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Motivation
Power production: January 2014
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Motivation
Power production: June 2014
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Source: B. Burger, Fraunhofer ISE; Data: EEX Transparency Platform 5

Motivation
PV power production: Planed versus actual
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Planed versus actual PV production 
Date 03.03. 03.04.

Time 13:15 12:30

GMT +1:00 +1:00

Planed 
production

7.5 GW 19.7 GW

Actual
production

13.7 GW 10.1 GW

Forecast 
error

-6.1 GW +9.6 GW

Relative
forecast 
error

-44.7 % +94.8 %
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Source: N. Hartmann, University of Stuttgart, Dissertation, 2013 6

Motivation
Storage demand in Germany
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Source: B. Burger, “Energiekonzept 2050”, June 2010, FVEE, www.fvee.de, Update of 14.11.2012
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2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Household 2 500 kWh/a to 5 000 kWh/a

Industry 500 MWh/a to 2 GWh/a

Industry 20 GWh/a to 70 GWh/a

Feed-in tariff for PV
PV Rooftop up to 10 kW

PV Rooftop above 10 kW

PV freestanding

Household 1 000 kWh/a to 2 500 kWh/a

Electricity costs

Year

€C
en

ts
 / 

kW
h

Industry

Household

Photovoltaic
(2000-2011: +4%/a; from 2012: +3%/a)

(2000-2011: +4.6%/a; from 2012: +3%/a)

(2000-2011: +5.3%/a; from 2012: +2.5%/a)

(2000-2011: +5%/a; from 2012: +2%/a)

(2004-2012: -12.6%/a; from 2013: -13%/a)

(2004-2012: -13.9%/a; from 2013: -13%/a) 

(2004-2012: -14.4%/a; from 2013: -13%/a)
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Motivation
Electricity cost and feed-in tariffs in Germany
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 Increased direct use of PV energy

 Optimized use of battery storage

Optimization of PV self consumption
Local energy management
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Reduction of volume of 
purchased grid electricity 
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 Load (residential application): 4900 kWh/year

 PV generator size: 6 kWp

 Lithium-ion battery system: Variation of usable capacity

Optimization of PV self consumption
Analysis of energy fluxes (results of system simulation)

 Direct use

 Intermediate storing 

 Feeding-in

 Direct use

 Discharging battery 

 Grid delivery

Energy production Energy consumption
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Reduction of 
feeding-in 
approx. 30 % 

Only ~ 20 % 
have to be 
purchased from 
the grid
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Optimization of PV self consumption 
Cost analysis

Allowed cost for 4 self consumption 
applications

 Private / residential

 Office

 Industry

 Municipality

10

Lithium-ion



© Fraunhofer ISE 

11

Allowed cost for 4 self consumption 
applications

 Private / residential

 Office

 Industry

 Municipality

Cycles per year 221 75 256 227

Storage cost ct / kWh 28 81 24 27

Current cost calculated with 
Investment cost of 600 €/kWh

Lithium-ion

Optimization of PV self consumption 
Cost analysis
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Cost analysis and influencing factors
Example: Lithium-ion battery system

Cost drivers

 Investment cost

 Cycle number

 Operation and 
maintenance 

 Project period
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Operating control strategies 
Conventional storage strategy

13

 No significant positive effect for the distribution grid

Source: J. Mayer (BSW), C. Wittwer (ISE), Batteriespeicher: Ein sinnvolles Element der Energiewende. Berlin, 
Pressefrühstück 25.1.2013 

Conventional storage strategy

Max. feed-in 
power

Charging until 
battery is full

Self consumption of 
stored PV energy

Midday production peak
is fed into the grid 
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Operating control strategies 
“Grid friendly” storage strategy

“Grid friendly” storage strategy

 Reduced feed-in peak power decreases problems in the distribution grids
 Reduced feed-in peak power up to 40 % without yield losses
 66 % increase of PV power in local distribution grids possible

Charging in times with 
high PV production

Reduced 
feed-in power

Reduced feed-in power 
Increased local grid capacity

Source: J. Mayer (BSW), C. Wittwer (ISE), Batteriespeicher: Ein sinnvolles Element der Energiewende. Berlin, 
Pressefrühstück 25.1.2013 
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Stationary battery systems
Additional business cases beyond PV self consumption

 Multiple use of 
storage device

Additional 
services, e.g. 
grid support

Additional 
revenues



© Fraunhofer ISE 

16

Optimized operation of residential PV battery systems 
Case 1: Allocation of capacity for additional grid services
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6 %

11 %

 Reduction of PV self consumption

Optimized operation of residential PV battery systems 
Case 1: Allocation of capacity for additional grid services



© Fraunhofer ISE 

18

 Positive und negative 
primary control power for 
frequency stabilization 

 Price per power and pay-
as-bid, minimum power 
for bidding: 1 MW !!!

 Market volume < 600 MW

Source: G. Bopp et. al., Intersolar conference, 
Munich 2.6.2014 

Optimized operation of residential PV battery systems 
Case 2: Bidding of primary control power
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Classical self consumption

Example:

 Battery system: 10 kWh / 10 kW

 PV system: 10 kWp 

 Load: 4 650 kWh 

 Annual revenue in case of self 
consumption: approx. 280 €/a

 Battery system cost:
approx. 10 000 €

Primary control power

Source: G. Bopp et. al., Intersolar conference, 
Munich 2.6.2014 

Optimized operation of residential PV battery systems 
Case 2: Bidding of primary control power
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Classical self consumption Primary control power

Example:

 Battery system: 10 kWh / 10 kW

 PV system: 10 kWp 

 Load: 4 650 kWh 

 Annual revenue in case of self 
consumption: approx. 280 €/a

 Battery system cost:
approx. 10 000 €

Example:

 Reduction of self consumption

 Additional 7.5 kW primary control 
power

 Earlier amortization !!!

Annual revenues  =   primary control power 
+ self consumption

Annual revenues  = 7.5 kW * 150 €/kW*a + 75 €/a
= 1125 €/a + 75 €/a
= 1200 €/aSource: G. Bopp et. al., Intersolar conference, 

Munich 2.6.2014 

Optimized operation of residential PV battery systems 
Case 2: Bidding of primary control power
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Optimized operation of residential PV battery systems 
Case 3: Grid integration via “FlexController”
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Dispatchable load
► Application: frequent and high short-term generation peaks
► Technology: e.g. heat pumps with thermal storages, electric cars (!)

Additive generation
► Application: rare short-term peak loads
► Technology: e.g. emergency power units (hospitals)

Dispatchable generation
► Application: frequent and high short-term peak loads 
► Technology: CHP units

Electric power storage
► Application: daily balancing of power demand and generation
► Technology: e.g. battery systems, decentralized and “centralized”

Additive load
► Application: rare generation peaks
► Technology: e.g. electrical heating (domestic hot water, district heating)
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Optimized operation of residential PV battery systems 
Case 3: Grid integration via “FlexController”
 Various flexibility options
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FLEX-CtrlHome Architecture 

Simulation        
(24h, 15min.)

Controller
tech. System

FLEX-CtrlHome

Communication 
Interface

Technical
Systemyw

FLEX-CtrlHome

openMUC 

FLEX-CtrlHome

Controller

1

2

0

2

2

2

0

3

IEC 61850

IEC 61850
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FLEX-CtrlHome Architecture 

Simulation        
(24h, 15min.)

Controller
tech. System

FLEX-CtrlHome

Communication 
Interface

Technical
System

FLEX-CtrlHome

openMUC 

FLEX-CtrlHome

Controller

0

0

0 • 24h-forecast for power at default 
operation

• Flexibility of power for every 
15 min / 24 h

• Qualitative parameters  
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FLEX-CtrlHome Architecture 

Simulation        
(24h, 15min.)

Controller
tech. System

FLEX-CtrlHome

Communication 
Interface

Technical
System

FLEX-CtrlHome

openMUC 

1

FLEX-CtrlHome

Controller

Request of flexibilities (FLAG) 

1

0

0
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FLEX-CtrlHome Architecture 

Simulation        
(24h, 15min.)

Controller
tech. System

FLEX-CtrlHome

Communication 
Interface

Technical
Systemyw

FLEX-CtrlHome

openMUC 

FLEX-CtrlHome

Controller

• Activation of  flexibilities (FLAG)

• Calculates and sends new set points 
to the controllers of the technical 
system (w)

• Sends information to the simulation 
that a FLAG was activated

• Parameter change for the simulation 
1

2

0

2

2

2

2

0
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Conclusions 

 Storages crucial for large scale integration of fluctuating renewables

 Especially lithium-ion battery systems very interesting for the use in
grid-connected PV applications 

 Lithium-ion batteries on the way to be profitable, dependent on the 
specific application and the corresponding boundary conditions

 But: Cost still have to be decreased  Detailed cost analyses
important

 Multiple use of storage systems may improve the economics and is 
crucial from a technical point of view

 Advanced operating control strategies combine self consumption 
with additional grid services

 But: There are more flexibility options in the (distribution) grid, which 
also have to be considered  Smart integrated system solutions
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Thanks for your attention !!!


