

3D printing in orthopedics and neurosurgery

R Grunert^{1,2}, C Rotsch¹, M Mueller¹, M Schmidt², R Moebius², T Toeppel¹, T Prietzel³, D Winkler²

¹ Fraunhofer IWU Dresden, Germany
² University of Leipzig, Germany
³ Helios Hospital Blankenhain, Germany

Modular femur replacement for tumor orthopedics

Motivation

All examinations and optimizations were based on a current modular tumor endoprosthesis (MML system, ESKA)

Disadvantages:

- High dead weight
- Refixation of detached muscle groups is only possible to a limited extent
- Difficulties by separating the individual modular components, because of fixation by conical clamping

Weight reduction

- Topology optimization (neck module)
- Simulated load (1200 N)
 - \rightarrow illustrating dominant load paths
- Goal: Reduction of the implant weight

Weight reduction

- Based on the topology optimization a total of 3 versions of the new neck module were created
- Weight reduction

Interface

- Polygon interface
- Based on the polygon clamping principle
- By external load application, a minimal elastic deformation is caused by a few hundredths of a millimeter

Generative production

- Production of individual components by means of laser beam melting
- Material: titanium alloy grade 5 (TiAl6V4)
- Subsequent heat treatment against susceptibility to cracking

Result

 Individual endoprosthesis parts for post processing

Textile attachment points

- Integration of two-dimensional textile structure for refixation of detached muscle groups
 - \rightarrow restoration of the function
- 3 textile variants were developed and implemented constructively
- Fixation by overmolding of the metal core and the textile with polyethylene

Fixing of the connection points

- By means of an injection molding tool
- Fixation of the textile to the neck module

Result

Final prototype

- Weight-reduced endoprosthesis (743g \rightarrow 397 g)
- Integrated connection points for refixation of detached muscle groups
- Modular design
- Coupling of the modules via novel interface

Final testing

- 6 prototypes have been tested
- In the context of dynamic stress tests, the lightweight construction geometry was tested
- Test according to ISO 7206-4 (test of the shaft area)
- Test according to ISO 7206-6 (test of the neck area)

All tests were completed successfully!

Final testing

- Body donor tests (in cooperation with the Institute of Anatomy)
- Lateral approach to the hip joint (modified according to Bauer)
- Implantation by use of bone cement (PMMA)
- Successful refixation of the muscles at the created attachment points

Medizinische Fakultät

High precision patient-individual brain biopsy

Stereotaxy

Problems in stereotactic surgery

- Traumatic and time-consuming
- Complex application
- Limited to high-specialized neurosurgical centers
- Difficult for beginners
- Complex sterilization and storage

New approach

Placement of bone screws

Placement of MRI markers

Image acquisition with MRI

CONSTRUCTION

3D Printing

Diagnostic

Accuracy in comparison to the state of the art

System	Тур	RMS	Sample size
OAS, Radionics	Mechanic arm	2,9 mm ± 1,1 mm	n = 22
SPOCS, Aesculap	Infrared	2,9 mm ± 1,2 mm	n = 16
OTS Radionics	Infrared	3,2 mm ± 1,2 mm	n = 10
MKM, Zeiss	Microscope	2,1 mm ± 0,8 mm	n = 101
Integrierter Z-Rahmen	Frame	2,4 mm	n = 3
Brainsight Frameless Stereotactic System	Frame	4,6 mm ± 1,5 mm	n = 4
microTargeting™ Platform, FHC	3D- print frame	2,8 mm	n = 20
Renaissance Guidance System, Mazor Robotics	Robot	1,5 mm	-
NeuroTec System	3D- Print frame	0,45 mm ± 0,3 mm	n = 20

\rightarrow 3 x accurate than robots

Transfer to human medicine

Advantages

- Most accurate and gentle brain biopsy (0,64 ± 0,42) mm, Max.=2,00mm, Min.=0,09mm
- MRI or CT based planning
- Patient-individual planning and production with 3D-printer
- No intraoperative image acquisition
- Triple precision and 1/50 of the costs than robots

UNIVERSITÄT LEIPZIG

Medizinische Fakultät

WWW.anatomy-biomechanics.com

