Decentralized PV Battery Storage Systems System Design, Integration and Operation

Dr. Matthias Vetter

Fraunhofer Institute for Solar Energy Systems ISE

Intersolar Conference NA 2014

Session Applications and System Solutions

San Francisco, 7th of July 2014

Agenda

- Design of decentralized (residential) PV battery systems – Example AC coupled solution
- System integration
- Battery management
 - State estimation
 - Influence of operating ranges on life time
- Energy management and cost analyses
 - Self consumption
 - Grid issues
- Conclusions

Example: Building integrated PV battery systems AC coupled solution

3

Example: Building integrated PV battery systems AC coupled solution

System integration

CAN Battery

CAN_Inverter

— Low power supply

Inverter and energy management interface

System integration Interface to distribution grid

Smart battery management as part of an optimized energy management

- Communication interface between EMS and BMS
- Model based energy management
 - Load and generation management
 - Optimized operation of battery system
 - → Control of energy fluxes
- Model based battery management
 - SOC prediction in dependence on load profile forecast
 - Efficiencies in dependence on load profile forecast
 - Information on aging

Battery management system Overview and function blocks

Particle filter approach for state estimation

State of charge and state of health for LiFePO₄

1

0

60

9

1

0.8

0.6

0.4

0.2

0

0

10

20

30

Time / h

SOC estimation particle filter

SOH estimation particle filter

40

SOC reference

SOH reference

50

Soc

Influence of operating range Example LiFePO₄ batteries

10

Influence of operating range Example LiFePO₄ batteries

Influence of operating range Example LiFePO₄ batteries

Energy management – Optimization of self-consumption Analysis of energy fluxes (results of system simulation)

- PV generator size: 6 kWp
- Lithium-ion battery system: Variation of usable capacity

13

Only ~ 20 % have to be

Energy management – Optimization of self-consumption Cost analyses

Energy management – Optimization of self-consumption Cost analyses

Energy management – Optimization of self-consumption Cost analyses

Cost drivers

- Investment cost
- Cycle number 100 **Operation and** maintenance **Project period** storage costs [ct/kWh] Investment costs (1000 €/kWh) 50 number of full cycles (250 per year) --- Maintenance area of influence of (6 %Inv) - efficiency (75 - 95 %) - usable SOC-scope (80 - 100 %) - project period (16 years) 0 +50 % - 50 % -25 % 0 +25 % Variation 16

Energy management Operating control strategies

→ Conventional storage strategies have no significant positive effects for the distribution grid

Conventional storage strategy

Source: J. Mayer (BSW), C. Wittwer (ISE), Batteriespeicher: Ein sinnvolles Element der Energiewende. Berlin, Pressefrühstück 25.1.2013

Energy management Operating control strategies

- → Reduced feed-in peak power decreases problems in the distribution grids
- \rightarrow Reduced feed-in peak power up to 40 % without yield losses
- \rightarrow 66 % increase of PV power in local distribution grids possible

Grid friendly storage strategy

18

Conclusions

- Lithium-ion battery systems are very interesting and promising for the use in decentralized grid-connected PV applications
- Lithium-ion battery systems:
 - > Have always an integrated battery management
 - Precise state of charge and state of health estimation crucial
 - Operating ranges have an impact on life time
 - Future: Integration of end of life / remaining life time predictions
 - \succ On the way to be profitable, dependent on the specific application and the boundary conditions
 - \rightarrow But: Cost have still to be decreased \rightarrow Detailed cost analyses very important
- Energy management for decentralized PV battery systems:
 - > Operating control strategies for increased self-consumption are "state of the art", but not sufficient for enabling the "energy transition"
 - "Intelligent" energy management, which considers grid issues, enables further large scale grid integration of PV systems 19

Thanks for your attention !!!

Fraunhofer Institute for Solar Energy Systems ISE

Dr. Matthias Vetter

www.ise.fraunhofer.de matthias.vetter@ise.fraunhofer.de

20

© Fraunhofer ISE