
 

 

Applying Bayesian Belief Networks for early 
software quality modeling 

Authors: 
Adam Trendowicz 
Teade Punter 
 
 
 
 
 
 
Supported by the 
ITEA EMPRESS project 

IESE-Report No. 117.03/E 
Version 1.0 
November 31, 2003 

 
A publication by Fraunhofer IESE 



 



 

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft. 
The institute transfers innovative software 
development techniques, methods and 
tools into industrial practice, assists compa-
nies in building software competencies 
customized to their needs, and helps them 
to establish a competetive market position.
 
Fraunhofer IESE is directed by 
Prof. Dr. Dieter Rombach 
Sauerwiesen 6 
D-67661 Kaiserslautern 





 

Copyright © Fraunhofer IESE 2003 v

Abstract 

Bayesian Belief Networks (BBNs) are becoming popular within the Software En-
gineering research community. This report analyses the applicability of Bayesian 
Belief Nets to model quality of evolutionary software systems. The analysis is 
done by giving an overview of the domains where BBNs are currently applied. 
Then a process is introduces to apply BBNs in software quality modeling. After 
that a discussion on the applicability is conducted.  

We conclude that Bayesian Belief Networks are profitable for modeling soft-
ware quality of evolutionary software systems, because the complexity of such 
models can be made transparent with BBNs. However, BBNs could not be prac-
tical to apply for large models because of the great effort to build initial net-
work. 

This report is written as a contribution to Work package 3.5.2 of the ITEA 
EMPRESS project, in which Fraunhofer IESE was participating. 

Keywords: Bayesian Belief Nets, quality modeling, evolutionary systems, non-functional 
requirements, software product lines 

 





 

Copyright © Fraunhofer IESE 2003 vii

Table of Contents 

1 Introduction 1 

2 Bayesian Belief Nets 4 

3 Domains of BBN-application 5 

4 How to apply BBNs for quality modeling? 7 
4.1 Elements of the model 7 
4.2 Probabilistic inference 8 
4.3 Defining a BBN-based quality model 11 

5 Discussing the applicability of BBNs 13 

6 Conclusions and further investigation 17 

References 18 
 

 





Introduction 

Copyright © Fraunhofer IESE 2003 1

1 Introduction 

Embedded software already covers the majority of the software market and its 
production expands explosively. As a consequence, quality demands, especially 
in terms of non-functional requirements (e.g., dependability, maintainability), 
are of high importance and increase continuously. At the same time, software 
engineers are under more and more pressure to develop new systems in less 
time and at lower costs. 

The approaches based on quality models seem to cope with producing high 
quality software at low costs. They allow starting quality evaluation at early 
stages of software development process and control it through the whole soft-
ware lifecycle. 

According to [ISO14598] the term quality model is defined as “the set of 
characteristics and relationships between them which provides the basis for 
specifying quality requirements and evaluating quality”. 

Despite the variety of existing quality models, they do not cover all the impor-
tant aspects of quality modeling and evaluation. Many of them just replicate the 
lacks of others. For example the ISO 9126 quality model [ISO9126] defines a 
fixed set of quality characteristics. Nevertheless it is unrealistic to assume that it 
is possible to define a prescriptive view of necessary and sufficient quality char-
acteristics to describe quality requirements for every project.  

In [Trendowicz & Punter, 2003] and [Punter, Trendowicz and Kaiser, 2002] crite-
ria were stated that are relevant when evaluating quality of software product 
lines, namely: flexibility, reusability and transparency. Flexibility is that the con-
tent and structure of the model are defined according individual needs and ex-
periences of given organization so that resulting model is well custom-tailored 
to individual characteristics of the organization. Reusability is about reusing the 
model’s content (quality characteristics, metrics) as well as structure (relation-
ships and probabilities) for similar software products. Transparency of a quality 
model is needed to allow learning about quality relationships as well as easy 
identification of gaps, redundancies and conflicts to set relationships between 
the attributes. 

The capacity of a quality model depends on the selection of the attributes (are 
the right attributes as well as the complete set of attributes selected to predict 
the quality) and the relationships set between: 1) the attributes and 2) attributes 
and metrics. Such modeling can result in quite complex relationships, where it is 
not always easy to get the overview, see for example Figure 1. 



Introduction 

Copyright © Fraunhofer IESE 2003 2 

Design
quality

PROCESS

PRODUCT

RESOURCE

Reliability

Designer
motivation

Designer
experience

Designer
capability

Problem
complexity

Work
conditions

Design tools
quality

Team size Communicati
on

Work
environment

Work
coordination

Design
facilities

Use of
patterns

Design
methodology

Design
inspection
efficiency

#design
defects

Inspector
capability

Inspection
facilities

Design
complexity

Inheritance Coupling

Cohesion Size

Testing
efficiency

Inspection
effort

Testing
effort

#requirems
defects

Defects
density

Inspector
capability

Inspection
facilities

# defects
introduced

# defects
removed

Req engineer
capability

Requirems
specification

quality

Testing
process
maturity

Inspection
process
maturity

Code quality

Requirems
document

quality

Requirems
documentat.

facilities

Requirems
elicitation
facilities

Programer
capability

Programing
facilities

Process
maturity

Compliance
to reliability
standards

Fault
tolerance

Recover-
ability

 

Figure 1 Example quality model for reliability 

Another problem of quality models is the lack of sufficient information at the 
start of using the model. Often, only a subset of the relevant attributes is distin-
guished at the beginning of the modeling the quality. Starting with such an ini-
tial model might lead to the definition of other relevant attributes as well as to 
the refinement of the relationships. A third problem concerns how to involve 
different stakeholder views in a quality model. It is widely recognized that 
“quality is in the eyes of its beholders”. However, less is known how to inte-
grate these stakeholders in the quality model definition. 

We think that each of these three problems (complexity, missing information 
and insufficient stakeholder involvement) will negatively influence the first two 
criteria of quality models (flexibility and reusability). To address this, we thought 
that an alternative way of modeling the relationships – by using Bayesian Belief 
Nets (BBNs) – between attributes and between attributes and metrics would be 
helpful. A quality approach using Bayesian Belief Nets to model quality relation-



Introduction 

Copyright © Fraunhofer IESE 2003 3

ships seem to perfectly match to the nature of software engineering and cur-
rent trends in software quality modeling. Encouraged with the properties of 
BBNs we decided to apply them to evaluate non-functional requirements in the 
context of evolving real-time embedded software systems. We designed the 
Prometheus1 approach [Punter & Trendowicz and Kaiser, 2002] and deployed it 
in context of Empress project. 

Several authors have advocated the use of BBN in Software Engineering. Fenton 
and others are in favor of using BBN when predicting defects as well as model-
ing dependability and reliability [Fenton & Nail, 1999], [Fenton et al., 2001]. 
They think that BBNs are able to represent and manipulate complex models that 
might never be implemented using conventional models. Therefore an easier 
understanding of chains of complex and seemingly contradictory reasoning via 
the transparent graphical format seems to be likely when modeling with BBN. 

Besides that the Bayesian approach enables statistical inference to be aug-
mented by expert judgment in those areas of a problem domain where empiri-
cal data (measurement) is sparse. BBNs do also explicitly model “ignorance” 
and uncertainty in estimates. The model can predict events based on partial 
(missing) or uncertain data. This enables decision support under uncertainty and 
might be relevant when dealing with conflicting stakeholder opinions. 

The next paragraph explains the concept of BBNs. In paragraph 3 a simple ex-
ample of BBNs’ application is presented in order to explain the approach in 
more detail. In paragraph 4 we address experiences concerning the use of BBNs 
presented in available literature and combine them with our observations. Fi-
nally, in paragraph 5 we discuss the applicability of BBNs to model quality and 
we recommend the directions for further research. 

                                                 
1 Probabilistic Method for Early Evaluation of Non-functional Requirements 



Bayesian Belief Nets 

Copyright © Fraunhofer IESE 2003 4 

2 Bayesian Belief Nets 

A Bayesian Belief Net (BBN) or Bayesian net is a directed graph in which the 
nodes represent probabilities, while the arrows between the nodes represent 
dependencies. Each node in the graph may contain a number of states and has 
an associated set of Conditional Probability Distributions (CPD). Summarizing 
the BBN consists of: 

• structure (topology) – the set of nodes and directed arcs. Nodes represent 
variables (events). The arcs represent the relationships between the vari-
ables (dependencies). 

• content (parameters) – CPD related to each node (variable) of the graph. 
 

Two special types of nodes are distinguished: Root is a node without parents 
and leaf is a node without children. 

For discrete variables, the CPD can be represented as a Node Probability Table 
(NPT), which lists the probabilities that given node takes on each of its different 
values for each combination of values of its parents. For example, Figure 1 pre-
sents BBN in which all nodes are binary, i.e., each has only two possible values. 
For continuous variables, each CPD is represented as probability distribution 
e.g., most common Gaussian distribution. BBN might also contain nodes of dif-
ferent kinds. However, more advanced approaches have to be applied in that 
case [Olesen, 1993]. 

The construction of a BBN starts with the identification of the relevant variables 
in the domain that has to be modeled. After that the dependencies between 
the variables has to be determined. The third step is adding the conditional 
probabilities (CPDs) to the network. Then the initial network should be tested to 
verify if it reflects our intuitions regarding modeled quality. 

After having constructed the BBN, it provides a mechanism for probabilistic in-
ference. At the start, each node has its initial probability values (e.g., given by 
expert or excracted from experience database). When the new knowledge is 
available about probabilities (so-called fact), the appropriate NPT is altered and 
its impact is propagated over the whole graph (the whole network is recalcu-
lated basis on the new fact). 



Domains of BBN-application 

Copyright © Fraunhofer IESE 2003 5

3 Domains of BBN-application 

This section describes in which software engineering domains Bayesian prob-
ability approaches have been applied and which purpose they served. 

BBNs have been applied on a large scale in the medical fields. They are used 
when dealing with diagnosis, treatment selection, planning and prognosis [Lu-
cas, 2000][Lucas, 2001]. Bayesian networks are also widely used in software 
systems. The most well known application is probably in Microsoft applications, 
where BBNs underlie the help wizards in Microsoft Office or intelligent” printer 
fault diagnostic system. Nokia Networks uses the BBNs in a prototype tool for 
efficient diagnosis of mobile networks. By having an automated tool that reads 
network performance data and from that estimates and monitors network 
problems ranked by probability, the network operator gets an efficient trouble-
shooting procedure saving both expensive expert resources and downtime of 
the network [Barco et al., 2002]. Finally BBNs became the subject of interest of 
software quality evaluation community.  

Littlewood [Littlewood et al., 2000] applies BBNs to evaluate software safety. 
BBNs support the “What-if” analysis i.e. entering various possible combinations 
of observations in order to see their influence on software safety. For example, 
“What-if” analysis can answer the questions like: “What would I need to ob-
serve, at each successive stage of project, in order to show that the chances of 
success are still acceptable – that the project is in track?” 

Delict et al [Delic et al. 1997] as well as Fenton [SERENE, 1999] [Fenton, 1996], 
[Fenton et al., 2001 use Bayesian networks to evaluate software dependability. 
Fenton for example combines into Bayesian model different product, process 
and resource factors (e.g., testing quality, team competence) in order to evalu-
ate the number of defects found during testing.  

[Fenton and Neal, 2001] come up with the following characteristics that plead 
for the use of BBN in the SE-domain. BBNs can easily model causal influences 
between variables in a specified domain. This specification of complex relation-
ships using conditional probability statements is done in a graphical way so that 
easier understanding of chains of complex and seemingly contradictory reason-
ing will be possible. The Bayesian approach does also enable statistical inference 
to be augmented by expert judgment in those areas of a problem domain 
where empirical data (measurement) is sparse. A third advantage is that BBNs 
can deal with events based on partial (missing) or uncertain data, so that deci-
sion support under uncertainty is possible. Rodriguez et al [Rodriguez et al, 
2003] add that Bayesian systems model probabilities rather than exact value, 



Domains of BBN-application 

Copyright © Fraunhofer IESE 2003 6 

which means that uncertainty, can be handled effectively and represented ex-
plicitly. Besides there are software tools that facilitate modeling with Bayesian 
networks. These arguments make [Fenton and Neal, 2001] to conclude that 
BBNs are able to represent and manipulate complex models that might never be 
implemented using conventional modeling approaches. 

Gurp and Bosch have developed a BBN to evaluate software architectures [Gurp 
& Bosch, 1999. The SAABNet (Software Architecture Assessment Belief Net-
work) supports a qualitative assessment during architecture design phase of 
software development. They apply the quality factors (e.g., reliability, maintain-
ability) and criteria (complexity, fault tolerance) from McCall’s Factor-Criteria-
Metric model. However instead of metrics the last layer in the model defines ar-
chitecture attributes (class coupling, class inheritance). The network has been 
applied to automate the reasoning of qualitative knowledge in a software de-
velopment process. The BBN serves as an assisting technique to the designer 
expertise. Despite of the small size of the belief network, the authors argue that 
they were able to get meaningful output from it in the cases were it was tested 
(a PDA system, and an architecture for an embedded system) [Gurp and Bosch, 
1999]. However, from the paper it is not clear if the outcomes have been tested 
for their correctness. Gurp and Bosch think that the SAABnet will assist in se-
lecting system properties based on quality requirements. When a flexible, highly 
configurable system is needed without taking a performance penalty, the net-
work will suggest what states the other variables need to be in to make this 
possible. This does not automatically mean that other values of these variables 
will not give the same result, it just means that it is not as likely to happen. An-
other possibility to use the network is when verifying if certain properties for 
the variables indeed has the wanted effect on other variables. This is useful to 
provide argumentation for decisions early in the design process. A third possibil-
ity to apply SAABnet is for identifying variables that will need special attention 
during the development process. 

Rodriguez et al [Rodriguez et al, 2003] focus on the different type of algorithms 
to calculate Bayesian Networks. They propose four classifiers (algorithms) to cal-
culate the nets, namely: General Bayesian Network, Naïve Bayes, Tree Aug-
mented Naïve and Forest Augmented Naïve Bayes classifier. The authors found 
that the FAN classifier should produce better results since it can generate a 
broader range of network structures and in turn, better estimate actual prob-
ability distribution. However, their data set size was too small and therefore it 
could not effectively illustrate the merits of one over another. 

BBNs have been applied to software engineering, by several authors with sev-
eral purposes. The work of Fenton et al provides significant contributions to the 
software engineering domain. The work of Gurp and Bosch is closely related to 
our purpose to apply BBN for modeling software quality in early and evolution-
ary systems.  



How to apply BBNs for quality 
modeling? 

Copyright © Fraunhofer IESE 2003 7

4 How to apply BBNs for quality modeling? 

To apply Bayesian Belief Nets for Quality modeling we need to distinguish be-
tween the learning from the model and the act of defining an appropriate BBN. 
The learning about the model is addressed by the elements of a model (section 
0) and propagating through the model (section 4.2). Section 4.3 presents an 
approach how to define a BBN for quality modeling purposes. 

4.1 Elements of the model 

This section provides the elements of a software quality model when modeled 
as a BBN. 
The part of quality model that is presented in Figure 2 is an example of a BBN 
for “reliability prediction”, which includes also the NPTs.  

Reliability

Size

Coupling Inheritance

Design Analysability

Experience

# years LOCDITNOC

Design Coding

Design Source
code

Designer Programmer

Review

Designer competency Review efficiency

# projects

Complexity

#defects / h

attributes

metrics

NPT

entities

phases

 
Figure 2 Example BBN for reliability. 



How to apply BBNs for quality 
modeling? 

Copyright © Fraunhofer IESE 2003 8 

The nodes represent attributes (discrete or continuous), for example, the node 
“Experience” is discrete and can have three values “low”, “medium” and 
“high” whereas the node “size” might be continuous (such as LOC). Depend-
ent of the organizations capabilities and needs it is of course possible to repre-
sent as discrete the variables which are in principle continuous. For example we 
might represent size of code as “small”, “medium” and “large”. The arcs rep-
resent influential relationships between attributes. The number of similar pro-
jects he/she participated in and years of experience define designer experience. 
The exemplary node probability table (NPT) for “Experience” node might look 
the one shown in Table 1. For the simplicity of the example we have made all 
considered in NPT nodes discrete so that each of them take on just three dis-
crete values. The NPTs capture the conditional probabilities of a “Experience” 
node based on given the state of its parent nodes. 
As we already mentioned there may be several ways of determining the prob-
abilities for the NPTs. One of the benefits of BBNs stems from the fact that we 
are able to accommodate both subjective probabilities (elicited from domain 
experts) and probabilities based on objective data. 
 

# similar projects   few   many   lot  

years of experience  few many lot few many lot few many lot 

 Low 0,70 0,50 0,33 0,50 0,33 0,20 0,20 0,33 0,70 

experience Med 0,20 0,30 0,33 0,30 0,33 0,30 0,30 0,33 0,20 

 High 0,10 0,20 0,33 0,20 0,33 0,50 0,50 0,33 0,10 

Table 1 Example Node Probability Table 

Having entered the initial probabilities we can calculate initial estimation of in-
teresting us quality (here reliability) and update actual probabilities (propaga-
tion) through the whole development process when the new knowledge ap-
pears (facts). For example after implementation phase we can measure the ac-
tual size of the source code. Therefore the attribute “size” is then a fact what is 
reflected by putting into NPT measured value (let’s say Size=small) with prob-
ability 1 and other possible values (Size=medium, Size=large) with probability 0.  
After recalculating NPTs in all remaining nodes we obtain new, more accurate, 
evaluation of reliability. More detailed explanation of propagation mechanism is 
presented in the following sub section. 

4.2 Probabilistic inference 

The probabilistic inference is actually the propagation though the Bayesian net 
and represents the learning about the beliefs in the net. Probabilistic inference 
is illustrated by the following example (Figure 3). 



How to apply BBNs for quality 
modeling? 

Copyright © Fraunhofer IESE 2003 9

Software
maintainability

Design
decomposition

A

B C
Software
efficiency

 

Figure 3 Example of Bayesian Belief Net 

The dependency graph represents the common belief of software engineers 
that decomposition of software design (node A) is related (influences) the main-
tainability (node B) and efficiency (node C) of the final software product. In or-
der to complete the BBN we have to extend our structure by adding probabili-
ties (beliefs). Before that we need to quantify all variables. For the simplicity of 
the presentation let’s assume that all variables have a discrete character and 
that each of them has only two values, which are denoted by Small/Large for 
the node A and Low/High for nodes B, C. Now we can put our initial believes 
into probability tables (Table 2-4). 

Design decomposition Probability 

Small 0.7 

Large 0.3 

Table 2 Node probability table for Design decomposition variable. 
 

  Design decomposition 

  Small Large 

Low 0.7 0.2 Software  

maintainability  High 0.3 0.8 

Table 3 Node probability table for Software maintainability variable. 
 

  Design decomposition 

  Small Large 

Low 0.3 0.9 Software  

efficiency  High 0.7 0.1 

Table 4 Node probability table for Software efficiency variable. 



How to apply BBNs for quality 
modeling? 

Copyright © Fraunhofer IESE 2003 10 

The tables 2 to 4 contain so-called initial probabilities and reflect the beliefs 
about the chance of high or low software maintainability and efficiency. We al-
ready feel (by intuition) that design (and in consequence whole software) de-
composition has positive influence on software maintainability and negative in-
fluence on software efficiency (Tables 3, 4). Therefore, for example, we believe 
there is a low probability that software would be of high efficiency given it is of 
large decomposition. Let’s assume that we are developing an embedded real 
time system. In that context efficiency is more important than maintainability so 
assuming that developers know about mentioned relationships and we can be-
lief that software design would be of small decomposition (Table 2).  

Having entered the probabilities we can now use Bayesian probability to con-
duct various types of analysis. For example, we might want to calculate the (un-
conditional) probability that software would be of high maintainability:  

P(High maintain.) = P(High maintain. | Large dec.) * P(Large dec.) + 
+ (High maintain. | Small dec.) * P(Small dec.)   

p(High maintain.) = (0.8 * 0.3) + (0.3 * 0.7) = 0.45 
 

This is called the marginal probability. Similarly, the marginal probability of high 
software efficiency would be 0.52. 

The most important use of BBNs is in revising probabilities in the light of actual 
observations of events. Suppose, for example, that we know the design is of 
small decomposition. In this case we can enter the evidence that Design de-
composition = Small. The conditional probability tables already tell us the re-
vised probabilities for High software maintainability (0.3) and High Software ef-
ficiency (0.7).  

Suppose, that we do not know if the design decomposition is large or small. 
Nevertheless, after evaluating some components, we do know that its efficiency 
is high. Then we can enter the evidence that Software efficiency = High and we 
can use this observation to determine: 

1. the (revised) probability that the design decomposition is large; and  

2. the (revised) probability that software maintainability is high. 

To calculate 1) we use Bayes theorem:  

.)(

.)arg(.)arg|.(
.)|.arg(

effHighp

deceLpdeceLeffHighp
effHighdeceLp

×
=  



How to apply BBNs for quality 
modeling? 

Copyright © Fraunhofer IESE 2003 11

0577.0
52.0

3.01.0
.)|.arg( =

×
=effHighdeceLp  

 

Thus, the observation that efficiency is high significantly decreases the probabil-
ity that software is of large decomposition (down from 0.3 to 0.0577). More-
over, we can use this revised probability to calculate probability of high soft-
ware maintainability:  

P(High maintain.) = P(High maintain. | Large dec.) * P(Large dec.) + 
+ P(High maintain. | Small dec.) * P(Small dec.)  

p(High maintain.) = (0.8 * 0.0577) + (0.3 * 0.9423) = 0.3288 
 

Thus, the observation that efficiency is high decreased the probability that it 
would be of high maintainability. When we enter evidence and use it to update 
the probabilities in this way we call it propagation. 

4.3 Defining a BBN-based quality model 

This section deals about how to start in modeling a BBN for a quality model. 

The initial quality model is basically set up by defining attributes, possible rela-
tionships and adding probabilities to these relationships. The following steps 
have to be taken during a group session (steps 1 to 3) and a setting an initial 
BBN (step 4).  

1. Define a quality goal (or quality goals) for the software – this is done ac-
cording to the goal measurement template, which defines: object, pur-
pose, quality focus, viewpoint and context. 

2. Specify quality characteristics – this step concerns the refinement of the 
quality goals into a set of quality characteristics and sub (or sub-sub) 
characteristics. This procedure goes on as long as there is a set of meas-
urable characteristics defined. A sub-characteristic is measurable when it 
is possible to attach it to a particular component and define one or 
more corresponding metrics. References on factors that potentially in-
fluence the quality goal might be useful to support this specification 
step. The result of this step is a set of attributes and their associated 
measures. 

3. Specify relationships – relationships among the quality characteristics 
and between the quality attributes and their measures are set. Apart of 
the existence of a relationship between attributes and/or attributes and 
measures, also the probability that such a relationship will appear is 
asked. These probabilities are set as the importance of the defined qual-



How to apply BBNs for quality 
modeling? 

Copyright © Fraunhofer IESE 2003 12 

ity characteristics (weights), being a relative importance of the quality 
factors. 

4. Set initial BBN – this activity transfers the results of steps 1 to 3 into an 
initial BBN that expressed the quality model with its probabilities for the 
software. The probabilities are set by a moderator by using the table 
presented above. 

During the group session people involved in the software development but hav-
ing different roles and responsibilities in the development should be involved. 
We think that at least people with the following roles should be represented for 
specification in an embedded software context: architect, engineer and product 
manager. A moderator leads the group session and he/she is responsible for the 
defining the initial BBN too. The results (of steps 2 and 3) are expressed in a ta-
ble, like the following: 
 
Quality char-
acteristic 

Related Quality 
characteristic 

Weight of 
relationship (3 
point scale) 

Related Meas-
ures 

Weight of char-
acteristic – meas-
ure relationship 

Q1 Q3 1 M1.1 2 
Q2 Q4  M2.1, M2.2 M2.1: 3, M2.2: 1 
Q3 Q1 1 M3.1, M3.2 M3.1:1, M3.2: 2 
Q4     

Table 5 Example table with initial quality characteristics for BBN 

In order to combine within the model the view of more software project stake-
holders such as developer and maintainer additional mechanisms have to be 
applied.  

First, all interested parties have to agree with regard to the set of quality attrib-
utes within the model. The brainstorming session could deal with this problem.  

Second, NPT for each network node has to be filled. In principle nodes and 
NPTs are in the one-to-one relation what means that only one NPT is defined at 
each node. Therefore one possible solution to define NPTs could be joint session 
of all interested parties during which common probabilities are discussed and 
put into NPTs. However, this approach should be restricted to small networks 
where number of NPTs and required initial probabilities to define is relatively 
small. In case of larger nets, all interested parties could be introduced into the 
process of filling NPTs during joint session and fill the table individually after-
wards. The results could be then combined by simply calculating average for 
each probability. 



Discussing the applicability of 
BBNs 

Copyright © Fraunhofer IESE 2003 13

5 Discussing the applicability of BBNs  

In this section the application of BBNs for quality modeling is discussed. 

Our observations on the applicability of BBNs restrict to a discussion, because 
we could not find a demonstrator at one of the EMPRESS participating compa-
nies to apply BBN-based quality modeling. The discussion is conducted by ad-
dressing the three problems for quality models that were addressed in section 
1, namely: complexity, missing information and stakeholder involvement. 

Complexity 

The identification of the model content and structure confirmed the common 
opinion that BBNs provide transparent and intuitive structure and content (in 
contradiction to statistical or artificial intelligence methods). The understandable 
composition of BBN allows not only analyzing and directly interfering the model 
but also learning about complex quality dependencies. The learning process is 
supported by BNNs through the whole software lifecycle. During the develop-
ment of the initial network we can learn from the views of other stakeholders. 
Then, it is possible to modify the network if it does not reflect our intuition or 
experiences. In successive versions of a belief network, arcs could be added or 
discarded; nodes that prove to be useless could be eliminated. Other variables 
can be added when it is believed that they will have predictive power, or allow 
the validation of the argument through observation. The iterative process of 
building and analyzing BBNs is useful for clarifying otherwise informal reason-
ing, discarding weak arguments and warning of counterintuitive implications of 
seemingly obvious arguments. Organization can reuse the belief networks pro-
duced for a first application as templates for use in later (entirely or partially), in 
similar projects, also reducing at the same rime the cost of this approach. 

Dealing with missing information 

Applying probabilities and Bayesian theory in the field of quality modeling could 
be perceived both as a strength and weak point of the approach. The weakness 
is that output of such a model is probability that given quality will reach a cer-
tain value instead of the value itself. It means that BBN quality model could be 
in fact used to at most assessing quality risks instead of predicting the value of 
interesting us characteristics. However, it seems to be perfectly enough for the 
purpose of decision support. Anyway, software engineers often operate on di-
chotomized variables. For example efficiency expressed by response time is a 
continuous variable. From the perspective of fulfilling the non-functional re-
quirements we are often not interested in an exact value of the response time, 
but more in an indication, if it is the response time is short enough. Probably we 



Discussing the applicability of 
BBNs 

Copyright © Fraunhofer IESE 2003 14 

would add some intermediate values like “acceptable” but that’s enough for us 
to evaluate response time. 

Stakeholder involvement 

Operating on probabilities brings several advantages. First, it is possible to em-
ploy qualitative experts’ knowledge to set up initial probabilities. Expert knowl-
edge is a significant part of quality models at early stages of software life cycle 
where hardly few measurable artifacts are available. In organizations of a low 
maturity, where measurement does not exist and project success depends on 
human skills and experts’ knowledge is the only basis for quality modeling.  

A significant drawback of BBNs is that initial net requires from experts a great 
effort to put initial beliefs into node probability tables. For each discrete variable 
N and A1, A2…, Ai variables that influence N (parents of N), the number of initial 
conditional probabilities to be defined is equal to: 

X = n*a1*a2*…*ai 

where n, a1, a2,…, ai is the quantity of possible values for variable N, A1, A2…, Ai 

For example, let’s assume that each attribute within the network presented in 
Figure 4 has three possible values (small, medium, large). 

Residual
design faults

Injected
design faults

Design dev.
effort

Detected
design faults

Problem
complexity

Designer
skills

Design
Review
effort

 
Figure 4 Example BBN for evaluating residual design faults 

The NPTs that have to be filled include in total 7 tables: 

- Four tables for root nodes (3 cells each) 

- One table for “detected design faults” node (27 cells) 

- One table for “injected design faults” node (81 cells) 

- One for leaf node residual design faults” node (27). 



Discussing the applicability of 
BBNs 

Copyright © Fraunhofer IESE 2003 15

Therefore, 147 cells should be filled with initial probabilities. In addition we 
have to be aware that the time required to introduce all the probabilities is usu-
ally not proportional to the number of the cells but also depends on the size of 
the tables. From the perspective of cognitive complexity it is probably easier for 
expert to embrace mentally several smaller tables (one by one) than one large 
table with many dimensions. 

As shown before, the number of cells for probability tables in a given BNN 
grows exponential with the growth of the overall number of variables and the 
number of relationships. This fact imposes serious limitations on the size of 
BBN. However, the great effort required from experts to input initial probabili-
ties could be reused in other software projects. Therefore the average effort on 
one BBN application decreases with the growing number of applications. Addi-
tionally the more similar is the project to some of the previous one the greater 
part of the BBN can be reused and the less effort is required from expert’s side. 

Both limiting the size of network and structuring it in a way that a maximal 
number of parents does not exceed 2 could also minimize the effort expendi-
ture required to feed the model with conditional probabilities. For example the 
number of characteristics can be limited to the most influential ones and some 
intermediate (possibly) “artificial” nodes could be created in order to limit the 
number of node parents (see Figure 5 and Figure 6) 

Reliability

Tester
experience in RT

systems

Designer
knowledge of

RT-UML
Inspection effort Test effort

 

Figure 5 Example of node with many parents 

Exponential growth of the number of probabilities entails also the exponential 
growth of the computational power required to (re-) calculate the network. Ac-
tually computing Bayesian probabilities in BBNs is a NP-Hard problem (which 
cannot be solved in polynomial time) [Cooper, 1990]. However, recently in-
vented efficient algorithms let us neglect this problem if the net is not really 
huge. 

 



Discussing the applicability of 
BBNs 

Copyright © Fraunhofer IESE 2003 16 

Reliability

Team
experience in RT

systems
QA effort

Tester
experience in RT

systems

Designer
knowledge of

RT-UML
Inspection effort Test effort

 

Figure 6 Network from Figure 5 after limiting the number of parents  

Theoretically, BBN allows mixing discrete and continuous variables within one, 
hybrid BBN. In practice there are some limitations. Just recently Lerner and his 
colleagues presented a first inference algorithm for hybrid BBNs that allows dis-
crete children of continuous parents [Lerner at al., 2001]. However it does not 
have practical repercussions because existing BBN tools does not yet support it. 
They either support hybrid nets excluding discrete children of continuous par-
ents or does not support continuous variables at all. In practice, even if continu-
ous variables are supported by a tool most of tools provides only one – Gaus-
sian – distribution.  

There is another problem with the continuous variables in the area of software 
engineering. Standard probability distributions known from social sciences often 
does not apply to software engineering phenomena. Additionally, most of 
software organizations do not have enough data from past projects to establish 
such distributions. However, as we have already mentioned software engineers 
are used to think in the discreet manner even about variables that are continu-
ous in nature. 

During our application we were not able to apply the model to assess its accu-
racy. Nevertheless, other researchers [Fenton et al., 2001] report that a signifi-
cant amount of data is needed in order to make reasonably precise predictions 
for a specific project. In their study Fenton et al. observed that a disadvantage 
of a reliability model of higher complexity is the amount of data that is needed 
to support a statistically significant validation study. 



Conclusions and further 
investigation 

Copyright © Fraunhofer IESE 2003 17

6 Conclusions and further investigation 

Recent research on the applicability of Bayesian Belief Nets is promising for solv-
ing the problems that existing quality modeling approaches face. BBNs have 
many characteristics that made them applicable for quality modeling. The de-
pendency graphs and the feature to change the probabilities make them well 
tailorable for individual software project characteristics as well as reusable for 
other projects. The graph-based structure supports the transparency that is re-
quired by quality models. Modeling quality attributes with a graph facilitates the 
learning about interdependencies amongst quality characteristics. On the other 
hand, application of Bayesian probability let us put qualitative quality estima-
tions in sound mathematical frames. 

However we found also drawbacks of applying BBNs for quality modeling. The 
main drawback is the initial effort that is required to build a first version of a 
quality model. In section 5 it was discussed that filling the node probability ta-
bles require a great effort from experts. However the effort could be minimized 
when the network has a sound size and structure. Moreover, when the network 
is defined, it can be reused in subsequent projects and thus limit substantially 
the required costs of quality modeling. 

A minor problem is the lack of tools to support BBNs with mixed discrete and 
continuous variables, and NP-hard computational complexity of BNN. It was 
mentioned in section 5 that software engineers operate mainly with discrete 
variables therefore exact evaluations with continuous variables are not neces-
sary. On the other hand capabilities of computers and new effective algorithms 
to operate Bayesian networks let us neglect the computational complexity prob-
lem event for quite large networks. 

Further research on BBNs should focus on how to support experts/stakeholders 
with efficient definition of initial NPTs. 



References 

Copyright © Fraunhofer IESE 2003 18 

References 

[Barco et al., 2002] R. Barco, R. Guerrero, G.Hylander. L. Nielsen, M. Partanen, S. 
Patel, “ Automated Troubleshooting of Mobile Networks us-
ing Bayesian Networks”, proceedings of the IASTED Interna-
tional Conference on Communications Systems and Net-
works, September 9-12, 2002, Malaga, Spain (Calgary, Can-
ada: ACTA Press, 2002), pp 105—110 

[Cooper, 1990] GF.Cooper, “The computational complexity of probabilistic 
inference using Bayesian belief networks” (research note), 
Journal of Artificial Intelligence. vol. 42 pp 393-405, 1990 

[Delic et al., 1997] K.A. Delic, F. Mazzanti, L. Strigini, “Formalising engineering 
judgement on software dependability view belief networks”, 
DCCA-6, Sixth IFIP International Working Conference on De-
pendable Computing for Critical Applications, “Can we rely 
on computers”, Garmish-Partenkirchen, Germany, 1997 

[Fenton & Pfleeger, 1996] N.E. Fenton S.L.O.Pfleeger, „Software Metrics: A Rigorous 
and Practical Approach“,PWS, 1998 (originally published by 
International Thomson Computer Press, 1996), ISBN 0534-
95429-1 

[Fenton & Neil, 1999] N.E.Fenton, M.Neil, „A Critique of Software Defect Predic-
tion Models“,IEEE Transactions on Software Engineering, vol. 
25, no. 5, pp. 675-689, 1999 

[Fenton et al., 2001] N.E.Fenton, P.Krause, M.Neil, A Probabilistic Model for Soft-
ware Defect Prediction, accepted for publication IEEE Trans-
actions in Software Engineering, 2001 

[Fenton & Neil, 2001] N.E. Fenton, M. Neil, Making Decisions: Using Bayesian Nets 
and MCDA, Knowledge-Based Systems 14, pp. 307-325, 
2001. Software Metrics: Uncertainty and Causal Modeling. 
Fenton N, Neil M and Krause P. EuroSPI conference, Limerick 
Institute of Technology, Limerick, 10th-12th October 2001. 

[Gurp & Bosch, 1999] J. Gurp, J. Bosch, “Using Bayesian Belief Networks in Assess-
ing Software Designs”, ICT Architectures '99 , Amsterdam 
November 1999 
 



References 

Copyright © Fraunhofer IESE 2003 19

[ISO9126, 2001] Software Engineering - Product quality. Part 1: Quality 
model, ISO/IEC International Standard, 2001 

[ISO14598, 1999] ISO/IEC 14598 International Standard, Standard for Informa-
tion technology - Software product evaluation - Part 1: Gen-
eral overview, 1999 

[Khoshgoftaar & Allen, 1998] T.M. Khoshgoftaar, E,B. Allen, “Neural networks for soft-
ware quality prediction”, In W. Pedrycz, J.F. Peters, editors, 
Computational Intelligence in Software Engineering, 16:33-
63 of Advances in Fuzzy Systems - Applications and Theory. 
World Scientific, 1998, 

[Khoshgoftaar & Allen, 1999] T.M. Khoshgoftaar, E.B. Allen, “Logistic regression modeling 
of software quality”, International Journal of Reliability, 
Quality and Safety Engineering 6 (4):303-317, 1999 

[Lerner et al., 2001] U. Lerner, E. Segal, D. Koller, Exact Inference in Networks 
with Discrete Children of Continuous Parents. Uncertainty in 
Artificial Intelligence: Proceedings of the Seventeenth Con-
ference (UAI-2001), pp. 319-328, Morgan Kaufmann Pub-
lishers, San Francisco, CA, 2001 

[Littlewood et al., 2000] B. Littlewood, L. Strigini, D. Wright, N. Fenton, M. Neil, 
“Bayesian Belief Networks for Safety Assessment of Com-
puter-based Systems”, in System Performance Evaluation 
Methodologies and Applications (Ed: Gelenbe E), ISBN 0-
8493-2357-6, pp. 349-364, CRC Press, Boca Raton, 2000 

[Lucas, 2000] P. Lucas, “Bayesian model-based diagnosis”, Technical Re-
port, 2000; published in the International Journal of Ap-
proximate Reasoning 2001; 27(2): 99-119 

[Lucas, 2001] P. Lucas, “Bayesian networks in medicine: a model-based 
approach to medical decision making”, K-P. Adlassnig (ed.), 
Proceedings of the EUNITE workshop on Intelligent Systems 
in patient Care, Vienna, Oct. 2001, pp. 73-97 

[Olesen, 1993] K.G. Olesen, “Causal Probabilistic Networks with Both Dis-
crete and Continuous Variables”, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 15, no. 3, 1993, 
pp. 275-279 

[Prowell et al., 1998] S.J. Prowell, C.J. Trammell, R.C. Linger, J.H. Poore, Clean-
room Software Engineering. Technology and Process, Read-
ing: Addison-Wesley, 1998, xv, 390 S. ISBN: 0-201-85480-5 



References 

Copyright © Fraunhofer IESE 2003 20 

[Punter et al., 2002] T. Punter, A. Trendowicz and P. Kaiser „Evaluating Evolu-
tionary Software Systems“, 4th International Conference on 
Product Focused Software Process Improvement, PROFES 
2002, Rovaniemi (Finland), December 9 - 11, 2002. 

[Rodriguez et al, 2003] D. Rodriguez, J. Dolado, M. Satpathy, Bayesian Networks 
and Classifiers in Project Management, in: Proceedings of 2nd 
workshop on Empirical Studies in Software Engineering 
(WSESE 2003), 2003. 

[SERENE, 1999] SERENE consortium, SERENE (SafEty and Risk Evaluation us-
ing bayesian Nets): Method Manual, ESPRIT Project 22187, 
http://www.csr.city.ac.uk/people/norman.fenton/serene.htm, 
1999. 

[Trendowicz & Punter, 2003] A. Trendowicz, T. Punter, “Quality modeling for Software 
Product Lines”, 7th ECOOP workshop on Quantitative Ap-
proaches in Object-Oriented Software Engineering QAOOSE 
2003, Darmstadt, Germany, July 2003 

 



 

 

Document Information 

Copyright 2003, Fraunhofer IESE. 
All rights reserved. No part of this publication may 
be reproduced, stored in a retrieval system, or 
transmitted, in any form or by any means including, 
without limitation, photocopying, recording, or 
otherwise, without the prior written permission of 
the publisher. Written permission is not needed if 
this publication is distributed for non-commercial 
purposes. 

Title: Applying Bayesian Belief 
Networks for early soft-
ware quality modeling 

Date: November 31, 2003 
Report: IESE-117.03/E 
Status: Final 
Distribution: Public 


