FRAUNHOFER IPA

INSTITUTE FOR MANUFACTURING ENGINEERING AND AUTOMATION

In cooperation with the University Institutes ISW and IFF

We produce future

Innovative. Interdisciplinary. Sustainable.

Nanocarbons in Supercapacitor Electrodes An approach to foster nanotechnology in electric power trains

Raphael Neuhaus¹ Researcher Dipl.-Ing. aerospace engineering Dpt. of functional materials

Fraunhofer IPA, Stuttgart, Germany
 HRI AIST, Ikeda, Osaka, Japan

Co-authors: Carsten Glanz¹, Takushi Sugino², Ivica Kolaric¹, Kinji Asaka²

Fraunhofer Society -Facts and Figures (2014)

- More than 24 000 employees
- € 2.0 billion budget
- 67 institutes

Largest Applied Research Organization in Europe!

Fraunhofer IPA Facts and Figures (2014)

51 Mio. €
22,2 Mio. €
350
70
300
50
50
50

"Functional Materials" at Fraunhofer IPA: Service Range

- グラフェン - 高性能SWNT - 高性能MWNT - アークジェット - アーク放電 - レーザー アブレーション - CVD	- ナノ複合材料の シミュレーション - 精製 - 機能化 - ナノコーティング - 分散 - 製粉	- ディップ コーティング - スクリーン印刷 - 焼結 - 押し出し - 無電解めっき - バー・コーティング	- 新しい合成・分散 技術の構想・開発 - 分散プロセスや 分散機器の開発 - 工程品質の検証	- 被害分析および 現場でのコンサル - 機能的なナノ材料 実現のための 戦略コンサル - 生産開発における 構想・コンサル
 Graphene High-quality SWNT High-quality MWNT Arcjet Arc-discharge Laser ablation CVD 	 Simulation of nano compounds Purification Functionalisation Nano coatings Dispersing Milling 	 Dip coating Screen printing Sintering Extrusion Electroless plating Bar coating 	 Conception and development of new synthesis- and dispersion technologies Development of dispersion processes and machines Verification of process quality for customers 	 Failure analysis & site consultancy Strategy consultancy Strategy consultancy for successful implementation of functional nano materials Concept development and consultancy in the field of production development
材料 MATERIAL	プロセス PROCESS	応用 APPLICATION	生産 PRODUCTION	サービス SERVICE

Cooperation Partners

Fraunhofer Institute for Manufacturing Engineering and Automation (IPA)

Department Functional **Materials**

AIST Kansai National Institute of Advanced Industrial Science and Technology (AIST)

Research Institute for Cell Engineering

Picture source: http://cio-perspectives.com

Yesterday

German-Japanese Cooperation – First Joint Development 2012 – Pipette with CNT actuator

- Simulation of actuation and geometry
- Material development and processing
- Electrical contacting and system integration
- Construction and engineering of Pipette based on PCB board
- Showed at Nanotech 2013

Today SkiPper – a joint research project

- Three-year research and development cooperation in the field of functional materials and energy related applications.
- Development of nanocarbon based materials for energy storage devices
- Consideration of:
 - Development of electrodes for supercapacitor modules
 - Multifunctionality of materials and devices

Projektriðger Jülich onchungsæntinu Mich

POIEVTTRÁCER EÚR DA

Tomorrow

Fraunhofer Project Center (FPC) for EAP Applications at AIST KANSAI in Ikeda, Japan

- 3 years of continuing cooperation starting in Summer 2014
- Ca. 900 000 Euro financial contribution from BMBF
- Mutual exchange of scientific personnel (2 3 months)
- Focus on EAP technology (Electro Active Polymers)

The worlds #2 in applied science (FHG) joins forces with #3 (AIST)

für Bildung

What is our goal ?

Use supercaps as

- fast,
- high power-density,
- temperature independent,
- temporary

Energy storage system for automotive applications

11

What is a Supercap?

Supercapacitor cell Working principle

14

Supercapacitor Stacking of electrodes to form cells

PROJEKTTRÄGER FÜR DAS Bundesministerium für Bildung

Supercapacitor

How do we make it better ?

Scope Make better and lighter electrodes

PROJEKTTRÄGER FÜR DAS Bundesministerium für Bildung

Graphene

- First "discovered" in the form of isolated thin sheets in 2004.
- One-atom-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal lattice.

Mechanical and material properties

- As of 2009, graphene appeared the strongest material ever tested.
- Young's modulus ~ 1,100 GPa
- Fracture strength 125 GPa
- Specific surface area 2,630 m²/g

iir Bildung

Graphene Synthesis at Fraunhofer IPA 3 different routes

- Chemical Vapour Deposition (CVD)
- Reduction of Graphene Oxide

GNP production at Fraunhofer IPA Simplyfied electrochemical exfoliation setup

PROJEKTTRÄGER FÜR DAS Bundesministerium für Bildung und Forschung

Electrode fabrication Challenges faced

für Bildung und Forschung

Electrode fabrication Lab scale

PROJEKTTRÅGER FÜR DA

Bundesministerium für Bildung und Forschung

Filtration process

AIST (NEDO

PROJEKTTRÅGER FÜR DAS Bundesministerium für Bildung

Filtration process

PROJEKTTRÄGER FÜR DAS Bundesministerium für Bildung

Filtration process

PROJEKTTRÅGER FÜR DAS Bundesministerium für Bildung

Wet film to electrodes

PROJEKTTRÅGER FÜR DAS Bundesministerium für Bildung

Wet film to electrodes

PROJEKTTRÄGER FÜR DAS Bundesministerium für Bildung

Different configurations

PROJEKTTRÄGER FÜR DAS

für Bildung und Forschung

PROJEKTTRÅGER FÜR DAS

Bundesministerium für Bildung und Forschung

Electrode manufacturing

Process Engineering for components Electrode layer fabrication via bar coating

- 1) Bar coating (commonly practiced in the industries)
- Controllable film thickness
- Fast and reproducible
- Up to DIN A4 30 x 21 cm

Process Engineering for components Electrode ink preparation

Ink compositions

- Acetone/DI-H2O
- High solid content (10 -15 w%)
- Different binders (10 w%)
 - PVDF-HFP
 - PTFE

AIST (NEDO

Dispersion method

Rotor/stator-homogeniser

Process Engineering for components Dispersion preparation

Ultrasonication

GNP dispersion (water based) 0.1 w% GNP

CNT dispersion (water based)

- 0.1 w% MWCNT
- 0.1 w% Polyvinyl-pyrrolidone (Dispersant)

POIEVTTRÁCER EÚR DA

Bundesministerium für Bilduna nd Forschung

IPA

Manual fabrication

Electrode manufacturing

via Filtration

Cell manufacturing

- Wrapping
- Adding Electrolyte

Cell testing

- CV
- CC

PROJEKTTRÅGER FÜR DA

What are the results ?

Performance measuring Cyclo-voltametry

PROJEKTTRÅGER FÜR DAS

Bundesministerium für Bildung und Forschung

Performance measuring Results

PROJEKTTRÅGER FÜR DAS Bundesministerium für Bildung

Supercapacitor cell design XG-Sciences GNPs with MnO₂

4 capacitors in a cell

PROJEKTTRÄGER FÜR DAS Bundesministerium

für Bildung und Forschung

Next Steps ?

Upscaling

PROJEKTTRÅGER FÜR DAS Bundesministerium für Bildung

Summary

Graphene can reproducibly be used as active material in supercapacitor electrodes (price of GNPs is decreasing tremendously)

Hybrid electrodes can be reproducibly manufactured with spezific properties (Capacity of 150 F/g)

Energy density of supercapacitor cells & modules can be drastically increased by using a porous CNT-graphene nanostructure within the electrodes

ür Bilduna

THANK YOU !

