Characterisation of the Influence of Material Hardness in Precise Electrochemical Machining of Steel

Meichsner, G.¹, Hackert-Oschätzchen, M.², Krönert, M.², Edelmann, J.¹, Schubert, A.^{1,2}, Hahn, G.³, Putz, M.¹

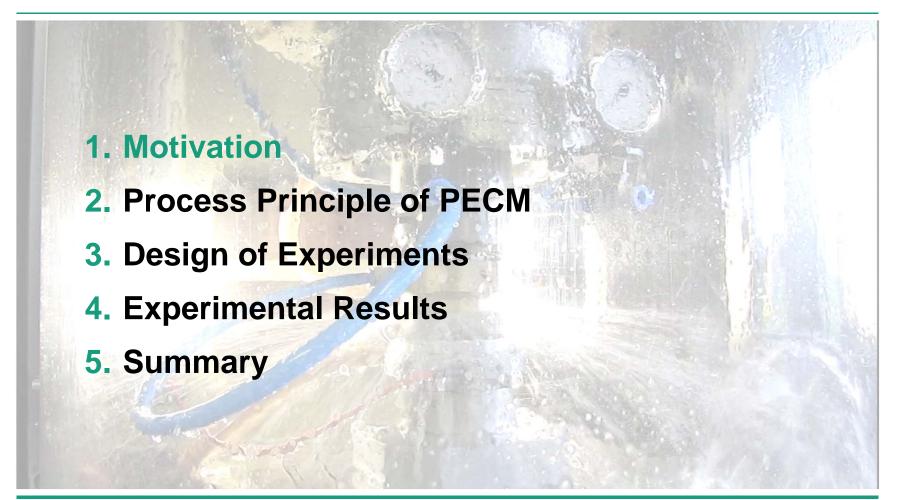
¹ Fraunhofer Institute for Machine Tools and Forming Technology IWU, 09126 Chemnitz, Germany

² Professorship Micromanufacturing Technology, Faculty of Mechanical Engineering, Technische Universität Chemnitz, 09107 Chemnitz, Germany

AL

³ Extruder Experts GmbH & Co. KG, 52156 Monschau, Germany

17th International Conference on the Strength of Materials **ICSMA 17**



Brno, August 9 - 14th, 2015

August 9-14, 2015 © Fraunhofer IWU the star **ICSMA 17 BRNO**

2

Motivation

Initial situation:

- Requirements on products: sufficient stability, high wear resistance, light weight, ...
- Requirements can be achieved by changing the properties of the work-piece material
- Creating new strength materials by:
 - Changing the material composition
 - Changing the production process
 - Using treatment to change the material properties

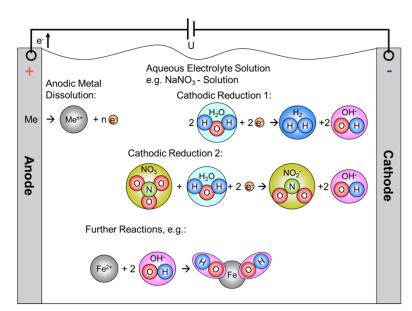
Complex geometry [TECT Power]

New Materials [Liquidmetal Technologies]

Question:

How can a high-strength material be machined?

© Fraunhofer IWU 3 ICSMA 17 BRNO



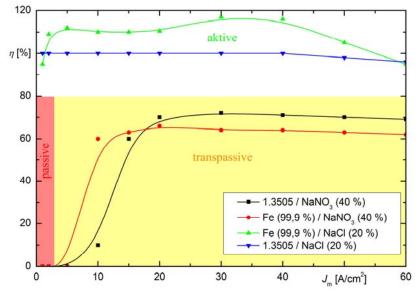
Motivation

Electrochemical Machining - ECM

- Anodic metal dissolution
- No insertion of mechanical stress (tension) into the work-piece
- No thermal influence on the work-piece
- No influence of material's hardness and toughness
- No burrs
- No process-related tool wear
- High surface quality

Scheme of anodic dissolution [nach Klocke]

Faraday's law :
$$m = \frac{M}{z_A \cdot F} \cdot Q$$

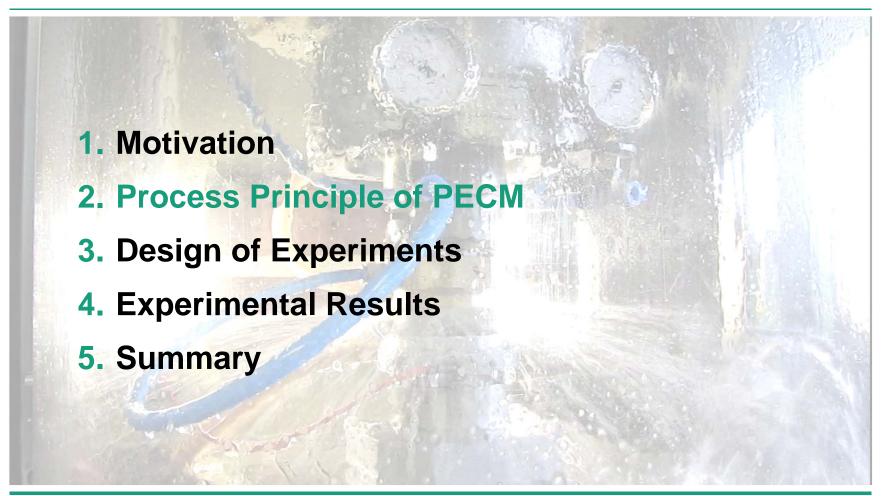


Motivation

- Knowledge about the material dissolution is necessary:
- Every material has its own characteristic
- Depends on the electrolyte

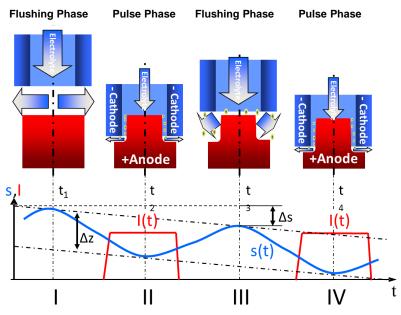
Does the material's hardness influence the anodic dissolution?

- Study on the influence of the material's hardness in Precise Electrochemical Machining of steel 1.4112
- Carried out with non-tempered, case hardened and hardened work-pieces
- Recording the current efficiency as a function of current density


Current efficiency as function of the current density of the electrochemical dissolution of pure iron and a 1.3505 steel in NaCl and NaNO₃ electrolyte [Haisch]

$$\eta = \frac{V_{eff}}{V_{sp}} = \frac{m_{eff}}{m_{sp}} \qquad m_{eff} = \frac{m_a}{Q}$$

August 9-14, 2015 © Fraunhofer IWU the star **ICSMA 17 BRNO**

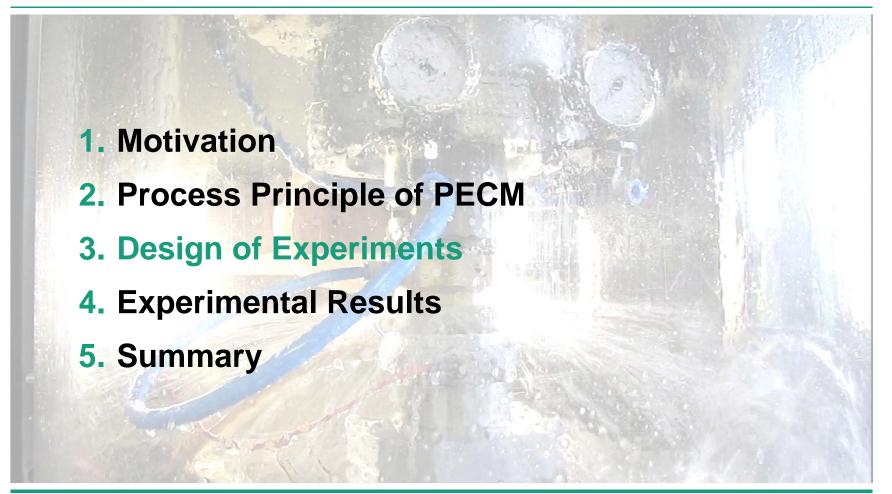


Process Principle of PECM

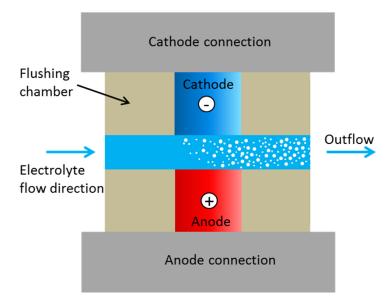
Principle:

anodic metal dissolution with pulsed current and oscillating working gap

- Localization of the removal area
- Roughing/Finishing/Polishing in a single operation cycle
- Accurate reproduction (± 2 μm)
- Surface quality up to Ra ~ 0.05 μm
- Forming tools, Cutting and punching tools, Microsystems applications


Principle of Pulsed Electrochemical Machining

Device System


- Device system for the electrochemical dissolution of metallic materials
- Removal area is supplied with fresh electrolyte using lateral flushing
- Design for implementation into an industrial machine tool like PEMCenter 8000

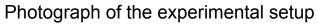
Requirements on the removal process:

- Frontal removal of the work-piece
- Realisation of a steady state working gap

ALL

Constant electrolyte conditions

Schematic illustration of the removal device



Device System

- Work-piece size:
 - Ø 12 mm
 - Height 12 mm
- Work-piece average weight (1.4112):
 - ≈ 9.8 g

Work-piece

Process parameters

- Range of the current density: 5 to 110 A/cm²
- Varied input process parameters:
 - Voltage U
 - Feed rate v_f
 - Working gap a
- Materials:
 - Stainless steel 1.4112
 - non-tempered (320 HV)
 - Case-hardened (620 HV)
 - Hardened (650 HV)
- Process output characteristics:
 - Removal mass m_a

PEM-Center 8000, PEMTec

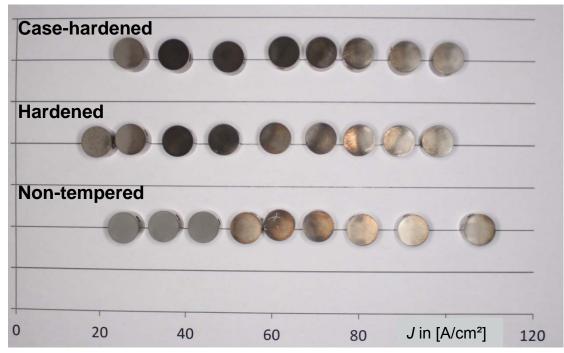
Experimental parameters

Symbol	Parameter	Value
	Electrolyte	Sodium nitrate
σ	Electric conductivity	66 mS/cm ± 1 mS/cm
	Workpiece material	1.4112
d	Workpiece diameter	12 mm
A _E	Electrode surface area	1.131 cm ²
f	Oscillation frequency	50 Hz
t _p	Pulse duration	4 ms
<i>p</i> _i	Inlet pressure	3 bar
Z _{max}	Max. travel distance	300 µm
U	Process voltage	5 V – 15 V
V _f	Feed rate	0.008 mm/min – 0.230 mm/min
а	Working gap	10 μm – 100 μm

Measurement Method

- Removal mass m_a
 - Micro balance ME614S, Sartorius
 - Before and after machining
 - Measuring error ±28 μg

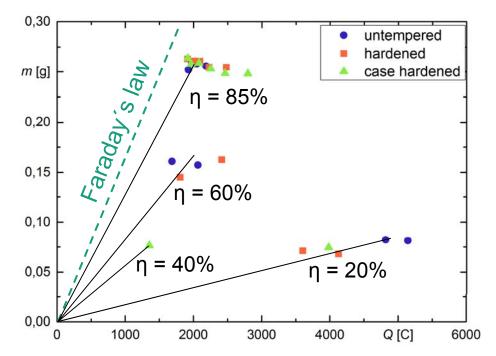

Micro balance ME614S, Sartorius



Machining Results

Three different states of heat treatment as a function of the current density of 1.4112

- Feasibility of electrochemical machining of 1.4112 at different states of heat treatment could be demonstrated
- Color and brightness of the surface depends on the current density
- Coloring of hardened and case-hardened 1.4112 is almost equal


Quantification

- Faraday's law is not achieved
- Equal removal masses at different amounts of electric charge are possible
- The different inclinations of the graphs indicate a variation of current efficiency
 - Smallest current efficiency: 20%
 - Largest current efficiency: 85%
- Not all electric charge is changed into removal mass
- That behavior is similar for the three different states of heat treatment

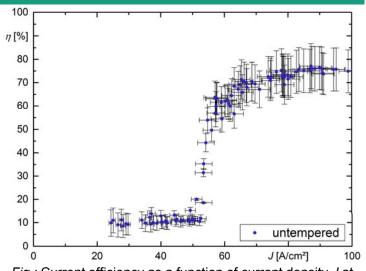
August 9-14, 2015

_AL

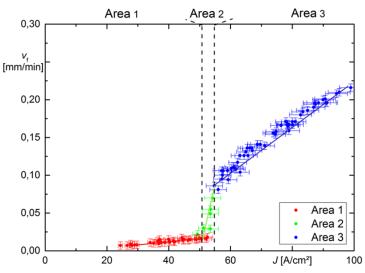
BRNO

Removal mass as a function of electric charge transport at different states of heat treatment of 1,4112 under PECM condition

🗾 Fraunhofer


IWU

truder


perts

- Non-tempered 1.4112 shows the following removal characteristics:
 - From 22 A/cm² to 50 A/cm² the current efficiency amounts to 12%
 - From 50 A/cm² to 52 A/cm² the current efficiency increases to 65%
 - From 52 A/cm² to 100 A/cm² the current efficiency increases to 85%
- The removal rate v_a has the same behavior as the current efficiency
- The removal characteristic depends on the current density

Fig.: Current efficiency as a function of current density *J* at different working gaps a of non-tempered *1.4112*

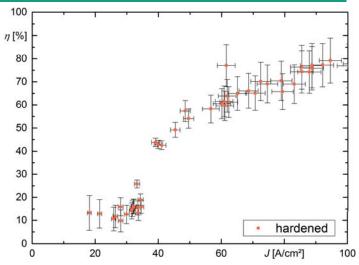
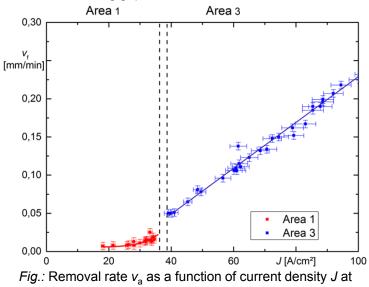


Fig.: Removal rate v_a as a function of current density *J* at different working gaps a of non-tempered *1.4112*



- Hardened 1.4112 shows the following removal characteristics:
 - From 20 A/cm² to 38 A/cm² the current efficiency increases to 20%
 - From 38 A/cm² to 40 A/cm² the current efficiency increases to 55%
 - From 40 A/cm² to 100 A/cm² the current efficiency increases to 80%
- The removal rate v_a has the same behavior as the current efficiency
- The removal characteristic depends on the current density

Fig.: Current efficiency as a function of current density *J* at different working gaps a of hardened *1.4112*

different working gaps a of hardened 1.4112

- Case hardened 1.4112 shows the following removal characteristics:
 - From 26 A/cm² to 32 A/cm² the current efficiency increases to 15%
 - From 32 A/cm² to 35 A/cm² the current efficiency increases to 35%
 - From 35 A/cm² to 100 A/cm² the current efficiency increases to 80%
- The removal rate v_a has the same behavior as the current efficiency
- The removal characteristic depends on the current density

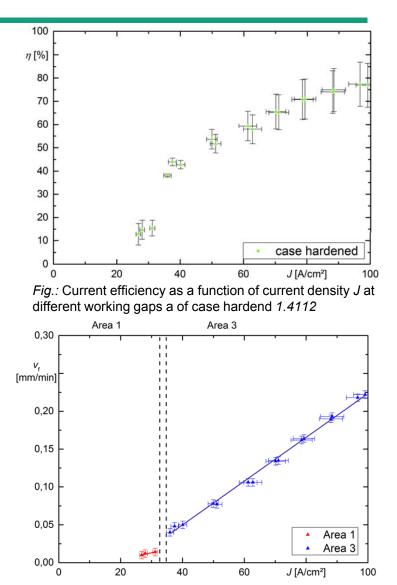


Fig.: Removal rate v_a as a function of current density J at different working gaps a of case hardend 1.4112

- Hardened and case hardened 1.4112 have an almost equal removal characteristic
- Different removal characteristic for nontempered 1.4112 up to a current density of 52 A/cm²
- Equal removal characteristic for non-tempered 1.4112 at a current density exceeding 52 A/cm²
- At low current densities the removal of 1.4112 depends on the heat treatment
 - The heat treatment improves the removal rate
- At higher current densities exceeding 52 A/cm² the removal process is independent from the hardness

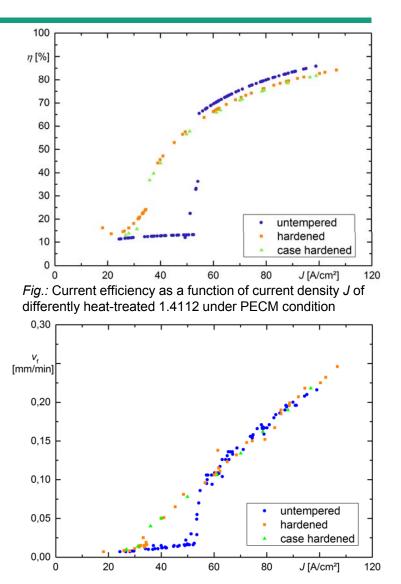
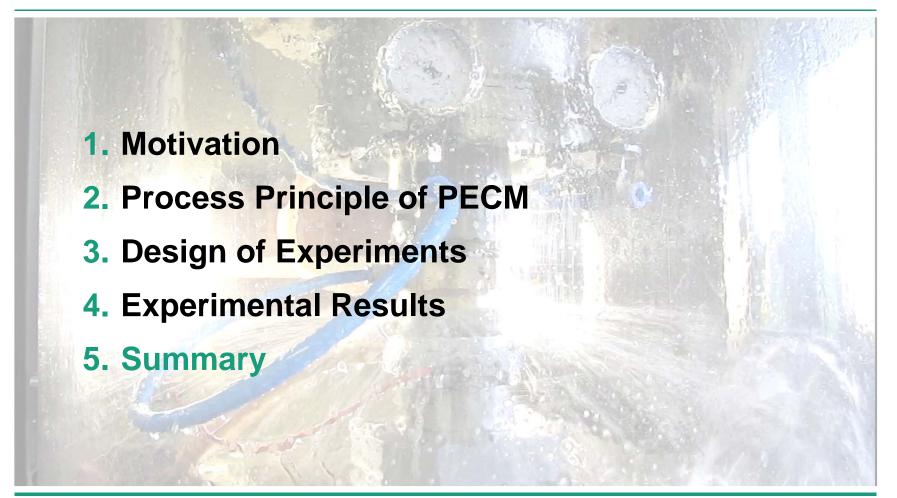
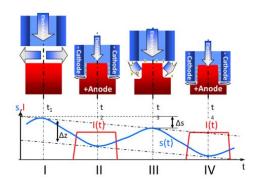
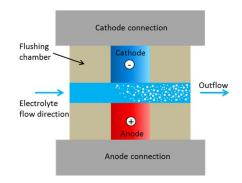
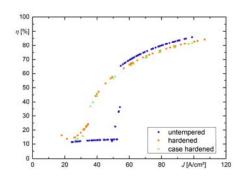



Fig.: Removal rate v_a as a function of current density J of differently heat-treated 1.4112 under PECM conditions

August 9-14, 2015 © Fraunhofer IWU the star **ICSMA 17 BRNO**


20





Summary

- Anodic dissolution of stainless steel 1,4112 at three different states of heat treatment under PECM conditions was presented
- The removal of the differently heat-treated materials is characterized by different as well as equal sections
- At current densities below 52 A/cm² the current efficiency depends on the heat treatment
- In this case the heat treatment improves the removal rate
- ECM process can depend on the heat treatment of the metal material
- ECM can be used to machine hardened metal materials

This investigation was supported by the Federal Ministry of Economics and Technology, following a decision of the German Bundestag.

