
ezCar2X: Rapid-Prototyping of Communication Technologies and

Cooperative ITS Applications on Real Targets and Inside

Simulation Environments

Karsten Roscher, Sebastian Bittl, Arturo A. Gonzalez, Matthias Myrtus, Josef Jiru

Fraunhofer ESK

80686 München

{karsten.roscher,sebastian.bittl,arturo.gonzalez,matthias.myrtus,josef.jiru}@esk.fraunhofer.de

Abstract

Vehicular networks and cooperative mobility are still active research fields. We present our

approach to ease the design, implementation and testing of novel applications and protocols: the

modular software framework ezCar2X. Cooperative ITS applications based on Car2X

communication can be evaluated in a simulation environment and on real world targets with a

single implementation. In this paper, we present the architecture and existing modules of the

framework, describe the integration into a simulation environment and conclude with an

outlook on planned improvements.

1 Introduction

In a world where everything is connected, Car2X communication is envisaged to be the next big

step towards improved traffic safety and efficiency. Thus, most European car manufactures

signed a Memorandum of Understanding promising a rollout of cooperative applications based

on Car2X communication in Europe starting in 2015 [C2C12]. Active research in the last

decade paved the way for the current set of ETSI standards – released or in the final stage of

approval – that are required to ensure interoperability among different vendors. Research and

development will continue driven by new applications and thus new requirements on the

cooperative systems.

However, implementation and evaluation of new protocols and applications is still a demanding

task. The design of distributed systems usually involves a combination of simulation as well as

real world prototyping which requires multiple implementations of the same algorithm in

different environments. This is not only tedious but also error prone. Therefore, we present our

approach: the modular software framework ezCar2X. With this framework, vehicle

manufacturers, suppliers and road infrastructure operators can easily and quickly implement

new applications based on Car2X communication and evaluate them in a simulation

environment as well as on real world prototypes using a single implementation.

ezCar2X provides a basic set of standard compliant protocols, facilities and abstractions to

cover a wide range of applications out of the box. All essential components can be replaced

with updated or independently developed versions due to the framework’s modular structure.

Therefore, ezCar2X can also be a valuable tool in the research field, e.g. to evaluate new

communication protocols in the context of existing applications.

The remainder of this paper is structured as follows. Section 2 discusses existing Car2X hard-

and software solutions related to our work. The ezCar2X framework, its architecture and

existing modules are presented in section 3. Based on the core concepts we describe the

integration of the framework into a simulation environment in section 4. We conclude with an

outlook in section 5.

2 Related Work

With many field operational tests concluded in recent years as well as the start of the

commercial deployment of the so-called “Day 1” system on the horizon there exist a number of

communication units, e.g. Denso WSU [Laso08], NEC LinkBird [Fest09] or Cohda Wireless

MK [Gray09]. These units usually consist of the ETSI ITS-G5 compliant wireless hardware and

a proprietary implementation of the associated communication protocols provided with a

software development kit (SDK) to enable customers to implement their own applications.

These applications can either run directly on the communication unit or on external hardware

connected via Ethernet or USB. Since these units are targeted at commercial deployment the

focus is on low costs, efficiency and stability. Implementations depend on the vendor specific

libraries of the SDK and are thus not portable to other systems or environments. Furthermore,

single protocols cannot easily be exchanged without re-implementing the whole stack due to the

tight coupling of different layers. To the best of our knowledge, no solution exists that allows

the usage of the target code also in a simulation environment apart from the common hardware-

in-the-loop (HIL) platforms. HIL however does not allow evaluating a larger number of systems

with updated software at the same time.

In contrast, simulation provides the means to evaluate protocols and applications with many

active devices under repeatable conditions. Communication systems are usually modeled using

dedicated network simulators like ns-2 [Ns214], ns-3 [Ns314], OMNeT++ [OMNe14],

Riverbed Modeler [Rive14] or JiST/SWANS [JiST14]. However, the availability of Car2X

specific protocols and device models depends on the chosen tool. To the best of our knowledge,

none of these tools provides a comprehensive model of the required ETSI standards for the

physical, medium access, network and transport layers or these are at least not publicly

available.

Furthermore, in the context of vehicular networks it does not suffice to consider only the

communication system. Other aspects like road traffic, vehicular dynamics, sensor inputs and

driver behavior have to be included as well. Road traffic including simple driver behavior

models can be simulated with traffic simulators like the open-source SUMO [SUMO14] or the

commercial VISSIM [VISS14]. Specialized tools, e.g. CarMaker [CarM14] or PreScan

[PreS14], can be used to simulate the dynamics of a single vehicle in great detail. The

combination of several simulators is a widespread approach, e.g. SUMO and ns-3 for the iTetris

platform [iTet14] or SUMO and the OMNeT++ based MiXiM framework in Veins [Vein14],

but it is often tied to a specific set of tools and therefore a limited scope of application since

common interfaces to couple simulators do not exist. VSimRTI [VSim14] tries to overcome this

problem introducing a flexible architecture for simulator coupling using an ambassador concept

to ease the integration of new tools. Even though applications run in a distinct application

simulator that allows reuse on a prototyping target, many protocols are still implemented

directly in the respective simulators and are therefore not portable.

3 ezCar2X

ezCar2X is a modular software framework for rapid prototyping of cooperative ITS applications

and novel communication protocols. A more detailed description as well as several real world

application examples can be found in [RJGH13] and [SRJ13]. The interoperability of the

access, network, security, and facility layer components with solutions provided by other parties

was successfully demonstrated at the ETSI Plugtest event in 2013 [ETSI13b].

3.1 Architecture

The architecture of the framework is based on the European Telecommunication Standards

Institute (ETSI) architecture for Intelligent Transport Systems (ITS) stations [ETSI10] with the

respective access, network, facility, management and security layers as shown in Figure 1. The

implementations of protocols and facilities meet recent standards or standard drafts and are kept

up to date. Since most applications require data sources and actuators in addition to the

communication system itself, additional components for seamless integration of in-vehicle bus

systems, various sensors as well as digital maps are included. Each feature can be used

separately or as part of a larger stack or framework.

Framework

BusManagement

Core

Logging Events Buffer/PacketTime Position

Access

ITS-G5 3G/4G

Network

GeoNetworking BTP

Facility

Information Support Application Support Communication Support

Applications

Application
Management

Station
Management

Crosslayer
Management

Sensors

GPS Dynamics

InfotainmentActive Safety Traffic Efficiency

Radar

CAN Serial

Map

Map/GIS

Utility

Security

Security
Headers

Signature

Encryption

Fig. 1: ezCar2X framework architecture

ezCar2X is implemented in C++ leveraging platform specific optimization for an efficient use

of system resources. Components are provided as a set of shared libraries with limited

interdependencies. The basic principle to ensure both portability and modularity is abstraction.

Each component is provided as a set of abstract base classes acting as interfaces. Thus, clients

are decoupled from the actual implementation and different implementations can be used in

different contexts without changes to existing code. Abstraction is not only used for plain

software components but also to provide transparent access to external hardware such as

wireless modems or field bus adapters.

Building a flexible framework out of individual components without a predefined structure is a

challenging task. In ezCar2x single objects can be aggregated into a composite providing more

complex functionality; an approach similar to the object aggregation mechanism in ns-3

[Ns314]. Specific features can be found by querying the entire aggregate for an interface that

provides the requested feature. This allows for flexible “wiring” of different components as well

as different cross-layer optimization techniques.

3.2 Modules

The Core module provides basic components and services shared among all other libraries. This

includes a flexible logging system, an event scheduler for asynchronous tasks and simple

timeout realization as well as buffer and data packet implementations with support for copy-on-

write semantics. Furthermore, interfaces and data types related to time and position information

are part of this module. Core also provides support for object aggregation, advanced object

factories and an extensible property system for component configuration.

Support for ETSI ITS-G5 (with wrappers for various devices and platforms), GeoNetworking

and the Basic Transport Protocol (BTP) according to ETSI standards is included in the Access

and Network modules. Cellular services are supported as well. An adaptive GeoNetworking

layer with support for an application transparent simultaneous use of local wireless

communication and cellular connectivity is currently work in progress. The Security module

provides an implementation of a network security entity for signing and encrypting messages to

transmit as well as validating and decrypting received messages. Furthermore, it handles the

management of available certificates and regular pseudonym updates.

The Bus module supports basic serial interfaces (RS232, USB) and Controller Area Networks

(CAN). It is mostly used to integrate sensors and actuators within a vehicle or along the road.

An additional abstraction layer is provided by the Sensor module to enable reuse of algorithms

based on sensor input across different equipment types. The integration of a new sensor is

simply a matter of implementing the interface of the specific sensor type. Several basic types,

e.g. position, speed, acceleration and object detection (radar or laser scanner), are provided with

the library. Furthermore, self-description of a specific sensor adaption provides properties, like

accuracy, that vary among different devices of the same category. Data input is complemented

by the Map module which provides abstract concepts to access digital map data as well as

various routing and map matching algorithms. An input adapter for OpenStreetMap [OSM14] is

provided with the framework and access to other map databases can easily be added.

The Facility library covers components common to most cooperative applications and is

modeled according to the ETSI ITS architecture. It includes the Cooperative Awareness (CAM)

[ETSI13a] and Decentralized Environmental Notification (DENM) [ETSI12] service, support

for Signal Phase And Timing (SPAT) messages, status and position management, and support

for data presentation and high level message encoding. In addition, integration of Human-

Machine-Interfaces (HMI) is greatly simplified using an HMI server that manages all HMI

devices connected via Bluetooth or any IP based connection. Information is exchanged via an

event-based custom protocol that can easily be extended with new application data. Generic

client implementations exist for Linux and Windows (both C++) and Android (Java).

Cross-layer information exchange and interaction is handled by the components in the

Management module. Finally, the Framework module provides efficient tools to configure

everything from a basic communication stack to a full-featured application unit using XML

descriptions to select and configure the required components.

4 Towards Simulation Integration

Applications and protocols cannot always be evaluated to a full extent in real world test beds or

field operational tests. Large scale deployments with hundreds or thousands of vehicles are

expensive and hard to orchestrate. Thus, simulation plays a major role in the analysis of novel

algorithms and approaches in cooperative systems. The flexible and modular architecture of

ezCar2X makes it an ideal candidate to bridge the gap between simulation and rapid

prototyping [BR14].

ezCar2X on its own is intended to provide a communication stack and other framework

components for a single node within the network. However, the simulation of cooperative

applications requires several nodes that exchange information. A basic version of such an

environment is already provided by the framework itself. It consists of a virtual communication

device for each stack and a dedicated server application to connect several instances of ezCar2X

on a single machine. This approach can be used to implement and test applications without the

need for actual wireless interfaces. However, it is not intended to resemble the behavior of real-

world-hardware or provide the means to simulate more than a few ITS stations.

4.1 Simulation Environment

Realistic simulations require detailed models of the wireless interfaces and channels.

Furthermore, the simple approach using virtual devices requires all instances to run in real-time

using the system clock for synchronization. This leads to a severe limitation regarding the

maximum number of nodes that can be simulated on a single machine. Therefore, we selected

the open source network simulator ns-3 [Ns314] to overcome both of these issues. ns-3 already

provides detailed implementations of devices of the IEEE 802.11-family as well as a variety of

wireless channel models that are continuously extended and refined by the ns-3 community.

Furthermore, ns-3 is based on the principle of discrete event simulation. Everything is reduced

to an event assigned to a specific simulation time. Events can generate new events and are

processed in the order of expiration. This leads to an execution time that is independent from

real time; simulations can run faster or slower depending on the complexity of the models and

the scenario. Another advantage of ns-3 in this context is its flexible structure implemented in

C++. Since ezCar2X modules are provided as shared libraries they are also available to

simulations written with ns-3. Thus, combining the two is only a matter of providing ns-3

specific implementations for some of the abstract concepts used in ezCar2X.

Even though ns-3 provides several mobility models out of the box, none of them are specifically

designed for vehicular networks. In addition, applications may require influencing the driver

behavior based on received messages during the simulation. Our solution includes the open

source traffic simulator SUMO [SUMO14] that can be coupled with other simulators using its

well documented TraCI API [WPRH+08]. Both simulators are synchronized on a microsecond

level with a mapping of nodes in ns-3 to vehicles in SUMO. The movement of the vehicles

directly corresponds to changes in the mobility model of the assigned ns-3 nodes whereas

applications can use TraCI to influence the driver model of the vehicle, e.g., force it to slow

down due to a received warning about a dangerous situation ahead.

It should be noted that the integration of SUMO with ns-3 is independent from the combination

of ns-3 and ezCar2X. Both tool sets can be used separately or in combination. In our approach,

the integration of ezCar2X only concerns ns-3. The interaction with SUMO is provided

completely through abstractions already available in ns-3, e.g. the node mobility model.

4.2 Integration of ezCar2X into ns-3

In general ezCar2X components can be used out of the box in combination with ns-3 since both

tools are written in C++ and consist of a set of shared libraries. Simulations in ns-3 are usually

written in C++ as well, thus, integrating ezCar2X means including the right header files in your

simulation script and linking against the required framework libraries. However, to use the full

potential of ns-3 our integrated solution has to follow some of its architectural concepts. In

addition, ns-3-specific implementations of a few basic ezCar2X concepts are required to access

information and functionality available in the simulation environment, e.g., position of a node

or the current time.

In ns-3 each simulated station is called a node. Every node has a selection of network devices

and several other models attached to it. In our approach, a node will have at least one wireless

interface, a mobility model and its own instance of the ezCar2X framework including various

components configured by the simulation script. Furthermore, each node has a TraCI adapter

that is used to map the node to a specific vehicle in the attached SUMO instance. Fig. 2

illustrates the basic setup.

ns-3
SUMOTraCI

Node 1

TraCI Manager

Node X

…

Wireless Channel

Wireless
Interface

Mobility
Model

ezCar2X
Framework

ezCar2X

Fig. 2: Integration of ezCar2X, ns-3 and SUMO

Most components in ezCar2X require a basic set of functions. This does not only include access

to time and position information, but also a communication stack to transmit and receive data

packets. Furthermore, components in ezCar2X are usually event-driven, either by input received

from external sources or by asynchronous events and timeouts provided by an event scheduler.

The former are functions or data provided by ns-3 through one of its models, while the latter is

already very similar to the discrete event scheduling used in ns-3. A complete integration of

ezCar2X requires ns-3-specific implementations of the basic concepts used in ezCar2X to

access this functionality.

The position of a node is available through the ns-3 mobility model. A simple wrapper

implementing the ezCar2X PositionProvider interface enables direct access to the current

location of a station. A coordinate transformation has to be applied because node positions in

ns-3 are provided as cartesian coordinates in three-dimensional space but position information

in ITS applications is usually based on the World Geodetic System (WGS84).

The adaption of the TimeProvider interface is quite similar. However, the current simulation

time can directly be accessed using the global Simulator instance in ns-3.

The wireless interfaces of a node in ns-3 can be made available to the ezCar2X components

with an implementation of the ItsG5Interface that forwards send requests to its ns-3 pendant

and invokes its OnPacket signal for each packet received from ns-3.

External events are already governed by ns-3’s discrete event simulation since packet

transmission is realized through the models provided by ns-3. Internal events, however, need to

be handled by the ns-3 event scheduler as well. Therefore, we provide an implementation of the

EventScheduler interface of ezCar2X that does not schedule events and invoke their handlers on

its own, but rather forwards them to the ns-3 event scheduler and takes care of the callback

conversion between ns-3 and ezCar2X whenever an event is due.

The described components are the basis for most components in ezCar2X and suffice for a wide

range of applications. Scenario setup and result evaluation is further improved with a set of

tools that automate the different steps required to install ezCar2X on many virtual nodes at

once. These tools also take care of the assignment of values and data unique for each individual

node, like address or path to the stored security certificates. The evaluation of the simulation

results is assisted by several means to collect statistical data from different sources on all layers

during a simulation run.

5 Conclusion and Outlook

We presented our integrated approach for simulation and prototyping of applications based on

Car2X communication: the software framework ezCar2X. Provided as a set of libraries it covers

many aspects of cooperative ITS applications. We have shown that due to its modular and

hardware independent approach ezCar2X components can be used in a simulation environment

as well as on real world hardware without changes to the code base. The combination of

ezCar2X with the state-of-the-art open source tools ns-3 and SUMO provides a comprehensive

tool for extensive simulation campaigns. Thus, novel applications and protocols can be

evaluated with fewer errors, quicker implementation and more reliable results obtained from

simulation and real world deployment. Therefore, the ezCar2X framework is a sound basis for

the development of applications in the fields of advanced driver assistance systems, cooperative

transport systems and e-mobility. It can also provide valuable insights for the design of next

generation ITS communication protocols.

With the research field greatly in motion there are many aspects not yet covered by ezCar2X.

Various improvements of the framework are planned for the near future. These include

integration of unified geocasting services over heterogeneous access technologies, advanced

local dynamic map (LDM) facilities as well as full IPv6-over-GeoNetworking support. In

addition, we intend to compare our simulation approach with the results obtained by existing

simulation tools using real world examples. Finally, we plan an investigation regarding

scalability of the proposed combination of ns-3, SUMO and ezCar2X for large scale

simulations.

Literature

[BR14] Bittl, S. and Roscher, K.: Towards methodologies for rapid-prototyping of

communication technologies and cooperative ITS applications to be used both

on real target and inside simulation environments, as realized by a combination

of the ezCar2X framework with the network simulator ns-3. In: The Third

International Conference on Advances in Vehicular Systems, Technologies and

Applications VEHICULAR, June 2014.

[CarM14] IPG: CarMaker, http://ipg.de/simulationsolutions/carmaker/, 2014.

[C2C12] CAR 2 CAR Communication Consortium: European vehicle manufacturers

working hand in hand on deployment of cooperative Intelligent Transport

Systems and Services (C-ITS). Press release, October 2012.

http://ipg.de/simulationsolutions/carmaker/

[ETSI10] Intelligent Transport Systems (ITS); Communications Architecture, ETSI EN

302 665 V1.1.1, 2010.

[ETSI12] Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of

Applications; Part 3: Specifications of Decentralized Environmental Notification

Basic Service, ETSI EN 302 637-3 Draft, 2012

[ETSI13a] Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of

Applications; Part 2: Specification of Cooperative Awareness Basic Service,

ETSI EN 302 637-2 Draft, 2013

[ETSI13b] ETSI ITS Cooperative Mobility Services Event, http://www.etsi.org/news-

events/past-events/665-plugtests-2013-itscms3, 2013.

[Fest09] Festag, A. et al.: CAR-2-X Communication for Safety and Infotainment in

Europe. In: NEC Technical Journal, vol. 3, no. 1 , 2008.

[Gray09] Gray, P. et al.: DSRC Field Trials. Whitepaper, Cohda Wireless, Aug. 2009.

[iTet14] iTetris, http://www.ict-itetris.eu, 2014.

[JiST14] JiST/SWANS, http://jist.ece.cornell.edu, 2014

[Laso08] Lasowski, R. et al.: OpenWAVE Engine / WSU - A Platform For C2C-CC: In:

15th World Congress on Intelligent Transport Systems, New York, Nov. 2008

[Ns214] ns-2, http://www.isi.edu/nsnam/ns, 2014.

[Ns314] ns-3, http://www.nsnam.org, 2014.

[OMNe14] OMNeT++, http://www.omnetpp.org, 2014.

[OSM14] OpenStreetMap, http://www.openstreetmap.org, 2014.

[PreS14] PreScan, https://www.tassinternational.com/prescan, 2014.

http://www.etsi.org/news-events/past-events/665-plugtests-2013-itscms3
http://www.etsi.org/news-events/past-events/665-plugtests-2013-itscms3
http://www.ict-itetris.eu/
http://jist.ece.cornell.edu/
http://www.isi.edu/nsnam/ns
http://www.nsnam.org/
http://www.omnetpp.org/
http://www.openstreetmap.org/
https://www.tassinternational.com/prescan

[Rive14] Riverbed Modeler, http://www.riverbed.com/products/performance-

management-control/network-performance-management/network-

simulation.html, 2014

[RJGH13] Roscher, K., Jiru, J., Gonzalez, A.A., and Heidrich, W.A.: ezCar2X: a modular

software framework for rapid prototyping of C2X applications. In: 9th ITS

European Congress, Dublin, Ireland, 4-7 June 2013.

[SRJ13] Steiner, T., Roscher, K., and Jiru, J.: Cooperative Glare Reduction using V2X

radio technology. In: Int. Symp. Wireless Vehicular Communication

WiVeC2013

[SUMO14] SUMO - Simulation of Urban MObility, http://sumo-sim.org, 2014.

[Vein14] Veins - The open source vehicular network simulation framework,

http://veins.car2x.org, 2014.

[VISS14] PTV Vissim, http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim, 2014.

[VSim14] VSimRTI - Smart Mobility Simulation, https://www.dcaiti.tu-

berlin.de/research/simulation, 2014.

[WPRH+08] Wegener, A., Piorkowski, M., Raya, M., Hellbrück, H., Fischer, S. and Hubaux,

J.P.: TraCI: A Framework for Coupling Road Traffic and Network Simulators.

In: Proceedings of the 11th Communications and Networking Simulation

Symposium, April 2008.

http://www.riverbed.com/products/performance-management-control/network-performance-management/network-simulation.html
http://www.riverbed.com/products/performance-management-control/network-performance-management/network-simulation.html
http://www.riverbed.com/products/performance-management-control/network-performance-management/network-simulation.html
http://sumo-sim.org/
http://veins.car2x.org/
http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim
https://www.dcaiti.tu-berlin.de/research/simulation/
https://www.dcaiti.tu-berlin.de/research/simulation/

