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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1.  Introduction 

Manual assembly workstations, especially for products with 
small batch sizes, offer great potential for optimization. One 
reason is the increasing number of product variants while the 
number of units per product decreases down to single-piece 
production [1].  

This generally implies that the smaller the quantity, the less 
work processes have been standardized and documented. 
Nevertheless, the time available for planning the assembly of 
products is limited. As a result, most of the assembly 
instructions, work plans, and bills of material are insufficiently 
prepared.  

Small wonder that this results in a lack of transparency. On 
the one hand, workers get unclear work instructions (e.g. 
concerning the assembly process, a correct execution of work 
steps, information about quality and time). On the other hand, 
planners get no feedback from assembly (e.g. actual times, 
causes for irregularities). This makes planning even more 
challenging.  

So far, assembly planning is a time-consuming business, e.g. 
when the times for assembly processes are externally recorded 
[2], following a technique developed by the association for 

work design, industrial organization and company development 
(REFA) [3] or through MTM (Methods-Time-Measurement-
Method) [4]. Often, there are several ways to assemble a 
product. After recording the process times, the best option 
needs to be selected for the existing conditions. The search for 
the most suitable assembly sequence also calls for an 
experienced planner. In case of inadequate planning, workers 
often help to overcome ‘planning gaps’ by providing flexibility 
and technical know-how. 

In general, the planning of assembly sequence influences the 
cost and the time of assembly [5]. With automated assembly 
planning, however, the high planning effort can be reduced and 
often inaccurate planning can be overcome.  

The demand for an automated creation of work plans has 
existed for a long time. Automated work plans can reduce the 
time and effort required by a company, cut personnel costs, 
increase data accuracy, and improve up-to-dateness. [6] 

One way to take a step towards automated assembly 
planning is to establish a system using sensors for recording 
assembly processes [7], so that the collected data can be used 
for automated planning. 

This paper presents a general approach to automate the 
generation of optimized process step sequences in manual 
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assemblies based on sensor data. The idea is to develop a best 
practice by combining solution strategies identified by the 
sensor analysis. The approach aims not to find the optimal 
solution but to identify the best solution in the context of the 
analysis.  

The underlying ideas work for a one-time application within 
the framework of an optimization project as well as for 
continuous application. 

2.  Automated Manual Assembly Planning and 
Optimization 

The following section outlines the state-of-the-art in the 
optimization of manual assembly processes and automated 
assembly planning using sensor data. 

2.1.  Automatic Analysis of Manual Assembly Systems 

The manual recording of assembly times requires a 
significant amount of effort [2, 3, 4]. As a result, there are 
multiple approaches for automating the analysis of manual 
assembly processes. They differ in their goals and the way of 
data acquisition, as shown in Fig. 1 below. 

The goals of automated recording of manual assembly 
processes include quality monitoring, assistance and training, 
ergonomic assessment, and time studies. Data can be acquired 
from body-worn sensors, non-contact sensors such as cameras, 
sensors on parts or products and sensors on tools, jigs or 
workpiece carriers. There is also a combination possible of 
sensors used, so-called hybrid forms.  

Systems are used for tracking assembly activities to monitor 
the quality of the (intermediate) product. For instance, sensors 
for monitoring the proper execution of all steps and the correct 
assembly of a product. It is the same for assistance or training, 
because the system recognizes the process steps and confirms 
when they are successfully completed. Examples are presented 
by Müller et al. [8] or Stiefmeier et al. [9]. For an ergonomic 
assessment of manual assembly processes, many approaches 
are in use, in recent years particularly research in motion 
capture and analysis [5]. Examples are presented by Gudehus 
[10], who does an ergonomic analysis with body-worn sensors, 
or Härtel [11], who uses ergonomic analysis via a marker-based 
system combined with IMU sensors. There are also approaches 
for time studies. An example is presented by Ma et al., who 
compares recorded times to standard times and thus determines 
efficiency [12]. Agethen et al. [13] present an approach to 

improve planned times by a comparison of actual and planned 
work paths of the operators.  

2.2.  Automatic Generation and Optimization of the Assembly 
Sequence 

In general, a distinction can be made between the acquisition 
and optimization of real data and the determination and 
optimization of planned data. 

There are a number of approaches to automatically derive 
an optimal assembly sequence from CAD data. Computer-
aided assembly planning (CAAP) generates assembly 
sequences by examining the disassembly process [5]. 
Approaches to plan assembly from CAD models are, for 
example, Belhadj et al. [14], who present an approach to 
generate a subassembly algorithm from CAD model or Bikas 
et al. [15]. In addition, there are approaches to virtually plan 
assembly from CAD models (see [5] for an overview). 

Fewer solutions exist in the area of optimization of real data. 
For automated assembly and manufacturing, there are 
approaches to collect data. Müller [16] analyzes machine and 
sensor data and optimizes overall equipment effectiveness 
(OEE). After evaluating the data, all machines are subdivided 
into their individual process steps to combine the shortest time 
units to a benchmark machine.  

There are various approaches and optimization methods to 
determine assembly sequences. Recent approaches show that 
evolutionary algorithms can also be applied for assembly 
sequence planning (e.g. [17, 18]). 

3.  Approach to Generate Optimized Assembly Sequences 
from Sensor Data 

This paper shows how to apply a benchmarking approach to 
manual assembly. 

Camp [19] defines benchmarking as a ‘continuous process 
of measuring products, services, and practices against the 
toughest competitors or those companies recognized as 
industry leaders’ and as ‘the search for industry best practices 
that lead to superior performance’.  

In the following, the idea of benchmarking to learn from 
other better practices is applied to the optimization of 
assembly. Instead of planning the assembly sequence from the 
beginning, existing knowledge is used.  

There are a number of benchmarking procedure models that 
differ, for example, in the number of phases and the possibility 
of repetitions [20]. 

Watson [21] describes the benchmark process through the 
following steps: 

•   planning 
•   data gathering 
•   data analysis 
•   making improvements 

Not every benchmarking study requires to be carried out 
through the four steps given in the model. The model should be 
seen as a guideline and to help understand the process. [21] 

Watson suggests guidance in each phase: In the first step of 
‘plan study’ the target, measure of performance and the 
investigation method of the process are selected. Also, the 

 

Fig. 1. Overview of automated analysis of manual assembly systems. 
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method of data collection and criteria for comparison are 
defined. In the second step ‘data gathering’, internal, 
secondary, and external data are collected. Moreover, suitable 
comparative entities are searched and selected. ‘Data analysis’ 
as third procedure starts by preparing the data, then identifies 
performance gaps, and finally derives the best practices. 
Moreover, it must be examined why a best practice achieves 
better performance. The last phase is that of ‘making 
improvements’. The selected improvement actions are 
introduced to the company based on the knowledge gained 
from benchmarking and actually the best practice is 
implemented. [21] 

Benchmarking is more than just imitation. It is crucial to 
understand why the best practice is better than other solutions. 
[22] 

In the following, an approach is presented based on the steps 
above. The focus of the paper lies on the first three steps. 

3.1.  Planning 

In the planning phase, the system is analyzed and the model 
is generated. 

The planning aim is to record the assembly processes of 
different workers with different solution strategies and to 
derive the best solution strategy.  

The target value is to minimize time. Consequently, the best 
process is the sequence that results in the shortest assembly 
time. At present, conventional assembly planning also includes 
collecting times for the assembly processes. In order to avoid 
the target system becoming too complex, this approach uses 
time as the primary target value for optimization. However, 
later other aspects (e.g. ergonomics, hybrid forms of assembly) 
must also be taken into account for the design of the assembly 
system.   

The following Fig. 2 shows the system considered within 
the approach in a schematic way. 

The figure shows that, within the framework of the analysis, 
the assembly activities of several workers (e.g. blue, green, red) 
are recorded over time. They assemble different products (e.g. 
triangle, circle, and square) at different work stations. 

Recording and optimizing manual assemblies is a complex 
issue: various characteristics of a manual assembly system 
need to be taken into account to specify the data. The 
challenges essentially have to do with manual execution, 
especially, if not all of the steps are documented, or with 
recording the processes via sensors: 

•   Different types, variants and options: Especially 
small lot sizes differ in types, variants and options. 
This means, that different products have to be 
considered during an analysis.  

•   Different workers: In manual assembly, as the term 
suggests, there are workers who vary in their 
assembly skills and who develop different solution 
strategies. 

•   Diverse assembly sequences: Often, the definition 
of the assembly sequence is not clear. As a result, 
the assembly sequences of different workers might 
vary widely.  

•   Different processes: Another challenge arises from 
operators who execute different processes to 
achieve the same goal. Though the result of the 
process can be compared, the processes themselves 
might differ. 

•   Work station: An operator’s time spent to carry out 
a process step heavily depends on the set-up at the 
work station. 

•   Data gaps: Another great challenge are data gaps 
detected during a manual assembly through sensors 
and automated process recognition. 

3.2.  Data Gathering 

The optimization is enabled by actual data instead of plan 
data. Data gathering is based on the data acquired from a 
system that is currently being developed for the automated 
analysis of manual assembly processes. The system can be used 
in every manual assembly due to its scalable and modular 
structure. [7] The following figure shows the structure of the 
previously outlined system.  

 

Fig. 3. Structure of the analysis system [7]. 

The system covers three levels: the setting (on the shop 
floor), the IT architecture, and the evaluation. The data is 
captured on the shop floor by sensors on parts, products, tools, 
and other equipment. Afterwards, the data is transmitted to the 
database and analyzed. The main advantage of the system is a 
flexible way of analysis. [7] 

A combination of different sensors is used for the recording 
of the processes, mainly accelerometer, magnetometer and 
gyroscope. The recognition of the process steps and process 
times results from sensor fusion and following evaluation. Data 

 

Fig. 2. Manual assembly system - recording data over time. 
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from video and an app are recorded as an auxiliary until the 
system recognizes all processes reliably. 

The system provides information on an operators’ work 
during a process and indicates the time, when and for how long 
she/he worked. Therefore, all process data include the 
following information:  

•   process_ID 
•   process_name 
•   worker_ID 
•   start_time 
•   end_time 
•   predecessor 
•   successor 
•   product_ID 
•   work_station_ID 

The distinction into process_IDs is highly important. This 
means that processes sharing the same ID describe the same 
assembly step. 

3.3.  Data Analysis and a Development of Best Practice  

Once the solutions have been recorded, the best practice has 
to be found from the recorded solutions. The approach does not 
aim to find the optimal solution but the best one identified in 
the analysis (depending on the selected optimization method). 
This is done in three steps: 

 
Step 1: Generate graph 
This problem can be considered as an SSP problem (Single 

Source Shortest Path Problem): There is a digraph G = (V, E) 
with weights c: R→R, as well as a vertex s ∈ V. Each directed 
edge (u,v) is an ordered pair of vertices, where u is the starting 
vertex and v is the destination vertex of the edge (u,v). The 
shortest path from s to v for all v ∈V is searched for. [23] 

The first solution demonstrated in the analysis is the first 
path of the digraph. The nodes describe the process results. 
Moreover, the edges define the predecessor-successor-
relationship and the costs at the edges describe the process 
duration. The final digraph does not necessarily represent an 
assembly precedence graph, as it does not cover all precedence 
relations. 

There are two options for adding further solutions to the 
digraph:  

•   A) The assembly was carried out in the same order: 
This means, the individual process duration needs 
to be compared. If the new process time is shorter, 
the original solutions are updated; if the process 
time is slower, the new solution is discarded. It 
must be ensured that outliers in the time data are 
recognized and not stored as new process times. 

•   B) The assembly was performed in a different 
order: This means, a new path has to be created in 
the digraph. For each new assembly process 
sequence identified in the analysis, a new path is 
created in the digraph. New nodes must be 
generated because of the precedence dependencies 
and the assembly progress. 
 

 

Step 2: Check graph 
After all solutions have been illustrated in the digraph, it first 

must be checked, whether the graph is cycle-free or if process 
steps appear multiple times. A cycle occurs after rework or 
adjustment. If reworking is carried out, the time needed must 
be added to the costs of the actual process. 

 
Step 3: Find shortest path 
In the following, the shortest path through the digraph has 

to be found. For this, heuristics, evolutionary algorithms, or 
machine learning are used. Also, data sets must be used to 
prove the best optimization methods (quality of the solution, 
computing time). 

It is not possible to calculate the total time by summing up 
the shortest individual times, as the sequence of execution 
differs and there are dependencies between the processes (in 
contrast to, for example, in the machine benchmark illustrated 
in chapter 2.2. Individual processes are carried out in a 
precisely defined sequence.). Moreover, a worker may have 
assembled the product in the shortest total time, but other 
workers have better partial solutions or better assembly 
sequences but a slower execution (e.g. due to less experience).  

As mentioned in chapter 3.1, the target value is to minimize 
time. At the beginning, assembly is considered as if a product 
was completely assembled at a work station by only one 
operator. In the next step, however, this assumption must be 
scaled up and the assembly has to be optimized holistically. 
This consideration is particularly important when differences 
in cycle times occur. For this purpose, it is crucial to maintain 
the different solutions represented in the graph. Only the 
individual process times are updated, but none of the solution 
strategies (corresponds to paths in the graph) are deleted. If the 
associated assembly graphs of all products are known, the 
whole assembly can be optimized. The deviation from the 
individual optimum is possible. 

3.4.  Make Improvements 

In the last step, the newly found solution actually has to be 
implemented.  

The presented approach to generate a best practice from 
identified solutions can be used both for a temporary 
optimization project and for a continuous optimization. 
Currently, the derivation from automated recording and 
optimization to implementation has not yet been finally 
realized. 

It is important to be aware that not all results are directly 
transferable [22]. For example, not all operators are able to 
carry out the assembly process in the same way and the same 
time.  

New work instructions are generated on the basis of the 
results. It will be crucial to make them available to the workers 
in a suitable way and to properly communicate the new results. 
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4.  Practical Example 

In the following, the basic ideas of the approach presented 
are applied to a simple exemplary assembly. Fig. 4 illustrates 
the component to be assembled: an axle.  

The following Table 1 describes each process step: 

Table 1: Process steps 
Number Description Both-sided Process_number 
9 Rear Middle Part  

(3 screws) 
 9 

8 Front Middle Part  
(4 screws) 

 8 

7 Spring on Middle Part X 7l, 7r 
6 Upper Wishbone to Middle 

Part 
X 6l, 6r 

5 Spring to Lower Wishbone X 5l, 5r 
4 Lower Wishbone on Axle 

Mount 
X 4l, 4r 

3 Upper Wishbone on Axle 
Mount 

X 3l, 3r 

2 Tie Rod on Axle Mount X 2l, 2r 
1 Axle Mount on Wheel X 1l, 1r 

 
The process_number is transformed into process_ID by 

adding ‘_’ and run_number, for example a process in the first 
run and with process_number 4l receives the process_ID 
‘4l_1’. 

The product has been chosen because it allows different 
assembly sequences. Process times of three different persons 
(worker 1, worker 2 and worker 3) were recorded. Video data 
were used to support the data gathering. The attendants had 
different experiences. No work instructions were provided but 
the assembled product could be inspected in advance. To 
simplify the situation, all workers assembled an identical 
product at the same workplace.  

Fig. 5 shows an overview of the assembly times. W refers to 
the worker, R to the run. Therefore, the figure visualizes three 
runs comparing the three workers. The assembly time is 
between 8.9 and 14.8 min at an average of 11 min.  

Fig. 6 gives an overview of a single process level and shows 
that the times required for the individual assembly processes 
(1-9) sometimes differ significantly. The colors show in which 
run and for which worker the process times were recorded.  

 
 

It turned out that the workers had implemented different 
solution strategies, i.e. different assembly sequences. Fig. 7 
gives an overview.  

As described in chapter 3.3, a new path and new nodes are 
created in the graph for each new solution strategy. The colors 
white, orange and blue refer to the workers. For a clearer 
visualization, process times (costs) are not shown in the graph.  

It results in the following requirements for evaluation: 
•   The evaluation must be able to deal with errors and 

rework. In the given example, it turns out that 
worker 3 made some mistakes, e.g. process steps 1 
and 2 are completely missing in the lowest branch 
of the graph. Processes 7l and 7r appear several 
times because rework is required. 

•   The data recorded should be as detailed as possible. 
Thus, processes executed twice could possibly be 
better assigned to a substep. 

•   In some cases, workers vary in the beginning but 
then the processes are in the same order. The 
evaluation should consider whether these 
processes are still comparable (depending on the 
precedence dependencies). 

In the next step, optimization methods must be tested. 

5.  Conclusion and Outlook 

This paper presents a general approach to optimize manual 
assembly processes by using sensor data and deriving a best 

 

Fig. 6. Overview of a single process level. 

 

 
 

Fig. 5. Overview. 
 
 

 

Fig. 4. Axle assembly. 
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practice. A comparison of workers’ different solution strategies, 
as in the context of the analysis, lead to a best practice. 

It is shown that manual assemblies, especially if 
insufficiently planned, can become highly complex. 

The advantage lies in using real data as opposed to plan data. 
This way, assembly can be planned automatically, i.e. with less 
time and effort. This approach might not find the optimal 
solution, but an appropriate solution with less effort. The 
approach offers the possibility to externalize existing 
knowledge and to improve planned times. 

Next, optimization methods providing the best possible 
solution within an acceptable computing time have to be 
investigated in practice. Hence, several data sets have to be 
considered. Moreover, an evaluation of additional data needs 
to be performed. Furthermore, a way to identify incorrect 
solutions must be found as well as to ensure whether an 
assembly process achieves the required objective at all. 
Another challenge in complex assemblies is to recognize two 
processes that are similar and to label them with the same 
process_ID. It might also be interesting to examine the 
influence of worker qualifications on the outcome of the 
approach.  
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Fig. 7. Visualization of solution strategies. 

 


