports to listen and send the requests. There are various DM operations proposed
in the standard. The operations such as Read, Write, Create, Delete, Execute, Write
Attributes, Discovery, Observation & Notification are implemented based on the stan-
dard. In order to make this module inter-operable with OpenMTC, two adapters in the
M2M Gateway and M2M Server are implemented. The main task of these adapters is
to translate the CoAP messages and ETSI/oneM2M complaint M2M messages.

Adding more to the proposed and implemented Device Management, based on the de-
sign in the figure 6.1, the evaluation and performance based on total round trip time,
number of retransmissions and scalability of emulated devices are carried out. These
factors check the efficiency of the LWM2M Device Management implementation. The
experiments are done in the Local Machine and in the Virtual Machines running in Open-
Stack. The random back-off timer and uniform back-off timer are also considered while
re-transmitting the lost or not acknowledged requests. The results are then compared.
The random back-off timer improves the system by spreading the requests being sent
over time. This lowers the number of requests arriving in the DM Server and reduces
the loss of the requests.

70 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Concluding briefly chapter-wise, Chapter 1 introduces Internet of Things, importance of
machine communication and automation and their scope in present and future scenario.
Chapter 2 introduces the State of the art concepts on various dominating technologies
in IoT and governing standards/specifications relating to Device Management. Chapter
3 talks about the technical requirements of the proposed system by illustrating some
Use Cases. Chapter 4 discusses about the concept design of the Device Management
enabler in details and other involved components. Chapter 5 explains the way LWM2M
Device Management and various other components are implemented and merged to-
gether for inter-operability. Chapter 6 refers to the evaluation and performance tests of
LWM2M Device Management based on various factors like scalability, efficiency, request
re-transmissions, total request time etc.

7.2 Dissemination

The implementation of LWM2M Device Management is well integrated into OpenMTC
platform. The OpenMTC middleware is used as a generic machine to machine communi-
cation platform in European Union(EU) project like Future Internet - Social Technolog-
ical Alignment in Health Care(FI-STAR) and EU-South Africa collaboration project
Testbed for Reliable Smart City Machine-to-Machine Communication(TRESCIMO).
The e-Health and tele-medicine is the major concern in FI-STAR project and Device
Management plays important role in remote management of devices. The TRESCIMO
project is more concerned about making the city smart in the domain of energy con-
sumption, environment, transport, health, education. This project is critical with the
fact that urbanization is increasing rapidly and proper management of all the resources
is mandatory. This can be envisioned with smart city concept.

Based on the FOKUS FUSECO 2014 demo on Device and Connectivity Management,
we are writing a paper for ICO ICT1 with the title: Device Management based Software
Defined Solution for Provisioning Reliable M2M Infrastructures2.

7.3 Problems Encountered

Few problems were encountered during the implementation and evaluation phases. When
each GSCL was associated with an emulated device/client, the memory consumption
was high as 32 MB. This directly impacted the scalability factor as number of emulated
devices that can be experimented at a time dropped to 200-300. This problem was
overcome by handling number of emulated devices by each DSCL. This reduced the
physical limitation of memory in OpenStack. Hence, thousands of emulated devices
could be experimented afterwards. Another problem was related to loss of requests due
to the limited queue size in DM Server. The uniform re-transmission of the request

1www.icoict.org
2Authors: A. Corici, R. Shrestha, G. Carella, A. Elmangosh, R. Steinke, T. Magedanz, Fraunhofer

FOKUS.

Master Thesis, TU Berlin, Fachgebiet AV, 2015 71

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

wasn’t of much help because the re-transmitted requests would arrive the DM Server at
the same time. Hence, randomization in time was introduced while re-transmitting the
requests. This reduced the load in the DM Server and possible requests loss by some
proportion. Another problem and limitation was the number of listening sockets that
could be opened at a time per a python process. This limitation could be associated
with Ubuntu 12.04 itself.

7.4 Outlook

The security of information is a major concern and that is also stated in the LWM2M De-
vice Management standard. The Datagram Transport Layer Security (DTLS) protocol
provides communication privacy over UDP. This has to be implemented in connection
with the LWM2M Device Management enabler. Another important feature that can
be added is the Store and Forward (SAF) for the requests. The Device Management
enabler should be able to coordinate with the Connectivity Management module to
have a knowledge of existing connection path to reach the destination. If the proper
channel or connection is not available, those requests should be buffered. The module
should be aware of availability of possible connection and once it is available, the re-
quests should be delivered. This is the concept of connectivity awareness and Store and
Forward(SAF). These concepts can further be extended to the TRESCIMO/FI-STAR
projects based on their requirements. Regarding the inter-operability test, the LWM2M
Client is tested with Leshan Server(described in section 2.3) for the client registration
and looking forward to other operational tests.

72 Master Thesis, TU Berlin, Fachgebiet AV, 2015

List of Acronyms

3GPP 3rd Generation Partnership Project
API Application Programming Interface
CRUD Create Read Update Delete
DM Device Management
DSL Digital Subscriber Line
FOKUS Fraunhofer-Institut fur Offene Kommunikationssysteme
GUI Graphical User Interface
GPS Global Positioning System
GSCL Gateway Service Capability Layer
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
IETF Internet Engineering Task Force
IoT Internet of Things
IP Internet Protocol
JDK Java Developer Kit
JRE Java Runtime Environment
JSON JavaScript Object Notation
JVM Java Virtual Machine
LTE Long Term Evolution
LWM2M LightWeight Machine to Machine
M2M Machine to Machine
MO Management Object
NGN Next Generation Network
NSCL Network Service Capability Layer
OMA Open Mobile Alliance
OpenEPC Open Evolved Packet Core
OpenMTC Open Machine Type Communication
OpenSDNCore Open Software Defined Network Core
PAN Personal Area Network
QoS Quality of Service
REST Representational State Transfer
RFC Request For Comments
SDK Software Developer Kit
SMS Short Message Service
TCP Transmission Control Protocol
TLS Transport Layer Security
URI Uniform Resource Identifier

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

W3C World Wide Web Consortium
WiMAX Worldwide Interoperability for Microwave Access

74 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Bibliography

[Cha13] Chase, Jim: The Evolution of the Internet of Things, p1, 2013.

[ETSa] ETSI: Machine to Machine Communication. http://www.etsi.org/

technologies-clusters/technologies/m2m.

[ETSb] ETSI: Wikipedia reference on ETSI. http://en.wikipedia.org/wiki/

ETSI.

[ETS10a] ETSI: ETSI TR 102 691 v1.1.1: Machine to Machine Com-
munication(M2M); Smart Metering Use Cases, 2010. http:

//www.etsi.org/deliver/etsi_tr/102600_102699/102691/01.01.

01_60/tr_102691v010101p.pdf.

[ETS10b] ETSI: ETSI TS 102 690 v1.1.1, Machine to Machine Communication: Func-
tional Architecture, 2011/2010. Page 17, Technical Specification.

[ETS10c] ETSI: ETSI TS 102 690 v1.1.1, Machine to Machine Communication: Func-
tional Architecture, 2011/2010. Page 103, Technical Specification.

[ETS10d] ETSI: ETSI TS 102 690 v1.1.1, Machine to Machine Communication: Func-
tional Architecture, 2011/2010. Technical Specification.

[ETS13a] ETSI: ETSI TR 102 732 v1.1.1: Machine to Machine Communi-
cation(M2M); Use Cases of M2M applications for eHealth, 2013.
http://www.etsi.org/deliver/etsi_tr/102700_102799/102732/01.

01.01_60/tr_102732v010101p.pdf.

[ETS13b] ETSI: ETSI TR 102 857 v1.1.1: Machine to Machine Communica-
tion(M2M); Use Cases of M2M applications for Connected Consumer,
2013. http://www.etsi.org/deliver/etsi_tr/102800_102899/102857/

01.01.01_60/tr_102857v010101p.pdf.

[Fel14] Fell, Mark: Roadmap for The Emerging ”Internet of Things”, 2014.

[Fra14] Fraunhofer FOKUS: Open Machine Type Communication, 2014. http:

//www.open-mtc.org.

[Har14] Hartke, K.: Observing Resources in CoAP draft-ietf-core-observe-16, 2014.

[HTT] HTTP: Wikipedia Reference on HTTP. http://en.wikipedia.org/wiki/ Hy-
pertext Transfer Protocol.

http://www.etsi.org/technologies-clusters/technologies/m2m
http://www.etsi.org/technologies-clusters/technologies/m2m
http://en.wikipedia.org/wiki/ETSI
http://en.wikipedia.org/wiki/ETSI
http://www.etsi.org/deliver/etsi_tr/102600_102699/102691/01.01.01_60/tr_102691v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102600_102699/102691/01.01.01_60/tr_102691v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102600_102699/102691/01.01.01_60/tr_102691v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102700_102799/102732/01.01.01_60/tr_102732v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102700_102799/102732/01.01.01_60/tr_102732v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102800_102899/102857/01.01.01_60/tr_102857v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102800_102899/102857/01.01.01_60/tr_102857v010101p.pdf
http://www.open-mtc.org
http://www.open-mtc.org

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

[IET12] IETF: CoRE Link Format, 2012. https://tools.ietf.org/html/rfc6690.

[Ins13] Institute, McKinsey Global: Disruptive technologies: Advances that
will transform life, business, and the global economy, p51, 2013.

[KO] Kellmereit, Daniel and Daniel Obodovski: The Silent Intelligence-
The Internet of Things, p14.

[MC] McEwen, Adrian and Hakim Cassimally: Designing the Internet of
Things, p11.

[OMA12] OMA: OMA Device Management Protocol, Candidate Version 1.3,
2012. http://technical.openmobilealliance.org/Technical/Release_
Program/docs/DM/V1_3-20130422-C/OMA-AD-DM-V1_3-20120306-C.pdf.

[OMA13a] OMA: Lightweight Machine to Machine Technical Specification, Candidate
Version 1.0, 2013.

[OMA13b] OMA: OMA Device Management Protocol, Candidate Version 2.0,
2013. http://technical.openmobilealliance.org/Technical/

Release_Program/docs/DM/V2_0-20131210-C/OMA-TS-DM_Protocol-V2_

0-20131210-C.pdf.

[one] oneM2M: Introduction to oneM2M. http://www.onem2m.org/news-
events/news/2-leading-ict-standards-development-organizations-launch-
onem2m.

[one14a] oneM2M: oneM2M Members, 2014. http://www.onem2m.org/membership/current-
members.

[one14b] oneM2M: oneM2M TS 001- Functional Architecture, 2014. Page 26, Tech-
nical Specification.

[one14c] oneM2M: TS 001- oneM2M Functional Architecture, 2014. Page 19, Tech-
nical Specification.

[one14d] oneM2M: TS 005- oneM2M Management Enablement, 2014. Technical
Specification.

[TLS] Tapio Leva, Oleksiy Mazhelis and Henna Suomi: Comparing the cost
efficiency of CoAP and HTTP in Web of Things Applications.

[ZSB14] Z. Shelby, K. Hartke and C. Bormann: The Constrained Application
Protocol, 2014.

76 Master Thesis, TU Berlin, Fachgebiet AV, 2015

http://technical.openmobilealliance.org/Technical/Release_Program/docs/DM/V1_3-20130422-C/OMA-AD-DM-V1_3-20120306-C.pdf
http://technical.openmobilealliance.org/Technical/Release_Program/docs/DM/V1_3-20130422-C/OMA-AD-DM-V1_3-20120306-C.pdf
http://technical.openmobilealliance.org/Technical/Release_Program/docs/DM/V2_0-20131210-C/OMA-TS-DM_Protocol-V2_0-20131210-C.pdf
http://technical.openmobilealliance.org/Technical/Release_Program/docs/DM/V2_0-20131210-C/OMA-TS-DM_Protocol-V2_0-20131210-C.pdf
http://technical.openmobilealliance.org/Technical/Release_Program/docs/DM/V2_0-20131210-C/OMA-TS-DM_Protocol-V2_0-20131210-C.pdf

Annex

Appendix A. LWM2M Objects defined by OMA

The LWM2M Objects defined by OMA LWM2M 1.0 specification are as follows:

Object Object ID

LWM2M Security 0

LWM2M Server 1

Access Control 2

Device 3

Connectivity Monitoring 4

Firmware 5

Location 6

Connectivity Statistics 7

Some of the important LWM2M Objects are detailed below.

A.1 LWM2M Object: Device

This object provides device related information.

Object Definition

Object Object ID Instances Mandatory Object URN

Device 3 Single Mandatory urn:oma:lwm2m:
oma:3

Resource Definitions

ID Name Operations Instances Mandatory Type Range Units Description

0 Manufacturer R Single Optional String Manufacturer
Name

1 Model Num-
ber

R Single Optional String A model identi-
fier

2 Serial Num-
ber

R Single Optional String Serial Number

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

3 Firmware
Version

R Single Optional String Current
Firmware Version

4 Reboot E Single Mandatory Reboot LWM2M
Device

5 Factory Re-
set

E Single Optional Perform factory
reset on device

6 Available
Power
Sources

R Multipe Optional Integer 0-7 0-DC power,
1-Internal Bat-
tery, 2-External
Battery, 4-Power
over Ethernet,
5-USB, 6-AC
power, 7-Solar

7 Power
Source
Voltage

R Multiple Optional Integer mV Present voltage of
each resource in-
stance

8 Power
Source
Current

R Multiple Optional Integer mA Present cur-
rent of resource
instance

9 Battery
Level

R Single Optional Integer 0-
100

% Contains current
battery level per-
centage

10 Memory Free R Single Optional Integer KB Current available
storage space

11 Error Code R Multiple Mandatory Integer 0-No Error,
1-Low bat-
tery power,
2-External power
supply, 3-GPS
module failure,
4-Low received
signal, 5-Out of
memory, 6-SMS
failure, 7-IP
connectivity fail-
ure, 8-Peripheral
malfunction

12 Reset Error
Code

E Single Optional Delete all error
code resource in-
stances and set
error code-0

78 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

13 Current
Time

RW Single Optional Time Current UNIX
time of LWM2M
Client

14 UTC Offset RW Single Optional String Indicates UTC
offset currently
in effect for
LWM2M Device.

15 Timezone RW Single Optional String Indicates where
LWM2M is lo-
cated in IANA
Timezone for-
mat.

16 Supported
Binding and
Modes

R Single Mandatory String Indicates the
supported bind-
ing and modes in
LWM2M Client.

A.2 LWM2M Object: Location
This object provides device related information.
Object Definition

Object Object ID Instances Mandatory Object URN

Location 6 Single Optional urn:oma:lwm2m:
oma:6

Resource Definitions

ID Name Operations Instances Mandatory Type Range Units Description

0 Latitude R Single Mandatory String Deg Decimal notation
of latitude

1 Longitude R Single Mandatory String Deg Decimal notation
of longitude

2 Altitude R Single Optional String m Height from sea
level (in meters)

3 Uncertainty R Single Optional String m Accuracy of posi-
tion (in meters)

4 Velocity R Single Optional Opaque Velocity of de-
vice as defined
in 3GPP 23.032
GAD specs. The
device is static if
value is not set.

Master Thesis, TU Berlin, Fachgebiet AV, 2015 79

Design and Implementation of a Device Management Solution
for Standard Compliant M2M Platforms

Ranjan Shrestha

5 Timestamp R Single Mandatory Time 0-6 Timestamp when
location measure-
ment was done

A.3 LWM2M Object: TransportMgmtPolicy
This object provides device related information.
Object Definition

Object Object ID Instances Mandatory Object URN

DeviceMgmtPolicy 4300 Single Optional urn:oma:lwm2m:
ext:4300

Resource Definitions

ID Name Operations Instances Mandatory Type Range Units Description

0 appidPolicy
Mapping

RW Single Mandatory String ID of the applica-
tion for mapping

1 IPAddress RW Single Mandatory String IP address of the
application

2 port RW Single Mandatory String Port on which ap-
plication is listen-
ing

3 InitProtocol RW Single Optional String Initial Protocol
being used

4 FinalProtocol RW Single Mandatory String Final Protocol to
be used

A.4 LWM2M Object: DeviceCapability
This object provides device related information.
Object Definition

Object Object ID Instances Mandatory Object URN

DeviceCapability 4200 Single Optional urn:oma:lwm2m:
ext:4200

80 Master Thesis, TU Berlin, Fachgebiet AV, 2015

Ranjan Shrestha
Design and Implementation of a Device Management Solution

for Standard Compliant M2M Platforms

Resource Definitions

ID Name Operations Instances Mandatory Type Range Units Description

0 Property R Single Mandatory String Property Name

1 Group R Single Optional String Group Name

2 Description R Single Optional String Description of
Device Capabil-
ity

3 Attached R Single Optional Boolean Indicates if it
is currently at-
tached to the
device

4 Enabled R Single Mandatory Boolean Indicates if De-
vice Capability is
enabled or not

5 OpEnable E Single Mandatory Command use to
transfer Device
Capability to
transfer from
Disabled to
Enabled state

6 OpDisable E Single Mandatory Command use to
disable Device
Capability to
transfer from En-
abled to Disabled
state

7 DenyUserEn Single Optional Boolean Specifies if the
user is able to en-
able Device Ca-
pability

8 NotifyUser Single Optional Boolean Specifies whether
the user is no-
tified when
enable/disable
primitive is
executed

Master Thesis, TU Berlin, Fachgebiet AV, 2015 81

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objective
	Scope
	Outline

	State of the Art
	M2M Standardization Bodies
	ETSI
	oneM2M
	oneM2M support for Device Management
	Management of Device Resources

	Comparison between ETSI M2M and oneM2M

	Device Management Protocol Standards
	OMA Device Management
	OMA DM Architectural Model
	Hyper Text Transport Protocol

	OMA LightWeight M2M Device Management
	Basic LWM2M Architecture
	LWM2M DM Resource Model
	Proposed New Management Objects
	Constrained Application Protocol
	Messaging Model in CoAP
	Request and Response Model in CoAP
	Observation and Notification in CoAP
	Comparison between HTTP and CoAP

	Related Work

	Requirements
	Use Cases
	Smart Metering: Monitor Power Quality Data
	E-Healthcare and Tele-medicine
	Connected Consumer

	Technical Requirements

	Design and Specification
	OMA LWM2M Device Management
	Device Discovery and Registration Interface
	Bootstrap Interface
	Device Management and Service Enablement Interface
	Information Reporting Interface

	OMA LWM2M Device Management Resource Model
	OpenMTC Middleware Platform
	Adapters
	Device Management Web GUI
	Cloud Infrastructure

	Implementation
	Environment
	Ubuntu 12.04 LTS
	Python 2.7
	Komodo 8 IDE
	Gevent 1.0

	Project Structure
	Important Implementation Aspects
	LWM2M Device Management Server
	LWM2M Device Management Client
	Adapters
	Organization of Management Objects in Resource Model
	LWM2M Device Management Operations
	Client Registration
	Resource Discovery
	Resource Observation and Notification

	Use Case Additions
	Applications
	Emulated Devices
	Device Management Web GUI

	Documentation

	Evaluation
	Test Environment
	Scalability
	Congestion Control
	Performance Measurements
	Total Round Trip Time of Requests
	Average Re-transmissions per Request

	Conclusion
	Summary
	Dissemination
	Problems Encountered
	Outlook

	List of Acronyms
	Bibliography
	Annex

