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Abstract: To explore the seafloor, a side-scan sonar emits a directed acoustic signal and 
then records the returning (reflected) signal intensity as a function of time. The inversion of 
that process is not unique: multiple shapes may lead to identical measured responses. 
In this work, we suggest a Bayesian approach to reconstructing the 3D shape of the seafloor 
from multiple sonar measurements, inspired by the state-of-the-art methods of inverse 
raytracing that originated in computer vision. The space near the bottom is modelled as a 
grid of voxels, whose occupancies are represented by random binary variables. Any 
assignment of occupancies corresponds to some seafloor shape. A global multi-component 
energy potential describes how well the resulting surface agrees with the sonar data and 
with the a priori assumptions. Minimization of energy is equivalent to finding the maximum 
a posteriori (MAP) assignment to this Markov random field (MRF) and is done using the 
iterated belief propagation (BP) algorithm. 
The critical step in this method is to compute messages from “factors” representing the 
sonar beams to voxels. Naïvely, its complexity scales exponentially with the number of 
voxels traversed by a beam. Unlike inverse raytracing, where a pixel value constrains voxels 
only along a single view ray, a sonar beam involves voxels within a relatively wide cone. 
Employing dynamic programming techniques and space-filling curves, we were able to 
develop a practical approximate solution to this problem. 
The algorithm is not restricted to side-scan sonar reconstruction and could be applied to 
medical ultrasound or ultra wide-band (UWB) radar imaging. 
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1. INTRODUCTION 

Reconstructing a seafloor 3D shape from side-scan sonar data is difficult since the recorded 
signal carries only indirect information about the distance from the sensor to bottom. Beam 
propagation in the water and reflection from the bottom can be modelled relatively 
accurately, see e.g., [1], [2], and [3] but the inverse problem is to our knowledge not yet 
solved. A similar problem in computer vision, namely the inverse raytracing, has recently 
seen an efficient solution [4], [5]. 

The latter works by Liu and Cooper focus on reconstructing a 3D scene from multiple 
camera views. To that end, they introduce a grid of voxels spanning a volume of interest. 
Each voxel corresponds to a binary random variable that describes its occupancy. The 
relations between voxels are encoded in terms of “factors’’ linked to those variables. The 
resulting structure known as a Markov random field (MRF) can be represented as a bi-partite 
graph. In essence, an MRF describes the joint probability of a simultaneous assignment to 
all the occupancy variables. A huge monolithic probability function is replaced with a long 
product of functions each depending only on a few variables, enabling efficient inference 
methods. 

The RayMRF, as Liu and Cooper call it, contains three types of factors. A unit factor is 
linked to a single variable and describes the a priori occupancy probability for that voxel. 
Pair factors connect two adjacent voxels and encode, e.g., continuity or smoothness 
assumptions. The most interesting ray factors are linked to all voxels pierced by a camera 
view ray corresponding to a single pixel and describe the agreement between the observed 
pixel value and the given assignment of voxel values. 

One practical way to “calibrate’’ such an MRF, or find the maximum a posteriori (MAP) 
assignment of voxel variables (or, equivalently, the scene shape), is known as loopy belief 
propagation (LBP). Each factor iteratively exchanges “messages’’ with all the linked 
variables. The messages express the “beliefs’’ about the occupancy of each voxel based on 
prior data and the messages from other variables. To compute a message from a factor, one 
has to consider all assignments to the linked variables and thus solve a local optimization 
problem. This is not a big problem for, e.g., pair factors where one only has to consider four 
assignments (for a binary variable), but a ray factor in practice can be linked to hundreds of 
voxels. The number of assignments, growing exponentially, prohibits a naïve brute-force 
solution. 

RayMRF presents a novel method to compute ray factor messages. It exploits the fact 
that the ray “energy’’, or the assignment likelihood, depends only on the first occupied voxel 
on a ray. With dynamic programming, the complexity of this step is reduced to linear in the 
number of linked voxels. In this report we generalize this approach to apply to the (much 
more challenging) problem of the sonar data inversion. 

2. MRF APPLICATION TO SIDE-SCAN SONAR DATA 

2.1. Geometry and observables of side-scan sonar beams 

Unlike thin camera view rays, a sonar beam has typically a wide and flat power distribution. 
If by analogy with RayMRF we devise an MRF-based model for sonar-based reconstruction 
(a “BeamMRF’’) with unit, pair, and beam factors, each of the latter will be connected to a 
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large number of voxel variables (larger than that for a narrow ray). Next, instead of a single 
RGB value, the observed quantity for a beam is a function (ݐ)ܫ that represents the reflected 
acoustic energy that has reached the receiver at the time moment ݐ. In order to relate the 
time to geometry, we assume isovelocity sound propagation, i.e., a constant and isotropic 
speed of sound in the water. This translates to straight conical sonar beams. In order to 
describe the relation between the function (ݐ)ܫ and the bottom shape it is necessary to 
discretize the beam geometry. First, we split the wide beam into infinitesimally narrow 
cones. Second, we sub-divide each cone into individual slices as shown in Figure 1. 

  
Figure 1: Discretized sonar beam geometry for coinciding source and receiver positions. 

The recorded infinitesimal energy Δܴ(ݐ௜) at some time slice ݐ௜ is a sum of contributions Δܴ௦ from ray cones (indexed by ݏ) in some set ܵ(ݐ௜) which encompasses all surface 
elements that can be reached by the signal (i.e., which are not shaded) and located at a 
distance determined by the return travel time ݐ௜ (here we neglect multiple reflections): Δܴ(ݐ௜) = ෍ Δܴ௦௦∈ௌ(௧೔)  . 

This model can be further described using a two-dimensional grid (Figure 2). Given ܦ 
directions inside the beam and ܶ  discernible time slices, the sonar response can be computed 
based on the occupancies of ܦ ∙ ܶ voxels1: 

 
Figure 2: Logical voxel structure of a sonar beam 

Any assignment of variables on this grid corresponds to some bottom shape. Let us 
denote the first occupied voxel in direction ݀ by ݐ∗(݀). That means that all voxels before ݐ∗(݀) (i.e., those with ݐ <  may (݀)∗ݐ on the ݀-th ray are empty while voxels after ((݀)∗ݐ
be either empty or occupied. If we assume that a voxel at (ݐ, ݀) reflects back an amount of 
energy given by ܴ(ݐ, ݀) (depending on, e.g., surface normal, its material, and the sonar 
characteristics), we may compute the energy corresponding to the depth/time slice ݐ as ΔR(ݐ) = ෍ ,ݐ)ܴ ݀) ⋅ ௧∗(ௗ)௧஽ߜ

ௗୀଵ , 
where ߜ is the Kronecker delta symbol. Denoting the voxel occupancy variables as ݐ)݋, ݀) ∈{0,1}, we may further define ݐ∗(݀) as follows: 
                                                           
1 Here we skip the relation between the beam and the world voxels which in the RayMRF model is known as 
interpolation. It suffices here to say that this problem is solved using the common raytracing methods. 
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(݀)∗ݐ = ൞1, if 1)݋, ݀) = 12, if 1)݋, ݀) = 0 ∧ ,2)݋ ݀) = 13, if 1)݋, ݀) = 0 ∧ ,2)݋ ݀) = 0 ∧ ,3)݋ ݀) = 1 etc.  

For each beam ܤ௜, the agreement between the observation and the model is given by a 
quadratic functional (“beam energy’’, not to be confused with the acoustic energy!): ܧ஻೔ =  ෍ ቀΔܴestim(ݐ) − ΔRobserved(ݐ)ቁଶ ⋅ ்(ݐ)߷

௧ୀଵ , 
with ߷(ݐ) being some time-dependent weight that accounts, e.g., for lower signal-to-noise 
ratio for later readings. The full MRF energy (which can be thought of as the negative 
logarithm of the joint probability function) contains then the prior terms ܧ௨ and ܧ௣ (unit and 
pair energies), and the sum of beam energies from the set of observations ℬ. The goal of the 
reconstruction is to find an assignment ܱ to voxel occupancies that minimizes the total 
energy functional: ܱopt = ݊݅݉݃ݎܽ ቌܧ௨ + ௣ܧ + ෍ ஻೔஻೔∈ℬܧ ቍ. 

2.2. Messages from beam factors to voxel variables 

The details and the justification of the LBP method can be found elsewhere [6]. We also 
assume that the unit and pair factor updates are performed as in the RayMRF model. Here 
we focus only on the non-trivial problem of computing the messages from a beam factor to 
the linked variables. Given the energy functional ܧ஻೔, we formally define the needed 
differential message from the beam factor to voxel at (ݐ, ݀) as ݐ)ݓ, ݀) = ,ݐ)݋)௙→௧ௗܯ ݀) = 1) − ,ݐ)݋)௙→௧ௗܯ ݀) = ,ݐ)݋)௙→௧ௗܯ ,(0 ݀) = 1) = minቄݐ)݋ᇱ, ݀ᇱ)ቚݐ)݋, ݀) = 1ቅ ቌܧ஻೔({ݐ)݋ᇱ, ݀ᇱ)}) + ෍ ,ݐ)݋௧ௗ→௙൫ܯ ݀)൯(௧ᇲ,ௗᇲ)ஷ(௧,ௗ) ቍ , 

,ݐ)݋)௙→௧ௗܯ ݀) = 0) = ݉݅݊ቄݐ)݋ᇱ, ݀ᇱ)ቚݐ)݋, ݀) = 0ቅ ቌܧ஻೔({ݐ)݋ᇱ, ݀ᇱ)}) + ෍ ,ݐ)݋௧ௗ→௙൫ܯ ݀)൯(௧ᇲ,ௗᇲ)ஷ(௧,ௗ) ቍ. 
The incoming messages ܯ௧ௗ→௙൫ݐ)݋, ݀)൯ are known, and the minimum in each case is 

taken over all assignments to variables other than (ݐ, ݀). The above formula requires thus 
roughly ࣩ(2்⋅஽) steps, which is too expensive for any reasonable ܶ and ܦ. 

2.3. Exact beam front-based solution 

Following Liu and Cooper, we notice that the beam energy in fact only depends on ݐ∗(݀). 
The summations above can therefore be split into three regions (Figure 3). The voxels at (ݐ∗(݀), ݀) belong to region ܣ, those at (ݐ, ݀), ݐ > ,ݐ) and those at ,ܤ to region (݀)∗ݐ ݀), ݐ  .necessarily empty ܥ all voxels are necessarily occupied, and in region ܣ Note that in region .ܥ to region (݀)∗ݐ>
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Figure 3: Beam factor occupancy profile 

Simplifying terms in each region, we may compute the messages with a minimum taken 
over all assignments to ݐ∗(݀) = (ܽଵ, … , ܽ஽) = Ԧܽ instead of the binary grid: ܯ௙→௧ௗ(ݐ)݋, ݀) = 1) = minቄ Ԧܽቚܽௗ ≤ ቅݐ ቌܧ஻೔({ Ԧܽ}) + ෍ ݉(ܽௗᇲ, ݀ᇱ)஽

ௗᇲୀଵ + ෍ ෍ min൫0, ,ᇱݐ)݉ ݀ᇱ)൯்
௧ᇲୀ௔೏ᇲశభ

஽
ௗᇲୀଵ − ܥ ଵܶ − ܥ ଶܶቍ + ܥ ߦ ଵܶ ≔  if ݐ > ܽௗ : min൫0, ,ݐ)݉ ݀)൯, else 0 ܥ ଶܶ ≔  if ݐ = ܽௗ: ݉(ݐ, ݀), else 0. 

Since an unoccupied voxel at (ݐ, ݀) can only belong to regions ܥ or ܤ, we have: ܯ௙→௧ௗ(ݐ)݋, ݀) = 0) = minቄ Ԧܽቚܽௗ ≠ ቅݐ ቌܧ஻೔({ Ԧܽ}) + ෍ ݉(ܽௗᇲ, ݀ᇱ)஽
ௗᇲୀଵ + ෍ ෍ min൫0, ,ᇱݐ)݉ ݀ᇱ)൯்

௧ᇲୀ௔೏ᇲశభ
஽

ௗᇲୀଵ − ܥ ଷܶቍ + ܥ ߦ ଷܶ: if ݐ > ܽௗ : min൫0, ,ݐ)݉ ݀)൯, else 0 
The constant ߦ cancels in the final formula for ݐ)ݓ, ݀) and is thus not important. This 
representation is exact and has complexity ࣩ(்ܦ). The double sums under minima would 
naïvely require more steps but the iteration over ݐ∗(݀) can be re-organized so that each sum 
can be incrementally updated in constant time on each step. The same applies to beam 
energies of each configuration. Moreover, messages from a beam factor to all variables may 
be computed at one pass. This, again, is possible due to dynamic programming. 

2.4. Approximate front-based solution 

As stated above, the iteration over all front shapes takes ࣩ(்ܦ) steps. This may still be too 
expensive for wide beams. We further notice then that most of the shapes are highly 
improbable, and the corresponding fronts do not contribute to (most) factor messages. We 
thus limit ourselves with exploring only the front shapes near some “most plausible’’ 
variants. Technically, an assignment Ԧܽ to the front shape ݐ∗(݀) is equivalent to an integer 
number with ܦ digits in base ܶ. Given some starting number, we may thus simply consider 
a few values in its vicinity such that the number of steps is determined by some “search 
depth’’ parameter. However, as discussed above, numbers base ܶ are inconvenient for 
dynamic programming: on each step, many entries in Ԧܽ may change by more than a single 

t 0

d0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

...

...

... ...

x x x x ...x x xx ...
x x x x...x x x x ...

1
1

1
1 ......

C A B

UA2014 - 2nd International Conference and Exhibition on Underwater Acoustics

1567



unit. We thus adopt a parameterisation of the ܦ-dimensional search volume with a space-
filling Hilbert curve [7]. By following this curve, we are guaranteed that each step changes 
a single entry by plus or minus one. 

The starting front shapes (“seeds’’) can be obtained from additional sensors or with any 
heuristic method such as that of [8]. Finally, an efficient message calculation scheme for a 
beam factor is as follows. First, we select some starting front assignment (“seed’’) Ԧܽ and 
compute the value ܺ( Ԧܽ) = )௕೔ܧ Ԧܽ) + ෍ ݉൫ܽ݀′, ݀′൯ܦ

݀′=1 + ෍ ෍ min ቀ0, ݉൫ݐ′, ݀′൯ቁܶ
1+′݀ܽ=′ݐ

ܦ
݀′=1 . 

We also initialize all messages to plus infinity. The following assignments Ԧܽ are selected 
according to the Hilbert curve parameterization. Therefore, ܺ( Ԧܽ) and the messages can be 
updated at each step in constant time as ܯ௙→௧ௗ(ݐ)݋, ݀) = 0) = min{௔ሬԦ} ቐ ܺ( Ԧܽ), if ܽௗ > ,∞ݐ if ܽௗ = )ܺݐ Ԧܽ) − min൫0, ,ݐ)݉ ݀)൯ , if ܽௗ < ,ݐ)݋)௙→௧ௗܯ  ݐ ݀) = 1) = min{௔ሬԦ} ቐ ∞, if ܽௗ > )ܺݐ Ԧܽ) − ,ݐ)݉ ݀), if ܽௗ = )ܺݐ Ԧܽ) − min൫0, ,ݐ)݉ ݀)൯ , if ܽௗ <   ݐ

For an efficient implementation, caching of minimum values for each cell (ݐ, ݀) is 
advised. The complexity of this method depends only on the “search depth’’ near the seed 
value and must be determined based on the desired inference accuracy. The remaining 
infrastructure of the reconstruction framework can be directly inherited from the RayMRF 
model. We expect that the resulting algorithm will for the first time deliver accurate 
Bayesian shape estimations based on sonar data. 

3. CONCLUSION 

In this contribution, we suggest a novel method to reconstruct seafloor shape from side-scan 
sonar data that is based on the RayMRF model borrowed from the domain of computer 
vision. For the introduced beam factors, we discuss the core inference step and demonstrate 
a practically feasible approximate solution that uses dynamic programming and space-
filling curves to drastically reduce the message update complexity. In the future, we plan to 
present the applications of the method to synthetic and real sonar data and quantify its 
accuracy. 

The suggested method does not rely of heuristic treatment of the side-scan sonar data but 
honors the physical origins of the signal. Employing that method, AUVs equipped only with 
classical side-scan sonars might reconstruct the bottom surface. Additionally, AUVs 
equipped with sensors that produce distance measurements (like multi-beam echo-sounders 
(MBES) or interferometric sonars) can use those measurements as prior knowledge and 
refine their output with the (typically higher-resolution) data from the imaging side-scan 
sonar. As a means for a more exact environment mapping, the method should also facilitate 
the application of simultaneous localization and mapping (SLAM) methods for AUVs to 
improve the navigation accuracy. 

UA2014 - 2nd International Conference and Exhibition on Underwater Acoustics

1568



REFERENCES 

 

[1] J. M. Bell, „A Model for the Simulation of Sidescan Sonar,“ Heriot-Watt University, 
Department of Computing and Electrical Engineering, Edinburgh, 1995. 

[2] J. Groen, „Adaptive motion compensation in sonar array processing,“ TU Delft, PhD 
thesis, 2006. 

[3] E. Coiras und J. Groen, „Simulation and 3D Reconstruction of Side-looking Sonar 
Images,“ IN-TECH, Vienna, Austria, 2009. 

[4] S. Liu, Statistical Inverse Ray Tracing for Image-Based 3-d Modeling, Providence: 
Brown University, 2011.  

[5] S. Liu and D. B. Cooper, "Ray Markov Random Fields for image-based 3D modeling: 
Model and efficient inference," IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 2010.  

[6] D. Koller and N. Friedman, Probabilistic Graphical Models - Principles and 
Techniques, Cambridge, Massachusetts: The MIT Press, 2009.  

[7] J. Skilling, „Programming the Hilbert curve,“ Jackson Hole, Wyoming, 2004.  

[8] P. Woock und J. Beyerer, „Seafloor shape estimation by raytraced kernels,“ Taipei, 
Taiwan, 2014.  

 

UA2014 - 2nd International Conference and Exhibition on Underwater Acoustics

1569



UA2014 - 2nd International Conference and Exhibition on Underwater Acoustics

1570




