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Abstract— Energy efficiency has become an important topic
in trade, transportation and environment protection. Modern
electric vehicles usually still have difficulties in reaching similar
travel distances as combustion engine powered vehicles. While
increasing the range of electric vehicles continues to be an active
field of research, it is already possible to increase the energy
efficiency by applying a more energy efficient driving behavior.
A forward-backward Dynamic Programming model predictive
optimization approach is used to generate an energy efficient
velocity and gear change trajectory. Due to the finite length
of the computation horizon, common Dynamic Programming
approaches sometimes have problems of choosing the optimal
state at the end of the horizon. To address this problem, a
method is presented that makes use of historic accumulated
minimum costs to create a separate time-invariant auxiliary
horizon that grows during the journey. The auxiliary horizon
is used to yield a better long range estimation of the optimal
terminal behavior of the optimal trajectory within the regular
horizon. While the proposed method can be applied to different
types of optimization problems, the focus is on the predictive
energy efficiency optimization of electric vehicles.

Key words: Dynamic Programming, long distance horizon es-
timation, reuse historic costs, monetary costs, energy efficiency
driving, model predictive optimization, REM 2030 electric vehicle

I. INTRODUCTION

Several authors have published solutions in the area of
energy efficient driving. The approaches range from com-
plete vehicle control to passive driver assistance systems.
Autonomous approaches include the works of [1] [2] [3] [4]
[5] [6] [7] and many others. A major class of optimization
are formed by discrete planning algorithms [8] like Dynamic
Programming (DP) [9]. Examples for predictive energy effi-
ciency optimization include [1] [6] [10] [11].

In this work, the problem of finite computational horizons
in DP is addressed. Many predictive optimization methods
use some kind of finite computation horizon if the problem
refers to a very long planning problem, i.e. the optimal
predictive solution is only viable within the finite horizon
[1] [2] [3] [6] [10] [11]. Generally, this leads to the question
how the optimal solution should behave towards the end of
the horizon if the optimal end state is unknown and only a
fraction of the entire problem has been solved. Regarding
energy efficient driving, an optimal end state at the end of
the horizon is often preselected according to some criteria
[1] [10] [11]. For example one might choose the speed limit
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or the optimal stationary cruise velocity as the end state.
If the original optimization problem does not dictate the
end state at the end of the horizon in advance and if the
problem in its entirety extends well beyond the currently
defined finite horizon, it is possible that the chosen end state
is far away from the true optimal trajectory. From a theoretic
point of view, an infinite horizon using continuous problem
formulation is often discussed in optimal control problems
[9]. An infinite horizon or at least a horizon that leads to the
true final ending of the journey may sometimes be infeasible
in practice if the driven route is very long. Nevertheless, an
approximation of the theoretic problem formulation is viable.
In one of our previous works concerning stage-wise Dynamic
Programming, we presented a strategy to reuse historic mini-
mum accumulated costs to reduce computational complexity
[12]. This idea is reformulated to compute a separate long
range time-invariant auxiliary horizon that grows further into
the distance during the journey and guides the much shorter
regular horizon that contains the optimal trajectory of the
vehicle. Another topic discussed in this work, is the definition
of monetary costs and the comparability of different types
of costs.

The optimization is used in the context of model predictive
optimization, velocity trajectory optimization and energy
efficient driving of electric vehicles. The REM 2030 electric
vehicle power-train [13] provides the model for evaluation
purposes. Simulation results based on artificial and real world
data are presented to give a preliminary assessment of the
proposed methods, while more detailed evaluations have
to be reserved for future work as some of our advanced
evaluation tools are still under development.

II. MODEL PREDICTIVE OPTIMIZATION

The goal of energy efficiency optimization of a vehicle’s
movement trajectory, as defined in this work, is to find a
velocity and gear change trajectory that maximizes energy
efficiency for a given route. The precise meaning of energy
efficiency is described by the cost functional (see section II-
C). In this work, forward-backward Dynamic Programming
(DP) is used to perform the optimization.

A. REM 2030 electric vehicle

The power-train of the REM 2030 electric vehicle has
been developed in the project REM 2030 [13]. The maximum
speed is capped at 135kph. Some of its prominent features
are a small size, low weight synchronous electric engine with
a novel cooling system that cools the engine directly at the
coils, a two gear transmission, a holistic thermal management



system that can draw thermal energy from the surrounding
and a fuel cell as range extender. The formulation of the
energy consumption model in this work is inspired by [10]
[14] [15] and defined in an inverse manner. This means the
model output is computed from the vehicle’s acceleration.
Propagation through the model ultimately leads to an energy
consumption rate in the batteries. Several characteristic maps
are used within the model including the engine’s efficiency
map. Inertia is evaluated for the engine and the transmis-
sion. The resistance forces include air resistance, rolling
resistance, slope resistance and acceleration resistance. The
battery charge and voltage may vary depending on dis-
charging and charging processes during vehicle operation.
The vehicle model is non-linear and no optimization related
model simplification is needed. We wish to stress out that
the underlying optimization method proposed here, is not
confined to a specific vehicle, but can be used for all types
of vehicles. Nevertheless, the REM 2030 electric vehicle will
serve as an example.

B. Hamilton-Jacobi-Bellman and Dynamic Programming

The Hamilton-Jacobi-Bellman equation (HJB) is a central
part in optimization and control theory. It is both a necessary
and sufficient condition for the existence of a global optimal
continuous solution. The HJB equation can be formulated
as a minimization problem, which requires the continuous
differentiability with respect to time t and the state compo-
nents of the state trajectory function x(t). The minimization
commonly refers to the control trajectory function u(t).
J(x(t), u(t)) is the accumulated cost functional which is
the integral of the transition cost function j(x(t), u(t)). The
dynamic system is described by ẋ(t) = f(x(t), u(t)). x∗(t),
u∗(t) and J∗(x(t), u(t)) constitute the optimal solution of
the HJB equation:

0 = min
u(t)∈U

(
j(x(t), u(t)) + J̇(x(t), u(t))

+∇J(x(t), u(t))f(x(t), u(t))
) (1)

The HJB equation is rarely used in practice for highly
non-convex, non-linear problems as retrieving the analytical
solution is often infeasible. Alternatively, the corresponding
discrete solution can be obtained through DP. With ever
increasing discretization subtlety, the DP solution converges
towards the corresponding HJB solution if the original con-
tinuous problem has been formulated as HJB. For further
details and background information, the reader may refer
to [9]. The continuous cost functional, used in this work,
is formulated according to HJB definition, i.e. continuously
differentiable with respect to t and the state components x(t).
Discretization leads to the discrete time-stamp ti with the
period ∆t.

As discussed later in section II-E, for our optimization
approach it is actually better to conduct the discrete optimiza-
tion with respect to equidistant discrete positions si instead
of ti. Thus, there is a transformation from discrete time to
discrete position and vice versa using the discrete velocity

v(ti) and v(si). The discrete optimization yields a chain of
optimal decisions that refer to equidistant discrete positions.
In order to obtain the solution with respect to time, the
inverse transformation is used. Note that the discrete time-
stamps after the inverse transformation are not necessarily
equidistant, but the time dependent solution itself is valid and
increases in precision with increase in discretization subtlety.
In this work, the focus is on the computation of a discrete
optimal trajectory x∗(si) or rather x∗(ti). The continuous
HJB solution x∗(t) can then be approximated, e.g. through
interpolation.

C. Monetary cost functional

Many studies conducted in the area of energy efficiency
optimization use a weighted trade-off between low energy
consumption and short travel duration [1] [2] [3] [11].
Weighting parameters often have to be manually adjusted
to reach a desired outcome. Furthermore, it can be difficult
to decide if there is a net improvement, e.g. if energy
consumption is reduced but travel duration increases. In order
to make different types of cost terms directly comparable, we
propose to convert all cost terms into monetary form. This
also means that the HJB cost functional becomes problem
specific and is directly derived from financial aspects of an
individual or the business model of a company. There is
no universal definition of costs, instead the specific prob-
lem at hand dictates the definition of the cost functional.
Additionally, the cost terms are made HJB compliant, i.e.
the initial formulation is in continuous form and the cost
terms are continuously differentiable with respect to time
t and the state components of x(t). Note that the cost
terms presented here, primarily serve as an example for
the definition of monetary costs. In general, there is a vast
amount of different problem specific formulations as business
models and economic problems can be greatly differ from
each other. According to our cost definition, costs are positive
while gains are negative.

1) Energy: Energy consumption e(x(t), u(t)) can be con-
verted to monetary cost through the price for electricity λe.
For example, the average electricity cost at electric vehicle
charging stations can be used. The energy consumption cost
term is therefore

je(x(t), u(t)) = λee(x(t), u(t)) (2)

The cost term incorporates both energy consumption and
energy generation through recuperation, in which case it
receives a negative value.

2) Travel duration and driven distance: Many peo-
ple are confronted with the every-day task of driving to
and from work. The problem specific optimization in this
case is computing the minimal cost of the trade-off be-
tween je(x(t), u(t)) and the cost of time consumption
jt(x(t), u(t)). Time consumption is the time spent on the
journey, that could have been spent at work which results
in a loss of revenue. It is assumed that the journey must
be made. Thus, travel duration t is not solely used in the



cost term, but rather the difference to the theoretical minimal
travel time duration tmin derived from the speed-limits along
the route. λt is the salary of an employee or the revenue of
a company.

jt(x(t), u(t)) = λt(t− tmin) (3)

Similarly, costs can also be defined for transport compa-
nies or taxi companies, which are paid depending on driven
distance and possibly also working hours. On the one hand,
the driver wants to quickly finish the delivery in order to
make the next delivery possible. On the other hand, driving
more slowly, increases the time dependent income. In these
cases the theoretical maximal driven distance smax(t) given a
certain travel duration and the maximal travel duration tmax

based on the lowest tolerable velocity are of importance.
λs and λt convert the driven distance and time duration
into monetary form depending on the business model of the
transport company.

jts(x(t), u(t)) = λs(smax(t)− s(t)) + λt(tmax − t) (4)

3) Cost of vehicle and attrition: There are different forms
of attrition in a vehicle. First of all, there is the overall value
decrease if the vehicle is used to drive a certain distance.
A new vehicle has a certain purchasing price C at the
beginning and an estimated life expectancy regarding the
maximum distance it can be driven before it is scrapped. λC
is the average value decrease in relation to a driven distance
excluding wear on brakes and transmission.

jC(x(t), u(t)) = λCs(t) (5)

Active braking causes attrition to the brake pads depending
on the strength of the braking procedure fB(x(t), u(t)).
Gear change causes attrition to the transmission. Different to
brake pads, the transmission is not designed to be replaced
multiple times. The attrition fG(x(t), u(t)) is distributed
among numerous parts and does not target a specific element.
The average replacement cost in relation to brake attrition
and transmission attrition are λB and λG. If manufacturer
specific models are unavailable, person specific statistical
frequency of active braking and gear change behavior in
combination with average service life can be used as an
approximation. In this work, statistical approximation is
used.

jB(x(t), u(t)) = λBfB(x(t), u(t)) (6)

jG(x(t), u(t)) = λGfG(x(t), u(t)) (7)

4) Safety and lane change: In one of our previous works
[16], we have presented preliminary results regarding energy
efficiency optimization using lane changes. Lane change op-
timization and safety shall not be the focus of this contribu-
tion. Thorough evaluations of safety aspects in combination
with energy efficiency optimization will be presented in
future work.

5) Constraints: Apart from the cost functional, several
boundary constraints are defined. Speed limits and physical
constraints within the power-train such as acceleration or
engine full load are of great importance. Lateral acceleration
alat(t) is related to journey comfort and safety and is
currently also incorporated as a constraint. The maximum
tolerable lateral acceleration is based on the mean µa and
standard deviation σa of driving comfort presented in the
field study [17]. The lateral dynamics is currently simplified
as a mass point, based on the centripetal force acting on
it, depending on the current curvature radius r(t). Certain
constraints may be replaced by cost definitions in future
work.

alat(t) =
v2(t)

r(t)
(8)

−µa − σa < alat(t) < µa + σa (9)

The previously presented cost terms are all HJB compliant,
i.e. continuously differentiable with respect to t and x(t).
They all describe continuously physical processes subse-
quently converted to monetary cost. Neither t, u(t), x(t) or
anything used in the cost terms can instantly change. Even
braking and gear changes need some form of continuous
transition, no matter how brief they may be.

D. State graph structure

In order to perform the discrete DP optimization, a multi-
stage state graph is defined (Fig. 1). As mentioned in section
II-B, equidistant discrete positions instead of discrete time-
stamps are used in the actual optimization procedure. Within
the state graph, the vehicle state x(si) is composed of travel
duration t(si), velocity v(si), gear level G(si), brake status
B(si) and battery charge Q(si).

x(si) =
(
t(si), v(si), G(si), B(si), Q(si)

)T

(10)

The state components all refer to a specific position or
driven distance si, which also serves as a decision stage
within the graph. The stages si within the computation
horizon S are erected with a constant frequency, e.g. every
10m. For sake of simplicity, stages and stage positions share
the same denotation si in the following sections. Each stage
si has a state set Si of states xa(si). The graph has an open
end, i.e. the last stage has as many states as the intermediate
stages. The range of possible velocities for a stage from
s1 to sN is constrained by the corresponding minimum
and maximum velocity limits as well as acceleration and
braking constraints of the vehicle. The computation horizon
moves with the vehicle. During the forward pass, stagewise
forward-backward DP solves the cost minimization problem
by evaluating all transition costs from one stage to the
previous one. Beginning from the second stage onward, states
start working with minimum accumulated costs of the states
from the previous stage. The accumulated minimum cost
J∗(xb(si)) of a state xb(si) at stage si is the minimum



sum of all possible transition costs j(xa(si−1), xb(si)) from
predecessor states xa(si−1) to xb(si) and the accumulated
minimum cost J∗(xa(si−1)) of the respective state xa(si−1).
After optimization, every state with the exception of the
start state has one unique optimal predecessor state unless
constraint violations forbid it. A state may have several or
no successors.

J
∗
(xb(si)) = min

xa(si−1)∈Si−1

(
j(xa(si−1), xb(si)) + J

∗
(xa(si−1))

) (11)

Finally, let x∗(sN ) be the optimal end state with the small-
est accumulated minimum costs of all end states xa(sN ).

x∗(sN ) = arg min
xa(sN )∈SN

J∗(xa(sN )) (12)

During the backward pass, the optimal state trajectory
is constructed by following the identified chain of optimal
states from the last stage to the start state. For further details
and background information regarding Dynamic Program-
ming, the reader may refer to [9].

Fig. 1. Graph structure used for forward-backward Dynamic Programming
with computation horizon S and decision stages si. The end stage sN is
open, i.e. it has the same number of states as intermediate stages.

E. Long range horizon approximation and reuse of historic
minimum accumulated costs

As mentioned in the introduction section I, the optimal
end state of the DP optimization is difficult to define if a
finite computation horizon is used. In one of our previous
works, we have presented an adapted forward-backward
Dynamic Programming method, which incorporates historic
accumulated minimum costs of previous optimizations [12].
A graphic description is given in Fig. 2. Whenever the
horizon moves forward, it adds a new decision stage sN+1

to its end and removes its first stage si at the beginning.
Only the transitions to the new end stage are evaluated. All
other minimum costs on intermediate stages are retrieved
from memory. Another difference is that the optimization
now refers to the original state, i.e. the vehicle state when
the system just started the very first optimization. As the
computation horizon moves on, an optimal trajectory that
refers to the new start state of the vehicle x1(si+1) (blue),
is actually needed. But as long as the new optimal trajectory
(red) traverses through the new start state, the new optimal
trajectory is also optimal with respect to the new start state
due to the principle of optimality [9]. If the optimization
problem excessively changes during the next optimization,
the optimal trajectory may no longer traverse through the new
start state. In this case a possibly suboptimal correction of

the optimal trajectory (green) is necessary. For scenarios with
little traffic and mostly time-invariant properties, corrections
are usually unnecessary. But scenarios with dense traffic and
erratic events could lead to many unforeseeable corrections.

Fig. 2. Reuse of historic costs (best viewed in color): Decision stages si
which refer to the past are discarded. A new decision stage sN+1 is added to
the end of the computation horizon. Only the transitions from sN to sN+1

are computed. Previously computed accumulated minimum costs are reused.
The red trajectory based on historic costs (red) is still referring to the already
discarded original state and may not incorporate the current vehicle state
x1(si+1) in erratic scenarios, in which case a correction (green dashed) is
necessary. The corrected trajectory may not be completely identical to the
true optimal trajectory (blue) referring to x1(si+1). Simplified schematic
boxes referring to this procedure are shown at the bottom.

The method of reusing minimal costs will now be reformu-
lated to compute a long range horizon estimation for the end
of the regular optimization horizon S. Instead of applying the
idea to the entire optimization process, the DP optimization
within a relatively short regular optimization horizon S is
always completely executed and incorporates all detectable
dynamic obstacles, i.e. other vehicles and traffic lights. This
ascertains that the optimal solution within S always refers
to the current vehicle state and all state transitions are
completely evaluated. Note that the evaluation of dynamic
obstacles is not presented in this work, but will be addressed
in future work. At the same time, a separate long range
time-invariant auxiliary horizon S̃ is constructed that makes
use of historic accumulated minimum costs as described
earlier. It uses states x̃(si) with reduced state dimension, but
otherwise has the same discretization degree. Within S̃ all
speed limits, topography, curvatures and stationary obstacles
are considered, except for dynamic obstacles. A graphic
description is given in Fig. 3.

x̃(si) =
(
v(si), G(si), B(si), Q(si)

)T

(13)

Before the vehicle’s journey is initiated, S̃ is precomputed
based on the chosen route. The length of S̃ is ideally sig-
nificantly longer than S and depends on how much time the
user is willing to wait before the system is fully operational.
During the journey, the optimization is conducted for both S
and S̃ separately. In S̃, only the transitions to the additional
stages are evaluated. Any previous costs are left unchanged.
At least two additional decision stages must be added to the
end of S̃ with each optimization update to make S̃ grow in



length. The underlying idea is, if there is sufficient memory,
the long range cost assessment will eventually reach the
end of the route or rather the journey’s final destination,
which might be hundreds or thousands of kilometers away.
As only a few (e.g. two) additional stages with reduced
state dimension have to evaluated, the additional computation
burden is relatively low, while the cost assessment using S̃
stretches over a very long distance that becomes even longer
with every optimization update. When the optimal trajectory
and the optimal next state of the vehicle is computed, S and
S̃ have to be merged at the last stage sM of S. Based on the
position of sM , one or several stages at the beginning of S̃
are discarded if their positions are not ahead of sM . All state
transitions between sM and the first remaining stage s̃i of S̃
are evaluated. For the construction of the optimal trajectory
in S, the accumulated minimum costs J̃(x̃c(s̃N )) at the last
stage s̃N of S̃ are temporarily corrected to ˜̃J(x̃c(s̃N )) based
on the newly evaluated state transitions between S and S̃:

˜̃
J(x̃c(s̃N )) = J̃(x̃c(s̃N )) − J̃(x̃b(s̃i)) + J(xa(sM )) + j(xa(sM ), x̃b(s̃i)) (14)

After the connection between S and S̃ has been estab-
lished, the optimal trajectory is retrieved in the backward
pass starting at the optimal end state at s̃N , going back
through S̃ and S until the vehicle’s current state is reached.
Thus, the horizon S is no longer dependent on carefully
chosen end velocities or end costs, but uses a significantly
longer approximation horizon S̃ to choose its end state.
As soon as S̃ reaches the journey’s final destination, it is
assumed that the final state is a full stop and S̃ stops growing.

While S̃ has not yet reached the end of the journey,
choosing the optimal end state of S̃ before the merging
process, actually still requires a less sophisticated estimation,
because S̃ is already used to guide S and there is not another
auxiliary horizon that can guide S̃. To handle the route
beyond S̃, the remaining cost from the end of S̃ until the end
of the journey is estimated by using the velocity of each end
state ṽc(s̃N ) as the constant cruise speed on the remaining
route ahead of S̃. For computations beyond S̃, it is assumed
that the slope will be zero on average without curvatures and
speed limits are ignored. As all state transitions between S
and S̃ are fully evaluated and due to the Markov property of
the problem, the entire optimal trajectory from the beginning
of S to the end of S̃ is physically viable.

The cooperation between S and S̃ is one of the main
reasons, why the optimization is referring to equidistant
positions instead of time-stamps. The optimization within
S follows the search space reduction strategy presented in
one of our previous works [16]. The state dimension is not
fully expanded during the search. Some state components
are calculated along different trajectories. If equidistant time-
stamps were used as reference, position would be calculated
through accumulation. In this case, the states of a decision
stage would have the same time-stamp, but different posi-
tions. This would make the transition from S to S̃ more
difficult to compute, because the long range horizon S̃ uses a
position dependent evaluation of the problem. While absolute

time is irrelevant, position related influences (e.g. slope)
are relevant. Transitions among a possibly large number
of stages would have to be evaluated instead of just two.
The proposed strategy only works for forward-backward DP
and not backward-forward DP as the accumulated costs in
backward-forward DP always refer to an often unknown end
state.

Fig. 3. Long range auxiliary horizon (best viewed in color): The short
range regular horizon S and the long range auxiliary horizon S̃ are stored
separately. While S is always completely reevaluated, S̃ reuses historic
accumulated minimum costs and grows in length by adding two or more
new decision stages (green) to the end of the horizon. The optimization at
the end of S is guided by S̃. Depending on the progression of S, a number
of decision stages in S̃ (grey) are removed that are no longer relevant to
S. New state transitions between S and the first relevant stage of S̃ are
computed. A new optimal state trajectory (red) from the start state to the
end of S̃ is constructed based on the new state transitions.

III. RESULTS

In this section, regular DP optimization and DP opti-
mization using auxiliary long range horizon are compared.
The results are obtained from simulation, but data from the
real world (e.g. slopes) is included. In the two presented
examples, the regular horizon length is 50m with 10 decision
stages. The length of S is primarily based on the range of
perception sensors, e.g. 50m is the reliable maximum range
for certain stereo vision systems in automotive applications
[18]. The length of the initial long range auxiliary horizon
depends on how much time is available for precomputed
evaluation before the journey begins. In this example, S̃ is
initially 200m long and grows by two stages with every
new update. The global optimal reference is a regular DP
optimization result that stretches over the entire journey.
The influence of dynamic obstacles, e.g. traffic lights and
other vehicles, are not included, but will be discussed in
future work. The REM 2030 electric vehicle is used as the
vehicle model [16] [13]. It has two gears and the maximum
velocity is capped at 135kph. On flat terrain, the optimal
constant cruise velocity is 99kph and the optimal gear choice
is 2. In the figures, the solid line "DP opt" represents the
velocity of the global optimal solution. The red dashed
trajectory "DP mix" refers to DP supported by the long range
auxiliary horizon. "DP short" is the green dashed trajectory
and represents DP without any support. It’s terminal costs at
the end of the horizon merely evaluate the assumed costs of
continuing different end velocities and end gears until the end
of the route. It is important to note that to fully understand
the chosen decisions, one would have to analyze every single
decision made during the optimization process. Numerous
different forces and goals can make the optimization results
hard to interpret. For example, braking is not necessarily



always an inefficient behavior as electric vehicles are able
to recuperate energy during the process, albeit not at 100%
efficiency. Monetary costs can at least yield a much faster
overall assessment. The simulation is implemented in C++ in
combination with OpenMP and conducted on a modern PC
with Intel Core i7-4790 at 3.6GHz and 16GB RAM. With
the chosen settings, an optimization update requires less than
0.2 seconds.

A. Single hill scenario

The first example uses a simple artificial hill to make the
interpretation of the optimization result easier to understand
(Fig. 4). There is no speed limit. At the beginning, the
vehicle is not moving. The task is to travel over the hill and
continue the journey. Initially, both "DP mix" and "DP short"
accelerate in a similar fashion. "DP mix" (100kp) is slightly
faster than "DP short" (99kph), therefore gaining slightly
more kinetic energy in front of the hill. When ascending
the hill and then on the plateau before driving down-hill,
"DP mix" is slower than "DP short" as the auxiliary horizon
has already identified the existence of the descent. Entering
the descent with a high velocity can invoke more braking
in order to stay below the vehicle’s maximum velocity cap.
During the descent, "DP mix" coasts to a much higher
velocity than "DP short" which gradually transfers into the
stationary optimal cruise velocity on the flat terrain behind
the hill. "DP short" beyond the horizon is only guided by the
rough assumption that the future terrain is flat on average
and therefore mostly tries to maintain the optimal stationary
cruise velocity for flat terrains. In this example, the result
"DP mix" is identical to the global optimal solution "DP
opt". The cost savings of "DP mix" compared to "DP short"
are: energy 2%, time 0.7%, active braking 83%, gear changes
40%, overall cost reduction 2.3%.

B. Real world mountain scenario

This example is also obtained from simulation, but the
route truly exists in reality. It is within and outside a
village named Bergwald south-east of the city Karlsruhe. The
route takes the vehicle through the outer ring in Bergwald,
descends down the mountain, goes up the same road back
up and ends just in front of the village. The elevation data
is obtained via Google Elevation API [19]. The curvature
radius is estimated using geographic coordinates that define
the route. The speed limits are observed on-site. The results
are given in Fig. 5. Compared to the first example, both "DP
mix" and "DP short" need to brake more often, primarily
due to locations with strong curvature. "DP short" is often
faster than "DP mix" as the stationary optimal cruise velocity
for flat terrain is often above the true optimal velocity
profile. But often a strong acceleration by "DP short" is
followed by a rapid deceleration due to unforeseen strong
road curvature, whereas "DP mix" is informed early by the
auxiliary horizon. In other scenarios with relaxed lateral
acceleration constraints, the average velocity is generally
higher and active braking less likely.

Once again, the result of "DP mix" is identical to the
global optimal solution "DP opt". The cost savings of "DP
mix" compared to "DP short" are: energy 14.7%, time -6.2%,
active braking 3.4%, gear changes 6%, overall cost reduction
6.7%, i.e. there is a reduction in energy consumption, but
at the same time an increase in travel duration. Without
monetary costs, such a result is ambivalent. But the monetary
cost formulation yields a clear verdict: there is an overall
decrease in costs of 6.7%.

C. Other scenarios

Numerous other tests with different choice of discretiza-
tion and horizon length suggest that a very long regular
horizon S of several kilometers reduces the benefit of using
S̃. But this naturally also leads to a longer computation dura-
tion. Short regular horizons and significant changes regarding
slope, curvature and speed limits increase the necessity of the
auxiliary horizon. On a flat terrain without any changes, there
is no benefit at all as the optimal constant cruise velocity is
the target.

Fig. 4. Optimization trajectories (best viewed in color): Global optimal
solution (DP opt), DP with short regular horizon and auxiliary long range
horizon support (DP mix), DP only with short regular horizon (DP short).
Artificial hill without speed limits. Maximum velocity of REM 2030 electric
vehicle is capped at 135kph.

IV. CONCLUSION

Dynamic Programming with finite horizons has the prob-
lem of choosing a suitable end state at the end of the horizon
if the predictive optimization problem extends far beyond the
computation horizon and if there are multiple possible end
states. Furthermore, the finite horizon does not allow the
predictive optimization to look beyond it, which can reduce
the optimization’s effectiveness if problem specific properties
evolve over long distances, e.g. mountains. But increasing



Fig. 5. Data referring to a real route in and close to Bergwald village south-
east of Karlsruhe, Google Elevation API data, curvature estimated from
geographic coordinates, speed limits retrieved through on-site observation.
The route leads through the outer ring of Bergwald, descends down the
mountain and leads back up to Bergwald.

Fig. 6. Optimization trajectories (best viewed in color): Global optimal
solution (DP opt), DP with short regular horizon and auxiliary long range
horizon support (DP mix), DP only with short regular horizon (DP short).

the horizon length usually also increases the computation
duration of the algorithm. A method has been proposed to
enable long range cost approximation far beyond the regular
horizon, but does not significantly increase computational
complexity. The method does require more memory, but
the maximum length of the auxiliary horizon and therefore
the memory demand can be flexibly adjusted, depending on
the employed computation hardware. Furthermore, monetary
costs are proposed that are not reliant on heuristic parame-
ter adjustments and enable an objective, unambiguous and
problem specific problem evaluation. The application for the
optimization is energy efficient driving of electric vehicles.
The REM 2030 electric power-train serves as the model for

evaluation purposes. Examples based on simulated and real
world data have given a first impression of the effectiveness
of the proposed ideas.

Future work will combine all of our research experiences
of the past to create a model predictive optimization strategy
that enables predictive energy efficient driving. The optimiza-
tion will include topography, speed limits, curvatures, vehicle
specific properties, traffic lights and other traffic participants
to create an unified optimization that combines both energy
efficiency and safety. Specifically regarding this work, the
influence of dynamic obstacles on long range optimization
will be investigated.
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