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Abstract

Plug-in electric vehicles (PEVs) are a means to reduce greenhouse gas emissions from the
transportation sector and diminish the dependency on fossil fuels. An often stated barrier
to the diffusion of PEVs is the lack of charging options which prevents potential users
from purchasing PEVs. However, the limited number of PEV users impedes a profitable
operation of public charging points and thus their installation and roll-out. This thesis
analyzes this potential lock-in effect for PEVs.

An agent-based model is developed to simulate the joint diffusion of PEVs and their
charging infrastructure in Germany until 2030. An individual analysis of several thousand
real-world driving profiles from the private sector and several hundred from commercial
vehicles collected for this thesis allows to determine the individual utility optimizing drive
train. The utility of each drive train is calculated based on its total costs of ownership,
favoring and obstructing factors of PEVs, and takes the current charging infrastructure
into account. The subsequent joint simulation of PEV users’ driving and charging at
public charging points permits to decide on the profitability of public charging stations
and a potential further construction.

The results show that the dissemination of public slow-charging options has no in-
fluence on the diffusion of PEVs in Germany until 2030 from a techno-economical point
of view. Instead, domestic charging points are a prerequisite for private PEVs and com-
mercial charging points for commercial PEVs. These charging facilities already cover
the charging needs of most vehicles, while additional charging points at work could fur-
ther increase the number of private PEVs. Furthermore, the annual PEV registrations are
dominated by commercial plug-in hybrid electric vehicles which only occasionally recharge
public slow-charging facilities. Hence, public slow-charging options cannot become eco-
nomically viable until 2030 – even with a growing number of PEVs. Further research is
needed to quantify the psychological need of public charging points and their implications
for the diffusion of PEVs.

This thesis is based on my research conducted at the Fraunhofer Institute for Systems
and Innovation Research ISI under the supervision of Professor Dr. Martin Wietschel at
the Institute for Industrial Production (IIP) at the Karlsruhe Institute of Technology.
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Kurzfassung

Elektrofahrzeuge können einen Beitrag leisten, den Ausstoß von Treibhausgasen und
die Abhängigkeit von fossilen Brennstoffen im Transportsektor zu reduzieren. Häufig
wird dabei die fehlende Ladeinfrastruktur als Hemmnis für die Verbreitung von Elektro-
fahrzeugen genannt, das potenzielle Nutzer davon abhält, Elektrofahrzeuge zu kaufen.
Jedoch verhindert die beschränkte Anzahl an Elektrofahrzeugen einen profitablen Betrieb
öffentlicher Ladepunkte und einen damit verbundenen Auf- und Ausbau. In dieser Arbeit
wird dieser potenzielle Lock-in-Effekt untersucht.

Für die gekoppelte Diffusion von Elektrofahrzeugen und ihrer Ladeinfrastruktur wird
ein agentenbasiertes Modell entwickelt, das Deutschland bis 2030 betrachtet. Mithilfe
einer individuellen Analyse von mehreren tausend privaten und einigen hundert, eigens
für diese Arbeit erhobenen, gewerblichen Fahrprofilen von Fahrzeugen, wird die nutzenop-
timale Antriebsart für jedes Fahrzeug bestimmt. Der Nutzen wird auf Basis der Total Cost
of Ownership des Fahrzeugs, sowie hemmenden und fördernden Faktoren berechnet, wobei
die gegebene Ladeinfrastruktur berücksichtigt wird. Anschließend wird eine simultane
Ladesimulation der Elektrofahrzeuge durchgeführt, welche eine Rentabilitätsrechnung für
öffentliche Ladepunkte und die Entscheidung über einen Ausbau ermöglicht.

Die Ergebnisse zeigen, dass die Verbreitung öffentlicher Langsamladepunkte in Deutsch-
land aus techno-ökonomischer Sicht keinen Einfluss auf die Marktdiffusion von Elektro-
fahrzeugen bis 2030 hat. Ladepunkte an privaten Stellplätzen für Privatfahrzeuge oder
auf dem Firmengelände für gewerbliche Fahrzeuge sind eine Voraussetzung für die Verbre-
itung von Elektrofahrzeugen. Diese Lademöglichkeiten decken den Ladeinfrastrukturbe-
darf für die meisten Fahrzeuge ab; eine zusätzliche Lademöglich-keit für Privatfahrzeuge
am Arbeitsplatz kann die Nutzerzahl zudem erhöhen. In den simulierten Neuzulassungen
der Elektrofahrzeuge überwiegen jedoch gewerbliche Plug-in Hybridfahrzeuge, die nur
in selten öffentlich laden. Aus diesen Gründen können sich öffentliche Ladepunkte bis
2030 nicht amortisieren – auch nicht mit einer zunehmenden Zahl an Elektrofahrzeugen.
Weiterer Forschungsbedarf ist notwendig, um den psychologischen Bedarf an öffentlicher
Ladeinfrastruktur zu quantifizieren und dessen Implikation auf die Diffusion von Elektro-
fahrzeugen zu bestimmen.

Diese Arbeit wurde im Rahmen meiner Forschungsarbeit am Fraunhofer-Institut für
System- und Innovationsforschung ISI erstellt und betreut von Prof. Dr. Martin Wiet-
schel am Institut für industrielle Produktion (IIP) am Karlsruher Institut für Technolo-
gie (KIT).
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Chapter 1

Introduction

1.1 Motivation

The reduction of greenhouse gas (GHG) emissions and the dependency on fossil fuels are
two of the most fundamental challenges of the 21st century [Kahn Ribeiro et al., 2007,IEA,
2010]. This is particularly important for the transport sector which is a major contributor
to global GHG emissions (23% of global GHG emissions in 2004 [Kahn Ribeiro et al., 2007],
22% of global CO2 emissions in 2012 [IEA, 2014]). For this reason, the European Union has
set the goal for a reduction of 60% of all GHG emissions from the transportation sector by
2050, compared to 1990 [Peters et al., 2013], and the European Commission (EC) reacted
with EC directive 443/2009 [EC, 2009]. This directive forces car makers to reach an
average CO2 emission of 95 g CO2/km by 2020 in all European markets. Especially long-
term goals, like a reduction of vehicle emissions to 20 g CO2/km necessary to reach the
2◦C goal in 2050, are not attainable with conventional fuels [McKinsey, 2009,Schade, W.,
2010,Skinner et al., 2010,Peters et al., 2013]. Alternative fuel vehicles (AFVs) in general
and plug-in electric vehicles (PEVs) or fuel cell electric vehicles (FCEVs) in particular
could provide a means to reduce emissions from the transportation sector. Although the
new attention paid to alternative fuels is often considered as a new peak of Gartner’s hype
cycle [Bakker, 2010, Jun, 2012,Konrad et al., 2012], the situation for PEVs is different
compared to the 1980’s in California or 1990’s in Germany [Chan, 2007]. Apart from the
political interest and rising prices for fossil energy [IEA, 2014]1, PEVs are expected to
become technically and economically competitive to conventional fuel vehicles in the near
future due to technological improvements, like rising energy densities, and falling prices
of Lithium-ion batteries [Nykvist and Nilsson, 2015,Thielmann, 2011,Thielmann et al.,
2012].

Germany as one major car market and supplier of vehicles [OICA, 2014] is particularly
interested in future technological improvements. German car makers want to obtain their
position on the global car market, while policy makers aim at maintaining jobs in the au-
tomotive industry and at keeping up with developments in ”green” technologies.2 Hence,
the German government has set a goal has set a goal of reaching a stock of one million
plug-in electric vehicles by 2020 and 6 million by 2030 [NEP, 2009,RegProg, 2011,BMWi

1Although currently the oil price is at a five-year-minimum, the long-term growth rate has been
positive for several decades [IEA, 2014].

2Green technologies are sometimes denoted as the sixth Kondratieff wave [Naumer et al., 2010,Naumer
et al., 2013].
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2 1.1. Motivation

and BMU, 2010]. Further, Germany intends to become a lead market and lead supplier of
PEVs [NEP, 2009,RegProg, 2011,BMWi and BMU, 2010]. In order to monitor these goals
and to propose further courses of action in Germany, the National Platform for Electric
Mobility has been installed, consisting of policy makers, scientists as well as representa-
tives from non-governmental organizations and the automobile industry (see [NPE, 2014]
for their latest report). At the moment, the market for PEVs, in Germany and world-
wide, is at an early stage and several scientific studies have been carried out to forecast
their future market development.3 A common way to model the future evolution of PEVs
is based on the total cost of ownership (TCO) of a vehicle4 and vehicle usage data as
user behavior5. Yet, studies in this area of research incorporate several insufficiencies:
(1) the commercial vehicle sector which accounts for more than half of all vehicle registra-
tions in several major car markets6 is often neglected in scientific studies [Hacker et al.,
2011b,Redelbach et al., 2013, Schühle, 2014]. (2) Also the vehicle buying decision is not
solely based on cost7, but also on attributes like vehicle size, brand or safety, and cost-
based analyses should be extended (see e.g. [Eppstein et al., 2011]). Further, (3) most
models use average driving patterns8 although driving varies largely between drivers and
days9. When modeling the market diffusion of PEVs (and their charging infrastructure),
shortcomings 2 and 3, and for Germany also shortcoming 1, should be reflected.

In addition to other factors, an important barrier to the adoption of PEVs is the
so-called limited range anxiety [Tate et al., 2008], partly caused by the current lack of
charging infrastructure [Dütschke et al., 2011b,Egbue and Long, 2012, Steinhilber et al.,
2013]. Users wish to have a sufficient charging infrastructure before they buy a plug-in
electric vehicle [Dütschke et al., 2011b, Egbue and Long, 2012, Steinhilber et al., 2013].
For this reason, the European Directive on the deployment of alternative fuels infrastruc-
ture [EC, 2014] forces member states to propose a national action plan on public charging
infrastructure development and set up a minimum amount of public charging points. For
Germany, the directive suggests 150,000 public charging points by 2020 [EC, 2014]. First
actions in Germany have been taken by the Federal Ministry of Economic and Energy
(BMWE) by defining the power levels and suggesting a first number of charging spots that
should be publicly available (35,000 public charging points by 2020) [BMWE, 2015]. These
amounts differ significantly, since there is no commonly accepted approach to determine
the number of charging points needed and most scientific studies focus on the placement
of charging points [Lam et al., 2013,Dong et al., 2014,Namdeo et al., 2014, Sathaye and
Kelley, 2013]. Studies analyzing the economy or use of charging points often find that ex-
tensive usage is necessary to make charging points economically viable [Kley, 2011] while
usage in several model projects is comparatively low [Ecotality and INL, 2012,Bruce et al.,
2012]. Occupancy rates depend on the number of PEVs in the vehicle stock and should
thus be analyzed jointly to overcome a potential lock-in [Lin and Greene, 2011,Dong et al.,
2014,NPE, 2012,Kalhammer et al., 2007,BCG, 2009,Ma et al., 2014,Chen et al., 2013].

3See [Al-Alawi and Bradley, 2013] for a review on market diffusion models of electric vehicles.
4See e.g. [Thiel et al., 2010,McKinsey, 2011,Pfahl et al., 2013,Wu et al., 2015].
5See e.g. [Dagsvik et al., 2002,Santini and Vyas, 2005,Keles et al., 2008,Lamberson, 2008,Mock et al.,

2009,Nemry and Brons, 2010,Wansart and Schnieder, 2010,Shepherd et al., 2012].
6See e.g. [KBA, 2014b,UK DoT, 2013,JP-StatBureau, 2013].
7See e.g. [Mueller and de Haan, 2009,de Haan et al., 2009].
8See e.g. [Dagsvik et al., 2002, Santini and Vyas, 2005, Lamberson, 2008,Mock et al., 2009,Wansart

and Schnieder, 2010,Shepherd et al., 2012].
9See e.g. [Smith et al., 2011,Amjad et al., 2011,Neubauer et al., 2012].



Chapter 1. Introduction 3

This interaction and co-diffusion of AFVs and their refueling infrastructure is a field of
research for several types of vehicles10, yet it has not been comprehensively analyzed for
PEVs and their charging infrastructure.

1.2 Research question and course of action

Based on the three identified research gaps, (i) insuffiencies in PEV market diffusion
modeling, (ii) missing quantitative simulation results for public charging options and
(iii) lack of a joint analysis for PEVs and charging infrastructure diffusion, the main
research question of this thesis is:

How do the diffusion of plug-in electric vehicles and the diffusion of their charging
infrastructure mutually influence each other?

This research question has, to the best of the author’s knowledge, not yet been compre-
hensively analyzed. Since PEVs are a new technology and data about vehicle registrations
or the charging infrastructure stock is rare, a modeling approach shall be developed to
answer the research question for Germany until 2030. This implies several consecutive
questions:

Can the co-diffusion of PEVs be modeled in the same way as for other alternative fuel
vehicles? Since the introduction of automobiles, several types of vehicles have diffused
into vehicle stocks worldwide. A refueling infrastructure was set up for the gasoline
vehicle as the first mass market vehicle. The first mass market alternative fuel vehicle11

- the diesel vehicle - profited from the gasoline infrastructure that could be extended to
diesel [Karlsch and Stokes, 2003,Grube, 2004]. The same holds for other fuels, for which
refueling stations could be expanded. However, for PEVs, currently planned charging
facilities exceed the number of refueling stations largely [BMWE, 2015,EC, 2014] because
of technical limitations of the vehicles. Thus, when analyzing the co-diffusion of PEVs and
their charging infrastructure, modeling approaches have to be investigated and extended
for PEV specialties.

What are adequate data sources to model the driving and charging behavior of private
and commercial PEVs? The technical limitations of PEVs necessitate a detailed analysis
of driving behavior to estimate their market potential. Such analyses are often performed
with vehicle usage data of conventional vehicles12. As vehicle usage data is publicly avail-
able in many countries [US-DoT, 2009,ENTD, 2009,MOP, 2010,Auto21, 2011,Karlsson,
2013], adequate German data sets for the analysis of PEVs have to be determined that
cover private and commercial vehicles. The latter is important so that the high share of
commercial vehicle registration can be considered.

What influences the adoption of PEVs apart from (public) charging infrastructure?
The market diffusion of PEVs is not only influenced by the diffusion of charging infrastruc-
ture, but also by a variety of other factors like energy or vehicle prices, the availability

10See e.g. [Huétink et al., 2010,Janssen et al., 2006,Melaina, 2003,Meyer andWinebrake, 2009,Schwoon,
2006,Stephan and Sullivan, 2004,van der Vooren and Alkemade, 2010].

11Plug-in electric vehicles were available already in 1830, yet they could not compete with the mass
production of gasoline vehicles in the early 1900’s [Chan, 2007].

12See e.g. [Dagsvik et al., 2002, Santini and Vyas, 2005,Mock et al., 2009,Nemry and Brons, 2010,
Shepherd et al., 2012].



4 1.2. Research question and course of action

of PEVs on the market or common parking spots. These should be retrieved and ana-
lyzed to put the influence of charging infrastructure into context. This allows to answer a
last relevant question for policy makers: What should an adequate charging infrastructure
construction look like from a technical, economical and user behavioral point of view?

In this thesis, the focus on Germany until 2030 allows to determine the early evolu-
tion of PEVs in a major market, after which a critical mass should be reached and the
co-diffusion should have become self-sustaining [Allen, 1988,Mahler and Rogers, 1999].
Results in this area may be generalized and transferred to other countries. The outline of
this thesis runs as follows: Chapter 2 contains a brief overview of plug-in electric vehicles
and their charging infrastructure which points out the main differences to conventional
vehicles and refueling stations (2.1). Thereafter existing studies on the co-diffusion of
AFVs and their refueling infrastructure are reviewed to retrieve stylized facts that models
should cope with and best fitting modeling approaches for the co-diffusion (2.2). Chapter 3
contains a presentation of vehicle driving data sets of private and commercial vehicles.
The driving profiles later used for simulation are compared to other data sets and tested
for their representativity. In Chapter 4 the agent-based simulation model ALADIN (Al-
ternative Automobiles Diffusion and Infrastructure) is developed (Sections 4.1 and 4.2).
Scenarios for the simulation are presented and all techno-economical assumptions, e.g. for
vehicle characteristics, vehicle market or energy prices, are described (Section 4.3). The
results of the simulations are presented in Chapter 5 which is divided into three parts:
First, the market potential of commercial fleet vehicles is determined to show the differ-
ences of private and commercial vehicle driving and purchasing behavior (Section 5.1).
Second, the market diffusion of PEVs with non-public charging infrastructure is deter-
mined. Here, special focus is put on the influence of framework conditions to show their
impact on the PEV market diffusion (Section 5.2). Lastly, the joint diffusion of public
charging points and PEVs is determined. Here, several variations of infrastructure con-
figurations and subsidies are analyzed (Section 5.3). Finally, the thesis is summarized,
conclusions are drawn and suggestions for further research are made in Chapter 6.



Chapter 2

Diffusion models of alternative fuel

vehicles and their refueling

infrastructures

Introduction

This chapter aims at demonstrating the need for research in the field of PEVs and their
charging infrastructure diffusion and serves to point out what can be learned from earlier
works when modeling the interaction of PEVs and charging infrastructure. It contains two
sections: The first Section 2.1 holds a brief overview of AFVs and defines the distinctions
of PEVs to other AFVs which are considered in this work. In addition, the differences
of charging infrastructure of PEVs compared to refueling stations of conventional fuels
are shortly described. In the second Section (2.2) a structured literature review of AFV
and refueling infrastructure diffusion models is performed to gain insights from current
modeling approaches.13

2.1 Background of alternative fuel vehicles

2.1.1 Overview of alternative fuel vehicles

Alternative fuel vehicles have been a field of research for several decades (see e.g. [Greene,
1985, Sperling and Kurani, 1987,Greene, 1996,Chan, 2007]). Research on PEVs started
in the 1980’s in California, while fuel cell electric vehicles (FCEVs) came into focus of
research and politics in the 1990’s. Since 2000 both vehicle groups have gained worldwide
attention by car makers, politicians and the media, especially because of rising emissions
and the dependency on fossil fuels in the transport sector [IEA, 2010,Kahn Ribeiro et al.,
2007]. Besides these two vehicle groups, there are three more types of AFVs that have
already gained significant market shares in some national vehicle markets: vehicles pow-
ered with biofuels, natural or synthetic gas vehicles and hybrid electric vehicles, although
the latter are often not considered as AFV but as a further development of conventional
vehicles (CV).

13Literature reviews are often performed to identify research gaps and before the starting new modeling
processes [Doebling et al., 1996,Garcia and Calantone, 2002,Kemp and Volpi, 2008,Hacker et al., 2009].

5



6 2.1. Background of alternative fuel vehicles

Figure 2.1: Alternative fuel vehicles considered in this thesis. CV=conventional vehi-
cle, HEV=hybrid electric vehicle, AFV=alternative fuel vehicle, NGV=natural gas vehicle,
LPGV=liquefied petroleum gas vehicle, PEV=plug-in electric vehicle, FCEV=fuel cell electric
vehicle, PHEV=plug-in hybrid electric vehicle, BEV=battery electric vehicle.

The largest group of alternative fuel vehicles of the worldwide vehicle stock is flex-
fuel vehicles with about 35 million vehicles and more than 23 million vehicles in Brazil.
They can burn gasoline, ethanol and methanol or any mixture of them in an internal
combustion engine. Since the latter two fuels are mostly produced from biomass, flex-fuel
vehicles can be counted to biofuel powered vehicles. Vehicles solely fueled by ethanol are
mainly registered on the Brazilian vehicle market and account for about six million vehi-
cles worldwide.14 Natural gas vehicles (NGVs) are propelled by an internal combustion
engine that burns gaseous or compressed liquid natural gas (CNG). Together with vehicles
that consume liquefied petroleum gas (liquefied petroleum gas vehicles (LPGVs)) or any
other synthetic gas, they make up about 35 million vehicles powered with gases world-
wide. About 20 million are NGVs with the largest markets in Iran (3.5m), China (3.3m),
Pakistan (2.8m) and Argentina (2.5m), while LPGVs’ largest markets are Turkey (3.9m),
Russia (3m), Poland (2.8m) and South Korea (2.4m) totaling to 25 million LPGVs reg-
istered until 2014 [NGV-Journal, 2015,WLPGA, 2014]. Hybrid electric vehicles (HEVs)
use an internal combustion engine for propulsion. In addition, a small battery is used for
start-stop operation and recovers the energy from braking in a battery which is called recu-
peration. The energy that can be used for an additional stimulus of propulsion determines
whether the vehicle is a mild (battery is only used for start-stop operation) or a full hybrid
(battery is also used for ”boosting”). Up to now, about 8.2 million hybrids have been
sold worldwide with Japan (4m) and the US (3.4m) as their major markets [Marklines,
2015]. Fuel cell electric vehicles contain an electric drive train that is powered by a fuel
cell unit where hydrogen is converted into electricity. A small buffer battery cannot be
recharged at the electricity grid, but permits recuperation of braking energy. Currently,
FCEVs are not recorded in any sales statistic since only very few FCEVs are available on
the vehicle market at the moment, yet they may gain importance in the future.15

PEVs can be divided into three subgroups that are distinguished according to their
level of electrification (see Figure 2.1 for distinctions and e.g. [Michaelis et al., 2013b,
Wietschel et al., 2011] for definitions). Battery electric vehicles (BEVs) work completely

14Since there is no publicly available data on the registrations and sales of biofuels, which may stem
from varying definitions about the mix of fuels, these registrations are based on press releases [Calmon,
F., 2013,Motavalli, J., 2012].

15According to [Marklines, 2015] there are 135 FCEVs registered in stock in Japan and the US as of
1st of January 2015.
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electric and store their propulsion energy in a Lithium-Ion battery.16 They can only be
charged via the electricity grid and thus their tank-to-wheel emissions depend on the
electricity mix charged. The second option of PEVs is the plug-in hybrid electric vehicle
(PHEV) which can also be refueled at conventional refueling stations. PHEVs can be
subdivided into parallel and serial hybrids, while the position of the fuel-powered and
electric machine determine the distinction. Parallel PHEVs contain two drive trains that
can be used independently or at the same time. An independent discharge of the battery is
called charge-depleting mode, whereas during a joint use of both drive trains the vehicle is
driven in charge-sustaining mode. In serial PHEVs, the vehicle comprises only the electric
drive train that discharges the battery which can be recharged through a fuel-powered
generator during driving. Serial PHEVs are often called range-extended electric vehicles
(REEV) or extended range electric vehicles (EREV).17 Table 2.1 shows the market shares
of PEVs in the major car markets in 2013 as well as their stock in 2014. Currently, PEVs
do not account for a significant market share in any major car market, although smaller
markets like Norway or the Netherlands reach up to 6% [Mock and Yang, 2014]. Today,
the largest car market for PEVs are the US (223,000 PEVs) whereof the majority is driven
in California.

Table 2.1: International PEV adoption in major car markets.

Country DE US JP FR CN

PEV market shares 2013 (new car sales)a 0.2% 1.3 % 0.6 % 0.8 % 0.1 %
PEV new car sales 2013a,b 7,000 95,000 25,000 9,000 12,000
PEV stock 01/01/2014c 24,000 223,600 88,500 37,100 29,100
PEV charging stations during 2014c,d 4,800 15,200 5,000 8,000 8,100

a: [Mock and Yang, 2014]; b: [ICCT, 2014]; c: [NPE, 2014]; d: Public & semipublic charging
points for Germany; DE=Germany, US=United States, JP=Japan, FR=France, CN=China

This thesis focuses on PEVs and their charging infrastructure, since, together with
FCEVs, they are the only means to reach EU and national emission targets for 2050 [McK-
insey, 2009, Schade, W., 2010, Skinner et al., 2010]. With a certain number of PEVs
available on the vehicle market, PEVs will be the near-term solution to cope with these
targets [NPE, 2014]. To reach the current limit values for CO2 emissions in 2020, however,
a certain number of PEVs is necessary [Peters et al., 2013]. Apart from emission targets,
plug-in electric vehicles could help to integrate intermittent renewable energies into the
energy system [Dallinger and Wietschel, 2012,Dallinger et al., 2013]. The most important
characteristics of PEVs and their charging infrastructure that are different from other
(alternative) fuel vehicles are pointed out in the following section.

2.1.2 Charging infrastructure needs of plug-in electric vehicles

The major barriers for a large adoption of PEVs are their cost, their limited range and
their associated insufficient charging infrastructure [Dütschke et al., 2011b,Götz et al.,
2011,Globisch et al., 2013]. While PEV price reductions can be expected by economies

16Earlier PEVs were also based on nickel metal hydrid batteries (see e.g. [Watabe and Mori, 2011]).
17Serial and parallel hybrid electric vehicles are not distinguished in this thesis since their recharging or

refueling behavior can hardly be distinguished. When both vehicle options are considered in the further
analyses, they only vary in technical and economical parameters.
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of scale, the limited range of PEVs is a matter of battery technology. Currently, batteries
have an energy density that is about 50 times lower than for conventional fuels (see
e.g. [Fischer et al., 2009]). R&D activities focus on improving the energy density of
battery technologies, e.g. with new materials, but current Lithium-ion technology will be
used in PEVs until at least 2025 [Thielmann et al., 2012,Thielmann et al., 2014]. The
lower energy density of Lithium-ion batteries necessitates higher recharging frequencies
for PEV users if today’s driving behavior should be maintained.

The insufficiency of charging infrastructure seems to be unproblematic when compar-
ing the current PEV stock and PEV charging stations in Table 2.1. The ratio of PEVs
per (public) PEV charging stations (5-20) is much lower than the average ratio of vehi-
cles per refueling stations for NGV suggested by [Janssen et al., 2006] (1,000). However,
apart from the higher recharging frequency, the observed necessity of additional charging
stations arises from their technical restraints.

Charging facilities can be described according to a number of attributes (see [Kley
et al., 2011] and Figure 2.2). In this work, only conductive (wired) charging facilities
are considered since inductive and charging options as well as battery exchange systems
are very expensive [Kley, 2011]. Inductive charging facilities suffer from high energy
losses when the vehicle and charging facility are not very close to each other [Schraven
et al., 2011]. Also investments of charging facilities integrated into streets or parkings are
significantly higher than for conductive charging points [Wietschel et al., 2009,Kley et al.,
2010]. Investments for battery exchange stations would be even higher [Kley et al., 2010]
and would force car makers to standardize their batteries. Apart from that, insurance
policies for batteries are one more issue to solve which was not feasible for the only
company offering this service [manager magazin, 2013]. For load shifting and the storage
of intermittent renewable energies, a significant number of PEVs is required for a cost
efficient operation. Only the power and capacity of a vehicle fleet is comparable to power
or energy for needed for load shifting on a national level [Dallinger and Wietschel, 2012,
Heinrichs, 2014,Babrowski et al., 2014]. Hence, only unidirectional connections without
information flow are considered. This work focuses on very simple charging facilities
to determine the amount of charging infrastructure for an early market evolution. For
simplicity, pay per use is considered for billing which is metered at the charging station.
To sum up, in this thesis, charging facilities are only distinguished by their accessibility
and their power.

Four different types of accessibility of charging infrastructure are distinguished: do-
mestic, commercial, semipublic and public charging facilities. Private or domestic loca-
tions are only accessible to private cars of one household. Commercial charging facilities
offer the possibility to recharge commercial vehicles at the company site and are thus
a pendant to domestic charging points. Semipublic charging facilities offer access to a
limited number of people18, e.g. the members of a sports club or the workplace, whereas
public charging options are available to everyone [Becker, 2009,Kley et al., 2010]. A lot
of charging facilities are already available to potential PEV users with domestic charg-
ing spots, although at low power rates (level 1 and 2 (see below)). According to [infas
and DLR, 2002,MOP, 2010,Behrends and Kott, 2009] about 60% of private vehicles in

18In [Reinke, 2014], semipublic charging facilities belong to a private owner, but offer access to the
public, while publicly owned charging facilities with access to a limited number of people are special
cases of public charging infrastructure. In this thesis, the definition for semipublic places is consistent
with [Reinke, 2014] while the latter is considered as public charging infrastructure.
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Figure 2.2: Characteristics of charging infrastructure considered in this thesis. Illustration based
on [Kley et al., 2011].

Germany are parked in garages overnight (see also Section 3.3.2 and Figure 2.3).19 Also
commercial charging facilities could most often be easily installed for vehicles belonging
to a company.

The power at the charging facilities determines the time for recharging. Usually three
levels of alternating current (AC) power connections are distinguished which depend on
each country’s electricity grid. In Germany these are 3.7 kW at level 1, 11–22 kW at
level 2 and above 22 kW at level 3. A fourth level allows on high-voltage direct current
(DC) power above 50 kW [Kley et al., 2011, Kley, 2011, Jochem et al., 2014]. Hence,
charging a battery with a capacity of 25 kWh completely would take almost 7 hours at
the lowest power level 1 in Germany. Higher power reduces the time to charge, yet also
with a 100 kW charger it would take 15 minutes to recharge and thus longer than with
conventional fuels.20 With higher accessibility and power, the technical and organizational
requirements of setting up charging facilities rise [Kley et al., 2011] and therewith the costs
to install charging facilities.

Thus, the following major differences for the charging infrastructure of PEVs to other
propulsion technologies can be identified:

• The technical limitations of current batteries and charging stations lead to higher
refueling frequencies and durations compared to conventional fuels and to a higher
need of charging facilities.

• However, the availability of some charging facilities in private, commercial or semipub-
lic places reduces the necessity of a massive public charging station roll-out. This
distinction of charging access types is different from conventional fuels.

Hence, models that focus the co-diffusion of PEVs and their charging infrastructure should
consider these specialties.

19Similar shares of garages are also found for the US [Lin and Greene, 2011,Vyas et al., 2009].
20Costs for these charging options will be presented in Section 4.3.
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Figure 2.3: Availability of garages in German vehicle stock. Garage availability and city sizes
from [infas and DLR, 2002], total number of vehicles from [KBA, 2014a].

2.2 Literature review of previous modeling

approaches21

Modeling the interaction in diffusion of AFVs and their refueling infrastructure has been a
field of research for some decades, yet PEVs and their charging infrastructure interaction
has not received much attention up to now. Therefore, this literature review of AFVs
aims at identifying important factors and insights for further modeling undertakings.
The following subsection identifies stylized facts and requests to models that should be
considered when the co-diffusion of AFVs and their refueling infrastructure is analyzed
in general (2.2.1). Models that treat the co-diffusion for different AFVs are presented
and classified in Section 2.2.2. Their research questions and coverage of stylized facts are
discussed in Section 2.2.3, while conclusions for further research are drawn at the end of
this chapter.

2.2.1 Stylized facts of vehicle and infrastructure market diffu-

sion

In the following, stylized facts of AFV market diffusion that should be included in models
are identified. It is common practice in economical research to analyze important empirical
regularities that are stable across different studies, markets or sectors [Kaldor, 1957,
Easterly and Levine, 2001,Cont, 2001]. These empirical regularities are coined stylized
facts [Kaldor, 1957] and helpful to summarize the present state of knowledge as well as
to identify directions of further research [Easterly and Levine, 2001]. This subsection is

21This section is based on [Gnann and Plötz, 2015].
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structured as follows: The background analysis starts with a review of empirical studies
of NGVs as an AFV type that has diffused into markets in several countries in order
to derive general stylized facts for AFV modeling. Thereafter user acceptance studies
on AFVs and their refueling infrastructure are regarded to retrieve how potential users
evaluate vehicles propelled by new fuels. These findings are summed up as factors that
should be considered by models in the last part of this subsection. They build the basis
for the model that is described in Chapter 4.

Empirical studies on natural gas vehicles and their refueling infrastructure

While for gasoline an initial infrastructure built-up was necessary, it was different for
diesel vehicles and NGVs, since gasoline refueling stations were already in place and
could be extended for these fuel types with minor modifications. For a comparison of
several countries, their adoption of NGVs and their refueling infrastructure Janssen et al.
(2006) introduced the so-called vehicle to refueling station index (VRI), defined as the
number of refueling stations times 1,000 divided by the number of vehicles [Janssen et al.,
2006]. The index shows the market development phases with the ratio being below one
for early markets and above one for more mature markets (see [Janssen et al., 2006]).

Extending the work of Janssen et al. (2006) with newer data [VDA, 2010, eldia.com,
2011,BFS, 2013,ANP, 2012,KBA, 2013b,KBA, 2013a,MWV, 2013,Eurostat, 2013,GVR,
2012,Erdöl-Vereinigung der Schweiz, 2008, europia, 2012,UP, 2012], the historical evolu-
tion of NGV stocks is illustrated in Figure 2.4 while NGVs comprise vehicles propelled
with liquefied petroleum gas (LPG) or CNG and their charging infrastructure for six
different countries. Abscissa and ordinate show the market shares of stocks of NGVs
(number of NGVs in stock divided by total number of vehicles in stock) and of refueling
stations respectively (as number of refueling stations selling gas for these vehicles divided
by the total number of refueling stations for CVs). Displayed are market shares for NGVs
and CNG refueling stations for Argentina (AG), Brazil (BR), Germany (DE), Italy (IT),
Sweden (SE) and Switzerland (CH) as well as LPGVs and LPG refueling stations for Ger-
many and the Netherlands (NL). The blue line indicates equal market shares of vehicles
and refueling stations. The diagram has two logarithmic axes to compare large values,
e.g. of Brazilian market shares (share of CNG vehicles 2009: 7.5%), to small ones, e.g.
in Switzerland (share of CNG 1999: 0.002%). Here, market shares are used instead of
absolute values in order to be independent of the factor that has to be multiplied by vehi-
cles (1,000 in [Janssen et al., 2006]), which allows a direct comparison of different vehicle
markets.22 Although this illustration does not consider the charging station capacities (in
terms of nozzles or amount of fuel sold) it serves as a proxy for the development of early
markets.

All countries except Brazil show a share of NGV refueling stations higher than the
share of NGVs. The Netherlands, Brazil and Argentina are more mature markets (more
on the upper right corner) and seem to develop an initial refueling infrastructure before
vehicles gain larger market shares. All countries’ developments have positive slopes and
for all countries except Brazil, the slopes are smaller than one, i.e. the stock share of
vehicles is growing faster than the market share of refueling stations; for Brazil the slope
is almost one. This might derive from the market maturity: younger markets with little

22Since the ratio of refueling stations selling gas and the total number of refueling stations is displayed,
the density of the refueling station network of CVs for each country is implicitly considered as well.
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Figure 2.4: Stock market share of different gas vehicles and corresponding refueling stations
for different countries and years. Data from [VDA, 2010, eldia.com, 2011, BFS, 2013, ANP,
2012,KBA, 2013b,KBA, 2013a,MWV, 2013,Eurostat, 2013,GVR, 2012,Erdöl-Vereinigung der
Schweiz, 2008, europia, 2012,UP, 2012].

market shares for vehicles seem to converge to equal market shares of vehicles and refueling
stations.

This illustrative example suggests the following relationships:

• Market shares for NGV refueling infrastructure are higher than market shares for
NGVs in the beginning of a market diffusion.

• The ratio of both market shares tends to develop to one for early markets and to
higher market shares for vehicles for more mature markets.

These findings are confirmed by studies on NGVs in several countries. Flynn (2002)
analyzed NGVs in Canada in the years 1984 to 1986 [Flynn, 2002]. He studied policy
measures, focusing on the barriers to adoption. His main findings with respect to the
interaction of vehicle and infrastructure were that (1) infrastructure has to be available to
customers as soon as there are vehicles on the market and (2) refueling stations have to
become profitable soon to sustain investments into a further infrastructure development.
Yeh (2007) studied the adoption of NGVs in Argentina, China, Italy, Pakistan, Brazil,
India, New Zealand and the United States [Yeh, 2007], using the vehicle-to-refueling-
station index VRI suggested in [Janssen et al., 2006]. In her work she found that the
following conditions were decisive for a market diffusion of NGVs in all countries: (1) The
prices for natural gas should be 40-50% lower than for conventional fuels, (2) the average
payback period should not be more than 3-4 years, and (3) ”that successful NGV markets
have the tendency to gravitate toward a VRI of 1” [Yeh, 2007], which supports the
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findings of the example on NGVs. Collantes and Melaina (2011) studied the co-evolution
of NGVs and their refueling infrastructure in Argentina [Collantes and Melaina, 2011].
They used a quantitative and qualitative approach and concluded that there was little
political influence in the build-up of refueling infrastructure and private users invested
when vehicles entered the market. However, they stated that lower fuel prices and several
infrastructure standards were the main drivers for adoption.

From the evidences collected by these studies, the following findings can be added:

• There has to be some infrastructure as soon as there are vehicles on the market
which approves the first observation in this subsection.

• Refueling stations have to economize in the short to medium term, so a model should
reflect their profitability.

• Fuel prices for AFVs should be lower than for conventional vehicles.

For modeling the co-diffusion of PEVs and their charging infrastructure, this means
that an initial amount of charging infrastructure has to be in place, while the profitability
of charging stations should be included in the model. Also the profitability of electric
versus conventional driving will be reflected in the model introduced in Chapter 4.

How does refueling infrastructure influence the adoption of AFVs?

Several studies analyze the adoption of AFVs and their refueling infrastructure in general
whereof some are presented in the following.

Sperling and Kurani (1987) investigated diesel vehicles and their corresponding re-
fueling network in California [Sperling and Kurani, 1987]. They conducted a survey of
diesel vehicle buyers in 1986 that addressed the influence of fuel availability in the vehicle
buying decision. They compared buyers that bought their vehicles prior to or after 1982
and tested whether those buyers were less concerned about finding refueling stations who
bought their car in later years. All interviewees were asked after they bought their car.
From the responding 535 participants of this study they concluded that: (1) diesel car
owners had the same or less difficulty finding refueling sites than expected, (2) the level
of concern was about the same for earlier and later buyers. (3) Furthermore the authors
stated that a minimum level of 15-20 % of all refueling stations has to offer the ”new”
fuel to meet users’ needs [Sperling and Kurani, 1987]. Another survey performed by
Sperling and Kitamura (1986) showed that an initial refueling network should be ”about
1/10th of the size of the gasoline retail network [...] to relegate refueling concerns to
a relatively insignificant role in the vehicle-purchase decision” [Sperling and Kitamura,
1986]. Greene (1996) supports the results of [Sperling and Kurani, 1987] regarding the
minimum percentage of refueling coverage in a US-wide survey about flex-fuel vehicles
conducted in 1996 with about 2,000 participants interviewed by phone [Greene, 1996]. He
also found that if 15-20% of conventional refueling stations offered the new fuels, it would
be sufficient to remove the adoption barrier of fuel availability.

Dütschke et al. (2011) reviewed user acceptance studies on natural gas vehicles in
Germany and put them into international context to find out how acceptance for plug-in
electric vehicles could be increased [Dütschke et al., 2011a]. Additionally, they conducted
a survey of 142 NGV drivers in Germany in 2010. The main barriers to NGV adoption
identified in this comprehensive analysis were cost and the lack of infrastructure, although
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the infrastructure concern ”was not referred to very often by the interviewees” [Dütschke
et al., 2011a]. Furthermore, concerns about lacking infrastructure for NGV-interested
people were lower than for non-interested car drivers [Dütschke et al., 2011a].

Peters et al. (2011) studied plug-in electric vehicles and their possible early adopters
with an online survey including 969 participants and tried to find out how Rogers’ con-
sumer groups [Rogers, 1962] could be characterized and identified for PEVs [Peters et al.,
2011b]. They pointed out that consumers regard conventional infrastructure as highly
superior to PEV charging infrastructure, but a significant influence of infrastructure in
the purchase decision was not observed [Peters et al., 2011b]. The largest user accep-
tance study for PEVs in Germany up to now was conducted in the German pilot regions
of E-mobility with more than 2,300 participants [Dütschke et al., 2011b]. According
to Dütschke et al. (2012) the main factors consumers wish to be focused on for plug-
in electric vehicles and charging infrastructure are to increase the vehicle range and to
decrease their charging duration [Dütschke et al., 2011b]. Users also wish that public
charging infrastructure is set up by companies or public authorities which is supported
by a study of Continental (2011) [Continental, 2011]. Götz et al. (2011) also identified
the missing charging infrastructure as one of the major barriers to adoption [Götz et al.,
2011]. Globisch et al. (2013) detected that charging their vehicles at home is perceived as
positive by users of PEVs while charging duration and frequency of PEVs are clear dis-
advantages [Globisch et al., 2013]. With a questionnaire distributed in the German pilot
regions, they compared private and commercial users and found that the availability of
charging infrastructure is perceived as insufficient, while commercial users rate charging
infrastructure as even less sufficient [Globisch et al., 2013].

The evidence presented in this section suggests that:

• There has to be a minimum level of infrastructure for first users to adopt (15-20 % of
conventional refueling stations for fuels similar to conventional fuels). This confirms
the first finding in the empirical studies section.

• Concerns about infrastructure of non-interested people are higher than for interested
ones (or early adopters) who tend to have almost no concerns. Thus, a model for
AFV and infrastructure adoption should be able to distinguish different user groups.

• Actual users of AFVs have less difficulty to find refueling stations than they thought
prior to purchase. Hence, decreasing concerns with AFV use should be reflected by
models as well.

• As political action for refueling infrastructure construction is demanded by users,
the integration of policy options into models should be considered.

Transferring these findings to PEVs, the initial charging infrastructure that has to be
in place are domestic charging facilities in garages, which can already be used. Further, the
model described in Chapter 4 will distinguish user groups with large sets of vehicle driving
profiles. Also decreasing concerns regarding the use of PEVs as well as the integration of
policy options will be considered in the model.
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Summary of stylized facts

In this subsection a number of stylized facts from empirical and user acceptance studies
on AFVs are identified that should be considered in models for vehicle and refueling in-
frastructure diffusion. From the evidence collected in this subsection, it can be concluded
that the following general factors should be integrated into models of combined AFV and
AFV refueling infrastructure market diffusion:

(A) An initial amount of AFV refueling or recharging infrastructure

(B) AFV and AFV refueling infrastructure market shares

(C) profitability of refueling or charging stations

(D) fuel prices for conventional and alternative fuels

(E) different user groups

(F) decreasing user concerns with AFV use

(G) potential policy measures

In Section 2.1.2 some specialties of PEVs and their charging infrastructure were
pointed out that should be incorporated by models for PEV and charging infrastruc-
ture diffusion. Thus, apart from the general factors models should integrate, there are
two specific factors relevant for PEV and infrastructure market diffusion models:

(H) refueling duration and frequencies can differ between PEV and conventional vehicles

(I) multiple types of infrastructure have to be differentiated by accessibility

Thus, nine factors are proposed which should be considered by models treating the
interaction PEV and charging infrastructure diffusion (see also Table 2.3, first column). In
the following section, existing models of AFV and AFV refueling infrastructure are tested
whether they obey to these requests and find out if their modeling approach should be
adopted. The requests to the model proposed in this thesis will be discussed in Section 4.4.

2.2.2 Review of models for joint vehicle and infrastructure

diffusion

The studies presented thus far provide evidence that there is an interaction between AFV
market diffusion and AFV refueling infrastructure market diffusion. This subsection holds
a general scheme of model classification followed by a summary of model approaches used
in literature to evaluate the interaction between AFV and AFV infrastructure.

Classification of models for vehicle and infrastructure diffusion

Generally, models can be clustered in many different ways and there is no common clas-
sification for all types of models (see e.g. [Zeigler, 1976, Geroski, 2000, Fleiter et al.,
2011,Al-Alawi and Bradley, 2013, Jebaraj and Iniyan, 2006,Tran and Daim, 2008]). For
the present case of models for AFV and their infrastructure market diffusion, model clas-
sification schemes from the market diffusion literature (such as [Geroski, 2000,Al-Alawi
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Figure 2.5: Classification of models based on [Dreher, 2001,Sensfuss, 2008,Fleiter et al., 2011]

and Bradley, 2013]) could be used as well as model classification schemes from energy
economics (such as [Fleiter et al., 2011, Ventosa et al., 2005]) for energy-related infras-
tructures such as refueling stations networks.

In the following, a classification based on [Dreher, 2001,Sensfuss, 2008,Fleiter et al.,
2011] is used (Figure 2.5). This is a common classification for energy system models which
copes with dynamic effects such as the interaction of vehicle and refueling infrastructure
market diffusion (see also [Dreher, 2001, Ventosa et al., 2005, Sensfuss, 2008]).23 This
classification distinguishes between two model philosophies: bottom-up and top-down
models. These model philosophies and subordinated model classes are briefly described
in the following for a better understanding.

Top-down models are based on at least one main assumption or development which is
decomposed in the analysis. They are generally used for macroeconomic coherences which
study industries in relation to national economies [Dreher, 2001,Sensfuss, 2008]. Top-down
models can be further subdivided into three model classes: input-output models, general-
equilibrium models and macro-econometric models. Input-Output models are adapted to
evaluate changes in economy through exogenous changes in the sectoral demand [Kemfert,
1998, Sensfuss, 2008] while Computable General Equilibrium models assume long-term
equilibria and model the economy based on equations. They are frequently used to analyze
policies and their impacts [Sensfuss, 2008]. Macro-econometric models are often applied to
evaluate past events empirically and derive prognoses thereof. For that reason imperfect
market behavior is estimated based on economic data [Sensfuss, 2008,Kemfert, 1998].

Bottom-up models combine several detailed assumptions which are composed to an
overall picture. They are used if detailed technological and economical information about
all necessary subgroups is available [Sensfuss, 2008,Fleiter et al., 2011]. Bottom-up models
can be further divided into optimization models, simulation models and accounting frame-
works [Fleiter et al., 2011]. Optimization models perform a demand and supply matching
and often try to maximize the economic surplus. While the maximization can derive from
all factors in the objective function there is always a number of constraints that have to
be respected [Sensfuss, 2008, Fleiter et al., 2011]. Simulation models are not based on
equilibria. Instead, a set of rules is applied for mechanisms that define behavioral pro-
cesses in the model which return a step wise development of the whole system [Sensfuss,
2008]. Sensfuss (2008) also subdivides simulation models into agent-based models and

23For a more general approach on the diffusion of innovations, refer to [Rogers, 1962,Geels, 2002]. In
this study, a classification based on mathematical solution methods is preferred.
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system dynamics models [Sensfuss, 2008]. Accounting frameworks model several sectoral
outcomes and aggregate them for a full development [Fleiter et al., 2011].

With this classification, model approaches may be categorized and evaluated by their
quality in fitting to the interaction of vehicle and refueling infrastructure diffusion for
AFVs in general and PEVs in particular. This classification is used to categorize models
from literature in the following.

Models for AFV and AFV infrastructure diffusion

In a literature review, ten studies were identified that jointly analyze the market diffusion
of AFVs and their refueling infrastructure. An overview is given in Table 2.2, their
approaches and main findings are presented in the following and summarized in Table 2.4
and Table 2.5.

Table 2.2: Overview of analyzed models for AFVs and their refueling infrastructure

Reference AFV-type Country Time horizon*

[Hu and Green, 2011] LPGV, FCEV several 2000–2030

[Huétink et al., 2010] FCEV Netherlands 2010–2100

[Janssen et al., 2006] NGV Switzerland 2000–2030

[Köhler et al., 2010] FCEV EU27+2 2010–2040

[Melaina, 2003] FCEV United States 2010–2030

[Meyer and Winebrake, 2009] FCEV none 0–50

[Schwoon, 2006] FCEV Germany 2010–2030

[Schwoon, 2007] FCEV Germany 0–20

[Stephan and Sullivan, 2004] FCEV none 0–20

[van der Vooren and Alkemade, 2010] LPGV none 0–200

*years or time steps

Hu and Green (2011) examined the co-diffusion of LPGVs and their infrastructure and
drew conclusions for FCEVs in a macro-econometric approach [Hu and Green, 2011]. In a
multi-national analysis, country-specific break-even-distances for LPGVs24 were analyzed
in an elasticity model and several break-even-distances were calculated to find out if the
system could become self-sustaining. After this ex-post analysis on LPGVs, findings
were transferred to FCEVs keeping as many aspects from LPGVs as possible. The main
conclusions were that (1) there is a strong connection between market penetration and
break-even-distance of LPGVs, (2) infrastructure increases trigger market penetration of
vehicles and vice versa, not enough, however, for a self-sustaining growth. Moreover, (3) a
mix of financial and non-financial support policies is required for a market penetration of
FCEVs.

Huétink et al. (2010) investigated FCEVs and their refueling infrastructure in the
Netherlands [Huétink et al., 2010]. An agent-based simulation model was used to study the
”relation between initial refueling infrastructure and [...] hydrogen vehicles” with special
focus on user behavior [Huétink et al., 2010]. In their work Huétink et al. (2010) applied

24In [Hu and Green, 2011], the break-even-distance is defined as the distance after which a LPGV is
more economic than a CV.
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Rogers’ perceived innovation attributes (relative advantage, compatibility, complexity,
trialability and observability [Rogers, 1962]) to FCEVs. They derived the FCEV purchase
price, the availability of hydrogen and social learning as main drivers for FCEV and
infrastructure diffusion. Based on these drivers Huétink et al. (2010) formed consumer
and refueling station agents that interact in a predefined fictive area which allowed to test
different initial infrastructure set-ups. This led to the overall result that network effects
have a significant impact with three consecutive findings: (1) diffusion is slower than
in benchmark patterns if network effects are considered, (2) a nationwide infrastructure
roll-out is better for diffusion than an urban strategy and (3) the social network structure
also has an influence, i.e. small networks have favorable conditions.

Janssen et al. (2006) studied natural gas vehicles with a focus on policy development
in a system dynamics approach [Janssen et al., 2006]. After an examination of previous
international experiences, a system dynamics model with three reinforcing loops (emerging
market loops for vehicles and fueling stations as well as a market forecasting loop) and two
balancing loops (market saturation loops of vehicles and fueling stations) was established.
Several policies were compared to a base scenario for the Swiss vehicle market in order
to test the possibility of stimulating the latter. They found five indicators for a degree
of market penetration that were drawn from the analysis: (1) the ratio between NGVs
per CNG refueling station, (2) the type coverage, which is the offer of vehicle models
presented to potential customers, (3) the NGV investment pay-back time, (4) the sales
per NGV type and (5) the subsidies per vehicle.

Köhler et al. (2010) examined FCEVs and their refueling infrastructure in Germany
using a system dynamics approach to retrieve the initial amount of infrastructure needed
and its political and macroeconomic implications [Köhler et al., 2010]. They extended
an existing transportation model by an economic policy analysis within the transition
towards hydrogen in the transport sector. The main findings were that (1) there is only
a small subsidy needed for the initial set-up of refueling infrastructure, (2) ”the overall
impact on the economy is positive”, and (3) both FCEVs and their infrastructure need
political support during its introduction while a full transition to FCEVs will take a long
time [Köhler et al., 2010]. Besides, the ”provision of a hydrogen distribution (as well as
production) is not a major economic barrier to the adoption of hydrogen vehicles” [Köhler
et al., 2010, p.1238], which is not in line with findings of other studies [Ball et al., 2009,
Offer et al., 2010].

Melaina (2003) analyzed FCEVs in the US [Melaina, 2003]. A threefold simulation
approach was used to determine the initial number of hydrogen stations necessary to
trigger a self-sustaining market diffusion for the US market. In the first approach, he
determined the number of hydrogen stations as a percentage of gasoline stations based
on [Sperling and Kurani, 1987] and found 4,600 to 17,700 stations. The second approach
divided metropolitan land areas into parts which resulted into 1,600 to 4,500 stations. The
third and finally preferred approach regarded arterial roads in the US with corresponding
4,500 to 9,200 hydrogen stations. With these estimated numbers he explored the cost
of hydrogen infrastructure in the early FCEV adoption process and found that a highly
coordinated political effort would generate the lowest cost.

Meyer and Whinebrake (2009) also investigated FCEVs and their infrastructure in the
US [Meyer and Winebrake, 2009]. Based on the theory of complementary goods, a system
dynamics model was created on three attributes: the FCEV adoption, FCEV refueling
stations and hydrogen market conditions with four reinforcing and two balancing loops.
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Unlike [Janssen et al., 2006] Meyer and Whinebrake (2009) used a reinforcing loop for the
causal combination of FCEVs and hydrogen stations and one for conventional vehicles
and their refueling stations. Two more reinforcing loops covered the scrapping of FCEVs
and conventional vehicles. The balancing loops covered the construction of hydrogen and
conventional stations. Like in [Köhler et al., 2010], the individual user decides whether
to buy a FCEV based on a utility function in which the station density attractiveness
is included. They found that scenarios in which both vehicles and infrastructure were
subsidized, markets could reach momentum and become self-sustaining, while focusing on
one market only would not. Hence, they concluded that policies would have to consider
both complementary goods.

Schwoon (2006) analyzed hydrogen vehicles in Germany with a multi-agent simula-
tion approach and differentiated between three types of interacting agents: consumers,
car producers and refueling station owners [Schwoon, 2006]. Moreover, he used a utility
function for each consumer which was extended by a term for the fuel availability. Unlike
in system dynamic approaches, weights for the infrastructure values individually change
over time due to network effects. In his work Schwoon (2006) focused on different tax-
ing and refueling station set-up scenarios with the following findings: (1) a diffusion of
FCEVs can take place without a dense infrastructure if conventional vehicle owners pay
taxes for their driving and (2) car manufacturers could benefit from own investments in
infrastructure or cooperation with its constructors.

Schwoon (2007) studied hydrogen vehicles and refueling infrastructure in an agent-
based simulation model combined with a spatial GIS-model for Germany [Schwoon, 2007].
Extending his previous work, which dealt with the adoption and also regarded the car pro-
ducers explicitly, [Schwoon, 2007] focused on the initial infrastructure development based
on geographic information. For each individual driver a certain ”don’t worry distance”
was introduced, which is the distance between two refueling stations that is enough for
the user, and tested in several scenarios if the infrastructure development was sufficient to
reach the tipping point25. He concluded that (1) there have to be some initial hydrogen
refueling stations for a market penetration kick-off, (2) the German HyWay-ring may be
a good starting point, but (3) the optimal setting of the initial refueling stations depends
on the ”don’t worry distance”.

Stephan and Sullivan (2004) used an agent-based approach in a fictive area (cen-
tral business district and surrounding rural area) for hydrogen vehicle and infrastructure
market penetration [Stephan and Sullivan, 2004]. Two types of agents were considered:
hydrogen retailers and (about 400) vehicle owners. Like most of the other agent-based
approaches, consumers in [Stephan and Sullivan, 2004] also optimized a utility function,
which in this case includes a worry factor for the availability of hydrogen like in [Schwoon,
2007]. They found that (1) cost for vehicles and infrastructure is an important factor and
(2) the initial placement of refueling stations is crucial.

Van der Vooren and Alkemade (2010) had a more general approach to large tech-
nological systems in an accounting model [van der Vooren and Alkemade, 2010]. Their
main research question was how the rise and fall of technologies that depend on infra-
structure could be explained (cf. [Grübler, 1990]). They concluded: (1) the timing of
a competing system has a large influence on the technological diffusion of the regarded
system, (2) reaching momentum with infrastructure does not necessarily mean that the

25When the co-diffusion system has reached the tipping point or critical mass, it becomes self-sustaining
and no more external stimuli are needed [Allen, 1988,Mahler and Rogers, 1999].
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corresponding technology has to reach momentum and (3) lock-in occurs only when both
reach momentum.

When comparing the results of these ten studies, there are three main findings which
several studies support: (1) political support is needed for the initial infrastructure set-
up [Hu and Green, 2011,Köhler et al., 2010,Melaina, 2003,Meyer and Winebrake, 2009].
(2) According to several studies the system can become self-sustaining [Köhler et al.,
2010,van der Vooren and Alkemade, 2010], although some studies disagree [Hu and Green,
2011]. (3) An initial amount of refueling infrastructure is necessary for a self-sustaining
system [Köhler et al., 2010, Schwoon, 2007, Stephan and Sullivan, 2004] which supports
request A from the previous subsection. Furthermore, a variety of factors are identified
which confirm the previously conducted requests.

While these models are compared according to the coverage of the extracted factors
in the following section, their findings will be discussed with model results in Chapter 5.
These findings are summed up in Table 2.4 and Table 2.5 at the end of this chapter.

2.2.3 Discussion of presented co-diffusion models

General discussion

Some models analyze vehicles powered by natural gas (three out of ten), while most ana-
lyze FCEVs (eight out of ten). To the best of the author’s knowledge, there is no diffusion
model that explicitly models the interaction of PEVs and their charging infrastructure.
The large number of models considering FCEVs on the one hand and only a few with
NGV on the other indicate the novelty of a combined diffusion approach in this field.

Beside the various results and implementation ideas covered by the models, there
is a clear focus on bottom-up (nine out of ten) and simulation models (eight out of
ten). Within the simulation models there are four agent-based approaches and three
system dynamics models. While the bottom-up approaches require a large effort for data
collection, top-down models do not operate on a similar level of detail. Of course, the
required level of detail in modeling depends to a certain extend on the specific research
question of each study.

There are three groups of research questions which are investigated by the models:
(I) Is there a tipping point or how high is the tipping point? The majority of models
tries to answer this question by estimating the number of refueling stations and users
that have to adopt [Hu and Green, 2011,Köhler et al., 2010,Melaina, 2003,Meyer and
Winebrake, 2009, Schwoon, 2007, Stephan and Sullivan, 2004]. (II) The second group of
research questions focuses on policy options and infrastructure roll-out strategies that
are often compared to the number of refueling stations [Huétink et al., 2010, Janssen
et al., 2006, Schwoon, 2006]. (III) Finally, the last group of studies aims for theoretical
insights [Hu and Green, 2011,van der Vooren and Alkemade, 2010]. When model classes
and research questions are compared, no model class seems to be particularly well suited
for one specific research question. Still, since the majority of the observed models favors
simulation approaches, this model class seems appropriate for the specific requests in the
papers.
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Coverage of stylized facts

Table 2.3 summarizes which factors identified in Section 2.2.1 are covered by the ten
models from literature. The symbol ’X’ indicates whether a specific factor is integrated
in a model, ’–’ if it is not and ’(X)’ when the integration is not clear, but is presumed.

Table 2.3: Analysis of different models for AFVs and their refueling infrastructure. Indication
if request is reflected in the model with ’X’, if not with ’–’, otherwise with ’(X)’ and footnote.
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(A) Consideration of initial refueling
infrastructure

X X X X X X X X X –

(B) Eval. of market shares for AFVs and
infrastructure

X X X X X X X X X X

(C) Observation of profitability of
charging stations

– X X X X (X)a – – – (X)b

(D) Reflection of ratio of fuel prices X X (X)c (X)a (X)a X X (X)d X (X)b

(E) Contemplation of different user
groups

– X (X)f (X)f – X X X X (X)b

(F) Integration of decreasing user
concerns with use

– X – – – X X – (X)a –

(G) Modeling of policy options (X)e X X X – (X)a X – – –

(H) Consideration of refueling time and
frequency

– – – – – – – – – –

(I) Reflection of different infrastructure
owners

– – – – – – – – – –

a: unclear, but supposedly yes; b: unclear, since too general; c: externally defined; d : supposedly
individual reflection; e: policy recommendation, calculation unclear; f : logit for user differentiation

None of the models covers all aspects derived from the literature in Section 2.2.1.
While all general AFV questions may be answered with ’yes’ for [Huétink et al., 2010],
there is one model where only once can be affirmed for sure and three times with doubts
[van der Vooren and Alkemade, 2010]. Thus, if the affirmations are summed up, all
models are within a narrow range and this comparison is not considered to be quantitative.
However, (1) bottom-up simulation models answer more questions with ’yes’ than top-
down models and (2) there is no difference in coverage between system-dynamics and
agent-based models. Hence, this indicates that a bottom-up simulation approach is not
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only the most frequently used but also the most promising one to reproduce the stylized
facts from Section 2.2.1.

Taking a closer look at the at the previously determined general factors, it can be
stated that most models cover the general factors quite well, while user behavioral aspects
(E and F) are best-covered by simulation models. Different user groups (E) are a basic
ingredient of agent-based models and the integration of decreasing user concerns with time
of use (F) is often covered by neighboring effects or social interaction [Bonabeau, 2002]. In
the system dynamics models, users are often differentiated with logit-functions ( [Janssen
et al., 2006], in the part concerning the model ASTRA in [Köhler et al., 2010]) while
in other models users individually decide on the basis of the logit-function [Meyer and
Winebrake, 2009]. However, no correlation is to be found between factors and research
questions.

Concerning the specific factors of PEVs there is no model covering any of the two
aspects. Neither refueling duration and frequency (H), nor the different infrastructure
owners (I) are covered. This might correspond to the fact that these two aspects re-
sult from technical and organizational challenges linked to PEV requirements which are
not analyzed in these studies. Yet, this also means that current approaches cannot be
transferred to plug-in electric vehicles without adaptations. For this reason, a new model
approach is proposed in Chapter 4 that covers the extracted stylized facts as well as
special PEV requests.

Summary and conclusions for further research

In this chapter, plug-in electric vehicles (PEVs) were defined and differentiated against
other alternative fuel vehicles (AFVs). In addition, their differences concerning refueling
behavior compared to conventional fuels were pointed out (Section 2.1). Thereafter, mod-
els for the interaction of the market diffusion of AFVs and their refueling infrastructure
were analyzed in a structured literature review (Section 2.2). Stylized facts and factors to
be integrated into models were retrieved from empirical analyses, studies on user behavior
of AFVs and the specific characteristics of PEVs of Section 2.1. The identified factors were
discussed for ten models. This collection comprises, to the best of the author’s knowledge,
the current models that cope with combined AFVs and refueling infrastructure market
diffusion. Three conclusions and suggestions for the further procedure of this thesis can
be condensed:

1. There is a chicken-and-egg-problem for AFVs, i. e. a lock-in effect where poten-
tial consumers do not buy vehicles when there is no refueling infrastructure and
designated refueling infrastructure suppliers do not set up facilities as there are no
customers. To overcome this situation, some initial refueling infrastructure has to
be installed. Then the system may reach a tipping point from which on it can be-
come self-sustaining. The tipping point is the most frequent research topic in this
field. In the further proceeding of this work, this tipping point for PEVs will be
analyzed.

2. Existing models on NGVs and FCEVs can reproduce historical market evolutions.
The demands from the stylized facts where covered by most models analyzed (2.2.3).
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Most of them are able to answer economical questions and to analyze some policy
options. However, user adoption behavior and its change over time could be better
integrated. The most common approaches are system dynamics or agent-based
simulations. Hence, in Chapter 4, a simulation model for the co-diffusion of PEV
and their charging infrastructure is proposed which is based on real-world driving
profiles presented in Chapter 3.

3. The co-diffusion models analyzed in this section have to be strongly adapted for an
integration of currently uncovered PEVs. With a widely available electricity grid and
a large number of domestic charging facilities (at home in many major car markets)
the chicken-egg-problem is different for potential PEV users that could recharge
their vehicles at home. The longer charging duration and higher frequency as well
as the lack of public charging options probably leads to a higher psychological need
for charging facilities than the proposed 15–20% of conventional refueling stations.
Currently, there is no model that treats the co-diffusion of plug-in electric vehicles
and their charging infrastructure and none of the models analyzed here could be
used to integrate PEVs without major adaptations. This attests the necessity of
a new model for PEVs and their charging infrastructure which explicitly considers
the charging duration, frequency and ownership (see Chapter 4).
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Table 2.4: Analysis of models for AFVs and their refueling infrastructure - part 1

Author(s)
(Year)

Model
class

Research
question

Novelty /
Highlights

Major findings

Hu and
Green
(2011)

Macro-
Econometric
Model

existence or
height of
tipping
point (I),
theoretical
insights (III)

break-even-
distances from
LPGV transferred
to FCEV

- market penetration
and break-even-
distance connected
- system not self-
sustaining
- mix of support
policies required

Huétink et
al. (2010)

Agent-
based
Simula-
tion

policy
options and
infrastruc-
ture roll-out
strategies
(II)

application of
Rogers’ perceived
innovation
attributes to
FCEVs and
derivation of main
drivers for FCEV
and infrastructure
diffusion

- inclusion of network
effects leads to slower
diffusion
- nationwide roll-out
preferable to urban
strategy
- structure of social
network influences
results

Janssen et
al. (2006)

System
Dynam-
ics
Simula-
tion

policy
options and
infrastruc-
ture roll-out
strategies
(II)

development of
policy options
and indicators for
degree of market
penetration

indicators:
- ratio between vehicles
and refueling stations
- offer of models pre-
sented to customers
- vehicle investment
pay-back time
- sales per vehicle type
- subsidies per vehicle

Köhler et
al. (2010)

System
Dynam-
ics
Simula-
tion

existence or
height of
tipping
point (I)

combination of
existing transport
model with model
for economic
policy analysis

- only small subsidy
needed for initial hy-
drogen infrastructure
- overall economy im-
pact is positive
- political support for
vehicles and infrastruc-
ture needed
- infrastructure not a
major barrier for vehi-
cle diffusion

Melaina
(2003)

Various
Simula-
tions

existence or
height of
tipping
point (I)

threefold
approach for
determination of
initial charging
infrastructure
amount

- number of refueling
stations varies with ap-
proach (1,600 to 17,700
hydrogen refueling sta-
tions for the US)
- coordinated politi-
cal set-up with lowest
costs
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Table 2.5: Analysis of models for AFVs and their refueling infrastructure - part 2

Author(s)
(Year)

Model
class

Research
question

Novelty /
Highlights

Major findings

Meyer and
Whine-
brake
(2009)

System
Dynam-
ics
Simula-
tion

existence or
height of
tipping
point (I)

model based on
theory of
complementary
goods

both vehicles and in-
frastructure have to be
financially supported

Schwoon
(2006)

Agent-
based
Simula-
tion

policy
options and
infrastruc-
ture roll-out
strategies
(II)

changing weight
for infrastructure
in individual
utility function
due to network
effects

- FCEV diffusion
possible without dense
infrastructure network
if conventional cars are
additionally taxed
- car manufacturers
could benefit from
investments in infra-
structure

Schwoon
(2007)

Agent-
based
Simula-
tion

existence or
height of
tipping
point (I)

combination of
agent-based
model and
GIS-simulation
and introduction
of ”don’t worry
distance”

- initial amount of fill-
ing stations necessary
- HyWay-ring in Ger-
many as starting point
- optimal initial net-
work depends on
”don’t worry distance”

Stephan
and
Sullivan
(2004)

Agent-
based
Simula-
tion

existence or
height of
tipping
point (I)

combination of
agent-based
model and
geographic
information
aspects

- cost is an important
factor in vehicle and
refueling infrastruc-
ture diffusion modeling
- initial placement is
crucial for successful
market penetration

van der
Vooren and
Alkemade
(2010)

Accounting
Model

theoretical
insights (III)

general view on
large
technological
systems

- timing has a large in-
fluence on technology
diffusion
- co-diffusing technolo-
gies do not have to
reach momentum at
the same time
- lock-in only occurs
when both reach mo-
mentum





Chapter 3

Vehicle usage data

Introduction

The aim of this chapter is to describe and compare the main German vehicle usage data
sets and to determine the ones to use in this thesis. First, the term driving profile is
defined, then, the importance of a long observation period for an analysis of PEVs is
shown and the differences of user groups are displayed (3.1). In the following, different
data sets of private and commercial driving behavior are presented and analyzed whether
they are representative for German vehicle registrations (Sections 3.2 and 3.3). While
private driving profiles with a long observation period are publicly available for Germany,
there are no commercial driving profiles with an observation period of more than one
day. For this reason, a data collection of commercial vehicle usage data with an average
observation period of three weeks has been performed by the author which is described
in Section 3.3 as well.

3.1 Long observation periods for individual PEV

analyses and the distinction of user groups

Vehicle usage data is an important means to study the driving behavior of persons and
vehicles and are used for several detailed analyses (see e.g. [Santini and Vyas, 2005,Kley,
2011,Amjad et al., 2011,Smith et al., 2011,Plötz et al., 2014a]). In this thesis, the term
driving profile (often also referred to as driving pattern) comprises all trips of one vehicle
within a certain time horizon and will be used equivalently to vehicle usage data. While
several studies use average vehicle usage data [Dagsvik et al., 2002, Santini and Vyas,
2005,Keles et al., 2008,Köhler et al., 2010,Meyer and Winebrake, 2009,Nemry and Brons,
2010,Schade, 2008,Lamberson, 2008,Shepherd et al., 2012,Wansart and Schnieder, 2010,
Orbach and Fruchter, 2011], they neglect the large variations in driving between drivers
or between days of individual drivers [Amjad et al., 2011, Smith et al., 2011, Neubauer
et al., 2012]. The inclusion of individual user behavior is relevant to identify niches (see
also Section 2.2.1) and is particularly important for PEVs since their ability to perform
their driving profile completely with a BEV or with high amounts of electric driving in a
PHEV strongly depends on the individual vehicle usage and the regularity of his driving
behavior [Karlsson and Kullingsjö, 2013, Plötz et al., 2014a]. The electric driving share
of PHEVs essentially determines a its TCO. For example, if there are two vehicles whose

27
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driving profiles have been collected for two days, and vehicle A drove 10 km the first
and 130 km the second day while vehicle B drove 70 km on both days. The average daily
mileage is 70 km for both vehicles, however a BEV with an electric range of 100 km would
only be able to perform driving profile B without recharging during the day. If a PHEV
with an electric range of 50 km is assumed to be able to recharge once per day, its electric
driving share would be 71% for profile B, but only 43% for driving profile A.

The connection between technical PEV potentials and observation period was ana-
lyzed systematically in [Gnann et al., 2012a], where driving profiles with an observation
period of seven days were tested in order to determine whether BEVs could perform them
completely with varying battery capacities. The simulation of seven days was compared
to the feasibility of every single day in the driving profiles while the latter showed a higher
share of profiles that could performed with a BEV. Thus, the feasibility of a driving pro-
file can be largely overestimated if short time driving profiles are used. Furthermore, an
analysis of the influence of the observation period on electric driving shares was performed
in which the confidence band of each vehicles’ electric driving share with respect to the
number of observation days was examined [Plötz et al., 2014a].26 With an observation pe-
riod of five days the 95%-confidence band of the individual electric driving shares showed
a median at 19.1%, i. e. the error (due to observation period) on the electric driving
share of half of the users was larger than 19.1%. This error decreased with 20 days of
observation where the median of the 95%-confidence bands was at 9.5%. Hence, a precise
determination of an individual’s electric driving share requires a long observation period.
If BEV feasibility and PHEV electric driving share are considered in a market potential
analysis, results are affected by the observation period as well [Gnann et al., 2012c]. Since
in this thesis the market diffusion of PEVs and their charging infrastructure is analyzed,
the usage of driving profiles with a long observation period is mandatory (see also [Greene,
1985,Neubauer et al., 2012]). Yet, only a few models consider this premise (see e.g. [Pearre
et al., 2011,Khan and Kockelman, 2012]).

As a matter of fact, data collections are designed for special purposes and are subject
to limited funding. So, data collections very often focus either on a long observation pe-
riod to the account of the number of observations or on a large number of observations at
the expense of a shorter observation period. Figure 3.1 shows the number of observations
and the observation period of several international driving profile data sets [US-DoT,
2009,ENTD, 2009,WVI et al., 2010,MOP, 2010,Auto21, 2011,Karlsson, 2013,Fraunhofer
ISI, 2014]. While there are some data sets with more than 30,000 individual driving pro-
files (NHTS (United States): 180,000; KiD2010 (Germany): 47,114; MiD2008 (Germany):
34,601), they were collected for only one day to provide cross-sectional data of the na-
tional driving behavior. However, as described earlier, an analysis of individual profiles is
accompanied by errors if only one day is used. An analysis of individual driving behavior
without large errors due to variation between days can be performed with very long ob-
servation periods like in [Auto21, 2011](see e.g. [Blum, 2014]). Yet, the small sample of
75 vehicles in [Auto21, 2011] does not allow to generalize results for any subgroup. Hence,
this thesis uses driving profiles of a certain length and a relevant number of observations
which allows to use both advantages (individual analysis and possibility to generalize).
These will be described and their characteristics will be discussed in the following sections.

26For this analysis the electric driving share of each individual profile was assumed to be Gaussian
distributed, so that the confidence interval was given by ∆si(T ) = t(1−α/2,T−1) · σi(T )/

√
T with T being

the number of observation days and t(x,n) the Student’s t-distribution for n degrees of freedom.
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Figure 3.1: Comparison of different driving profile data sets with respect to observation period
and number of observations. Data from [US-DoT, 2009,ENTD, 2009,WVI et al., 2010,MOP,
2010,Auto21, 2011,Karlsson, 2013,Fraunhofer ISI, 2014]

Furthermore, this work distinguishes between private and commercial driving profiles.
This is important to mention since several studies neglect commercial vehicle owners (see
e.g. [Schühle, 2014, Santini and Vyas, 2005,Kley, 2011, Shafiei et al., 2012,Hacker et al.,
2011b]), although they account for more than 60% of annual passenger car registrations
in Germany [KBA, 2014b].27 German commercial and private vehicles differ in a number
of characteristics (cf. Table 3.1). In contrast to vehicle registrations, the German vehicle
stock is dominated by private vehicles which results from a shorter holding period of
commercial vehicles and a large second-hand car market where mainly private users buy
the used vehicles. Table 3.1 also shows that the average driving distance of commercial
cars is larger than for private vehicles which, paired with a regular driving, is favorable
for PEVs. The statistical significance of differences of average distance and regularity of
driving will be analyzed in Section 5.1.1.

However, the group of commercial users has to be further subdivided, since it com-
prises vehicles which are only used for commercial purposes as well as vehicles with mixed
(private and commercial) use. In the following, the solely commercially used vehicles are
called fleet vehicles, while vehicles with mixed use are so-called company cars. According
to [Pfahl, 2013], the total number of company car registrations is about the same as for
fleet vehicles [Pfahl, 2013]. Yet, the exact number of company cars is difficult to deter-
mine, since the German Federal Motor Authority does only distinguish natural and legal
car holders, i. e. the distinction in Table 3.1. For the further procedure of this work, the
following is assumed: The commercial vehicle stock is distributed equally to fleet vehicles
and company cars based on [Pfahl, 2013].

Summing up, this section showed that (1) a long observation period is decisive for the
analysis of PEVs and (2) the commercial vehicle sector has to be considered separately.

27The commercial passenger car sector is very heterogeneous and no unique definition exists for it [Stein-
meyer, 2007,Deneke, 2005]. Here, a commercial vehicle is defined to be licensed to a legal person or public
entity, while a private vehicle is licensed to a private person.
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Table 3.1: Privately and commercially licensed passenger cars in Germany

criteria private commercial reference
Stock (2014-01-01) 39,363,889 4,487,341 [KBA, 2014a]
Share of stock 89.8% 10.2% [KBA, 2014a]
Registrations (2013) 1,120,125 1,832,306 [KBA, 2014b]
Share of registrations 37.9% 62.1% [KBA, 2014b]
Avg. vehicle holding period [a] 6.2 3.8 [VCD, 2008,DAT, 2011]
Avg. motor size [ccm] 1,638 1,994 [KBA, 2014a]
Avg. VKT on weekday [km] 40.1 76.8 [IVS et al., 2002]
Avg. VKT on Sat./Sun. [km] 28.8 29.3 [IVS et al., 2002]

These two conditions are considered when the driving profiles for the further analysis are
determined in the following.

3.2 Private vehicle usage data

3.2.1 Overview of private vehicle usage data sets

In Germany, there are two large studies on the travel behavior of households publicly
available: Mobility in Germany (MiD, [infas and DLR, 2002, infas and DLR, 2008]) and
the German Mobility Panel (MOP, [MOP, 2010]). A third study on travel behavior (not
publicly available) is similar to MOP yet restricted to the region of Stuttgart in southern
Germany (MOPS, [Hautzinger et al., 2013]). These data sets are shown in Table 3.2.

Table 3.2: Overview of private driving profiles for Germany

Attribute MiD2002 MiD2008 MOP MOPS

Reference [infas and
DLR, 2002]

[infas and
DLR, 2008]

[MOP, 2010] [Hautzinger
et al., 2013]

Data collection design Questionnaire Questionnaire Questionnaire Questionnaire
Time of collection 2002 2008 1994–2010a 2012
Number of households 26,848 25,922 12,812 992,584
Number of vehicle
profiles

33,293
(17,773)b

34,601
(20,927)b

6,339 1,312,817

Number of vehicle trips 61,645 73,552 172,978 19,100,429

a: collection is still ongoing, b: vehicles with movement

The data collection for MiD was performed twice in 2002 and 2008 and MiD is a
household travel survey. Thus, not only trips with vehicles were collected, but also trips
by foot, bike or public transport were recorded. The collection of 2002 was performed for
26,848 households (2008: 25,922) which had to report all their trips on one reporting day.
Trips were collected during the whole year 2002 (and partially in 2003) whereof 33,293
vehicles can be extracted (2008: 34,601). Apart from the travel behavior, there is a large
number of socio-demographic information about the households and drivers (e.g. income,
education, sex) as well as the vehicles (e.g. vehicle size, fuel type, brand).

MOP is an ongoing household travel survey that has been performed since 1994 with



Chapter 3. Vehicle usage data 31

1,000 households every year.28 Users report all their trips during one week which also
include trips by foot, bike or public transport. By using information from 1994 until
2010, data of 12,812 households can be analyzed. In contrast to MiD, the allocation
of trips to vehicles is not available in the initial data set. Thus, this allocation has
to be performed where unambiguously possible based on the following assumptions (see
also [Kley, 2011,Chlond et al., 2014]):

• If there is only one vehicle in the household, trips of all household members as vehicle
driver are assigned to the vehicle. In this case the socio-demographic information
of the first driver is assigned to the vehicle profile.

• If the number of vehicles exceeds the number of drivers, the trips of the first house-
hold member are assigned to the first vehicle, those of the second driver to the
second vehicle until the last driver’s trips are assigned. This might overestimate the
driving of single vehicles.

• If the number of vehicles is smaller than the number of household members, the
vehicles will be exempted from the further analysis, since the allocation of trips to
vehicles is unknown.

Since the data structure changes over the years, an allocation algorithm has to be adapted
for every year (cf. A.1 for details). This returns 6,339 vehicle driving profiles with about
170,000 single trips. Apart from the trip distances, the purposes of all trips are collected,
which allows to distinguish between trips to private locations29, to the work place30 and
trips with public destinations (other purposes) equal to the accessibility types of charging
infrastructures in Section 2.1.2. Also, socio-demographic and vehicle information is avail-
able for this data set, such as the vehicle ownership which distinguishes natural and legal
persons. Thus, this data set does not only contain private vehicles, but also company cars
which are analyzed separately in the following.

For the MOPS-data, a seven-day mobility survey was performed with about 5,000
households in the region of Stuttgart (i.e. the six districts: Stuttgart, Göppingen, Lud-
wigsburg, Rems-Murr-Kreis, Esslingen and Böblingen – see Figure 3.2). Based on this
survey, socio-demographic data of the region and trip matrices, the data set was extrap-
olated to the whole region of Stuttgart. Thus, this sample contains trips for 2.7 million
persons, including all trips by foot, public transport or bike including their starting and
stopping zones. Those zones are different in size and smaller the closer they are to the
city center (central station of Stuttgart). There are also zones outside the observation
area with starting and stopping points of trips, although the home of all users is within
the observation area (see right panel of Figure 2). For more details on these zones refer
to Table 3.3 and Figure A.1.

As only vehicle trips are of interest in this study, an allocation of personal trips to vehi-
cles is performed where unambiguously possible (same assumptions as for MOP). A focus
on 15 min-intervals further reduces the sample size and complexity. Socio-demographic
information of vehicle owners and vehicles is rare in this data set since it is synthetically

28Some households are chosen to participate multiple, yet not more than three, times.
29Purposes 7 and 77 according to the codebook of MOP.
30Purposes 2 and 4 according to the codebook of MOP.
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Figure 3.2: Observation area of MOPS on German map (left), in detail (center) and divided
into zones including surrounding outer area (right). Own display with data from [Hautzinger
et al., 2013].

generated. Yet, the information about trip locations permits simulating the driving of
PEVs simultaneously and geographically and testing whether charging points could be
occupied by other PEVs in a charging simulation [Kuby et al., 2013]. The additional
information available besides the trip distances, times, and purposes are the household
sizes, age, sex and occupation of the driver as well as the locations of their homes and
work places.

Table 3.3: Geographic zones of observation area of MOPS.

Attribute Value

Surface of inner area 3,652 km2 (1% of Germany)
Zones in inner area 1,014
Average surface of inner area zones 3.8 km2 (SD=6.1 km2)
Surface of outer area 13,186 km2

Zones in outer area 140 (+20 distant zones)
Average surface of outer area zones 97.0 km2 (SD=92.9 km2)

3.2.2 Comparison of private vehicle usage data sets

In this thesis, each driving profile is analyzed separately to test whether it is technically
feasible and economically sensible as PEV. As explained in Section 3.1 this requires an
observation period of multiple days. Hence, the data sets MOP and MOPS are used for
further analyses. However, the information of MiD serves for validation of the other data
sets in terms of driving behavior, vehicle sizes and garage availability.

Figure 3.3 shows the distributions of daily and annual vehicle kilometers traveled
(VKT) in the data sets. On the left panel, the cumulative distribution functions of the
daily trips are displayed. Shown are the data sets MiD2002 (dotted green) and MiD2008
(dotted black) with their mileage on the day of observation. Thus, only the vehicles with
movement are displayed here. For MOP and MOPS two curves are displayed: the average
daily distance for all drivers (i. e. the sum of the trips during the observation week divided
by seven; displayed in dashed blue for MOP and dash-dotted black for MOPS) and the
daily distances of all drivers on all driving days (dashed red for MOP and dash-dotted
yellow for MOPS). By dividing the sample sizes, it is visible that a vehicle is moved on
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Figure 3.3: Comparison of daily and annual VKT in different private driving profile data sets.
Left panel: Cumulative distribution function of daily VKT. Right panel: Cumulative distribution
function of annual VKT. Data from [infas and DLR, 2002, infas and DLR, 2008, MOP, 2010,
Hautzinger et al., 2013].

6.46 days on average in MOP and on 4.63 days in MOPS.31 The figure contains four
interesting findings: (1) The distribution daily VKTs of MiD2002 and MiD2008 is almost
equal. This confirms the robustness of samples with a large number of observations when
analyzing the whole sample. (2) When all individual daily distances of MOP or MOPS are
compared to MiD, the shares of MOP and MOPS are slightly lower for shorter distances
(73% of all vehicle trips in MiD and 67% of all vehicle trips in MOP are lower than
50 km). Thus, daily driving distances may be slightly overestimated by using the MOP
data. (3) The share of users with an average daily vehicle distance below 120 km is lower
in MOP than in MiD and higher above 120 km. This confirms the slight overestimation
of driving distances when using the MOP data. (4) Driving distances for MOPS are
lower than in all other data samples, especially long-distance trips are not included in the
sample. These findings suggest a careful interpretation of results.

The right panel of Figure 3.3 uses the same display as the left panel, although here the
cumulative distributions of the annual VKT are displayed. Shown are the reported annual
VKT for MiD2002 (dash-dotted green), MiD2008 (dotted black) and MOP (dashed red).
Due to incomplete responses in the questionnaires, the sample sizes are reduced here. Two
main findings can be extracted: (1) The three curves are almost equal to each other, thus
the sample size of MOP is sufficient for the further analysis of the VKT. (2) Several steps
can be found which can be explained by the estimated annual VKT in the questionnaires.
The statistical relevance of these differences will be analyzed hereafter.

Since driving behavior is connected with vehicle size, Table 3.5 shows the mean an-
nual VKT, their standard deviations and subsample sizes of the three data sets MiD2002,
MiD2008 and MOP distinguished by car sizes. For this distinction, a small vehicle is
defined to have a motor with a cubic capacity of less than 1,400 ccm, a medium sized
vehicle between 1,400 ccm and 2,000 ccm and a large vehicle with 2,000 ccm and more.
As MOPS does not contain any information about car sizes it is not displayed in this
table.

31This is not comparable to the share of vehicles in motion in MiD since not all trips in MOP could
be allocated to vehicles and vehicles without movements were extracted.
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Table 3.4: Annual VKT in different vehicle sizes of private driving profiles for Germany. Data
from [infas and DLR, 2002, infas and DLR, 2008,MOP, 2010]

Vehicle size attribute MiD2002 MiD2008 MOP
small mean [km] 11,280 11,826 10,466

stdev [km] 9,910 13,384 9,020
number 5,442 6,751 966

medium mean [km] 14,791 14,805 14,676
stdev [km] 11,759 15,209 11,199
number 13,222 20,517 2,165

large mean [km] 17,839 15,965 16,204
stdev [km] 16,637 16,912 11,746
number 5,536 5,519 596

In all three data sets medium sized vehicles’ means are equal at an annual mileage
of about 14,700 km per year with statistically insignificant differences.32 For small and
large vehicles the average annual VKT differs slightly more. Based on statistical tests,
only large vehicles of MiD2008 and MOP are in good accordance while all other samples
are significantly different.33 Significant differences are found between all three data sets.
As all three data sets comprise a large number of participants, it is unclear which one is
best. Thus, MOP is considered representative for private driving behavior.

Apart from driving behavior the availability of garages or a parking close to the own
grounds is important when analyzing PEVs with respect to their charging infrastructure.
As mentioned in Section 2.1.2 the availability of a garage could simplify the (individual)
infrastructure set up largely. The questionnaires of MiD and MOP contain questions
regarding this topic. However, their formulation is slightly different for all three. In
MiD2002 users were asked for the common parking spot of every vehicle with the following
responses: in a garage (58.5% of all vehicles), at a parking on own property (29.2%),
at parking close to own property or apartment (7.9%) and at varying parking spots
(3.9%)(see also Figure 2.3 and [Gnann et al., 2013] for a further distinction of city sizes).
For MiD2008, responses were changed to the question of the common parking spot: on the
own property (71.3%), at parking directly close to own property or apartment (25.2%),
farther away from own property or apartment (1.0%) and at varying parking spots (2.3%).
In MOP the share of vehicles with garages is 66.2%. Thus, the responses in MiD2008 do
not allow to determine if the vehicle parking spot is a garage, and it is only possible
to compare the garage availability from MOP to MiD2002 finding it slightly higher in
MOP. Yet, the availability of garages in both samples is around 60%, which is confirmed
by [Behrends and Kott, 2009].

In summary, MOP and MOPS will be used for further analyses because of their long
observation period. Furthermore, in terms of driving behavior and garage availability
there are small differences in the data sets. Their influence on results will be discussed in
the further proceeding of this work.

32A two-sided t-test with unequal sample sizes and unequal variances rejects the null hypothesis with
p=66.0% for a comparison of MiD2002 and MOP, p=62.3% when MiD2008 and MOP are compared and
p=92.4% for MiD2002 and MiD2008 (see e.g. [Fahrmeir et al., 2011]).

33A two-sided t-test with unequal sample sizes and unequal variances rejects the null hypothesis for
small vehicles with p=1.1% (MiD2002-MOP), p <0.01% (MiD2008-MOP) and p=0.97% (MiD2002-
MiD2008). For large vehicles p=0.21% (MiD2002-MOP), p=65.3% (MiD2008-MOP) and p <0.01%
(MiD2002-MiD2008) are found.
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Table 3.5: Common parking spot of private vehicles for Germany based on [infas and DLR,
2002, infas and DLR, 2008,MOP, 2010].

Response option MiD2002 MiD2008 MOP

Garage 58,8% - 66.2%
on the own property 29.2% 71.3% -
on parking directly close to own property or apartment - 25.2% -
on parking close to own property or apartment 7.9% - -
farther away from own property or apartment - 1.0% -
at varying parking spots 3.9% 2.3% 33.8%

3.3 Commercial vehicle usage data34

Commercial vehicles comprise about 60% of annual German vehicle registrations and are
thus a relevant market for PEVs. Available vehicle usage data sets are discussed in this
section.

3.3.1 Overview of commercial vehicle usage data sets

Until 2011, the only publicly available vehicle usage data set for German commercial
vehicles was ”Motor Traffic in Germany” (KiD, [IVS et al., 2002,WVI et al., 2010]).
This data set only comprises vehicle driving profiles with an observation period of one
day. For this reason a data collection for commercial vehicles has been designed and
performed by the author in the ongoing project ”Regional Eco Mobility 2030” resulting
in the ”REM2030 driving profiles” (REM2030, [Fraunhofer ISI, 2014]).35 A subsample
for the region of Stuttgart is named REM2030S and Table 3.6 gives an overview of the
commercial data sets.

Table 3.6: Overview of commercial driving profiles for Germany

Criteria KiD2002 KiD2010 REM2030 REM2030S

Reference [IVS et al.,
2002]

[WVI
et al., 2010]

[Fraunhofer ISI, 2014]

Collection design Questionnaire GPS-tracking
Time of collection 2001-2002 2010 2011-2014a

Observation period 1 day 21.0 days
Number of vehicles (profiles)b 76,797

(32,171)b
70,249

(24,958)b
522 (498)c 164

Total number of vehicle trips 163,108 330,293 71,338 13,374

a: data collection ongoing; b: profiles with movement; c: profiles with at least seven
days of observation

KiD was collected twice, in 2002 and 2010. The design of the study was similar to
MiD, although no household records but only those of company vehicles were collected in
KiD. A questionnaire was distributed for about one year and vehicle trips were reported

34This section which is based on [Gnann et al., 2015a].
35For a description of their collection and preparation refer to Section A.3.
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on one observation day. KiD2002 comprises the information of 76,797 passenger cars of
which 32,171 were in motion on the observation day. In total, the data set comprises
163,108 vehicle trips. In the 2010 edition of KiD 330,293 vehicle trips of 25,958 vehicles
in motion were collected. However, the observation period in KiD is only one day per ve-
hicle. Since the time horizon of the used data collection has a significant influence on the
upscale to VKT as well as on the technical feasibility and potential electric driving share,
a single day data base might result in a strong bias (see e.g. [Gnann et al., 2012a,Plötz
et al., 2014a] and Section 3.1).

For this reason, a data collection of conventional vehicle profiles with a time horizon
of about three weeks was performed by the author in the on-going project ”REM2030”
[Fraunhofer ISI, 2014]. The REM2030 data was collected with GPS-trackers over 21 days
on average and currently contains 522 vehicle driving profiles of which 498 have an obser-
vation period more than six days and are analyzed in the following.36 The 373 passenger
cars and 125 light commercial vehicles (LCVs) in REM2030 with an observation period
of at least one week perform about 53,000 or 19,000 trips respectively. This yields a daily
average of 6.7 trips and 73 km per day for passenger cars and 6.8 daily trips and 67 km
on average for LCVs which is in line with [WVI et al., 2010]. Regarding the distinction
of solely commercially used (fleet vehicles) and partly privately used commercial vehicles
(company cars), the REM2030 data mainly contains company fleet vehicles which are
used for commercial purposes only.37

Since the collection design does not allow to distinguish vehicle trip purposes, the
average beeline to the company site is calculated to determine a trip to the company site.
With this calculation a stopping point is assumed to be commercial when the distance of
the beeline is lower than 500 meters and public otherwise. This follows the distinction
of possible charging facilities in Section 2.1.2 and allows to determine commercial and
public locations in which potential PEVs could be charged. Furthermore, since an annual
mileage is not part of the small questionnaire distributed with the GPS-trackers, it is
calculated by the mean of the daily distance means times 36538.

REM2030S is a subsample of profiles and comprises 164 profiles whose company sites
are in the region of Stuttgart. This subsample is extracted to maintain a data set with the
same spatial focus as MOPS. MOPS and REM2030S are used for the simultaneous simu-
lation of users at charging locations. Their representativity is discussed in the following,
while their impact on results will be discussed in Section 5.3.5.

3.3.2 Comparison of commercial vehicle usage data sets

Like for private vehicles the arguments of a long observation period also hold for com-
mercial driving profiles. Thus, the REM2030 and REM2030S profiles will be used in the
further analyses, while KiD2002 and KiD2010 are exploited for comparison of driving
behavior, vehicle sizes and affiliation to commercial branches.

36For a description of their collection and preparation refer to Section A.3.
37Although the vehicle usage is only available for data collected as of 1st of January 2014, it shows a

majority of fleet vehicles. Prior to to 2014, companies were requested to put the GPS-trackers in fleet
vehicles.

38V KT a = 365 · 1/7 · 1/Ki

∑sun
i=mon

∑Ki

k=1 V KTik with i as weekday, V KTik as the vehicle kilometers
traveled on the kth weekday of i and Ki as frequency of this weekday in the driving profile.
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Figure 3.4: Comparison of daily VKT in different commercial driving profile data sets. Data
from [IVS et al., 2002,WVI et al., 2010,Fraunhofer ISI, 2014]

Figure 3.4 shows the cumulative distribution functions of daily VKT for these com-
mercial driving profiles. Like for MiD2002 and MiD2008 in the left panel of Figure 3.3
for private users, the daily VKT for KiD2002 (green dash-dotted) and KiD2010 (black
dotted) are the reported driving distances on the day of observation. Hence, the number
of daily VKT corresponds to the number of vehicles with movement on the day of ob-
servation. For this figure only passenger cars and LCVs are considered.39 Like MOP for
private vehicles, the REM2030 data is displayed in two ways: the average daily driving
as explained earlier in this section (solid blue) is displayed as well as the single driving
days (red dashed). For an average number of 21.0 days with observation in REM2030, an
average number of 15.7 days with driving can be determined which could result from five
working days per week for most commercial branches. There are three points to retain
for discussion in the following analyses: (1) The distributions for KiD2002 and KiD2010
are almost equal to each other. (2) The distribution of the single days of observation of
REM2030 is also very close to the distributions of KiD2002 and KiD2010. (3) However,
the distribution of calculated average daily distances for REM2030 shows less long dis-
tances (above 100 km) than the other distributions. An interpretation may be that the
low frequency of long-distances per vehicle is compensated by a high frequency of shorter
trips within a profile. For the following analyses the similarity of single daily VKT in
REM2030 to KiD2002 and KiD2010 suggests that the REM2030 profiles are an adequate
choice for commercial driving behavior.

Further, the differences in driving between vehicle sizes in KiD2002, KiD2010 and
REM2030 are evaluated. Table 3.7 shows the mean daily VKT, its standard devia-
tion and number of driving profiles for the four sizes classes: small (cubic capacity
(CC)<1,400 ccm), medium (1,400 ccm≤CC<2,000 ccm), large (2,000≤CC) and LCVs
(weight below 3.5 tons).

39The SQL code for this query runs as follows: SELECT * FROM pkw WHERE v01 IN (2,3).
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Table 3.7: Average daily driving of commercial driving profiles for Germany differentiated by
vehicle sizes. Data from [IVS et al., 2002,WVI et al., 2010,Fraunhofer ISI, 2014].

Vehicle size attribute KiD2002 KiD2010 REM2030

Small mean [km] 28.27 31.34 42.00
stdev [km] 63.87 62.06 29.01
number of profiles 4,551 5,076 113

Medium mean [km] 53.22 60.73 82.32
stdev [km] 112.31 123.59 63.24
number of profiles 14,570 14,427 198

Large mean [km] 54.62 60.73 104.05
stdev [km] 123.85 117.70 94.89
number of profiles 9,958 8,716 56

LCV mean [km] 33.67 42.33 66.68
stdev [km] 84.21 98.81 64.37
number of profiles 40,851 25,573 131

While the daily VKT is always larger in REM2030, insignificant differences of daily
VKT are found among almost all subsamples.40 Moreover, the overestimation of driving
behavior could result from the different calculations of average daily VKT (as explained
earlier in this section) as well as from the collection design. Companies that took part
in the data collection of REM2030 were allowed to choose the vehicles whose driving was
recorded. While standard deviations are almost twice the mean values for KiD2002 and
KiD2010, mean and standard deviation are about equal for REM2030 within a subsam-
ple. Thus, the sample values are broader distributed for KiD than for REM2030 (which
also stems from the inclusion of several vehicles that are not moved during the day of
observation in KiD). For the further proceeding of this work, the tendency of REM2030
to overestimate driving will be kept in mind.

Another important distinction of driving profiles in the commercial passenger car sec-
tor is the commercial branch [Ketelaer et al., 2014]. The commercial branches are clus-
tered according to [Eurostat, 2008]. Since the REM2030 data collection is intended to be
representative for commercial registrations regarding commercial branches, this premise
is tested in the following. In Table 3.8 the number of annual vehicle registrations [KBA,
2014b], the average daily VKT, its standard deviation and the number of driving profiles
within a commercial branch for data sets REM2030 and KiD2010 are presented. Further,
the p-value of a two-sided t-test for mean values with unequal sample sizes and unequal
variances is shown in the last column.

First, it has to be mentioned that about 90% of all commercially licensed vehicles are
newly registered in four groups: G (Wholesale and Trade), C (Manufacturing), N (Ad-
ministrative services), and S (Other services).41 About 89% of vehicles within section
G (Wholesale and Trade) are licensed to companies that work within vehicle trade, with

40A two-sided t-test with unequal sample size and unequal variances rejects the null hypothesis at
p=7.1% for large vehicles and p=1.7% for small vehicles when KiD2002 and KiD2010 are compared and
p <1% for all other comparisons.

41When comparing registrations with vehicle stock, it is found that the holding periods in sectors
G (Wholesale and Trade), C (Manufacturing) and N (Administrative services) are much lower than
average (1.1 to 1.7 years compared to 3.8 years).
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Table 3.8: Driving distances distinguished by commercial branches
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G - Wholesale and trade 699,506 3,068 45.20 106.10 45 64.19 34.83 0.00
C - Manufacturing 380,367 2,559 70.11 142.13 101 78.67 45.66 0.11
N - Administrative and
support service activities

357,835 958 56.09 108.51 43 78.61 66.09 0.04

S - Other service activities 265,926 8,457 60.06 129.09 51 62.09 43.81 0.75
Q - Human health and social
work activities

33,391 1,064 42.39 79.86 67 51.74 31.52 0.04

F - Construction 31,150 2,559 59.00 121.25 38 47.13 29.23 0.03
O - Public administration,
defense, social security

28,546 1,910 41.46 93.67 66 29.05 18.15 0.00

H - Transportation and
storage

27,269 890 52.31 103.38 45 202.84 96.92 0.00

K - Financial and insurance
activities

18,582 238 59.61 98.83 5 48.83 25.53 0.44

J - Information and
communication

16,271 146 47.41 92.45 10 65.56 37.51 0.22

M - Professional, scientific,
technical activities

12,065 10 95.46 82.55 4 60.20 20.94 0.24

D - Electricity, gas, steam,
air conditioning

7,452 376 52.52 99.66 16 32.47 21.63 0.01

I - Accommodation and food
service

5,495 226 43.16 110.73 0 0.00 n.n. n.n.

L - Real estate activities 4,419 1 0.00 n.n. 0 0.00 n.n. n.n.
E - Water, sewery, waste,
remediation

3,938 419 59.24 119.85 7 37.81 38.89 0.21

R - Arts, entertainment and
recreation

3,541 119 36.67 79.55 0 0.00 n.n. n.n.

A - Agriculture, forestry,
shipping

2,963 543 39.96 98.57 0 0.00 n.n. n.n.

P - Education 2,134 61 60.64 93.95 0 0.00 n.n. n.n.
U - Extraterritorial
organizations and bodies

1,418 33 75.33 232.21 0 0.00 n.n. n.n.

B - Mining and quarrying 1,192 100 61.60 118.62 0 0.00 n.n. n.n.

Total 1,903,460 23,737 55.46 119.10 498 71.50 65.00 0.00

a: [KBA, 2014b]; b: [WVI et al., 2010]; c: [Fraunhofer ISI, 2014]; d: p-value for two-sided
t-test of difference of means with unequal sample sizes and unequal variances.
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vehicle parts and vehicle maintenance [KBA, 2013]. In section C (Manufacturing) another
74% of vehicles are registered to vehicle construction while car rentals sum up to 85%
of vehicles in section N (Administrative services) [KBA, 2013]. Thus, in total 63% of all
commercial passenger car registrations are directly related to the automotive industry.
This is important to know since a large number of these vehicles might be showroom
cars that are hardly driven during first registration or company cars with a high amount
of driving. The fourth largest car registration group is section S (Other services) which
contains about 14% of all commercial registrations. 99% of the vehicles in this group
comprise membership organizations, trade unions as well as political and religious orga-
nizations [KBA, 2013]. In the further analysis special emphasis will be put on these four
vehicle groups.

Furthermore, some branches within the single data sets show high daily VKT, for
example the branches H (Transport), C (Manufacturing) and N (Administrative services).
These average daily VKT between the different commercial branches can be compared by
a t-test assuming log-normal distributed daily VKT.42 Statistical tests for two data sets
of commercial driving show the average daily VKT in branches H (Transport), O (Public
administration), A (Agriculture, forestry, shipping), and D (Energy) to differ from at least
two third of the other branches within one data set.43

However, for the representativity for driving in commercial branches, the average
daily VKT between REM2030 and KiD2010 within each branch is tested (p-values in
the last column). The null hypothesis (values differ from each other) is rejected with
the probability p, thus small p-values can be interpreted as significant differences while
large p-values show statistically insignificant differences. p-values smaller than 1% are
found for commercial branches G (Wholesale and Trade), O (Public administration) and
H (Transport). Since branch G (Wholesale and Trade) accounts for about 30% of annual
registrations this does not favor a detailed analysis of driving behavior within commer-
cial branches. However, the differences between REM2030 and KiD concerning driving
behavior are insignificant for commercial branches that are responsible for two thirds of
annual registrations. For the further procedure of this work, the REM2030 data can be
considered representative for annual registrations in large parts, however, conclusions for
single commercial branches will be drawn carefully.

For this work, the following conclusions for commercial driving behavior can be drawn:
Since there was no data set with more than one day of observation for commercial vehicles,
the REM2030 driving profiles have been collected for this purpose and will be used for
the further analyses. A comparison of driving distances distinguished by vehicle size,
by commercial branch, and without distinction shows that the REM2030 profiles tend
to slightly overestimate driving distances. However, a comparison of the other available
data sources does not show good accordance either. Thus, for the following, analyses
concerning vehicle sizes, commercial branches, and commercial driving will be discussed
in light of these findings.

42The distribution of daily driving distances in the samples is right-skewed. Thus, using the loga-
rithms of the daily VKT, the normality premise for a t-test is approximately fulfilled. This corresponds
to the assumption that average daily driving distances of randomly chosen vehicles are log-normal dis-
tributed (see [Greene, 1985,Lin et al., 2012,Dong et al., 2014,Kagerbauer, 2010] for a similar discussion.

43A two-sided t-test for mean annual VKT with unequal variances and unequal sample sizes is significant
at p <1%.
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Summary

The aim of this chapter was to present the main data sources for this thesis and to discuss
their main characteristics with respect to other data sets. The main data source is vehicle
driving profiles which comprise all vehicle trips performed in a certain observation period.
Private and commercial driving profiles that are publicly available or were collected for
this thesis were presented and their differences were discussed. The following important
findings can be summed up:

1. A long observation period is decisive for the analysis of individual driving profiles.
Plug-in electric vehicles face the problem that they have to drive a significant amount
of kilometers electrically to be able to economize while they are technically restricted
by their electric range. An analysis of individual driving profiles allows to identify
potential early adopters with respect to their driving. However, driving profiles with
short observation periods tend to overestimate electric driving and market potentials
subsequently.

2. In Germany there are two large private data sets with one week of observation that
will be used in the further analyses: the German Mobility Panel (MOP) and a data
set similar to the Mobility Panel for the region Stuttgart (MOPS). When compared
to other large German data sets (MiD2002 and MiD2008) daily and annual vehicle
kilometers traveled as well as garage availability are only slightly different between
the data sets (slightly lower driving in MOPS).

3. As there is no data set with more than one day of observation, a data collection of
more than 500 vehicle driving profiles for commercial vehicles has been performed
for this thesis, the so-called REM2030 driving profiles. Driving in this data set
is slightly higher than in large data sets that serve for comparison (KiD2002 and
KiD2010) whose influence will be discussed in the further analyses. Yet, the data
set can be considered as representative for commercial vehicle registrations.





Chapter 4

Model development and techno-

economical parameters44

Introduction

The aim of this chapter is to introduce a new model for the co-diffusion of plug-in electric
vehicles and their charging infrastructure. In the following Section 4.1, an overview of
the model, its main assumptions and an argumentation for the approach are presented.
Section 4.2 comprises a mathematical description of the model. The parameters needed
to model the market diffusion of PEVs and charging infrastructure for Germany until
2030 are described in Section 4.3 followed by a discussion of the model in Section 4.4.

4.1 Model overview

In Chapter 2, the literature on models for the co-diffusion of alternative fuel vehicles
and their infrastructure was presented to retrieve aspects that could be learned from
earlier modeling approaches. The main findings of that chapter were that: (1) There
is a tipping point for the co-diffusion of AFVs and their refueling infrastructure beyond
which the system becomes self-sustaining. (2) Existing models on NGVs and FCEVs
can reproduce historical market evolutions, for which simulation models were the most
promising approaches. And, (3) PEV specialties compared to other vehicles like the
different charging duration, frequency and charging infrastructure ownership cannot be
integrated in the existing approaches without major adaptations. Hence, in this chapter
a new approach for the simulation of the co-diffusion of plug-in electric vehicles and their
charging infrastructure is proposed.

Based on the literature analysis in Chapter 2, an agent-based simulation model is de-
veloped since simulation models best fulfill the requirements for the co-diffusion of PEVs
and their charging infrastructure extracted in Section 2.2.1.45 In agent-based models
(ABM) a number of agents interact based on a set of rules over a certain time [Bonabeau,
2002] while the complexity rises with the number of agents, rules and the complexity
of rules that are integrated. According to [Bonabeau, 2002] an ABM is useful ”when

44Parts of this chapter are based on Plötz, Gnann and Wietschel (2014) [Plötz et al., 2014a] and [Gnann
et al., 2015b].

45For a classification of models refer to Section 2.2.2.

43
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the interactions between the agents are complex, nonlinear, discontinuous, or discrete.
[...] When the population is heterogeneous, when each individual is (potentially) differ-
ent” [Bonabeau, 2002]. However, the topology of interactions or the behavior (e.g. learn-
ing) can be complex [Bonabeau, 2002]. An ABM incorporates several issues that have to
be taken into account: Since the interaction of human behavior is modeled, several soft
factors have to be integrated, yet ”soft factors [in decision making processes are often]
difficult to quantify, calibrate, and sometimes justify” [Bonabeau, 2002]. Also, like every
bottom-up model, ABM is data intensive [Sensfuss, 2008] and can become computation
intensive as well because of the individual agent behavior [Bonabeau, 2002]. The main
challenge is to simplify user behavior and reduce data within the right level of detail to
still gain valuable outcomes. It is common practice to distinguish between agent-based
simulation (ABS) and multi-agent simulations (MAS) [Hare and Deadman, 2004]. The
first type of ABMs is used for the simulation of individuals with different characteristics
and those individuals interacting with each other (also called individual-based simula-
tion [Huston et al., 1988]). The latter group of models additionally assumes that agents
learn from each other and from their surroundings while interacting [Wooldridge and
Jennings, 1995,Steinbach, 2015].

This is exactly the case for vehicle usage profiles as described in the previous Chap-
ter 3. Individual vehicles differ from each other in their driving behavior and their socio-
demographic characteristics (see Chapter 3) as well as their willingness to pay more for
PEVs [Peters et al., 2011a]. An interaction at public charging stations is thus not pre-
dictable without the diffusion of PEVs and their individual driving behavior. They inter-
act when several users arrive at the same time and only one vehicle is able to recharge.
To model the market diffusion of PEVs and their charging infrastructure, the agent-based
simulation model ALADIN (Alternative Automobiles Diffusion and Infrastructure) is de-
veloped in this thesis.

The model is structured as depicted in Figure 4.1. There are four main model steps,
(1) the individual PEV simulation, (2) the individual utility calculation, (3) the aggre-
gation in the stock model and joint PEV simulation and (4) the optimal charging in-
frastructure setup by the charging point operator. Within these steps there are certain
parts where actual user behavior is integrated. The PEV simulation is based on driving
profiles in an infrastructure scenario. Furthermore, the cost for infrastructure, the will-
ingness to pay more and a brand loyalty of each individual user are incorporated into
the utility calculation. While the first two model steps are performed individually for
every vehicle driving profile, the stock model aggregates the preceding results to a mar-
ket diffusion. A joint simulation of the vehicle stock allows the charging point operator
to determine the public charging price and the infrastructure setup for the subsequent
individual simulation.

This model includes social interaction, but the agents are not able to learn from
each other. Individual agents are used since buying decisions for passenger cars are
complex [Klöckner, 2014] and many factors play a role, both in private [Mueller and
de Haan, 2009,de Haan et al., 2009] and commercial vehicle purchase decisions [Globisch
and Dütschke, 2013, Sierzchula, 2014]. Based on a survey of private passenger car buy-
ers [Peters and de Haan, 2006], Figure 4.2 gives an overview of factors ranked first in
private users’ decision making processes. Size, price and safety can be identified as the
most important factors in the purchase decision.

The importance of the different vehicle attributes motivates to model the PEV pur-



Chapter 4. Model development and techno-economical parameters 45

Figure 4.1: Overview of the model ALADIN - Alternative Automobiles Diffusion and
Infrastructure. Based on individual driving data from private, commercial and company cars
(left panel) and using techno-economical parameters (bottom), the market shares of different
propulsion technologies are determined in four steps (central panel): (1) each driving profile is
simulated as PEV and conventional vehicle; (2) based on the vehicle TCO, the cost for individ-
ual charging, the limited choice of PEV makes and models and the individual willingness to pay
more, the utility maximizing vehicle option is chosen; (3) the vehicle choices are aggregated to
a PEV stock and jointly simulated at public charging points; (4) the charging point operator
decides about the public charging price and construction based on the amount of public charging
from the previous model step.

chase decision as maximization of utility among several vehicle alternatives. For the future
market diffusion of PEVs the model determines the users’ utility obtained from vehicle
size, price, brand, fuel consumption and fuel type, and to a certain extend engine power,
emissions and acceleration. Since the focus is on the vehicles’ propulsion technology,
safety, gear shift and four-wheel drive are disregarded. The potential utility of each tech-
nology is calculated for each user (or agent) individually with these factors. Furthermore,
three user groups are distinguished that differ in their purchase decisions: (1) private car
buyers, (2) commercial vehicles used in commercial vehicle fleets only, and (3) company
cars used by employees for both commercial and private purposes. For Germany each
group amounts to about one third of the annual passenger car registrations [Pfahl, 2013].
Furthermore, four vehicle sizes are distinguished: small, medium, large and LCVs. To
take the importance of vehicle size in the vehicles’ utility into account, PEVs are only
considered for the same vehicle size as the conventional ones in the profiles, i.e. there is
no switch between vehicle sizes in the buying decision. That is, every user is assumed to
buy a vehicle of the same size as his current vehicle. Purchase price and fuel consumption
of a vehicle are aggregated to the vehicle’s TCO. The consumption costs strongly depend
on the annual VKT and the individual driving pattern, in particular the regularity of
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Figure 4.2: Criteria ranked first in the decision making process for passenger car purchase
differentiated by vehicle size. Figure is based on data from [Peters and de Haan, 2006].

driving. For a reliable estimate, each user’s driving profile is simulated as a vehicle with
each of the propulsion systems (BEV, PHEV, diesel and gasoline) and the resulting fuel
costs are calculated.

Fuel type, emission standards and acceleration are different for conventional internal
combustion engine vehicles or plug-in electric vehicles. Furthermore, many consumers are
willing to pay a price premium for a new technology [Rogers, 1962] in general and for PEVs
in particular [Wietschel et al., 2012]. The positive factors of PEVs such as reduced noise,
dynamic driving experience, their novelty and innovativeness are integrated in the model
proposed here as willingness to pay more of some users [Peters et al., 2011b,Dataforce,
2011]. Other factors are difficult to model and are assumed to be comparable between
conventional and plug-in electric vehicles, such as design, safety and engine power. Factors
like design and safety can be quantified in relation to other attributes with conjoint
analyses (see e.g. [Kreyenberg et al., 2013]), however, this is not the focus of this thesis
and quantified data on these matters is not available to the author.

Apart from the positive image of plug-in electric vehicles as a new technology, there
are some obstacles to overcome. One important factor is the need for frequent recharging
caused by the limited electric range of PEVs [Tate et al., 2008,Kalhammer et al., 2007].
To address this issue, the cost for individual charging options is integrated into the buying
decision while the cost for shared charging points are allocated to their users through a
public charging price that includes the cost for public charging stations. In addition, the
choice of PEVs in terms of brands and models as offered by manufacturers is still limited
and likely to remain so for the next years. This will certainly restrain some users from
buying a PEV despite their potential benefits. This effect of a limited choice of brands is
integrated into the model by a two-step process: First, users are assumed to stick to their
current vehicle brand if possible. Second, if a PEV would maximize the user’s individual
utility but is not available from his current manufacturer, then a share of users (equal to
the share of brands offering PEVs in that year) is assumed to choose a PEV from another
manufacturer and the rest of the users are assumed to choose their second best vehicle
option.

One of the most important aspects of ALADIN is the usage of real-world driving
profiles. This is a major improvement over existing models and has to the author’s
knowledge not been used comprehensively in a co-diffusion model for PEVs and their
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charging infrastructure so far. As explained in the previous chapter, the distribution and
regularity of trip lengths varies strongly between different users and influences the TCO
and potential use of PEVs significantly. Consequently, driving profiles of at least one
week are analyzed (cf. Section 3.1). Based on the individual driving profile, each vehicle
profile is simulated as BEV and PHEV based on the existing charging infrastructure.
The resulting electric driving share and annual VKT are used to calculate the individual
TCO of each driving profile and vehicle option. Based on the individual TCO and the
additional positive and negative factors integrated in the model as user specific utility,
the utility maximizing propulsion technology for each driving profile is chosen. Thus, in
each user group, a share of driving profiles will correspond to PEVs. This share is then
extrapolated to the annual registrations of vehicles in this user group. The first model
outputs are the individual utility of each vehicle technology and the individual purchase
decision in a given year. The technological and economical parameters vary over time and
the decision process is repeated for each year. The annual registrations are built up to a
stock of PEVs via a stock model.

To determine the need for public charging spots, the PEV agents in stock are simulated
to calculate the amount of energy charged at public charging points. This is different to
the first simulation where vehicle buyer agents are simulated individually for registrations
in comparison to the PEV stock simulation for the usage of charging points. Based on the
public charging cost, their batteries’ state of charge and the availability of a free charging
spot, PEV agents decide to charge in a joint simulation. Thereafter, the charging point
operator (agent) decides about a new public charging price that covers price for electricity
and charging points and the optimal (de-) construction of public charging points. The
market diffusion of charging points on the other hand is based on economical assumptions
and the return on invest since charging stations have to become profitable soon after they
are built (see argument C in Section 2.2.1). In the following simulation run, these charging
points can be used in the individual simulation of vehicle driving profiles to obtain higher
electric driving shares and thus a a higher PEV utility. Since model steps 2, 3 and 4 are
based on earlier steps that can be performed independently the results section is divided
into three sections that address the model steps individually. The mathematical details
of the model will be described in the following section.

4.2 Mathematical description of the model

The four model steps of ALADIN are explained in the following subsections: the individual
PEV simulation (4.2.1), the determination of the individual utility (4.2.2), the stock model
and joint simulation of PEVs (4.2.3) and setup of charging points by the charging point
operator (4.2.4).46

In the following, let i be a vehicle driving profile of user group u (private, fleet, com-
pany vehicle) and vehicle size r (small, medium, large, LCV), s the propulsion technology
regarded (Gasoline, Diesel, PHEV, BEV) and t the year of observation to name the main
indices. All costs are VAT exempted for commercially licensed vehicles and include VAT
for privately owned cars. All units of variables are shown in the abbreviations at the
beginning of this thesis.

46The description of the first three subsections is based on [Plötz et al., 2014a,Gnann et al., 2015b].



48 4.2. Mathematical description of the model

Figure 4.3: Example for battery simulation. Assumed is an electric consumption of 0.18 kWh/km
and overnight charging with 3.7 kW. Distances in blue on left abscissa, battery SOC in green
on right abscissa.

4.2.1 Individual plug-in electric vehicle simulation

In the PEV simulation, the battery’s state of charge (SOC) of BEVs and PHEVs is
simulated for each driving profile to determine whether it could be performed by a BEV
or which electric driving share would result for a PHEV of the same vehicle size. More
specifically, the SOC is calculated for each point in time τ as

SOCi(τ +∆τ, t) =

{

SOC(τ, t)− d(∆τ) · cer,s(t)
min{SOC(τ, t) + ∆τ · Pl(τ, t), Cr,s(t)}

for
d(∆τ) > 0

d(∆τ) = 0.
(4.1)

where the initial value for each year t is given by SOCi(τ
0
i , t) = Cr,s(t). Cr,s(t) is the

net capacity of the battery analyzed, calculated as the gross capacity multiplied by its
maximum depth of discharge (DoD), and τ 0i is the starting time of the driving profile.
SOCi(τ, t) denotes the state of charge at time τ in year t. The distance driven between τ
and τ+∆τ is given by d(∆τ). cer,s(t) is the consumption of electric power in kWh/km, de-
pending on car size r and propulsion technology s. Pl(τ, t) in kW describes the power for
charging at the location where car i was parked at τ and year t. If no charging infrastruc-
ture is available, Pl(τ, t) = 0. The locations l of Pl(τ, t) are private, work or public grounds
for charging facilities, while for public charging Pp(τ, t) = (Pp,zmin

(t), ..., Pp,zmax
(t))T and

Pp,z(t) signifies the power for public charging in zone z at time t. Figure 4.2.1 holds an
example of the PEV simulation.

For public charging there are additional conditions integrated: Since public charging
is always considered less convenient and more expensive than charging at home or work,
a BEV is only recharged when (1) its battery capacity is below 50% (to return home) and
(2) there is a predefined minimum number of charging points available within the area
where the vehicle is parking. The minimum number of charging points will be determined
in Section 5.3.1. Furthermore, (3) for PHEV also the cost for electric driving has to be
lower than for conventional driving since the vehicle could drive with conventional fuel
otherwise.

With this simulation, it is possible to determine the VKT with positive SOC divided
by the distance of all VKT for each profile, i. e. the electric driving share

si,s(t) =
deli,s(t)

di
(4.2)
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Here, deli,s(t) is the VKT in the driving profile that is driven in electric mode by vehicle
i with propulsion technology s and di,s is the total VKT in the profile. Note, that not
the number of trips with positive SOC, but the distances are considered for the electric
driving share. When analyzing a BEV, the electric driving share si(t) must be 100% to
fulfill the whole profile and to be considered in the utility analysis. For a PHEV, the
electric driving share is an important measure to determine its variable cost, since cost
for electric and conventional driving is significantly different. For both PEVs, regular
driving favors a high electric driving share si,s(t) while a significant amount of (electric)
kilometers has to be performed because of the PEV’s economics (see also Chapter 3).

4.2.2 Determination of utility

Based on this first model step, the most beneficial vehicle type from the four propulsion
technologies s (Gasoline, Diesel, PHEV and BEV) for every user i is determined by:

ua
i,s(t) = −TCOa,veh

i,s (t)− TCOa,CI
i,s (t) +WTPMa

i,s(t) (4.3)

That is, the utility function consists of the TCO of the vehicle TCOa,veh
i,s (t), the TCO

of the individual charging infrastructure TCOa,CI
i,s (t), and the willingness to pay more

(WTPM) WTPMa
i,s(t); the latter being added to the first two terms that are subtracted

and all terms are discounted to an annual value. In this function monetary and non-
monetary factors are combined in a utility function measured in EUR/yr. The inclusion
of the vehicle’s TCO assumes that users weigh the purchasing costs as important as the
operating costs, which is a common approach for PEV market diffusion models (see [Plötz
et al., 2014a, sec.4]). Utility is calculated for each vehicle type. Note that, some terms can
also be zero, e.g. the charging infrastructure cost or the WTPM if conventional vehicles
are considered.

The vehicle’s annual TCO are calculated as

TCOa,veh
i,s (t) = aveh,capexi,s (t) + aveh,opexi,s (t)− depveh,capexi,s (t)− depveh,opexi,s (t)

︸ ︷︷ ︸

(1)

+ gvehi,s (t)
︸ ︷︷ ︸

(2)

(4.4)

They consist of (annual) capital expenditures aveh,capexi,s (t) and operating expenditures

aveh,opexi,s (t) that may be reduced for commercial vehicles by depreciation allowances for

capital depveh,capexi,s (t) and operating expenditures depveh,opexi,s (t). For company cars the tax
that has to be paid by the driver for using a company car (a so-called fringe benefit) is
added gvehi,s (t). These additional costs are added to consider the company’s (1) as well as
the user’s vehicle buying decision (2) which is in line with other approaches [Pfahl, 2013].

The discounted cash-flow method with resale values47 is used to calculate the invest-
ment annuity for user i and propulsion technology s as

aveh,capexi,s (t) =
(

LPr,s(t) · (1 + zu(t))
T veh
u (t) − SPi,s(t)

)

· zu(t)

(1 + zu(t))T
veh
u (t) − 1

(4.5)

Here, the list price LPr,s(t) (for vehicle and battery)48 is multiplied by the annuity factor
consisting of the interest rate zu(t) and the investment horizon T veh

u (t). SPi,s(t) denotes

47For an introduction to accounting, see [Wöhe and Döring, 2002].
48LPPEV

r,s (t) = pcarr,s (t) + κr,s(t) · pbatts (t)).
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the sale price of vehicle i for resale after T veh
u (t) years and depends on the vehicle’s annual

VKT, its age and its list price. The resale value is calculated for each vehicle i with the
individual annual VKTi. To determine SPi,s(t), results of [Dexheimer, 2003, Linz et al.,
2003] are used with SPi,s(t) = exp

[
α1 + 12 · β1T

veh
u (t) + β2VKTi/12

]
· LPr,s(t)

β3 where
the parameters α1 = 0.97948, β1 = −1.437 · 10−2, β2 = −1.17 · 10−4 and β3 = 0.91569
have been obtained by regression (see [Dexheimer, 2003, Linz et al., 2003] for details).49

T veh
u (t) depends on the user group u to reflect the different average holding times for

private and commercial users.
The operating expenditure of vehicle i for one of the propulsion technologies (s) is

calculated as

aveh,opexi,s (t) = VKTi ·
(

Ce
i (t) + (1− si(t)) · ccr,s(t) · kc

r,s(t) + kOM
r,s (t)

)

+ ktax
r,s (t) (4.6)

The individual annual VKTi are multiplied by the costs for driving in electric mode Ce
i (t)

plus the costs for driving in conventional mode and the costs for operations and main-
tenance kOM

r,s (t). The costs for conventional driving consists of the share of conventional
driving (1 − si), the conventional consumption ccr,s(t) and the costs for conventional fuel
kc
r,s(t). The annual vehicle taxes ktax

r,s (t) are independent of VKTi.
The cost for electric driving is the sum of cost for energy charged at different charging

locations:

Ce
i (t) =

∑

l∈L

pi,l(t) ·Wi,l(t) =
∑

l∈L

pi,l(t) ·
τmax
i −1
∑

τ=τ0
i

Wi,l(τ, τ + 1, t) (4.7)

Since four types of accessibility L = {domestic, commercial, work, public} are consid-
ered, the costs for electric driving consist of the energy charged Wi,l(t) at home multiplied
by the domestic electricity price pi,l(t), the energy charged at work times the price for
charging at work and the public charging price multiplied by the energy charged publicly
for private and company vehicles. For fleet vehicles only the commercially and publicly
charged energy is multiplied with their respective prices.

For commercially licensed vehicles, there are depreciation allowances which reduce
the vehicle costs [BMF, 2001]. The value of capital assets in companies may be reduced
by

depveh,capexi,s (t) = LPr,s(t) ·
(1 + zu(t))

T dlim · zu(t)
(1 + zu(t))T

dlim − 1
·DR (4.8)

Thus, the vehicle’s list price LPr,s(t) can be depreciated linearly over a certain time
horizon T dlim, which is currently six years for vehicles in Germany [BMF, 2001]. Since
this reduces the taxes for profits a company has to pay, the depreciation rate DR is similar
to a company tax rate. Also for the operating expenditures, a company can reduce its
profits and reinvest the resulting lower tax payments: depveh,opexi,s (t) = aveh,opexi,s (t) ·DR.

49Please note that the regression results for the PEV resale values imply a higher absolute resale price
SP but lower relative or percentage resale value RV ≡ SP/LP. If the vehicle’s age and annual VKT are
assumed as fixed at average values, the sales price is given as SP = c ·LPβ3 . Thus the relative resale value

will be given as RV ≡ SP/LP = c · LPβ3−1 and accordingly RVPEV/RVICE =
(
LPICE/LPPEV

)1−β3

< 1

since LPICE < LPPEV and 0 < β3 < 1.
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The last term in equation 4.4 is the tax for company cars that users have to pay [BMF,
2015]:

gvehi,s (t) = (LPG
r,s(t)− TEPEV

r,s (t)) · (0.01 + 0.0003 · ACDi(t)) · ITRi(t) · 12 (4.9)

Starting point for this tax is the gross list price of the vehicle LPG
r,s(t) which is not

VAT-exempted like all other costs for commercial vehicles. This price is multiplied by 1%
(so-called 1%-rule) plus 0.03% times the average commuting distance ACDi(t) to receive
the monthly taxable value for the vehicle. By multiplying the income tax rate of the
owner of vehicle i, ITRi(t), and multiplying it by twelve, the annual costs for the user
of a company car can be calculated. Company PEVs profit from a correction factor of
the gross list price TEPEV

r,s (t) of up to 10,000 EUR, since company car drivers do not
profit from the lower operating cost when they own a fuel card [BMF, 2015]. The term
for company cars is added to the annual vehicle TCO in equation 4.4.

The second term in equation 4.3 is the cost for individual charging points and is zero
for conventional vehicles since the cost for refueling stations of conventional vehicles is
included in the fuel prices. This cost is integrated as plug-in electric vehicles will be
charged at individual domestic, commercial or work charging spots - there is a one to
one allocation of charging spot per vehicle. The cost for the individual charging points is
calculated as their annual capital expenditures and their operating cost aCI,opex

i,s (t).

TCOa,CI
i,s (t) = ICI(t) · (1 + zu(t))

TCI
u (t) · zu(t)

(1 + zu(t))T
CI
u (t) − 1

+ aCI,opex
i,s (t) (4.10)

By adding the infrastructure cost to the TCO calculation, the fact that users must have
at least one charging point to charge their vehicle regularly is addressed. Private users
and company car owners that own a garage are assumed to install a simple charging
spot without large financial effort while users without garages need a more expensive
solution [Gnann et al., 2013]. The garage availability is part of the socio-demographic
information in the driving profiles.

The third term of the utility function (4.3) is the WTPM for a PEV discounted to
one year which is simply calculated as

WTPMa
i,s = wtpmi,s(t) · LPr,s(t) ·

(1 + zu(t))
T veh
u (t) · zu(t)

(1 + zu(t))T
veh
u (t) − 1

(4.11)

The WTPM is based on a percentage wtpmi,s(t) that users are willing to pay more for
a plug-in electric vehicle compared to a conventional one and will further be described
in Section 4.3.4. This percentage is multiplied by the investment of a comparable con-
ventional vehicle (LPr,s(t), powered with gasoline for small and medium, diesel for large
vehicles and LCV). There is no WTPM for conventional cars.

In summary, the best vehicle option for each vehicle buyer agent is determined based
on the individual utility which is determined by vehicle cost as well as infrastructure
cost for individual charging points and WTPM for PEVs. Costs for commercial vehicles
contain some specialties concerning taxes and they are VAT exempted in all calculations.
Results for individual analyses of driving profiles are shown for the commercial passenger
car sector in Section 5.1. The individual best vehicle choices are aggregated in the stock
model. Figure 4.7 shows an example of different vehicle utilities.
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4.2.3 Stock model and joint simulation

Stock model

The PEV simulation and utility calculation above are performed for every driving profile.
Three different user groups (private, commercial fleet, company car) and four vehicle sizes
(small, medium, large and LCV) are distinguished, where LCV are almost exclusively
purchased by commercial fleets and accordingly neglected for the other user groups. Thus
m = 3 · 3 + 1 = 10 vehicle groups are considered in the stock model. To derive the share
of driving profiles of individuals fm,s(t) that are assumed to buy a PEV according to their

individual utility fm,s =
∑

i{fi,m,s|s∈{PHEV,BEV }}
∑

i fi,m,s
is multiplied by the number of vehicles in

the corresponding user group and vehicle size nm(t). The annual PEV registrations are
calculated as:

Nm,s(t) = fm,s(t) · nm(t). (4.12)

However, the vehicles that were purchased in a given year do not remain in stock for-
ever. Instead vehicles will be scrapped with an age-dependent probability P scrap(a) and
commercial vehicles diffuse into the private vehicle stock after the first registration period
(T veh

u (t); second-hand car market). The survival probability L(a) = 1 −
∫ a

0
P scrap(a′)da′

for a vehicle to survive until age a. With this distribution at hand, the stock Sm,s(t) of
PEVs (s ∈ {PHEV,BEV }) of vehicle group m in year t can be written as the sum of
PEVs purchased in earlier years Nm,s(t

′) that survived until year t:

Sm,s(t) =

t∑

t′=t0

Nm,s(t
′)L(t− t′). (4.13)

The survival probability has been obtained from the official German vehicle statistics
(see [Plötz et al., 2012] for details). A lifetime distribution for the vehicles to remain in
stock is needed for the stock model introduced above. Data for the complete German
vehicle fleet is used and the age dependent scrapping probability over ten years. These
probabilities are calculated from the age structure of the German vehicle stock since 2001
by computing the change between adjacent ages in subsequent years for all years avail-
able. The Weibull distribution for the survivor function is given by L(t) = e−(t/θ)β , where
the parameters θ = 14.7 for scale and β = 3.5 for shape have been obtained from a
least square fit (see [Bain and Englehardt, 1991,Lawless, 1982] for the justification of the
Weibull distribution as a survivor function). These parameters imply an average age for
scrapping of 13.8 years and an average age of the vehicles in stock of 7.3 years, both in
good agreement with other studies of the German passenger car stock [Plötz et al., 2013].
This distribution will be used for the stock model of the German vehicle fleet.

Since PEVs are in an early market phase, the choice of models and brands is and will
remain limited for the next years. This fact slows down the market diffusion of PEVs
since brand and design are vehicle purchase criteria (cf. Figure 4.2). The limited choice of
brands and models is included in the PEV market diffusion model in two steps: In a first
step, the present and near-future choice of PEVs is collected (from press announcements),
with announcements for up to two years in the future being available. Based on this data
and a number of relevant brands (the 20 most sold brands in the German vehicle market)
within each vehicle segment for normalization, a logistic regression of the upcoming brands
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Figure 4.4: Algorithm for the inclusion of the limited availability.

is performed. The resulting logistic availability function is then extrapolated into the
future (see Section 4.3.5 for details). The availability is integrated into the purchase
decision as follows: If a PEV is utility optimal for a vehicle profile of brand bi and this
brand has announced a vehicle for the year under consideration (or earlier) the PEV will
be bought by that user. If the user’s brand bi does not offer a PEV, then some of the users
choose a PEV of a different brand (limm,s(t) according to the logistic availability function)
and the rest chooses the second best TCO option (see Figure 4.4 for graphical explanation
of the algorithm). With the inclusion of the limited availability, one driving profile may
be split into shares for each propulsion technology fi,m,s(t) with fi,m,s(t) ∈ [0, 1] and
∑

s fi,m,s(t) = 1, whereas before fi,m,s(t) ∈ {0, 1}. The inclusion of a limited availability
(incl. brand loyalty) is only possible if the vehicle brand is available, which is only the
case for MOP. Since REM2030 does not contain information about the vehicle’s brand,
the test for vehicle brand is skipped for REM2030.

To this point, the first three model steps form a market diffusion model for PEVs in
which charging is only possible at domestic, commercial and work charging spots or at
public charging points without public charging costs. Results based on these assumptions
will be presented in Section 5.2. The inclusion of a public charging infrastructure diffusion
is described in the following section.

Joint simulation

For an economic operation of public charging infrastructure, a sufficient occupancy rate
by PEVs in the vehicle stock is decisive. Hence, for the simulation of the vehicle stock, not
only the number but also the driving profiles of PEVs within stock are needed. Further,
the occupancy of public charging spots is analyzed in a joint simulation of PEVs that
interact when arriving at a charging point. Thus, the arrival of two or more vehicles at a
charging point is to be simulated with an analysis of spatial driving behavior as well. This
analysis is possible with the geographical information within the driving profiles MOPS
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Figure 4.5: Example for PEV stock simulation when multiple users arrive at a charging point.
Three users (A...C) arrive at two charging points (X1, X2) in zones 2 and 5.

and REM2030S.
The charging behavior of the PEV stock determines the total electricity consumed

at public charging points. Here, the same charging rules as in the individual simulation
(equation 4.1) apply except for the charging point density at public charging points, which
is replaced by a real availability of charging points: a user may charge his PEV only if
a charging point is not in use at his arrival. While in the individual simulation, every
user performs a simple forecast of his driving behavior and estimates his charging shares
based on his usual routes and his impression of charging stations available to him, in
the simulation of the PEV stock the usage of individual charging points is simulated.
Figure 4.5 shows an example where user A can recharge his battery at charging station
X1, but users B and C both arrive at charging point X2 and only the user arriving first
may recharge. Whenever a BEV arrives at a charging point which is not in use and the
BEV’s SOC is below 50%, the vehicle is recharged. The same holds for PHEVs, where
in addition electric driving with the current public charging price has to be cheaper than
conventional driving. The outputs of this model step are the amount of vehicles and their
energy consumption distinguished by accessibility types for each year. The total amount
of public charging Wpc(t) =

∑

i Wi,l(t) and l =public is the main input for the consecutive
model step.

4.2.4 Charging point operator

Based on the energy consumption at all public charging spotsWpc(t), the number of public
charging points and the price for public charging in the next period is determined in the
fourth model step. Equation 4.14 shows the relationship between prices, charging points
and public energy consumed:

ppc(t) := pel(t) + pcp(t) = pel(t) +
ncp(t) · acp(t)
Wpc(t− 1)

. (4.14)

The public charging price ppc(t) consists of a price for electricity pel(t) and a price for
charging points pcp(t). The number of charging points ncp(t) multiplied by their annual
cost acp(t)

50 and divided by the total energy consumed at public charging points Wcp(t).
While the energy consumed is derived within the PEV stock simulation, the price for
electricity and the annual cost for charging infrastructure are exogenously defined.

50As in equation 4.10 the annual cost for public charging points is defined by its discounted investment

and operating expenditure acp = ICP (t) ·
(

(1 + zu(t))
TCI

u
(t) · zu(t)

)

/
(

(1 + zu(t))
TCI

u
(t) − 1

)

+ aCP,opex
i,s (t).
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Since the consumption of energy charged at public charging points changes with an
increasing number of PEVs, the charging point operator will build new charging points
based on the current public charging price ppc(t) and electricity price pel(t), but based on
the new cost for public charging points acp(t + 1):

ncp(t+ 1) :=
ppc(t)− pel(t)

acp(t+ 1)
·Wpc(t). (4.15)

Note that increasing prices for electricity pel or charging points pcp may also lead to a
decreasing number of public charging points, i.e. a shut down of several public charging
points.

With the number of charging points, the electricity price and the charging point costs
in the next period as well as the energy consumed at public charging stations, the public
charging price for the next period ppc(t) is calculated with formula 4.14 and the simulation
can start at the first step again.51

The mechanism to determine the zones in which charging points should be built, is
shown in Figure 4.6. First, the number of charging points in the next and the current
period determine the construction of charging points ∆ncp = ncp(t + 1) − ncp(t). If this
delta is negative (there are fewer charging points in the following period), the charging
stations with the lowest usage are put out of service. That is, the zone z∗ with the minimal
use per charging point (CP) is determined with

minzuse
′
z(t + 1) = usez(t)/nCP,z(t + 1) (4.16)

and one charging point is taken out of service in zone z∗.52 This procedure is repeated
until ∆ncp iterations are completed and ∆ncp charging points are taken out of service (see
lower bound of Figure 4.6).

The construction of charging points in case of a positive delta is performed in two
phases: At first, charging infrastructure is built in areas with a high vehicle occupancy un-
til the minimum number of public charging points per zone is reached. Here, the zone z∗∗

for a construction is determined bymaxzocc
′
z = occz ·(1−(nCP,z(t+1)/CPNz). Thereafter,

the charging infrastructure is built in places z∗∗∗ with a high PEV occupancy to cover a
higher need for public charging points (maxzocc

′
z,PEV (t + 1) = occz,PEV (t)/nCP,z(t + 1)).

This two-step approach assures a minimum coverage at the beginning moving to a user-
oriented approach after a minimal coverage is given [Funke et al., 2015].

To sum up, in the last part of the model the charging point operator decides on the
public charging price as well as the (de-)construction of public charging points. Based on
this simulation potential PEV users may buy a PEV based on the increased utility through
new charging points. Thus, the new vehicle registrations are dependent on the charging
point stock which completes the joint simulation of PEV and charging infrastructure
simulation. Results for all four model steps will be shown in Section 5.3.

51Note again, that in formulas 4.14 and 4.15, the price for electricity pel(t) and the cost for public
charging points acp(t) are externally defined, while the amount of public charging Wpc(t) is a simulation
result. Both the price for electricity and the annuity of public charging points may include a contribution
margin.

52The number of charging points per zone are initialized by ∀z : nCP,z(t+ 1) := nCP,z(t).
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Figure 4.6: Algorithm for the construction and deconstruction of public charging points.

4.3 Techno-economical parameters

The calculations require a variety of parameters for modeling the interaction of PEVs and
their charging infrastructure. The most important framework parameters are varied and
combined in scenarios in the following Section 4.3.1. Thereafter, technical and economical
parameters for vehicles and the vehicle market (4.3.3), the assumptions for the WTPM
(4.3.4) and the limited availability (4.3.5) as well as several adaptations for the data sets
with geographical information, MOPS and REM2030S (4.3.6) are presented. All costs are
given in EUR2014 and real values for the future.

4.3.1 Scenario definition

In this subsection scenarios for the future development of several important framework
conditions as well as for charging infrastructure are defined for Germany until 2030.
Scenarios are used for the most important parameters since their future development is
uncertain and their influence is large. Scenarios allow to evaluate outcomes based on
these developments, yet they are no prognoses and no probability for their realization is
given. However, the determination of consistent scenarios permits to show the range of
potential results [Dieckhoff et al., 2014].

The market diffusion of plug-in electric vehicles is influenced by both the framework
conditions in general and the parameters depending on the vehicles in particular. The
framework conditions include the number of new car purchases divided into segments and
user groups forming the general potential for electric cars. Other parameters like the oil
price and the electricity price are almost independent from an early PEV diffusion which
has not reached a mass market level. Vehicle dependent parameters such as purchase
price or fuel consumption form the basis for the utility calculation for each segment and
user group.

For illustrative purposes, Figure 4.7 shows a potential utility composition of parame-
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Figure 4.7: Composition of vehicle costs for different drive trains in 2020. Assumed are
15,000 kilometers traveled per year, 60% electric driving share for PHEV and garage owner-
ship. Resale value exempted from vehicle and battery cost. All cost parameters for private user
in medium scenario with VAT in EUR2014.

ters for all four drive trains in 2020. The vehicle is assumed to travel 15,000 kilometers per
year with an electric driving share of 60% for a PHEV and the vehicle owner is assumed
to hold a garage. Further a gasoline price of 1.65 EUR/l, a diesel price of 1.58 EUR/l, an
electricity price of 0.29 EUR/kWh and a battery price of 330 EUR/kWh are assumed.53

A WTPM of 15% for PEVs is shown as price increase for conventional vehicles instead of
decrease for plug-in electric vehicles for an easier reading.

The example in Figure 4.7 shows that some factors have a greater influence on vehicle
utility than others. While vehicle taxes play a minor role, the cost for operations and
maintenance for all drive trains are very close to each other. The largest differences
between vehicle types can be found in capital costs (for vehicle and battery), costs for
energy consumption and the WTPM which is in line with other studies [Hacker et al.,
2011b,Mock, 2010,ESMT, 2011]. For this reason, battery and energy prices are varied in
different scenarios. The influence of the WTPM is analyzed separately in Section 5.2.2.

For battery prices, as well as electricity and fuel prices, three scenarios are defined,
which are summarized in Table 4.1. The first scenario makes rather optimistic assump-
tions with regard to the market success of plug-in electric vehicles (pro-EV scenario), the
second more pessimistic assumptions (contra-EV scenario), and the assumptions made
in the third scenario for Germany up to 2030 lie in-between these two (medium sce-
nario). The battery prices for all three scenarios decrease exponentially from values up
to 550 EUR/kWh in 2015 (pro-EV, medium, contra-EV) to below one third in 2030 (all
values without VAT) [Pfahl, 2013,Plötz et al., 2013]. The prices for batteries used for the
simulations were discussed with several experts of the German automotive industry [Plötz
et al., 2013]. Battery costs are not distinguished between PEV types, although several

53Energy prices are taken from the later described medium scenario and resale values for vehicles and
batteries are exempted from vehicle cost. All other values are described in the following Section 4.3.
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studies suggest this due to different battery use patterns (see e.g. [Nelson et al., 2009,San-
tini et al., 2010]). Instead, a differentiation via depths of discharge was used. Long-term
price estimates are at the upper end of estimates (see e.g. [Rousseau et al., 2012,Nykvist
and Nilsson, 2015]), yet they present prices to the consumer, not at cell or pack-level.
Prices for diesel and gasoline are equal for all scenarios in 2015 based on [IEA, 2013].
The development of fuel prices until 2030 is based on the New Policy Scenario in [IEA,
2013] for the medium scenario with an additional increase up to 2.00 EUR/l (including
VAT) for gasoline in the pro-EV scenario and a decrease to 1.50 EUR/l in the contra-EV
scenario in 2030. This corresponds to an oil price of 183 $/bbl in 2030 in the pro-EV
scenario, 149 $/bbl in the medium scenario and 115 $/bbl in the contra-EV scenario for
a constant mineral oil tax. These bandwidths are chosen since the future development of
fuel prices is unclear. A relatively constant oil price until 2030 in the contra-EV scenario,
an increasing price based on international experts in the medium scenario and a further
increasing oil price based on the developments in the last years in the pro-EV scenario
demonstrate the bandwidth of options.

Table 4.1: Scenario-specific parameters used in ALADIN. All prices with VAT in EUR2014.

Parameter year Pro-EV medium Contra-EV

Diesel pricea 2015 1.45
[EUR/kWh] 2030 1.90 1.65 1.42

Gasoline pricea 2015 1.52
[EUR/kWh] 2030 2.00 1.75 1.50

Oil pricea 2015 118
[EUR/bbl] 2030 183 149 115

Electricity price privateb 2015 0.29
[EUR/kWh] 2030 0.27 0.32 0.35

Electricity price commercialb 2015 0.21
[EUR/kWh] 2030 0.20 0.22 0.25

Battery pricec 2015 450 500 550
[EUR/kWh] 2030 235 266 295

a: [IEA, 2013] and own assumptions; b: own assumptions based on
[McKinsey, 2012,BCG, 2013]; c: [Pfahl, 2013]

In Germany, several studies predict a further increase of electricity prices in the fu-
ture [Schlesinger et al., 2011,McKinsey, 2012, BCG, 2013]. For this thesis the following
is assumed: The average wholesale price for electricity rises only slightly until 2020 and
remains stable until 2030 due to the increase of renewable energies (in line with [BDEW,
2014,Capros et al., 2013]). Further, the investments for grid expansion slightly raise the
electricity price (0.005 EUR/kWh in 2030). The revision of the renewable energy law of
2014 performs well and leads to price decreases of 0.04 EUR/kWh in 2030 in the pro-EV
scenario, to 0.02 EUR/kWh in the medium scenario and to no change in the contra-EV
scenario. Vehicle-to-grid operation allows to reduce prices by about 0.005 EUR/kWh be-
tween 2020 and 2030 in the pro-EV scenario [Dallinger and Wietschel, 2012]. This results
in electricity prices as shown in Table 4.1.

These scenarios combine favorable and unfavorable conditions for plug-in electric vehi-
cles which are consistent with other studies. These parameters are chosen to be integrated
into scenarios as they contribute strongly to the individual vehicle utility (see Figure 4.7).
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4.3.2 Cost for charging infrastructure

As mentioned in Chapter 3, three user groups from two data sets are distinguished. In
the PEV simulation, it is assumed that private and company cars can charge with 3.7 kW
whenever they are at home. The trip purpose ”home trip” is used to decide about the
parking spot of the vehicle [MOP, 2010]. For fleet vehicles, the trip purposes are unknown
but the GPS-location allow to determine the distance from the company location [Fraun-
hofer ISI, 2014]. Thus fleet vehicles charge with 3.7 kW during the day when they are
not further than 500 m away from their main company location.54 In addition, they can
charge overnight, assuming that the vehicle can be plugged in, no matter if it is parked
at a private household or at the company site. In the socio-demographic information
of [MOP, 2010], the common overnight parking spot of private and company cars is avail-
able, so vehicles with and without garage can be differentiated. Users of vehicles that are
parked in a garage are assumed to buy a wallbox for charging, while non-garage-owners
have to pay for a simple on-street charging facility (similar to [Plötz et al., 2013]). For the
latter, the cheapest charging facility available is chosen – a charging point integrated into
a lantern – and the investment and running cost are split up between two users, assum-
ing they could share one charging point [Plötz et al., 2013]. With these assumptions for
private car holders without a garage an upper limit for their PEV ownership is obtained.
Investment and running cost for both solutions as well as investment horizons are given
in Table 4.2.

Table 4.2: Cost for charging infrastructure options. All prices without VAT in EUR2014.

Parameter unit 2015 2020 2025 2030

invest wallboxa EUR 404 370 343 323
operating cost wallboxa EUR/yr 0 0 0 0
invest domestic on-street charging pointb EUR 657 537 444 372
operating cost domestic on-street charging pointb EUR/yr 287 246 211 182
invest public charging point (3.7 kW)c EUR 1,314 1,074 888 744
operating cost public charging point (3.7 kW)c EUR/yr 574 292 422 364
invest public charging point (22 kW)c EUR 5,281 4,694 4,107 3,521
operating cost public charging point (22 kW)c EUR/yr 795 712 628 544

a: 3.7 kW, domestic users with garage, commercial and work charging facilities;b: 3.7 kW, domestic

users without garage; c: in public places. All cost assumptions based on [Kley, 2011,Plötz et al., 2013].

The one-to-one allocation of charging points is also assumed for private and company
car users at work: in scenarios where charging at work is allowed, every vehicle owner
pays for his individual work charging point. As the installation is assumed to be sim-
ple, the cost for wallboxes in Table 4.2 is considered. For public charging points, two
slow-charging solutions are considered by the charging point operator: a 3.7 kW lantern
charging option with one charging point and a 22 kW charging station with two charging
points. While the first solution is a low-cost option, the second is an average charging
point that is currently most common in Germany [Lemnet, 2014]. For all charging options
an investment horizon of 15 years is assumed [Kley, 2011].

54A distinction of different distances with respect to company size shows no influences on scenario
results.
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4.3.3 Vehicle market and vehicle cost parameters

New vehicle registrations in Germany have been almost constant with 3.1 million vehicles
over the past seven years [KBA, 2012a,KBA, 2012b]. Segment shares within the new regis-
trations that did not change significantly [KBA, 2012a,KBA, 2012b]. Approximately 30%
of all new purchased cars in Germany are company cars [NPE, 2011b,NPE, 2011a,Pfahl,
2013]. Combined with [NPE, 2012], the number of new purchased cars per car size and
user group can be obtained (see Table 4.3). For the simulations, the number and segmen-
tation of vehicle sales are assumed constant until 2030. Here and in the following, the
simplified segmentation (see Chapter 3), compared to statistics of the German Federal
Motor Authority (KBA) [KBA, 2012a,KBA, 2012b], predefined by the driving profiles is
used. Table 4.3 also shows general cost parameters like the interest rate of 5%, which is
considered for private and commercial users for vehicles and charging infrastructure. The
investment horizons are based on [Pfahl, 2013] and equal to the first vehicle registration
period.

Table 4.3: Vehicle registrations and general cost parameters.

Vehicle registrations unit value 2015 – 2030

vehicle registrations private smalla - 475,309
vehicle registrations private mediuma - 694,275
vehicle registrations private largea - 143,309
vehicle registrations fleet smalla - 233,240
vehicle registrations fleet mediuma - 454,998
vehicle registrations fleet largea - 46,339
vehicle registrations fleet LCVb - 204,000
vehicle registrations company smalla - 106,996
vehicle registrations company mediuma - 497,681
vehicle registrations company largea - 244,563

General cost parameters unit value 2015 – 2030

interest rate privatec - 0.05
interest rate commercialc - 0.05
investment horizon private vehicles (T1)

c years 6.2
investment horizon commercial vehicles (T1)

c years 3.8

a: [KBA, 2012a], b: [KBA, 2012b], c: [Pfahl, 2013]

The cost differences between electric and conventional vehicles are significantly driven
by the differences in purchase prices of the varying technologies. The purchase price of
plug-in electric vehicles consists of two parts: a relatively constant price for the chassis
and drive train and a price for the battery system. All other electric components, like
the electric motor or power electronics are highly developed vehicle parts which are not
assumed to profit from further economies of scale. The battery system which accounts for
the majority of investments in a PEV is assumed to further reduce in price [Nykvist and
Nilsson, 2015]. The net purchase prices (without battery) are taken from [NPE, 2011a]
and extrapolated until 2030. For conventional vehicles, prices are increased until 2030
based on [Mock et al., 2013] to reflect the additional cost for the required efficiency gains
to achieve EU fleet targets for CO2 emissions [EC, 2009]. The combinations of drive
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trains and segments missing in [NPE, 2011b,NPE, 2011a] are calculated with the existing
ratios of gasoline/diesel technology to alternative technology [NPE, 2011a]. This leads,
for instance, to slightly higher chassis prices (medium size) of BEVs with 18,000 EUR
compared to 17,500 EUR of gasoline vehicles in 2020 (all values in Tables B.1-B.4).

The total purchase price of PEVs is determined by the battery size and price of the
battery. In combination with the maximum depth of discharge, limits the electric range
of the PEV. Battery sizes result from of a combination of several studies (cf. [Hacker
et al., 2011b,Gnann et al., 2012a,Linssen et al., 2012,Pfahl, 2013]), yet values are slightly
different compared to [Plötz et al., 2014a,Gnann et al., 2015b,Plötz et al., 2013]: (1) The
maximum depths of discharge (=percentage of usable battery capacity) is assumed to be
90% for BEVs and 80% for PHEVs. (2) Battery sizes for medium sized BEVs increase
from 24 kWh in 2015 to 40 kWh in 2020, because of economies of scale paired with
the desire for more electric range, and remain stable thereafter. (3) Batteries for large
BEVs start at 55 kWh in 2015 and increase up to 80 kWh in 2020 and afterwards (see
Tables B.1-B.4).

All values on fuel consumption are based on [Helms et al., 2011]. The main assump-
tion for future development of fuel consumptions is an efficiency gain (diesel, gasoline)
of at least 1.5% per year to meet the EU emission targets [EC, 2009].55 Compared to
past efficiency developments [Mock et al., 2013], these assumptions seem moderate. Con-
sumption values were adjusted in case of higher weight due to larger batteries. Values
are average annual fuel consumptions and do not reflect extreme values in winter or sum-
mer.56 Note that the values represent real consumptions and not driving cycle values. As
the model calculates the TCO depending on individual driving behavior with different
shares of electric driving for PHEVs, the illustrated conventional values in Tables B.1-B.4
represent a purely conventional operation after having fully depleted the battery, i. e.
PHEVs are simulated in charge-depleting mode.

Maintenance costs also differ among technologies and are currently unknown for
PEVs. The simulation of failure probabilities for each drive train components, performed
in [Propfe et al., 2012b], leads to specific maintenance costs for large vehicles. Small de-
viations in battery size of BEV and PHEV between the model and [Propfe et al., 2012b]
lead to minor adaptations. These maintenance costs also incorporate battery degradation
due to cycling [Linden and Reddy, 2002]. Values for other size classes (gasoline and diesel)
rely on [Frühauf, 2012,ADAC, 2013] and are transferred to the other technologies based
on [Propfe et al., 2012b].

Vehicle taxes are calculated based on the current German tax legislation with a tax
exemption for BEV owners [BMF, 2014]. PEVs are tax exempted for ten years if they are
registered prior to the 1st of January 2016 and for five if they are registered thereafter
although this is not legally fixed at the moment. A further exemption from tax after
2021 is considered. All technical and economical parameters for vehicles are shown in
Tables B.1-B.4. For company car taxes only the gross list price (LPG

r,s(t)) is changing over
time according to Tables B.1-B.4 and the tax exemption (TEPEV

r,s (t)) according to [BMF,
2015]. The modeling considers a reduction of the gross list price of 500 EUR multiplied by
its battery capacity, but not more than 10,000 EUR in 2013. Thus, the gross list price for

55This implies a slight hybridization of conventional drive trains.
56For an analysis on deviations of consumption due to auxiliaries for heating and cooling see [Gnann,

2010], due to variations in driving in winter or summer see [Michaelis et al., 2013a], and due to variations
due to driving aggression see [Funke and Plötz, 2014,Gnann et al., 2015a].
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a BEV with 18 kWh battery capacity was reduced by 18 · 500 EUR = 9, 000 EUR in 2013
for the calculation. The deduction per kWh and the maximum deduction are reduced
by 50 EUR/kWh and 1000 EUR per year, so that a PEV bought in 2020 with 18 kWh
can reduce its gross list price by 18 · 150EUR = 2, 700 EUR which is still lower than the
maximum of 3,000 EUR. For the other term in formula 4.2.2, fixed values are used: The
average commuting distance (ACDf (t)) is assumed to be 15 km and the income tax rate
(ITRf(t)) is equal to the maximum income tax rate in Germany (42%) since company
cars are most often available to persons with high income.

4.3.4 Willingness to pay more for plug-in electric vehicles

An important aspect of a PEV’s utility are its positive non-monetary characteristics.
PEVs are perceived as new and innovative, as silent and environmentally friendly [Dütschke
et al., 2011b,Peters et al., 2011b]. These positive aspects of PEVs are modeled with a will-
ingness to pay more of some users, the magnitude of which depends on the users position
in the adoption process [Rogers, 1962,Laroche et al., 2001]. Of course, a stated willing-
ness to pay is not equal to the actual willingness to pay in a buying decision [Huang
et al., 1997, Bradley and Daly, 1991]. However, the stated WTPM gives an indication
for the appreciation of a new technology and an approximation of the actual WTPM.
Using a WTPM is a common approach in market diffusion models for plug-in electric
vehicles [Mock, 2010,Eppstein et al., 2011].

To assess a private user’s position in the adoption process of PEVs and their individual
WTPM, two empirical data sets are combined (see [Peters and Dütschke, 2014,Wietschel
et al., 2012,Peters et al., 2011a], cf. [GFK, 2012,Heupel et al., 2010,Knie, 1999]). The pur-
pose of the original survey was to identify and characterize the different adopter groups in
the adoption of PEVs according to Rogers’ ”Diffusion of Innovations” and they are ideal
to assess the adopter groups’ WTPM. In these studies the WTPM has been determined
independently for four adopter groups with a different attraction to plug-in electric ve-
hicles: (1) users of PEVs, identified as likely innovators, (2) attracted individuals with
purchase intention in the near future, identified as likely early adopters, (3) attracted
individuals without purchase intention, identified as likely early and late majority, (4) un-
interested individuals, identified as likely laggards (cf. Table 4.4). The four adopter
groups were formed by the participants’ answers concerning their current vehicle usage,
the interest in PEVs, and their intention to buy a PEV in the near future (see [Peters
et al., 2011b,Dütschke et al., 2011a, Plötz et al., 2014b] for details). For an individual
analysis of vehicles and users, these survey results have to be combined with the driving
profiles. Each driving profile is thereby assigned to one of the four adopter groups with
their WTPM.

Members of the four adopter groups differ significantly in socio-economic variables
like household income, employment status, household size, city size and the willingness to
accept a higher price for a PEV [Peters and Dütschke, 2014,Wietschel et al., 2012,Peters
et al., 2011b,Dütschke et al., 2011a]). As the data set also contains information about
age, sex and education of the user groups, it is possible to assign each driving profile
to one of the four groups according to their resemblance with the other group members
(see [Plötz et al., 2014a, sec. 3.2] for a validation of this assignment). The participants
stated an individual WTPM for PEVs. Here, the adopter group average WTPM is used
to include the positive aspects of PEVs mentioned earlier. The percentage WTPM is
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Table 4.4: Definition of private adopter groups according to [Peters et al., 2011b] and their
willingness to pay more. Participants in survey answered the indicated questions and were
considered members of the four indicated adopter groups. A small number of respondents
answered the questions as no, no, yes and have been excluded from further analysis. The
numerical values for the WTPM are median values of the group members’ answers.

Group definition Attributes

group PEV user? PEV interest? purchase share of willingness-
label intention? usersa to-pay-moreb

innovators yes - - 0.5% 30%
early adopters no yes yes 1.5% 15%

majority no yes no 48% 10%
laggards no no no 50% 1%

a: [Wesche, 2013,Dütschke et al., 2013]; b: [Peters and Dütschke, 2014],
[Wietschel et al., 2012,Peters et al., 2011a]

converted to absolute monetary values by using the conventional reference vehicle for the
vehicle size (Gasoline for small and medium sized vehicle, Diesel for large and LCVs).
For the individual user, the positive aspects are finally included in the utility calculation
by subtracting the absolute WTPM from the vehicle list price (eq. (4.3)). The specific
values are summarized in Table 4.4.57

Although the described data set contains about 1,000 respondents, it is not represen-
tative for the group sizes in Germany [Peters and Dütschke, 2014,Wietschel et al., 2012],
users of PEVs and other PEV friendly groups are clearly overrepresented. It is still useful
for the validity of the average WTPM in the groups. To correct the non-representative
group sizes, a second survey representative for private German car buyers is used [Wesche,
2013,Dütschke et al., 2013]. The groups are defined in the same way, i.e. according to
PEV ownership, interest in PEVs and purchase intention. Since the latter survey is rep-
resentative, it is used to determine the relative size of the adopter groups. The resulting
share of each adopter group is summarized in Table 4.4.

To assign each driving profile of MOP to one of the adopter groups with their WTPM,
the following algorithm was used. For each driving profile, first the agreement in socio-
demographic characteristics with each survey respondent was calculated. Matches were
collected from seven variables: sex, age, employment status, education, household size,
household income and city size (all variables were categorical). That is, a driving profile
could achieve up to seven matches with each of the survey respondents from a known
adopter group. The number of matches mijk ≤ 7 of user i with adopter group member
j = 1, . . . , Lk (out of the k = 1, . . . , 4 groups) were collected and normalized Mik =
∑

j mijk/(7Lk). The driving profile i should then be assigned to group k where the overlap
was the largest Mik > Mil ∀l 6= k. However, since the relative group size should be limited

57The data on WTPM used here contains only positive values for WTPM. However, studies on will-
ingness to pay for PEV range show that the limited range of PEVs a major drawback for potential
users [Dimitropoulos et al., 2011]. Apart from methodological problems of many PEV range willingness
to pay studies (the survey participants have not experienced PEVs) that are met in the WTPM data
used here (a noteworthy share of respondents in [Peters and Dütschke, 2014] has used PEVs), the usage
of only positive WTPM is valid for the suggested model since range limitations are explicitly included
via the PEV simulation and the cost for individual charging points. That is, whatever a user’s potential
WTPM is, he is excluded from BEV purchase in the model if his driving exceeds the BEV range.
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(the number of innovators is rather small), only the top 0.5% (cf. Table 4.4), i.e. those
0.5% with the largest overlap with the survey innovators, were considered as innovators.
The other potential innovators were then assigned to their second best matching adopter
group. The same procedure was applied to the following groups in descending order in the
innovation process: innovators, early adopters, majority and laggards (see [Plötz et al.,
2013, p. 182] for computational details). As a result of this algorithm, each driving
profile has a position in the adoption process according to its socio-demographic variables
with an associated WTPM. The validity of this assignment is analyzed in [Plötz et al.,
2014a, sec. 3.2].

To assess the WTPM of commercial vehicle fleets, results from a survey of approxi-
mately 500 German fleet managers is used [Dataforce, 2011]. About half the fleet man-
agers stated a WTPM with an average of 10%. Again, this WTPM needs to be assigned
to individual commercial vehicle driving profiles [Fraunhofer ISI, 2014]. The company size
(measured as number of employees) was used as a proxy for the position in the adoption
process. Since larger companies seem more likely to engage early in innovative technolo-
gies [Dataforce, 2011], commercial vehicles from companies with more than 250 employees
were assigned a WTPM of 10%. About 50% of the driving profiles are from such a com-
pany in agreement with the results from [Dataforce, 2011]. However, a sensitivity analysis
showed that the assignment of WTPM to other groups of commercial car owners had no
strong effect on the model results. No reliable data was available for WTPM of company
car buyers, thus company car buyers are assumed to have zero WTPM in the model.

Further, the WTPM was determined in 2011 and the newness of a technology dimin-
ishes over time. As there are, to the best of the author’s knowledge, no publicly available
studies about the decline of a WTPM over time, it is assumed that the WTPM declines
linearly to 60% of its value until 2020 based on [Plötz et al., 2013] and to zero until 2030.

4.3.5 Limited plug-in electric vehicle availability

The diffusion of innovations and new technologies typically follows an S-shaped curve, well
described by a logistic function [Rogers, 1962,Geroski, 2000,van der Vooren and Alkemade,
2010,Massiani, 2010,Meade and Islam, 2006]. It is assumed that the availability of PEVs
from different brands can be described by a logistic function, too. That is, the share of
brands per segment that offer a PEV grows logistically over time A(t) = [1+e−(t−t0)/η]−1.
t0 denotes the point in time when 50% of the brands in a given segment offer a PEV and
η is the time scale of change of PEV availability. Technically, PEV announcements were
collected from different brands and the cumulative number of brands per year that already
offer or have announced to offer a PEV in the given year were calculated (see [Plötz et al.,
2013, Ch. 7.4]). This cumulative number of brands has been divided by the number of
brands active in that segment for normalization. For the case of Germany, all brands with
non-zero new registrations in 2011 were defined as active (26 brands in the small segment,
32 in medium and 29 in large). The parameters of the logistic function to estimate future
availability of PEVs were obtained by least-squares regression and assumed to be partly
equal between the groups (see [Plötz et al., 2013] for details). The results for future
availability of PEVs from different brands in Germany are summarized in Figure 4.3.5
and Table B.5.
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Figure 4.8: Limited availability of PEVs based on press announcements for different brands
(see [Plötz et al., 2013, Ch. 7.4]).

4.3.6 Adaptations for the geographical simulation

For the simulation of charging stations and the PEV stock, geographical information
about the driving behavior is needed for a simultaneous simulation of PEVs at charging
facilities. For this reason, the data sets MOPS and REM2030S, a subset of driving profiles
of REM2030, are used. However, these profiles lack of several information that is required
for the previous model steps: (1) there is no information about the car holder, i. e. a
distinction of private users and company cars is not possible, (2) the socio-demographic
variables are not sufficient to assign the WTPM as for MOP and (3) information about
garage ownership is not provided. Since this information is important for the simulation,
several steps are performed to assign this information to the MOPS driving profiles. Since
this might influence results, the following chapter contains two sections without public
charging where MOP and REM2030 are used for simulation (Section 5.1 and 5.2). The in-
clusion of public charging points in Section 5.3 necessitates driving profiles with geographic
information - MOPS and REM2030S. Differences will be discussed in Section 5.3.5.

The distribution of registrations to user groups in this region is different to that of
Germany in total. The federal state Baden-Wuerttemberg, of which Stuttgart is the
capital city, has a slightly higher share of commercially licensed vehicles [KBA, 2014a],
while total registrations per area and capita are even higher in the region of Stuttgart than
in Baden-Wuerttemberg and Germany [KBA, 2014c]. Since a data set with both attributes
(user groups and rural districts) is not available, the share of commercial vehicles for
the region of Stuttgart is assumed to be equal to the share of commercial vehicles for
Baden-Wuerttemberg [KBA, 2014a] and the share of company cars and fleet vehicles in
commercial passenger car registrations is assumed to be equal based on [Pfahl, 2013].
These numbers are shown in Table 4.5.

Table 4.5 shows that the number of profiles in company cars is equal to the regis-
trations, which is an assumption of the author with the following argumentation. The
purpose of the MOPS data is to provide a data set that is representative for the vehicle
stock [Hautzinger et al., 2013]. While the German vehicle stock is distributed 90% to
private vehicles and 10% to commercial vehicles, it is unclear how the commercial vehicle
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Table 4.5: Vehicle registrations in region of Stuttgart and corresponding driving profiles.

attribute private
vehicles

company
cars

fleet
vehicles

registrations in observation areaa 63,772 39,391 39,391
vehicle driving profiles in MOPS 1,273,426 39,391 164
driving profiles used for simulation 15,943 9,848 164
driving profiles multiplier
registrations

4 4 240

a: [KBA, 2014c,KBA, 2014a,Pfahl, 2013]

stock is distributed to company cars and fleet vehicles. It is thus assumed that company
cars have a shorter holding time than fleet vehicles and their share in the commercial
vehicle stock is about one quarter. Hence, the share of company cars in the MOPS-
profiles should be 2.5%/(90%+2.5%)=2.8% of all vehicle profiles which is almost equal
to its registrations.58 Whenever the vehicle stock is needed, all profiles of MOPS are
considered.

For the determination of company cars the following procedure is performed: The
company car owners of MOP are significantly different to private car owners in variables
sex, occupation, household size, cars in household and driving behavior - expressed as µ
and σ of an assumed individual log-normal distribution of driving days (see Section 5.1.1
and [Plötz, 2014]). Hence, these variables are used to describe the company car owners.
Now, all driving profiles of MOPS are compared to these company cars of MOP and
the ones with the equally weighed lowest squared differences were considered assigned
company cars in MOPS. Table 4.6 shows the mean, median and quartiles of company cars
in MOP (n=162) and MOPS (n=39,391).

A good agreement of mean and median values for company cars in the two data sets
is found for variables household size, cars in household as well as µ and σ. Company
cars seem to slightly differ in medians and means for the variables occupation and sex,
although this might also result from equal weights for all variables. The smaller variation
in MOPS (e.g. quartiles are equal to median in household size and cars in household)
arises from the comparison to average values of MOP. These differences will be discussed
in Chapter 5.

The WTPM was assigned to users from MOP using the attributes household income,
sex, age, education, employment status, household size, and city size, which describe user
groups in [Peters and Dütschke, 2014,Wietschel et al., 2012,Peters et al., 2011a] reasonably
well. However, only the employment status, sex and age are available in MOPS, thus an
assignment with the above described algorithm (Section 4.3.4) is not possible. For this
reason, the WTPM is randomly assigned to driving profiles and the influence of a random
assignment to results is tested with MOP in Section 5.2.2.

Lastly, information about the vehicles is not available for MOPS. Yet, the geographic
information is a sufficient condition for the analysis of public charging infrastructure,
which is the focus of this study. Since the availability of garages depends on the city sizes
or settlement structures (see [Gnann et al., 2013] for a display of garage availability and
city sizes of [infas and DLR, 2002]), the settlement structures of the profiles are considered

58Since only a share of vehicles is used for simulation due to limited computing capacities, this assump-
tion is not decisive.
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Table 4.6: Comparison of assignment of company cars in MOPS and MOP.

attribute data set 25%
quartile

median 75%
quartile

mean

sexa MOP 1 1 2 1.303
MOPS 1 2 2 1.526

occupationb MOP 1 1 2 1.975
MOPS 1 2 2 1.634

household sizec MOP 2 3 4 3.082
MOPS 3 3 3 3.057

cars in householdd MOP 1 2 2 1.639
MOPS 2 2 2 1.809

individual log-normal µ MOP 3.437 3.909 4.300 3.856
MOPS 3.465 3.726 3.980 3.895

individual log-normal σ MOP 0.572 0.922 1.284 0.964
MOPS 0.550 0.757 0.993 0.779

a: non-metric scale with 1=male, 2=female; b: ordinal scale with 1=fully occupied, 2=
partially occupied, 3=not occupied, 4=student, 5=trainee, 6=housewife/househus-
band; c: number of household members; d: number of vehicles in household

for an assignment of garage availability based on [infas and DLR, 2002]: The rural district
of Stuttgart has the highest settlement structure based on [infas and DLR, 2002], 45.1%
of all profiles of this area get assigned to own a garage. All other rural districts in the
observation area are in the second highest category of settlement structures and 56.8% of
profiles from these areas are appropriated with garages. As vehicle sizes are not available
in MOPS, all vehicles are considered medium sized.

The inclusion of the limited availability is slightly adjusted since both data sets do
not contain vehicle brand information and because of the necessary information about the
vehicle usage of PEVs in the vehicle stock: Vehicles are only registered up to the limited
availability Nm,s = sm,s(t) ·nm(t) · limm,s(t). The driving profiles that are part of the PEV
stock simulation are randomly chosen from the registrations of each group Nm,s.

Since model results should be available for Germany, results have to be scaled up from
the region of Stuttgart. Many factors should be considered like the population density,
income or car ownership. All these factors are reflected when the vehicle registrations
are used for up-scaling as they include the earlier mentioned factors. Hence, results from
the region of Stuttgart are multiplied by 20.54 to retrieve results for Germany [KBA,
2014c]. The initial number of charging stations for the region of Stuttgart is extracted
from [Lemnet, 2014]. 374 charging points with 3.7 kW and 289 charging points with
22 kW can be found. For the calculations, these charging points are assumed to be of
equal power levels. With these adaptions of the input data and all previous assumptions,
a simulation with ALADIN is possible.
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4.4 Discussion

The introduction of a new model is based on a variety of assumptions, since models
are always a simplification of reality for a special purpose [Hartmann and Frigg, 2006].
While the need for a new model approach was discussed in Section 2.2.3 and the data in
Chapter 3, this section holds a discussion of the modeling approach. It is divided into
three parts: a validation of the model (4.4.1), a general discussion of the approach (4.4.2)
and the coverage of the stylized facts of Section 2.2.1 (4.4.3).

4.4.1 Validation

Since the sales for PEVs are still limited, it is not possible to compare model results to
actual PEV registrations. A model that is able to reproduce market shares of different
historical propulsion technologies seems better suited to predict future market shares
than a model that does not reproduce these historical market shares. However, there is
data publicly available for some early PHEV-users [Voltstat, 2014]. Their electric driving
shares serve for comparison as a first validation. Further, an assessment of historical diesel
market shares is included as a validation for the inclusion of a TCO calculation proposed
here. Also, the validity of the WTPM assignment was analyzed in [Plötz et al., 2014a, sec.
3.2]. Since a comparison of model results for market diffusion with real-world sales data
is not possible, the important influence factors will be discussed in sensitivity analyses in
Chapter 5.

Comparison of electric driving shares

The first validation comprises a comparison of calculated electric driving shares with
real electric driving shares. For this analysis, data from MOP and REM2030 is used
for simulation and data from [Voltstat, 2014]59 for real-world electric driving shares of
PHEVs. The simulation is performed for medium sized vehicles in the medium scenario
in 2020 (as then sample sizes are reasonably large for simulated PHEVs) and results are
shown in Figure 4.9.60

Figure 4.9 shows the electric driving shares over the annual vehicle mileage as a
scatter plot. Results are shown for users for which PHEV receive the highest utility in
REM2030 (red) and MOP (blue). Further, the real-world data from [Voltstat, 2014] is
displayed with green crosses. On the one hand, it can be observed that simulation results
reach from very small to very large values for similar annual VKT which may result from
driving that does not allow to regularly recharge the vehicle and respectively perform a
high amount of VKT electrically. On the other hand, simulated and actual users obtain
high electric driving shares and perform a relevant amount of annual VKT, although not
more than technically possible. A window for plug-in electric vehicles can be identified,
the boundaries of which are determined by cost (for the lower boundary) and technical
limitations of battery and recharging facilities (for the upper boundary). The 10%, 25%,

59Data for this section was retrieved by the authors of [Plötz et al., 2015] who kindly permitted to use
it in this thesis.

60A comparison of data from US and Germany seems reasonable since their driving behavior does not
vary much [Gnann et al., 2012a].
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Figure 4.9: Electric driving shares over annual VKT for medium sized vehicles of three differ-
ent samples: PHEV-users in 2020 of MOP with blue crosses (n=131), PHEV-users in 2020 of
REM2030 with red crosses (n=17) and real users of Chevrolet Volts from [Voltstat, 2014] with
green crosses (n=1,831).

75% and 90%-quantiles of these samples as well as their median, mean and standard
deviations are shown in Tables 4.7.

Firstly, it should be mentioned, that a lot of users of both samples obtain high elec-
tric driving shares (median and mean above 65% for MOP and above 75% for REM2030).
Secondly, the electric driving shares for simulated vehicles with PHEV as utility max-
imizing option are significantly higher than in the full sample61 (above 80% for both
samples), which is not surprising since a high electric driving share favors the adoption of
PEVs. Thirdly, the observed electric driving shares of [Voltstat, 2014] are also high and
very similar to the values obtained from the simulation for MOP and REM2030. Thus,
the simulation results can reproduce the buying behavior of PHEVs in terms of electric
driving share.

Table 4.7: Comparison of electric driving shares and annual VKT62.

electric driving share q-10% q-25% median mean q-75% q-90% stdev

MOP 0.29 0.44 0.67 0.66 0.91 1.00 0.27
MOP PHEV 0.67 0.74 0.82 0.81 0.90 0.98 0.13
REM2030 0.39 0.57 0.84 0.76 1.00 1.00 0.25
REM2030 PHEV 0.70 0.74 0.85 0.83 0.93 0.96 0.10
Chevrolet Volt 0.56 0.69 0.82 0.79 0.90 0.96 0.15

Annual VKT q-10% q-25% median mean q-75% q-90% stdev

MOP 5,683 8,760 12,775 16,201 19,710 29,930 13,288
MOP PHEV 16,615 18,980 20,805 21,673 24,820 28,229 4,974
REM2030 6,256 8,103 13,976 18,076 22,878 37,583 13,197
REM2030 PHEV 17,115 19,569 22,159 22,814 25,811 27,997 4,694
Chevrolet Volt 8,359 12,079 16,313 17,418 21,582 27,579 8,265

61A two-sided t-test with unequal sample sizes and unequal variances rejects the null hypothesis at
p =2.5% for REM2030 and p <1% for MOP.
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Results are similar for PHEV and their annual VKT. Also here, a good agreement
of medians, means and upper sample limits is found. However, in [Voltstat, 2014] there
are also vehicles with lower annual VKT than in the simulated samples. An explanation
might be, that these vehicles were bought even though they are not economical for the
user or the WTPM is of these users might be higher than for others. However, also vehicle
taxes and fuel prices are different in the US which is the origin of this data. Still, this
analysis shows that real electric driving shares of PHEV users can be reproduced by the
model.

Reproduction of Diesel market shares

The reproduction of diesel market shares may serve for validation of the TCO-based part
of the model approach. For this comparison, neither costs for individual charging points
nor a limited PEV availability applies. To rule out an eventual willingness to pay more,
the commercial fleet vehicle market is considered whose buying decisions largely base on
cost [Golob et al., 1997,Globisch and Dütschke, 2013,Laroche et al., 2001]. This supports
the general proposal of including TCO as one important factor in the purchase decision
for passenger cars. The fact that commercial fleets are only one of the three user groups
under consideration here is acknowledged. However, it is responsible for about one third
of the annual registrations of passenger cars in Germany and thus an important market.

For this analysis a large sample of German commercial passenger cars is studied which
was collected in 2002 [IVS et al., 2002] and has already been described in Section 3.3.
This data set is used as REM2030 does not contain information about the actual fuel
type of the vehicles which is available in this data set. For each vehicle in the database
that has been used on the day of the survey, the lengths of all daily trips are summed up
and multiplied by the average number of working days in Germany (which is 220 days per
year) to obtain an estimate for the vehicles annual VKT. In this case, the latter was not
part of the survey and thus had to be calculated. For each vehicle, the TCO as gasoline
and diesel car is calculated and the vehicle is assigned the fuel type with lower TCO. For
the validation purpose, only medium sized vehicles are studied and a purchase price of
19,560 Euro for gasoline and 21,560 Euro for the diesel vehicle is assumed. The average
fuel prices in 2002 have been taken from [Plötz et al., 2012] and were 1.34 Euro/liter for
gasoline and 1.26 Euro/liter for Diesel fuel. The assumptions for the fuel consumption for
passenger cars in German commercial fleets of 2002 are 7.6 liters/100km for gasoline and
6 liters/100km for Diesel fuel. Furthermore, average operation and maintenance costs
amounted to 0.025 Euro/km for Gasoline and 0.023 Euro/km for Diesel fuel whereas
vehicle taxes were 114 Euro/a for Gasoline and 242 Euro/a for Diesel vehicles. The
share of diesel vehicles in the different commercial branches estimated by the TCO model
proposed here are shown in Figure 4.10 together with the actual market share as stated
in the corresponding survey.63

63In the display of Figure 4.10 the estimates of diesel market shares in German commercial sectors
are shown with confidence bands based on [Plötz et al., 2014a]. Shown are the α = 0.1, 1, 5, 10, 30 %
confidence bands (from light to dark blue), i.e. the ”true” value should lie within the confidence band in
99.9, 99, 95, 90, 70 % of the cases where confidence bands are estimated. The width of the confidence
bands increases with decreasing sample size (shown in parentheses in the abscissa). In most cases the
observed market share is within or close to the range of the confidence bands. Thus, the TCO calculation
seems to capture important aspects of the purchase decision. Also, the calculated confidence bands help
to distinguish purely statistical uncertainty from possible systematic inaccuracies.
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Figure 4.10: Diesel market shares within different commercial branches in Germany. Shown are
the actual values from a large-scale survey (solid line) and the estimate from a simple TCO
calculation (dashed line) together with confidence bands (in blue) from the finite sample sizes
(given in parentheses). See text for details of the calculation.

Figure 4.10 shows that the estimated and actual market shares of commercial diesel
passenger cars in Germany are 40–60% in the major commercial branches and 20–70%
over all branches. In Figure 4.10 the commercial sectors are sorted by sample size which
roughly follows the registrations of passenger cars in these segments.64 In most cases,
the estimated market shares are very close to the actual market shares with significant
deviations in the sectors HJ (Transport and Telecommunications), A (Agriculture and
Forestry), and K (Finance). Even if the share of diesel in a sector is well reproduced, one
could still question whether the individual vehicle assignments are correct. In total, 54.2%
of the individual assignments are found to be correct with a lowest success rate of 38% in
branch of industry K (Finance) and the highest rate of 66% in branch B (Mining). Thus,
it is concluded that the proposed model is in principle able to reproduce the market shares
of diesel passenger cars of German commercial fleet vehicles. TCO is thus one important
aspect of the purchase decision and accordingly part of many market diffusion models for
PEVs.

4.4.2 Discussion of modeling approach

Generally the modeling approach, scenarios and techno-economical parameters as well as
the adaptations for Stuttgart have to be discussed.

For the co-diffusion of PEVs and their charging infrastructure a simulation model
is proposed. This is not only the most common approach for the interaction of AFVs
and their refueling infrastructure, but also permits to identify niches when individual

64The commercial branches were introduced in Section 3.3.2. In 2002, the classification was slightly
different, thus several commercial branches were combined to be similar to [Eurostat, 2008].
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user behavior is analyzed (see Chapter 2). The variations in driving behavior between
users and days within individual profiles favors an agent-based simulation approach with
individual agents and their vehicle purchase decisions that depend on their vehicle usage
(see Section 5.1.1). Driving profiles for a large number of vehicles for private users are
publicly available and commercial vehicle driving profiles were collected for this thesis,
both with an observation period of at least one week. Yet, the vehicle purchase behavior
does not only depend on cost, but also on several non-monetary factors (see Figure 4.2)
which were partly monetized in an individual utility function (eq. 4.3). This is the favoring
WTPM for a new technology that was explicitly collected for PEVs [Peters and Dütschke,
2014,Wietschel et al., 2012,Peters et al., 2011a] and integrated into the model as well as
the obstructing factors charging infrastructure which is integrated as cost for individual
charging points. The interaction between individual agents is needed when the PEV stock
and their public charging point usage is simulated and a charging point operator decides
about the public charging price and infrastructure stock of the following period.

ABMs incorporate several issues that have to be taken into account. Firstly, they are
very data intensive [Bonabeau, 2002] like many bottom-up models (see Section 2.2.2).
With the publicly available private and for this purpose collected commercial driving pro-
files as well as the comprehensive collection of data for the WTPM [Peters and Dütschke,
2014, Wietschel et al., 2012, Peters et al., 2011a], data sets are available in sufficient
amount and were discussed in detail in the previous chapter and Section 4.3.4. Secondly,
the simulation of ABMs is computation intensive [Bonabeau, 2002]. Also this issue could
be resolved with a parallel simulation of some 15,000 agents in the individual simulation
that has to be run for 16 times between 2015 and 2030 and up to 200,000 agents in the
joint simulation that could not be parallelized. A simulation of 16 years takes about 16
hours on a 32 kernel server with 384 GB RAM. Thirdly, soft factors like the WTPM often
are difficult to quantify [Bonabeau, 2002]. The large and comprehensive data collections
of [Peters and Dütschke, 2014,Wietschel et al., 2012,Peters et al., 2011a] allow to retrieve
quantifiable and statistically reliable data for user behavior on the WTPM. For driving
behavior the earlier mentioned data collections permit a detailed and statistically sound
analysis of vehicle usage data with a large amount of additional information about ve-
hicle and vehicle owners (see Chapter 3). Quite often, such data is unavailable and the
collection of data and the connection of the different data sources requires real effort.
However, driving data with limited observation time is available for many industrialized
countries and the interest in PEVs has triggered driving data collections over long time
spans [Karlsson and Kullingsjö, 2013, Smith et al., 2011]. Thus, more driving data is
becoming available and can be used for modeling in the future. Fourthly, ”another issue
has to do with the very nature of the systems one is modeling with ABM in the social
sciences: they most often involve human agents, with potentially irrational behavior, sub-
jective choices, and complex psychology - in other words, soft factors, difficult to quantify,
calibrate, and sometimes justify. Although this may constitute a major source of prob-
lems in interpreting the outcomes of simulations, it is fair to say that in most cases ABM
is simply the only game in town to deal with such situations.” [Bonabeau, 2002] For this
reason, a new approach to model the co-diffusion of PEVs and their charging infrastruc-
ture is proposed in a detailed, user specific and empirical way. The model decision for
different propulsion system is based on an individual utility calculation resulting from a
PEV simulation descending in the vehicle’s TCO extended by a willingness to pay more
for new and environmental friendly vehicles of some vehicle buyers and the cost for indi-
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vidual charging infrastructure reflecting the current lack of public charging infrastructure
and the corresponding range anxiety. A joint simulation of the PEV stock where vehicle
agents interact permits a charging point operator to decide about public charging cost
and (de-)construction based on the public charging point usage. Note, that the model
is an agent-based simulation and no multi-agent system, since, e.g. neighboring effects,
could not be incorporated as there is no data publicly available in the desired quality.

The distinctive features of the present model are the individual utility maximization
based on a detailed analysis of many individual driving profiles as well as in the inclusion
of commercial vehicles and company cars. The user specific analysis allows to cover a wide
range of usage scenarios and to study specific user groups such as commercial drivers or
potential early adopters [Plötz and Gnann, 2013, Plötz et al., 2014b]. Furthermore, the
large number of driving profiles allows the modeler to use statistical methods to assess the
statistical quality of the model results. Additionally, PEV specific purchase decision fac-
tors such as the limited electric range and the need for frequent recharging are addressed
by the model proposed here.

The individual model steps also depend on assumptions that can be discussed. The
driving data of private users in the model extends over one week which might not contain
rare long-distance trips that seem important for PEV adoption. The robustness of the
model can be tested by calculating the number of days per year with more daily VKT than
the BEV range and including the cost for a substitute vehicle following the methodology
of [Plötz, 2014]. This will be analyzed in Section 5.2.3.

The individual PEV simulation is probably more abstract or mathematical than the
actual purchase decision of private users. Yet it covers the important aspect of the regular-
ity of an individual users’ driving behavior. Users are aware of PEVs’ limited electric range
and understand the general economics of low operating costs for electric driving [Dütschke
et al., 2011b]. Similarly, the TCO calculation of Eq. (4.4) is rather complex but the pur-
chase and operation costs of a vehicle are an important aspect in the purchase decision
both for private [Peters and de Haan, 2006] and commercial buyers [Dataforce, 2011].
This is indicated by the average annual VKT for diesel vehicles (22,300 km) and gaso-
line vehicles (11,800 km) in Germany [Follmer et al., 2010] – reflecting the average fuel
economy under the German conditions of both propulsion technologies. Accordingly,
TCO calculations are a part of many PEV market diffusion models [ESMT, 2011,NPE,
2011b, Plötz et al., 2012, Peters et al., 2012, Mock, 2010, McKinsey, 2011]. Along the
same direction, recent studies pointed out that the costs of PEVs are a major influence
in the purchase decision [Götz et al., 2011, Peters and Dütschke, 2014,Wietschel et al.,
2012,Knie, 1999,Gnann et al., 2015b].

Although the TCO are an important factor in the vehicle buying decision, they alone
cannot explain purchase decisions of car users, neither for private nor commercial car
purchases [Peters and de Haan, 2006]. Furthermore, private buyers of hybrid and conven-
tional vehicles seem to lack knowledge necessary for a TCO-based decision [Turrentine and
Kurani, 2007]. An analysis of the potential early adopters of PEVs in Germany shows
that more criteria than only the vehicle’s TCO are important [Peters and Dütschke,
2014,Wietschel et al., 2012,Plötz et al., 2014b]. Accordingly, the proposed model covers
further important aspects of the purchase decision: The need of frequent recharging is
addressed in the model by adding the cost for individual charging options to the vehicle’s
TCO and the WTPM of some user groups has been derived from surveys and is added to
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the driving profiles based on the vehicle owner’s socio-demographic characteristics. Over-
all, it is attempted to make the most important factors in the PEV buying decision explicit
and measurable. They have been included in the model in an empirical way that allows
updates or corrections when more data on WTPM or choice of models become available
in the future, especially the evolution of the WTPM could be of interest. In this approach
for the utility calculation, neither a potential downsizing effect is reflected since vehicles
are always purchased in the same vehicle size as the driving profile, nor is car-sharing
which might reduce the number of vehicles in total. A change of user behavior in the fu-
ture is not considered in this approach. However, there is no reliable data for these effects
that could be incorporated into the model. Also the modeling approach for company cars
is slightly different to private and fleet vehicles: the purchase of the company as vehicle
owner is reflected with the first four terms of equation 4.3 while the decision process of
the vehicle owner is presented by the fifth factor. With this approach, the preselection of
the company that provides a limited offer to the vehicle driver is reflected as well as the
vehicle driver’s decision when also reflecting the cost he has to pay monthly for this car.
Since a company car is often also a status symbol and the purchase decision may not only
depend on cost, this might be the minority of cases, since also other studies rely on the
same approach [Pfahl, 2013].

The limited choice of brands and models is included according to the current share
of brands offering PEVs. It is retrieved from press announcements of PEVs, yet it could
have been externally defined based on historical evolutions of other technologies. How-
ever, the derivation from future vehicle announcements puts these curves on a data-based
foundation that permits to determine location and scale of the assumed logistic curves
based on the technology itself.

The charging point operator is designed to behave like a company that is cost-oriented
and wants profits from its investments. The total energy charged at public charging sta-
tions retrieved from the PEV stock simulations is a key performance indicator that will
be technically available for every company working with charging points. Basing the
construction and public charging price on this figure would be a common approach for
an economical decision making process (Section 2.2.3). An annual change might be dis-
cussible, yet the variations in the public charging price mainly depend on the change in
charging point cost (see formula 4.10) which changes only slightly and the availability of
charging stations is the main focus of this research. An inclusion of potential subsidies
through a charging point operator or state will be discussed in Section 5.3. Further, the
rules for charging point placements are questionable as well, yet they base on reasonable
assumptions: As long as only a few PEVs are on the roads, charging points are erected
in areas where a lot of vehicles are parked - also to gain attention. When a minimal geo-
graphical coverage is fulfilled, highly PEV-frequented charging stations will be extended.
These two rules could also be applied at the same time in reality, yet the amounts of
conventional vehicles and PEVs differ too much to compare setup needs to each other.
Lastly, the deconstruction of public charging points could be scrutinized, yet the operat-
ing cost of public charging points is considerably high. For this reason, charging points
are taken out of service until they are needed to reduce sunk costs.
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4.4.3 Coverage of stylized facts

In Section 2.2.1 a number of stylized facts were retrieved that models treating the co-
diffusion of PEVs and their charging infrastructure should consider. These are are listed
and discussed for the presented model approach in the following.

(A) X An initial amount of AFV refueling or recharging infrastructure: The initial
amount of (public) charging infrastructure is incorporated into the model. For private
households the availability of garages is considered and for public charging points the
currently available ones in the region of Stuttgart.

(B) X AFV and AFV refueling infrastructure market shares: Market shares of PEVs
are explicitly considered in the PEV stock simulation. Market shares for public slow
charging points can be extracted, yet they are hardly comparable to current refueling
stations.

(C) X Profitability of refueling or charging stations: The profitability of public charging
stations is a precondition of the charging point operator.

(D) X Fuel prices for conventional and alternative fuels: Both fuel prices and prices for
electricity are integrated in the utility function of each individual user. Also their
ratio is considered in the decision to recharge for PHEVs when arriving at a public
charging point.

(E) X Different user groups: Different user groups are reflected with driving profiles that
are individually analyzed. Also different configurations of the utility function are
incorporated for private, commercial fleet and company car users. Further, different
adopter groups are regarded.

(F) (X) Decreasing user concerns with AFV use: Currently PEVs are only publicly
recharged when their battery SOC is below 50%. Decreasing concerns for users
could be modeled with a descending minimal SOC that users are willing to accept,
yet this had to be externally defined, since networking effects are not incorporated
into the model. The increasing range through efficiency gains in electric consumption
could be argued as implicit consideration of this factor. Further, different minimal
SOCs will be tested in a sensitivity analysis.

(G) X Potential policy measures: Monetary policy options such as subsidies for vehi-
cles and charging infrastructure can be incorporated into the model. These will be
discussed in Section 5.3.

(H) X Refueling duration and frequencies can differ between PEV and conventional vehi-
cles: The duration and frequency of refueling for PEVs are explicitly considered in
the individual and joint PEV simulation.

(I) X Multiple types of infrastructure have to be differentiated by accessibility: This
distinction is a prerequisite of the model as well.

With eight out of nine factors, the model is considered well-fitted to simulate the
co-diffusion of PEVs and their charging infrastructure.
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Summary

The aim of this section was to introduce a model for the joint simulation of PEVs and
their charging infrastructure. Also scenarios and further parameters were discussed. The
following should be maintained:

1. The agent-based diffusion model ALADIN allows to determine the co-diffusion of
PEVs and their charging infrastructure based on real-world vehicle usage data. An
initial PEV simulation with BEV feasibility and PHEV electric driving share as
outcomes followed by the utility maximizing propulsion technology based on vehicle
and infrastructure TCO and WTPM permits to determine every user’s best vehicle
option. In a stock model that also incorporates a limitation of diffusion due to
limited PEV availability, the PEV stock is determined and simulated thereafter to
provide the public charging point usage. With this usage a charging point operator
decides on the (de-)construction of the PEV stock and thus the electric driving cost
for the consecutive individual simulations.

2. A validation of the model shows that electric driving shares of PHEVs when com-
pared to real-world electric driving shares and the historic market share of diesel
vehicles can be reproduced. A further validation of the model is not possible, since
market shares for PEVs are still low.

3. Three scenarios for framework conditions (fuel, battery and electricity prices) were
defined with positive conditions for PEVs (pro-EV), negative conditions (contra-
EV) and conditions in between (medium). These are no extreme scenarios, but
show the range of results. The availability of charging infrastructure increases in the
calculations in the next chapter: While in Section 5.1 only home charging (domestic
and commercial) is considered, additional charging at work is reflected in Section 5.2.
In Section 5.3 also public charging is analyzed.

4. Several adaptations are necessary for the driving profiles with geographic informa-
tion (MOPS and REM2030S): Company cars are assigned based on the similarity
to the average company car owners in MOP, the WTPM is randomly assigned and
garage ownership is randomly assigned after a distinction of settlement structures.
For this reason, MOP and REM2030 will be used for analysis in Section 5.1 and
5.2, MOPS and REM2030S in 5.3. The influence of these random allocations will
be tested in the following chapter.



Chapter 5

Model results

Introduction

The market diffusion of plug-in electric vehicles is a current and important field of re-
search [Al-Alawi and Bradley, 2013] and a relevant topic to decrease the dependency from
fossil fuels and reduce GHG emissions [Kahn Ribeiro et al., 2007, IEA, 2010]. A large
number of models study driver behavior to predict a future market evolution of PEVs65,
yet they suffer from several insufficiencies: (1) In studies for Germany, the commercial
vehicle sector is often neglected66, although it accounts for more than half of the vehi-
cle registrations. (2) Several studies analyze driving behavior of only one day67, which
could lead to inaccuracies, since driving behavior varies between users and days [Smith
et al., 2011,Amjad et al., 2011,Neubauer et al., 2012]. (3) The vehicle buying decision is
often modeled with vehicles’ TCOs68, although it comprises a variety of factors to inte-
grate. (4) Charging infrastructure is often discussed as a key barrier to market diffusion of
PEVs69 and a co-diffusion of PEVs and charging infrastructure is demanded70. However,
this co-diffusion is not modeled up to now.

The model ALADIN which was introduced in the previous Chapter 4 addresses these
issues explicitly: More than 500 driving profiles with an observation period of 21 days
for the commercial vehicle sector have been collected for this thesis. They are analyzed
individually in a PEV simulation and consecutive utility comparison of different drive
trains. The vehicle buying decision is based on the TCO for a vehicle and is extended
by the WTPM for PEVs as a favoring aspect and the cost for charging infrastructure
as well as the limited availability of PEVs as obstructing factors. For the simulation,
driving profiles with an observation period of at least seven days are considered. And, the
charging behavior of PEVs at various charging points is analyzed in a joint simulation of
PEVs in stock.

In the following, the model will be applied to determine the market diffusion of PEVs

65See e.g. [Dagsvik et al., 2002,Santini and Vyas, 2005,Keles et al., 2008,Lamberson, 2008,Mock et al.,
2009,Nemry and Brons, 2010,Wansart and Schnieder, 2010,Shepherd et al., 2012].

66See e.g. [Hacker et al., 2011b,Redelbach et al., 2013,Schühle, 2014].
67See e.g. [Dagsvik et al., 2002, Santini and Vyas, 2005, Lamberson, 2008,Mock et al., 2009,Wansart

and Schnieder, 2010,Shepherd et al., 2012].
68See e.g. [Thiel et al., 2010,McKinsey, 2011,Pfahl et al., 2013,Wu et al., 2015]
69See e.g. [Dütschke et al., 2011b,Egbue and Long, 2012,Steinhilber et al., 2013].
70See e.g. [Lin and Greene, 2011,Dong et al., 2014,NPE, 2012,Kalhammer et al., 2007,BCG, 2009,Ma

et al., 2014,Chen et al., 2013]
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and their charging infrastructure for Germany until 2030. The chapter is divided into three
parts (see Table 5.1): First, the driving behavior of commercial and private passenger car
owners and their market potentials in 2020 are analyzed (5.1). In this analysis, the
first two model steps of ALADIN are used and only private or commercial charging in the
medium scenario is considered to focus on the differences between private and commercial
driving behavior and resulting PEV market potentials. Second, the market evolution of
PEVs until 2030 is analyzed by including the stock model in Section 5.2. Here, all three
scenarios for framework conditions are considered while domestic, commercial and work
charging is allowed. The diffusion of PEVs without public charging infrastructure and
their main influence factors shall be tested in this section to be able to put the influence of
public charging infrastructure into context. Third, the interaction of PEVs and charging
infrastructure diffusion is considered in Section (5.3). Here, all infrastructure options are
considered in the medium scenario in Section 5.3 focusing on the influence of different
charging options on PEV market diffusion. While in Section 5.1 and Section 5.2, the data
sets MOP and REM2030 are used for simulation, public charging analyses necessitates
geographic information available in the data sets for the region of Stuttgart - MOPS and
REM2030S.71 The differences of results due to data sets, based on the adaptations made
in Section 4.3.6, will be discussed in Section 5.3.5.

Table 5.1: Consideration of scenarios in results.

Options Section 5.1 Section 5.2 Section 5.3

ALADIN modeling steps

Individual PEV simulation X X X

Individual utility maximization X X X

Stock model X X

Charging point operator X

Scenarios

contra-EV X

medium X X X

pro-EV X

Availability of charging infrastructure

domestic & commercial X X X

work X X

public X

Table 5.1 gives an overview of modeling steps, framework scenarios and charging
infrastructure consideration in the following sections. Each part contains an individual
discussion and summary of results while a synopsis at the end of this chapter (Section 5.4)
merges results of all three section.

71See Chapter 3 for a description of the vehicle usage data sets.
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5.1 Market potentials of private and commercial

plug-in electric vehicles72

The commercial vehicle market is important for PEVs since it comprises more than 60% of
annual vehicle registrations in Germany (cf. Section 3.1 and [Gnann et al., 2015a]). When
market potentials are calculated, the commercial vehicle market is often neglected (see
e.g. [Redelbach et al., 2013, Schühle, 2014]). Only some studies for Germany include
commercial vehicles explicitly73 or as a part of their analysis74. The driving profiles of
MOP and REM2030 introduced in Chapter 3 permit to analyze the regularity of driving
behavior in different user groups as well as an individual analysis of BEV feasibility and
electric driving shares of PHEVs. Because of the observation period of more than one
day, it is possible to compare private and commercial driving behavior on a statistically
sound data basis (see Section 3.1).

In the next subsection, the private and commercial driving profiles introduced in
Chapter 3 are compared to each other regarding their individual daily distance and reg-
ularity of their driving which is important for PEVs (Section 5.1.1. Thereafter, the focus
is on the market potential of PEVs in the different user groups (Section 5.1.2). Market
potentials are calculated by using the first two model steps (cf. Section 4.2.1 and 4.2.2).
A discussion (Section 5.1.3) and summary (Section 5.1.4) complete the first part of model
results. Calculations in this section are performed with techno-economical parameters for
2020 as subsamples then are large enough for statistically sound conclusions.

5.1.1 Comparison of private and commercial vehicle usage

The economics of PEVs suggest they should drive many kilometers in order to economize
but at the same time not too many because of the limited range of PEVs. This issue can
be resolved by driving behavior that is very regular with higher than average daily VKT.
In the present section, the regularity of driving and daily VKT of German commercial
passenger cars is analyzed and compared to private passenger car driving. The regularity
of daily driving is measured by the standard deviation of the logarithm of daily VKT.
For each vehicle, the daily VKT rij by vehicle i on day j are analyzed. The logarithm of
these daily VKT ln(rij) is studied since daily VKT are right-skewed and their logarithms
are approximately Gaussian distributed [Plötz, 2014, Lin et al., 2012]. For each vehicle
i, the typical scale of daily driving µi =

1
n

∑n
j=1 ln(rij) and the variation, i. e. standard

deviation, in daily driving σi = [ 1
n−1

∑n
j=1(rij−µi)

2]1/2 are calculated. The latter measures
the individual regularity of daily driving. The former measures the typical scale of driving
since the vehicle’s median daily VKT is given by rmed,i = exp(µi) and the mean daily VKT
by r̄i = exp(µi + σ2

i /2).

As explained in the previous chapters, there are three user groups under observation:
private vehicles, company cars and commercial fleet vehicles. For the first two groups, the
data of MOP is used, while fleet vehicles are based on REM2030. The scales and variances

72This section is based on [Gnann et al., 2015a].
73See [Berg, 1985,Golob et al., 1997,Gnann et al., 2012c,Ketelaer et al., 2014,Hacker et al., 2015,Gnann

et al., 2015a]
74See [Hacker et al., 2011a, Kihm and Trommer, 2014,Wietschel et al., 2014b] and [Al-Alawi and

Bradley, 2013] for a recent review on market diffusion models for hybrid electric vehicles and PEVs.



80 5.1. Market potentials of private and commercial plug-in electric vehicles

1 2 3 4 5 6
individual mean of daily VKT µi

0.0

0.5

1.0

1.5

2.0

2.5
in

d
iv

id
u
a
l 
st

a
n
d
a
rd

 d
e
v
ia

ti
o
n
 

 o
f 

d
a
il
y
 V

K
T
 σ

i

1 2 3 4 5 6
individual mean of daily VKT µi

0.0

0.5

1.0

1.5

2.0

2.5

in
di

vi
du

al
 s

ta
nd

ar
d 

de
vi

at
io

n 
 o

f 
da

ily
 V

K
T 
σ
i

0

8

16

24

32

40

48

56

64

72

Figure 5.1: Mean and variation of log-normal distribution for private driving profiles. Data
from [MOP, 2010]. The color indicates the number of profiles in specific bin.
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Figure 5.2: Mean and variation of log-normal distribution for company car driving profiles. Data
from [MOP, 2010]. The color indicates the number of profiles in specific bin.
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Figure 5.3: Mean and variation of log-normal distribution for commercial fleet driving profiles.
Data from [Fraunhofer ISI, 2014]. The color indicates the number of profiles in specific bin.

of individual daily driving have been calculated for these vehicles. Figure 5.1, Figure 5.2
and Figure 5.3 show scatter plots and two-dimensional histograms of the individual scales
µi and standard deviations σi for the three aforementioned data sets with more than
one day of observation. The histograms indicate that commercial fleet and company
vehicles show higher average daily VKT than private ones. Furthermore, both private
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and commercial driving behavior show a large variation of daily VKT between vehicles
(the µi range from 1 to 6) and between the days of one individual vehicle (the σi range
from 0 to 2.5). Note that several days of observation for each vehicle are required for the
calculation of the individual variance of daily VKT.

It is now possible to compare the distances and regularity of daily driving distances
between private, commercial fleet and company vehicles. The µi and σi are calculated for
each vehicle from the three data sets. Table 5.2 shows the median, mean and standard
deviation of the daily VKT for their vehicle usage. Commercial vehicles (fleet vehicles and
company cars) show higher average daily distances since the median and mean of typical
daily VKT are larger for commercial vehicles. However, commercial fleet vehicles show
smaller variation in daily driving between different days compared to private vehicles and
company cars. The median and mean of standard deviation of daily VKT are smaller for
commercial fleet vehicles indicating a larger regularity of driving.

Table 5.2: Summary statistics for daily VKT of private and commercial vehicles. Data from
[MOP, 2010,Hautzinger et al., 2013,Fraunhofer ISI, 2014]

mean of daily VKT µi SD of daily VKT σi
vehicle group fleeta privateb companyc fleeta privateb companyc

data set REM2030 MOP MOP REM2030 MOP MOP

median 3.77 3.33 3.83 0.83 0.87 0.93
mean 3.79 3.32 3.81 0.91 0.90 1.00
standard deviation 0.81 0.73 0.72 0.50 0.43 0.49

a: n=498, b: n=6177, c: n=162

Statistical tests are performed to measure the significance of these differences and
are presented in Table 5.3. Here, the means and medians of the average µ’s and σ’s
of the three data sets are compared to each other. To compare the means, a t-test for
unequal variances and unequal sample sizes for the means with the null hypothesis of
equal means is performed. The medians are tested with a Wilcoxon rank-sum test for
unequal variances and unequal sample sizes for the means with the null hypothesis of
equal medians. The resulting p-values of these tests are shown in Table 5.3 while small
values (p <0.05) indicate significant differences.

Table 5.3: Statistical comparison of driving behavior in different user groups. Shown are the
p-values for different statistical tests.

parameter mean of daily VKT µi SD of daily VKT σi
private private fleet private private fleet
vs. vs. vs. vs. vs. vs.
fleet company company fleet company company

meana 0.000 0.000 0.811 0.829 0.021 0.055
medianb 0.000 0.000 0.567 0.010 0.040 0.399

a: t-test for unequal means and unequal sample sizes
b: Wilcoxon rank-sum test for unequal medians and unequal sample sizes

Starting with the daily distances (µi), one finds highly significant results for the
comparison of private and commercial fleet vehicles as well as for private vehicles and
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company cars, both for the means and medians (p <0.01). Thus, commercial vehicles
drive significantly more than private ones. No significant differences can be found for
commercial fleet vehicles and company cars. Turning to the right part of the table, the
standard deviations (σi) between different days are analyzed. Here, significant differences
are found between private vehicles and company cars, i.e. private vehicles drive more
regularly than company cars. While the medians of private and fleet vehicles are also
significantly different, their means are not (fifth column). Lastly, the regularity of driving
between fleet vehicles and company cars is marginally significant with p = 0.055 while
their means do not show a significant difference.

To summarize, the statistical tests confirm a significantly higher driving for fleet
vehicles and company cars compared to private vehicles. Further, commercial fleet vehicles
have the most regular driving, directly followed by private cars. Company cars have the
most irregular driving of the three user groups. For the potential of PEVs in these user
groups, fleet vehicles seem to best fit requirements - long distances and high regularity -
followed by private vehicles and company cars.

5.1.2 PEV market potentials in different user groups

Having tested the regularity of driving in the different user groups, the profiles are now
simulated as PEVs with the first model step (see Section 4.2.1). The simulations are per-
formed for 2020 for the commercial fleet vehicle profiles of REM2030 and for private and
company car profiles of MOP. Each profile is simulated individually as BEV and as PHEV
while the feasibility as a BEV and the electric driving share as PHEV is found in Table 5.4.
Further, the table shows the market share of utility maximizing BEVs and PHEVs with
and without limited availability based on the second model step (Section 4.2.2). Market
shares of profiles are shown with confidence bands.75

Table 5.4: PEV market potential of different user groups.

user group fleet private company

number of profiles 498 6,177 162
share of technically feasible BEVsa 48.8%±4.4% 57.2%±1.2% 28.4%±6.9%
average share of feasible trips with BEV 90.9% 96.9% 93.8%
average electric driving share PHEV 64.0% 67.7% 47.0%

BEV utility optimizinga 6.5%±2.2% 1.1%±0.3% 0.0%±0.0%
PHEV utility optimizinga 13.1%±2.9% 8.2%±0.7% 0.6%±1.2%b

BEV utility optimizing & lim. availabilitya 5.4%±2.0% 1.1%±0.3% 0.0%±0.0%
PHEV utility optimizing & lim. availabilitya 11.7%±2.8% 7.9%±0.7% 0.5%±1.1%b

a: electric vehicle shares with 95% confidence intervals.
b: lower bound for market potential at 0%.

Starting with the technical replaceability of BEVs, the largest values can be found for
private vehicles, followed by fleet vehicles and company cars. The shorter daily distances
of private vehicles compared to the other user groups favor BEVs from a technical point of
view. However, the higher regularity in driving of fleet vehicles returns a higher amount

75The relative frequency of PEVs is the number of PEVs k divided by the number of all vehicles n
as: p = k/n. The 95% confidence interval is calculated by the standard normal approximation (see
e.g. [Fahrmeir et al., 2011]): ∆p ≈ 1.96 · [p · (1− p)/n]1/2.
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of driving profiles feasible with a BEV compared to company cars. This is also visible in
the average share of feasible trips with a BEV, which indicates that some company car
profiles may contain some exceptionally long trips that are not feasible for BEVs while the
average share of feasible trips is higher than for fleet vehicles. That confirms the necessity
to use driving profiles with long observation periods. Results slightly change for average
electric driving shares of PHEVs. Here fleet and private vehicles obtain similar average
electric driving shares of about 65% while those of company cars are distinctly lower. The
reason for this circumstance are again the regularity and distances of the driving profiles.
It is important to mention again that the profiles of REM2030 contain three weeks of
observation and MOP one week, which make results of the fleet vehicles more reliable
than those of the other two groups. The influence of the observation period on technical
results was analyzed in [Plötz et al., 2014a].

Inferences change when turning to the results for the utility calculation. First of all,
PHEVs tend to receive higher market shares than BEVs in all user groups. This derives
from the large batteries used in BEVs which are not affordable for a large number of
users, while several PHEVs profit from high electric driving shares (see also Figure 4.9).
Further, the effect of the limited availability is already low in 2020, since results do not
change largely when it is considered.76 Moreover, PEVs have the largest market potential
within fleet vehicles, followed by private vehicles and company cars.77 This derives from
two reasons: First, the driving distances of most private vehicles are too low to profit
from the lower operating costs of PEVs compared to their investment. With the higher
mileage of fleet vehicles the share of vehicles with PEVs as utility maximizing solution
rises. They also profit from their large technical potentials due to a more regular driving
compared to company cars. Second, differences in the TCO calculation within the utility
values are a reason for the different market potentials which is discussed in the following.

Utility differences of plug-in electric and conventional vehicles78

The utilities of each propulsion technology for the individual user with his driving behavior
forms an important part of his buying decision. To demonstrate the wide range of utilities
for different users and the importance of the individual user behavior, the utility gaps
(differences between PEVs and CVs with highest utility) between the different drive trains
are analyzed using results of the second model step (see Section 4.2.2). In Figure 5.4,
the utility-gaps are plotted against their share of users with this or a smaller utility gap.
While the left panel shows the utility gaps for medium sized vehicles differentiated by
user groups, the right panel contains private users and distinguishes vehicle sizes.

To understand this display, it should be noted that there are many individual utility
gaps (differences in the utility between the drive systems) due to the large number of
driving profiles, some of which have very different driving patterns. With approximately
7,000 driving profiles and four drive trains, there would be about 42,000 individual utility
differences to compare. However, most important for the decision in favor of or against
a PEV is the utility difference between the utility maximizing conventional vehicle and

76See Section 5.2.2 for a further analysis of the influence of the limited availability.
77Note that these market shares are calculated for new vehicle registrations and are, because of the

secondhand car market, different to shares in the vehicle stock which is often shown in studies on PEV
market diffusion. The difference will be discussed in Section 5.2.1.

78This section is based on [Gnann et al., 2015b]
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the utility maximizing PEV. In the following, utility gap or utility difference will denote
the difference in utility between the utility maximizing PEV and the utility maximizing
conventional vehicle (i.e. ∆u ≡ minp∈PEV up −minp∈CV up where PEV = {BEV, PHEV}
and CV = {gasoline, diesel}).79 Figure 5.4 shows these utility gaps in ascending order
on the abscissa with the share of users (respectively driving profiles) on the ordinate
which have this or a smaller utility gap. The graph corresponds statistically to a relative
cumulative frequency distribution or empirical cumulative distribution function [Fahrmeir
et al., 2011]. The cumulative distribution function of utility gaps in Figure 5.4 shows the
broad range of individual utility gaps in a statistically robust representation. Furthermore,
utility-based market shares - and thus the potential impact of subsidies - can be read off
directly: The market share is the share of users with utility gap smaller than zero.

Figure 5.4 demonstrates that PEVs are utility optimal for some users already in 2020
(∆u < 0) and display a rising tendency to be so in the future (increasing share of vehicles
with ∆u < 0 between 2020 and 2030). In this case, the annual mileage is decisive. At low
mileages, gasoline cars continue to dominate because PEVs are not able to compensate
for their higher purchasing costs via their lower variable costs per kilometer. At very high
annual mileages, in contrast, diesel engines are the utility maximizing option, because
PHEV have to use their combustion engines too often and battery electric vehicles are
unfavorable because of their limited range. The electric driving share together with the
annual mileage is decisive for the difference in utility of each user. Sufficient annual
mileage alone is not enough.

When comparing the graphs of the three user groups (left panel of Figure 5.4), it is
noticeable that the curve of private users has the steepest slope and that of commercial
fleet vehicles has the flattest slope. There are several reasons for this: First, the effect
of VAT and depreciation has to be mentioned. Because VAT has to be paid on fuels by
private users, the consumption savings between PEVs and CVs per kilometer driven are
higher for private than for commercial users. In addition, the depreciation options for
commercial drivers have the effect that utility gaps shrink further. Second, commercial
users tend to have more uniform driving profiles and undertake longer trips more rarely
(cf. Section 5.1.1). As a result, the electric driving shares within this group tend to
be more similar compared to private users, and especially when compared to company
car drivers (see also [Plötz et al., 2014a, sec. 3.1]). Yet, the tax for company cars raises
their utility difference curve when compared to fleet vehicles. Although there is a special
allowance in Germany for PEVs to reduce this company car tax because of high battery
costs, it still increases the cost for PEVs compared to conventional vehicles significantly.
Also, a WTPM is not incorporated for company cars as there is no publicly available data
for it. A comparison of the utility gaps in 2020 with those in 2030 reveals that a low
potential for PEVs exists under the assumptions made in 2020, but it increases over time.

Turning to the right panel of Figure 5.4, it is apparent that large passenger cars
have the highest possibility to increase the share of private users with PEVs as utility-
maximizing option.80 There are significant market shares for large vehicles and LCVs
(about 40%), while small and medium vehicles’ market shares are around 5%. Large
vehicles are able to economize faster because of the large advantages in operating cost
of PEVs. Decreasing the utility for the utility maximizing PEVs by 1,000 EUR, market

79See Section 4.2.2 for the calculation of utility values.
80Results for commercial fleet vehicles and company cars are not shown with the same display, as their

qualitative results are similar to those of private vehicles.
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Figure 5.4: Differences between individual utilities of best plug-in electric and conventional
vehicle including the cost for vehicle and charging infrastructure as well as the WTPM in the
medium scenario. The difference is shown on the abscissa in EUR2014 while the share of driving
profiles is given on the ordinate. Left panel: Results for medium sized cars. Graphs are shown
as cumulative distribution functions with dashed lines for values of 2020 and and solid lines for
2030. Private vehicles in red, fleet vehicles in blue and company cars green. Right panel: Results
for different sized private vehicles. Graphs are shown as cumulative distribution functions for
values 2020. Small cars in red, medium sized cars in blue and large cars in green.

shares of small, medium and large vehicles would increase by 5%, 10% and 20%. Such
a change might, e.g., result from an increase of the gasoline price by 15% if the gasoline
vehicle was the cheapest conventional car.81

The analyses of the driving profiles and utility gaps show that several drivers could
achieve comparatively high electrical driving shares and have higher utilities for a PEV
than compared to the respective cheapest conventional vehicle. Many of these users can
be expected to buy a PEV.

5.1.3 Discussion

The presented results are subject to several assumptions that have to be discussed: The
approach to determine the PEV replacement potential might be questioned as well as
assumptions for driving data and technical and economical parameters that are used in
the analysis. Furthermore, results are discussed in light of other studies on this topic.

In this analysis, a comparison of different drive trains is performed for every single
driving profile to determine the utility-optimizing vehicle option for each profile. The
potential market share of PEVs is calculated by the share of PEVs within their user group.
Calculating market shares with total cost of ownership is a common approach [Thiel et al.,
2010,McKinsey, 2011,Pfahl et al., 2013], although the buying decision for a single vehicle
is often not solely based on cost [Globisch and Dütschke, 2013,Dataforce, 2011,Sierzchula,
2014].82 Some studies indicate a willingness to pay more for alternative fuel vehicles which
would increase PEV market shares [Eppstein et al., 2011, Laroche et al., 2001, Mock,
2010] and is not easy to quantify. Other factors that influence the commercial buying

81If the gasoline consumption for an average sized conventional car is 0.06 l/km, its annual mileage
is 20,000 km and the initial gasoline price is 1.34 EUR/l, an increase of 15% would be calculated as:
0.15 · 1.34 EUR/l · 0.06 l/km · 20, 000 km · 3.8 a ≈ 1000 EUR.

82This type of analysis also reflects the growing amount of leasing vehicles with leasing rates reflecting
the vehicle TCO.
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decision [Berg, 1985] or specific use cases (like overnight inner city logistics with reduced
noise or car-sharing) were not considered here. Since in company car fleets, trips could be
rescheduled, PEVs could reach higher market shares when trips within the electric range
were allocated to PEVs and long-distance trips to conventional vehicles (see [Haendel
et al., 2015]).

The analysis of commercial fleet vehicles is based on driving profiles collected with
GPS-trackers for three weeks [Fraunhofer ISI, 2014]. Although the sample is limited, it
especially covers the large commercial branches in terms of registrations in Germany (see
Section 3.3). The observation period of three weeks is longer than in previous studies [IVS
et al., 2002,WVI et al., 2010] and decisive for realistic estimates of the technical feasibility
of BEVs [Gnann et al., 2012a], the electric driving shares of PHEVs [Plötz et al., 2014a]
and the market potential [Gnann et al., 2012c] since driving varies largely between drivers
and days (see [Neubauer et al., 2012] and Chapter 3). Since the REM2030 data was
collected with GPS-trackers, the availability of a charging point after each trip is unknown.
In this analysis, vehicles are assumed to park at the company site (where charging is
possible) when their bee distance is not more than 500 meters from the main company
site. A distinction of different distances depending on the company size (larger distances
for companies with more employees) showed no considerable changes in results. For private
and and company car profiles, a data set with seven days of observation allows a more
detailed analysis of market potentials than with one day. Limited observation periods
may not include some rare long-distance trips, e.g. for long travels, that may not be
possible for BEVs. The necessity for such trips may occur less often for fleet vehicles than
for private or company cars, yet the transferability of the BEV feasibility in one or three
weeks to one year is limited. A variation of the calculation for BEVs with an estimated
number of long-distance trips will be discussed in the following Section 5.2. Also, the data
sets with a limited number of observations influence results. For this reason, the market
diffusion of PEVs in the following Section 5.2 is shown with confidence bands due to the
limited sample size.

Furthermore, the results are based on assumptions for technical and economical pa-
rameters. The main assumptions for parameters were discussed in Section 4.3 and param-
eters are based on a large study that discussed several further parameter options [Plötz
et al., 2013]. A further analysis of electric consumptions in [Gnann et al., 2015a, sec. 5.3]
allowed to determine the impact of changes to these parameters. This analysis of electric
consumptions showed that the average values chosen for the market potential analysis
reflect the peaks of electric consumption distributions and are thus justifiable. The bat-
tery degradation resulting from an intense use is reflected in an auxiliary analysis which
shows that all trips performed by PEVs are covered [Plötz et al., 2013, sec. 7.8]. Also,
the choice of battery sizes has an impact on results. The technical feasibility of BEVs as
well as the electric driving share for PHEVs rises with the battery capacity (see e.g. [Kley,
2011,Gnann et al., 2012a]). Yet, market potentials might decrease when raising battery
sizes above an affordable limit (see [Kley, 2011]). Also the battery sizes for PHEVs and
BEVs influence each others market potentials [Zischler, 2011]. An analysis of commer-
cial fleet vehicles with similar assumptions for technical and economical parameters, yet
smaller batteries, showed lower PEV market shares [Gnann et al., 2015a].
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5.1.4 Summary

In this section, results for the vehicle usage in different user groups and the market
potential of PEVs within these groups were presented for Germany in 2020. A PEV
simulation of individual vehicle profile was performed to determine the technical potential
for PEVs followed by an individual calculation of the utilities of different drive trains.
From the evidence presented in this section the following can be summed up:

• Vehicle driving profiles with long observation periods permit statistical analyses of
driving distances and regularity. A comparison of the means and variations of indi-
vidually calculated log-normal distributions show that, on average, commercial fleet
vehicles and company cars drive significantly more than private vehicles. Further,
fleet vehicles tend to drive more regularly than private vehicles, while both groups
drive significantly more regularly than company cars. This confirms the necessity
to distinguish between private and commercial driving profiles.

• The driving of private vehicles is technically favorable for PEVs, followed by fleet
vehicles and company cars which tend to drive too irregular. However, PEV mar-
ket shares based on the utility maximizing drive trains are highest for commercial
fleet vehicles, followed by private and company cars. The higher amount of VKT
of commercial fleet vehicles makes them more favorable for PEVs compared to pri-
vate vehicles, since they are able to profit from the lower operating costs of PEVs.
Company cars suffer from the high mileage paired with a more irregular driving.

• Apart from driving, the differences in market shares stem from the exemption of VAT
and depreciation allowances for commercial vehicles (fleet vehicles and company
cars) which decrease the differences in utilities. Company cars, however, cannot
profit of these fiscal instruments since the company car tax that has to be paid by
the vehicle user. The reduction of the gross list price by a certain amount connected
with the battery price is not sufficient to make them affordable to users. The missing
WTPM for PEVs as company cars further decreases their market potentials.
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5.2 Market diffusion of plug-in electric vehicles83

The first three parts of the model ALADIN form a market diffusion model of PEVs without
the co-diffusion of public charging points. After analyzing the market potential for PEVs
as commercial passenger cars, understanding their diffusion and timely evolution is the
goal of the following section. A special focus is put on factors that influence the PEV
diffusion apart from charging infrastructure to set their influence into context. The model
is extended by the stock model for PEVs (see Table 5.1) and the obstructing and favoring
factors are included: the cost for individual charging points, the limited availability as
obstructing as well as the WTPM for PEVs as favoring factor. In this section the influence
of charging at home and at work (for private users) and at commercial sites (for fleet users)
on the market diffusion of PEVs are analyzed.

This section is structured as follows: Results for PEV market diffusion are presented
in Section 5.2.1. The sensitivity of results on changes in monetary and non-monetary
influence factors is presented in Section 5.2.2 followed by a comparison of ways to increase
the range of PEVs (Section 5.2.3). A discussion (5.2.4) and summary (5.2.5) round up
this section.

Plug-in electric vehicle market diffusion models

The diffusion of new technologies and PEVs in particular has received considerable at-
tention in the literature (see [Al-Alawi and Bradley, 2013] for a recent review of PEV
market diffusion models). Since the literature review in Chapter 2 did not comprise the
PEV market diffusion models, they are introduced briefly in the following. Results will be
compared to those of other market diffusion models of PEVs for Germany in the discussion
section.

A general classification of market diffusion models was given by Geroski [Geroski,
2000]. He describes two groups of models for market diffusion of innovations: popula-
tion and probit models. Since probit models are one classification of consumer choice
models (see e.g. [Train, 2009]), it is referred to consumer choice models for the second
group. The latter also includes the frequently used agent-based models. These two model
classes are discussed briefly and some of the existing market diffusion models for PEVs
are classified accordingly in order to categorize the first three parts of ALADIN.84

Population models describe users or adopters not as individuals, but as groups. Popu-
lation models assume for example that the rate of adoption is proportional to the number
of adopters and the remaining population that has not adopted a technology yet. This
leads to the well-known logistic differential equation and can be interpreted via the spread
of information about a technology [Geroski, 2000]. Population models offer a simple struc-
ture and interpretation. They are usually applied by calibrating the market diffusion curve
to existing market data or by assuming hypothetical growth rates. This procedure is rather
sensitive in early market phases when little data is available. Furthermore, the hetero-
geneity of the individual buying decisions and preferences of users, for example reflected
in the willingness to pay more for new technologies of some users as well as the individual
economics of the driving behavior, cannot be incorporated explicitly into these models.

83Several results in this section have been published in [Gnann et al., 2015b].
84The classification of Geroski is appropriate for the diffusion of technologies, while the one used in

Section 2.2.2 fits better if (energy) systems are analyzed.
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Population models for PEV market diffusion or market diffusion of other alternative fuel
vehicles can be found in [Duleep et al., 2011,Richter and Lindenberger, 2010,Keles et al.,
2008,Köhler et al., 2010,Lamberson, 2008,Meyer and Winebrake, 2009,Nemry and Brons,
2010,Shepherd et al., 2012,Wansart and Schnieder, 2010,McManus and Senter Jr., 2009],
which range from simple mathematical equations to complex system dynamics models.

The second group of market diffusion models, consumer choice and agent-based mod-
els, studies adopters individually. These models are often applied when the purchase
decision is more complex or the technologies to be adopted are rather expensive. For
example, a simple probit model for PEV adoption would calculate the average ownership
cost difference between conventional and plug-in electric vehicles and estimate a PEV
market share based on this difference. As fuel and battery prices change over time, these
cost differences change and with them the estimated PEV market share. Thus, consumer
choice models develop market diffusion bottom-up and acknowledge that individual users
can be very different. This is particularly important to identify niche markets in early
phases of market development. However, these models face the problem that consumer
statements about their preferences for PEVs are often inaccurate. Given the current
market shares of PEVs, the vast majority of users has never experienced a PEV and can
hardly judge its utility. Accordingly, the majority of studies uses stated preference data
to study AFV diffusion (see e.g. [Bočkarjova et al., 2014,Brownstone et al., 2000,Batley
et al., 2004,Potoglou and Kanaroglou, 2007,Glerum et al., 2013]).

Consumer choice and agent-based models were used to model PEV market diffusion
in [Eppstein et al., 2011,Hacker et al., 2011b,Mock et al., 2009,Propfe et al., 2012a,Zhang
et al., 2011, Shafiei et al., 2012,Yabe et al., 2012, Sullivan et al., 2009, Elgowainy et al.,
2012, Brown, 2013, Higgins et al., 2012, Kihm and Trommer, 2014] where modeling ap-
proaches range from determining user shares by stated preference experiments to agent-
based models. Some of these models are based on driving behavior of conventional ve-
hicles [Hacker et al., 2011b,Mock et al., 2009, Brown, 2013,Kihm and Trommer, 2014].
This would in principle allow one to analyze user behavior in more detail. However,
the latter models use driving profiles of only one day which can cause severe inaccura-
cies on the individual level, as a single day might not represent the individual’s typical
driving (see [Neubauer et al., 2012,Gnann et al., 2012a,Plötz et al., 2013] and Section 3.1).

In summary, agent-based models offer the possibility to include several aspects of
great relevance for the market diffusion of PEVs in the current market development phase:
individual purchase preferences, individual driving behavior (to account for the limited
range of PEVs and the VKT related usage costs), the need for frequent recharging and
infrastructure as well as the limited choice of PEV brands and models. In ALADIN,
these these factors are explicitly taken into account in an agent-based model with different
user groups and their individual decision making processes. It is possible to determine
and quantify the influence of external conditions as well as (monetary) policy options.
Especially the user-specific decision making is a particular strength of the model that
permits to identify niche markets in early market phases. Results will be compared to
other ABMs from Germany, i. e. [Mock et al., 2009,Hacker et al., 2011b, Propfe et al.,
2012a,Kihm and Trommer, 2014], in Section 5.2.4.
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5.2.1 Market diffusion of plug-in electric vehicles until 2030

Three scenarios for framework conditions for market diffusion were defined in Section 4.3.
The results for PEV market diffusion in the three scenarios can be found in Figure 5.5.
It shows the total number of PEVs in German stock on the ordinate over the years from
2015 until 2030 on the abscissa. Results are shown for the contra-EV scenario in red, the
medium scenario in blue and the pro-EV scenario in green with 10% to 90%-confidence
bands due to limited sample size (cf. [Plötz et al., 2014a] for details).85 Within the 10%-
confidence band 1.5 to 1.9 million PEVs for the contra-EV scenario (≈4% of the German
passenger car stock in 2030), 4.5 to 5 million PEVs for the medium scenario (≈11%) and
9.5 to 10.5 million PEVs for the pro-EV scenario (≈23–24%) are found.86 These broad
ranges arise from limited data samples that are considered as well as error propagation
over the years. The large differences between the three scenarios also show the influence
of the input parameters. Even small changes within the main drivers may change results
significantly. In the medium scenario, PEV penetration rates of more than 10% of car
sales are found after 2022, which derives from the increased availability of PEVs from
different brands as well as decreasing vehicle and energy prices. The compound annual
growth rates of all three scenarios87 are still within the range of other AFVs or new
technologies [Wietschel et al., 2014a, p.13,14]. The increasing PEV sales can be observed
in Figure 5.6.

Figure 5.6 shows the registrations in the medium scenario for all drive trains on the
left panel and for PEVs differentiated by user groups on the right panel. Studying the
registrations distinguished by drive train, a high share of gasoline vehicles (about 60% of
registrations) can be observed which is slightly higher than the current German average
(about 50%). This results from the assumed fuel price ratios and costs for conventional
vehicles which require about 20,000 km for medium sized diesel vehicles to economize
against gasoline cars in 2015. PEV registrations are dominated by PHEVs in the begin-
ning, while BEVs gain almost equal market shares until 2030. The lower market shares

85 The statistical uncertainty due to finite sample size is statistically expressed as confidence bands or
confidence intervals [Fahrmeir et al., 2011]. More precisely, one estimates the sales share plτ of vehicle
type l (e.g. propulsion technology or vehicle size or a combination of such distinctive characteristics)
from the number of driving profiles klτ that fulfill the required condition (e.g. that should be PEVs) and
the number of all driving profiles in that group Kl as p̂lτ = klτ/Kl. Here, the hatˆindicates an estimate
for the ”real” market share plτ . Given a confidence level 0 < α < 1, the confidence band ”contains the
real value of plτ in (1 − α) · 100% of all cases in which confidence intervals are estimated” [Fahrmeir
et al., 2011]. For a given confidence level α an upper value p+lτ and a lower value p−lτ are calculated,
such that p̂lτ ∈ [p−lτ , p

+
lτ ] in (1 − α) · 100% of the cases. Using a conservative approach, often referred

to as ”exact”, the upper and lower confidence interval boundaries are given by [Brown et al., 2001]
p−lτ = Beta−1(α/2, klτ ,Kl − klτ + 1) and p+lτ = Beta−1(1 − α/2, klτ + 1,Kl − klτ ). Here, Beta

−1(x; a, b)
denotes the inverse of the cumulative Beta distribution Beta(x; a, b) = (B(a, b))−1

∫ x

0
ta−1(1 − t)b−1dt

with the Beta function B(x, y) =
∫ 1

0 tx−1(1 − t)y−1dt for normalization. Additionally, the statistical
uncertainty can easily be propagated to derived quantities. See [Plötz et al., 2014a, sec. 2.3.3] for details.

86Again, it is important to mention that the scenario results do not represent exact forecasts of the
future development, but allow a model-based assessment of the main influence factors which are combined
in scenarios.

87The compound annual growth rate (CAGR) is calculated as CAGR(t0, t1) = (n1/n0)
1/(t1−t0)−1 with

t0 being the initial year and and t1 the year of observation. n0 and n1 are the corresponding values to
observe, here the vehicle registrations. For the contra-EV scenario a CAGR(2030,2015)=14% is found,
19% for the medium scenario and 20% in the pro-EV scenario. However, the CAGR depends on the
initial year and the years of observation (see [Wietschel et al., 2014a]).
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Figure 5.5: Results for the three PEV market diffusion scenarios for Germany. Shown are the
years on the abscissa and the total PEV stock on the ordinate. Results are shown with 10%,
30%, 50%, 70% and 90% confidence bands (cf. [Plötz et al., 2014a]), contra-EV scenario in red,
medium scenario in blue and pro-EV scenario in green.

of BEVs stem from the high investments for large batteries which cannot be economized
for a large group of vehicles until the prices for batteries are low enough.

Turning to the right panel of Figure 5.6 a domination of fleet vehicles in PEV regis-
trations can be observed until 2020 (about two thirds for fleet vehicles and one third for
private cars). Thereafter, the share of private vehicles increases until 2030 (about 40%)
and company cars start to enter the market in 2023 increasing up to 10 % in 2030. The
dominating position of fleet vehicles in PEV registrations results from the favoring condi-
tions for PEVs: a PEV favoring driving behavior (Section 5.1.1), reimbursement of VAT
and depreciation allowances (see Section 5.1.2). In 2030 almost every fourth registered car
is a PEV in the medium scenario. These results are similar for the other scenarios. Ta-
ble 5.5 sums up the results of PEV stocks in 2030. Results are distinguished by scenario,
user group, vehicle size and PEV type.

Table 5.5: PEV stock in 2030 differentiated by scenario, user group, vehicle size and PEV type.

PEV STOCK 2030 contra-EV medium pro-EV

private 1,080,000 3,388,000 7,193,000
fleet 387,000 1,177,000 2,151,000
company 52,000 273,000 540,000

small 175,000 921,000 2,110,000
medium 251,000 1,807,000 4,565,000
large 714,000 1,327,000 1,937,000
LCV 379,000 784,000 1,272,000

PHEV 976,000 2,946,000 5,824,000
BEV 543,000 1,893,000 4,060,000

TOTAL 1,519,000 4,839,000 9,884,000

When taking a look at Table 5.5, one may question the distribution of user groups
in stock and those of registrations in Figure 5.6 which clearly differ. As mentioned in
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Section 4.2.3, it is assumed that all PEVs diffuse into the second-hand car market after
their first holding period. These holding periods are 3.8 years for commercial and 6.2 years
for private vehicles after which they diffuse into private ownership until their scrapping.
For this reason, the majority of PEVs in 2030, about 70%, are privately owned, a small
share (3–5%) are company cars and about one quarter of the PEV stock are fleet vehicles,
independent of the scenario. PEV potentials for company cars may be lower since no
WTPM is considered for these vehicles and the additional hurdle of the company car tax
has to be overcome. Yet, the regularity of driving of company cars is similar to private
vehicles paired with higher distances travelled which does not favor the adoption of PEVs.

Concerning car size, the distribution in the three scenarios is different. Large PEVs
are less affected by market conditions and double or triple their stock with more favor-
ing conditions (from contra-EV to pro-EV scenario). All other vehicle sizes show large
variations to parameter changes. The fastest growing group of private PEVs between
contra-EV and pro-EV scenario are medium sized vehicles. At a first glance, these high
numbers for large vehicles seem counter-intuitive, yet longer distances are driven by large
cars. With comparable investment differences and varying differences in variable costs,
higher mileages allow large vehicles to economize easier. For example, the investment for
a large commercial PHEV in 2020 is LPlarge,PHEV = 38, 017 EUR88 while a large diesel
vehicle’s investment is LPlarge,diesel = 33, 387 EUR and the difference 4,430 EUR. For
small commercial vehicles the investment is LPsmall,PHEV = 16, 822 EUR89 for PHEVs
and LPsmall,diesel = 12, 888 EUR for diesel vehicles resulting in a difference of 3,934 EUR.
Thus the differences of vehicle investments are very close and additional investments for
PHEVs are slightly higher for large vehicles. Assuming an electric driving share of 60%
for both size classes, fuel cost differences would amount to 0.013 EUR/km for small ve-
hicles and to 0.022 EUR/km for large vehicles.90 Thus, at about 200,000 km a large
PHEV would amortize against a diesel vehicle in this example and a small PHEV at
about 300,000 km. Not only that the needed mileage is lower for large vehicles, but also
the average mileage performed by large vehicles is higher (cf. Table 3.5 and 3.7). Al-
though this is only an example and in the model calculations more options have to be
taken into account (e.g. BEVs and gasoline vehicles as other vehicle options, different
resale prices, costs for operations and maintenance or vehicle taxes) the example shows
that both conditions (necessary mileage to economize and driven mileage) allow larger
PEVs to gain higher market shares than smaller ones.

As mentioned already for PEV registrations the more promising PEV group is PHEVs
until 2020, while BEV shares increase until 2030. In the stock BEVs account for 33%
(contra-EV) to 40% (pro-EV scenario). This stems from the large batteries for medium
and large for BEVs which need very high mileages to economize. PHEVs instead can
gain market shares if their electric driving shares are sufficient and their mileages are high
enough which is the case for an increasing number of vehicles until 2030.

Lastly, one may take a look at the number of individual charging points which are

88LPlarge,PHEV = 34, 351 EUR+ 13 kWh · 282 EUR/kWh = 38, 017 EUR
89LPsmall,PHEV = 14, 566 EUR+ 8 kWh · 282 EUR/kWh = 16, 822 EUR
90The fuel cost for PHEVs would consist of a share for electric and one for non-electric driving, i. e.

conssmall,PHEV = 0.6 ·0.144 kWh/km ·0.185 EUR/kWh+0.4 ·0.051 l/km·1.262 EUR/l = 0.042 EUR/km
for small PHEVs and conslarge,PHEV = 0.6 · 0.193 kWh/km · 0.185 EUR/kWh + 0.4 · 0.078 l/km ·
1.262 EUR/l = 0.061 EUR/km for large PHEVs in the medium scenario. The fuel costs for diesel vehicles
would be conssmall,diesel = 0.043 l/km · 1.262 EUR/l = 0.053 EUR/km for small and conslarge,diesel =
0.066 l/km · 1.262 EUR/l = 0.083 EUR/km for large diesel vehicles.
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Figure 5.6: Simulation results for vehicle registrations in 2015–2030 in the medium scenario.
Left panel: All vehicles distinguished by propulsion technologies. BEV in green, PHEV in blue,
diesel vehicles in light grey and gasoline vehicles in dark grey. Right panel: PEVs distinguished
by user groups. Company cars in turquoise, fleet vehicles in yellow and private vehicles in khaki.

necessary for these market penetrations. Although this seems simple, as every vehicle
gets assigned one charging point, the second-hand car market and the decommissioning of
vehicles complicate the approach. A charging point is sold to every vehicle that is bought
in the first car market which in the beginning is dominated by fleet users. Yet, more
vehicles of the vehicle stock are private cars after several years. Also, it remains unclear if
the owner of a PEV, that is replaced, needs to buy another charging point. Hence, there
are three different options to determine the charging point stock of individual charging
points (see also Figure 5.7 for the medium scenario): (1) Every vehicle sold needs one
charging point. This would not consider the charging points necessary for private users
in the second car market. (2) New charging points are needed for every PEV at the
first registration and in the second-hand car market. For the second-hand car market
the ratio of simple wallboxes and expensive domestic charging points is assumed equal to
the share of new private PEV registrations. (3) Every charging point that was installed
once is re-used while calculation of the ratio of wallboxes and more expensive charging
points is similar to option 2. While option 1 can be ruled out completely, since it does
not consider the distribution of vehicles in stock, the real number of charging points must
be between options 2 and 3. However, as framework conditions ameliorate for PEVs in
all scenarios a profile for which a PEV has once been utility-maximizing will not switch
back to a conventional vehicle in a later period. A user that once bought a PEV will
always be replace his vehicle by a PEV, hence option 3 seems to be most appropriate
for the charging point calculation. One large advantage of this approach is that total
charging point numbers of private (incl. company cars) and fleet vehicles are equal to
their vehicle stock (cf. right bar in Figure 5.7 and PEV stock in the medium scenario in
Table 5.5). Thus, the charging point shares are equal to the number of PEVs in stock in
the contra-EV and pro-EV scenario. The share of private users that are in the need of a
more expensive charging point, as they do not own a garage, is 6% of all charging points
in the contra-EV scenario, 8% in the medium scenario and 10% in the pro-EV scenario
in 2030.

In summary, the main findings of the PEV market diffusion are: (1) PEV market
diffusion is largely influenced by framework conditions. (2) A large number of private and
fleet driving profiles for which PEVs are, according to the model, a utility maximizing
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Figure 5.7: Different inventory calculations of individual charging point stock for the medium
scenario in 2030. The first bar shows the stock if only charging points of first vehicle buyers are
considered, the second if also the second-hand car buyers and their charging points are reflected.
In the third bar a re-use of charging points is considered. *Approach considered in this thesis.

solution. This is resulting in high PEV market shares (5% of new vehicle registrations
in the medium scenario in 2020, 20% in 2030). (3) PEV registrations are dominated by
fleet vehicles until 2020 which remain important in registrations until 2030, while the
PEV stock is dominated by private users. (4) Although the availability of models in
the vehicle market is especially limited for large PEVs, the highest market potential lies
within this vehicle class as it has the highest possibility to economize. (5) High shares of
PHEVs compared to BEVs are found. This results from some exceptional long trips that
users might not fulfill with BEVs or the lower investments of PHEVs which is easier to
economize.

5.2.2 Sensitivity analyses

The influence of individual factors is important for a deeper understanding but obscured
in scenarios in which several parameters change simultaneously. Thus, the individual
influence of monetary factors (retrieved in 4.3) and non-monetary factors (described in
sections 4.2 and 4.3) are analyzed. In this section, all analyses refer to the medium
scenario for framework conditions and only home charging is considered.

Influence of monetary factors

In Section 4.3, the cost composition of utility values for different vehicles was shown for
an example and the most important factors were aggregated to scenarios (cf. Figure 4.7).
Since the capital costs for the vehicles vary largely between propulsion technologies, the
influence of battery prices and interest rates are chosen for variation. Further, electricity
and fuel prices are varied as variable cost is different between drive trains. The influence
of non-monetary factors is analyzed thereafter.

Figure 5.8 shows the influence of single parameter changes in relation to the total
PEV stock in 2020 (left panel) and 2030 (right panel). On the ordinate a parameter
change from 75% of the original value up to 125% is shown, while the abscissa shows
the resulting total PEV stock in 2020 (2030). Changes for electricity prices are shown
in dashed green, fuel prices in solid red, battery prices in dash-dotted blue and interest
rates in dotted light blue. In the sensitivity analysis, the value for 2015 was fixed and
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Figure 5.8: Sensitivities to parameter variation. Displayed is the influence of a variation of
one single parameter on the total PEV stock. The variation of parameters is shown as factor
of assumed value for every single parameter on the ordinate and the total PEV stock on the
abscissa. Electricity prices in green dashes, fuel prices in solid red, battery prices with blue
dash-dots and interest rates in light blue dots. Left panel: Variations until 2020. Right panel:
Variations until 2030.

values for 2020 (2030) were changed by the percentage shown. Values between 2015 and
the last year were adjusted accordingly. Further, in the sensitivity for electricity prices
the private and commercial electricity prices were changed, the diesel and gasoline price
in the fuel price sensitivity and the interest rates for private and commercial users in the
interest rate sensitivity.

Some clear and expected results are observable in both panels of Figure 5.8. Higher
numbers of PEVs can be found with increasing fuel prices and lower PEV numbers when
fuel prices decrease. For all other parameter changes, lower values lead to higher market
shares, e.g. there are more PEVs in stock when batteries are cheaper or the electricity
price is lower. As investments for PEVs are higher than for conventional vehicles, clearly a
decreasing interest rate is favorable. More interesting is the magnitude of changes caused
by parameter variation: Fuel prices have the highest influence in positive and negative
direction both in 2020 and 2030. The small knee in the red curves at a variation of
0.9 might derive from a switch of conventional fuel vehicles (from gasoline to diesel) or
PEVs (from BEV to PHEV) as corresponding benchmarks. The second most important
input factors are the battery price and electricity prices. The lowest influence is found
for changes in the interest rates. These parameters are externally defined and can only
slightly be influenced by PEV sales (only the battery price might decrease with economies
of scale). Further, the effect of changes is naturally stronger in 2030 than in 2020. A 25%
decrease of battery prices leads to a PEV stock increase of 40% in 2020 and 55% in 2030.

A monte-carlo-simulation was performed to test the robustness of results. A random
change of fuel, electricity and battery prices in [Gnann et al., 2015b] was run 1,000 times.
In this simulation slightly different parameters were used and simulations ran until 2020.
The qualitative results, however, can be transferred to this work. A normal distribution
N (µ, σ2) was used for the parameter variation with the value of the medium scenario as µ
and the maximum of the differences between the pro-EV and medium or contra-EV and
medium scenario as σ for the random variation of parameters. Model results ranged from
50,000 to 2.2 million PEVs in 2020, while the average was about 750,000 and the median
644,000 PEVs. The first quartile was at 443,000 PEVs, the third at 995,000, resulting
in an interquartile range of 552,000 PEVs. Thus the medium range of most results was
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Figure 5.9: Monte-carlo-simulation for variation of scenario parameters. Shown is the plug-in
electric vehicle stock on the ordinate and its absolute frequency on the abscissa resulting from
a random variation of fuel, electricity and battery prices.

not as wide as suggested by the scenarios. Also the medium scenario (620,000 PEVs) was
very close to the median of the simulations.

From the results in this subsection, one may conclude that (1) the market evolution
of PEVs is susceptible to changes in fuel prices, followed by battery and electricity prices.
(2) The sensitivity analysis shows that an increase or decrease of the main influence
factors by 25% can result in doubling the PEV stock in 2030 or cutting it by about 60%.
(3) The monte-carlo-simulation further showed that ”good” conditions favor the PEV
market evolution more than ”unfavorable” conditions hamper it.

Influence of non-monetary factors

One major advantage of ALADIN compared to pure TCO-models is the inclusion of several
”soft factors” into the individual buying decision. These are: the availability of individual
charging points, the limited choice of PEVs as hampering factors and theWTPM for PEVs
as favoring factors. The model construction allows to individually exclude these factors
from the buying decision and thus to test their influence on results. Figure 4.7 underlines
the influence of the WTPM, the distinction of private garage owners and curbside parkers
as well as the limited availability on the market diffusion of PEVs. Hence, their influence
is analyzed in the following. Figure 5.10 shows the differences to the medium scenario if
the three non-monetary factors are switched off individually (individual charging points in
dark blue, limited availability in green and WTPM in orange) and altogether (light blue).
The absolute changes in the resulting PEV stock can be found in the left panel while the
right panel shows the relative changes when compared to the case with all non-monetary
factors included.

The highest absolute differences can be found for individual charging points and the
WTPM in 2030 when factors are considered individually. The exclusion of the limited
availability has a low absolute influence. This is slightly different for the relative influence
of these factors. Here, the limited availability and the WTPM have a very high influence
in the beginning which decreases until 2030. This is certainly an effect of the assumed
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Figure 5.10: Influence of non-monetary factors on PEV market diffusion. Shown are the differ-
ences to the medium scenario when the cost for individual charging points is not considered (dark
blue), without the limited PEV availability (green), without the WTPM (orange) and when all
factors except for the vehicle TCO are not considered (light blue). Left panel: Absolute change
of PEV stock. Right panel: Relative change of PEV stock.

phase out of the WTPM until 2030 (see Section 4.3.4) and the decreasing limitations of
PEV availability (see Section 4.3.5). Yet, the stock model causes a postponement of a
zero-difference between the base case and a model without the WTPM. The charging
infrastructure gains relative importance over the years and in 2030, the effects almost
cancel each other, i. e. PEV market diffusion results are almost equal when soft factors
are considered or not.

While the influence of individual charging points is analyzed in the next subsection,
a deeper look at the allocation of the WTPM was taken in [Plötz et al., 2014a,Gnann
et al., 2015b]. In [Plötz et al., 2014a], the allocation method of the private WTPM data
to the driving profiles was tested and concluded that it is slightly better than a random
allocation. Since a random allocation may still influence results of PEV market diffusion,
a monte-carlo simulation for a random allocation of the WTPM was performed in [Gnann
et al., 2015b]. Slightly different parameters until 2020 were used for the random allocation
of the WTPM and the simulation was conducted 1,000 times. A decrease of the PEV
stock of about 10% in 2020 was found compared to the structured allocation. Users who
have been assigned a high WTPM were generally better suited for PEVs. Thus, users
that are willing to pay a price premium already have favorable conditions because of
their driving behavior. Beside this interesting effect, that is still valid under changing
parameter assumptions, the negative effect of a random allocation might be about 5% in
2030 when the phase-out of the WTPM on the left panel of Figure 5.10 is considered.91

To conclude, a noteworthy impact of the soft factors on market diffusion can be
observed especially in the beginning of PEV market diffusion. This impact decreases
over time. The limited PEV availability has the strongest effect in the beginning of the
market diffusion, while the cost for individual charging points and the WTPM strongly
influence the PEV market diffusion until 2030. The influence of a random allocation of
the WTPM should be around 5% in 2030 which is important for the interpretation of
results in Section 5.3.

91The influence of the WTPM of changes to market diffusion results is at 80% of the PEV stock of the
medium scenario in 2020 and 40% in 2030, thus the influence of a random allocation should also halve.
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5.2.3 Increasing range with non-public charging or rental cars

Additional infrastructure increases the effective range of BEVs. However, there are mul-
tiple other options that might serve to address the problem of a BEV’s limited range and
which several users might be willing to accept to fulfill their driving needs (see also [Ku-
rani et al., 1994,Funke and Plötz, 2014]). These will briefly be discussed to put charging
infrastructure options into context:

1. Switch to PHEV: A potential BEV user could simply switch from BEV to PHEV.
This solution is incorporated in the model, since BEVs are excluded from the further
analysis, if their range is not sufficient to fulfill the full driving profiles. The switch
becomes visible when results of Section 5.1 are compared to those of [Gnann et al.,
2015a] where BEV batteries are smaller and the share of PHEVs is higher since not
all trips could be fulfilled by BEVs.

2. Use substitute vehicles for unfeasible trips: Another option is to switch to other ve-
hicle options for trips that exceed the range of BEVs. For fleet vehicles, this would
be possible if company vehicle fleets are scheduled according to their abilities: E.g.
BEVs for frequent medium distances that occur regularly, diesel vehicles for very
long-distance trips and PHEVs of gasoline vehicles for shorter irregular trips. This
multi-dimensional optimization problem is analyzed in [Haendel et al., 2015]92 find-
ing that several company fleets could be optimized by sparing vehicles completely
and several companies could replace their vehicles by PEVs with even higher eco-
nomic benefits than with an individual optimization. For private vehicles, it would
also be possible to use different cars in the household or use rental cars for days
on which the vehicle ranges might be exceeded. While for the first option the data
set is not sufficient, the latter is analyzed in [Jakobsson et al., 2014]93 and briefly
described in the following.

3. Raise charging options: The effective range of BEVs (and also PHEVs) could be
increased by additional public or semi-public charging infrastructure. The influence
of additional charging options at work will thus be analyzed in the following. The
additional availability of public charging spots was analyzed e.g. in [Kley, 2011,
Gnann et al., 2012a] and compared to battery size increases in [Gnann et al., 2012b].
However, these studies did neither permit to determine a number of charging points
nor was any cost for public charging considered. This will be part of the following
Section 5.3.

4. Increase BEV battery size: Larger batteries would logically raise BEVs’ ranges,
yet it is more difficult to economize because of currently high battery prices. The
possibility to economize does not only depend on framework conditions, but also on
technical parameters of concurrent technologies, such as PHEVs. A comparison of
the dependence of market shares with differing battery sizes for BEVs and PHEVs
was analyzed in [Zischler, 2011].

Since option 1 is a permanent part of the model, options 2 and 3 (work charging) will
be analyzed in the following. Public charging as an option to increase range (3) and the
variation of battery sizes (4) will be part of the next Section 5.3.

92Haendel, Gnann and Plötz (2015,i.p.)
93Jakobsson, Plötz, Gnann, Sprei, Karlsson (2014)
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Rental or car-sharing vehicles for long-distance trips94

When ranges of BEVs are exceeded, the occasional use of rental or car-sharing vehicles
might be considerable. To include this calculation in ALADIN, the number of days on
which a substitute car is needed has to be determined. Therefore, a method proposed
in [Plötz, 2014] is used that allows to calculate the number of days requiring adaptation.95

The individual daily VKT rl are assumed to be independent and identically distributed
(iid) random variables. Let f(r) denote the user-specific distribution of daily VKT. The
probability of driving more than L km on a driving day is then given by

∫∞

L
f(r)dr =

1 − F (L) where F (r) is the cumulative distribution function of f(r). Let n denote the
number of driving days out of N days of observation such that α = n/N is the share
of driving days. Thus, D(L) = 365(n/N)[1 − F (L)] is the number of days per year
with more than L km of daily VKT. Accordingly, D(L) is the number of days requiring
adaptation for a potential BEV user. Following [Plötz, 2014], the log-normal distribution
f(r) = exp[−(ln r − µ)2]/(r

√
2πσ) is used to model the random variation in daily VKT

of the drivers. For each individual driver, the log-normal parameters for the typical scale
of daily driving µ and the variation in daily VKT σ are obtained by maximum likelihood
estimates. The number of days requiring adaptation is calculated as follows: For each
driver, the share of driving days is estimated as n/N and the driver-specific log-normal
parameters are estimated from likelihood maximization. These were already introduced
in Section 5.1.1. Using the cumulative distribution function of the log-normal distribution
F (x) = 1/2[1+ erf((ln x−µ)/

√
2σ] the user-specific number of days requiring adaptation

Di(L) is calculated (erf(x) denotes the error function). This procedure is repeated for
each driver in the data base. In very rare cases (37 out of 6339), there is no variation in
daily driving distance between the days reported, i.e., σi=0. σi is set equal to the sample
mean in this case. However, this has almost no effect on the results reported below.96

Figure 5.11 shows the results when BEVs are simulated with an additional cost for
every day on which the range of BEVs is exceeded in relation to results of the medium
scenario. Figure 5.11 uses the same display as Figure 5.12. Absolute changes in relation to
the medium scenario are found on the left, their relative changes on the right panel. Four
options are considered that differ in cost for rental cars: In options A0 and A1, the daily
costs for a rental car, in B0 and B1, costs for a car-sharing vehicle are assumed.97 Options
A0 and B0 do not consider the costs per kilometer driven, while A1 and B1 also integrate
the driving-dependent costs (with diesel) for the substitute vehicle. Until 2025, all options
show a similar behavior: a raise of the PEV stock until 2020 and a decline until 2025,
which is only differentiated by the height resulting from price differences for substitute
vehicles. After 2025, BEVs with a rental-car option seem to be too costly compared to
alternatives (PHEV, gasoline, diesel) and the difference in total BEV stock turns even
negative. Car-sharing vehicles may be an option for later years since they show a positive
trend even in 2030. However, the relative changes (right panel) indicate that results are
positively affected in the beginning of a market evolution. But, the influence after 2025

94This section is based on Jakobsson, Plötz, Gnann, Sprei and Karlsson (2014) [Jakobsson et al., 2014]
95See [Weiss et al., 2014] for another approach to determine the days above a vehicle’s range.
96Please note that this log-normal estimate is expected to be valid for different driving ranges L but

seems to slightly overestimate the actual number of days requiring adaptation [Plötz, 2014].
97The cost for rental cars and car-sharing were retrieved with different time horizons before

car rental, duration of car rental and in different German cities on www.billiger-mietwagen.de and
www.flexauto.de/pages/carsharing-vergleich.php.
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Figure 5.11: PEV stock development including substitute vehicles for long-distance trips. Shown
are the differences between options in which private users may use a rental car when the range
of BEVs is exceeded and medium scenario. Options differ in cost for rental cars. A0 (blue):
rental car cost for small vehicles 50 EUR/day, medium sized vehicles with 65 EUR/day and
large vehicles with 75 EUR/day. A1 (red) with same costs plus the cost for driving with a
conventional diesel vehicle. B0 (green) and B1 (violet) with half the rental car prices of A0 and
A1. Left panel: Absolute change of PEV stock. Right panel: Relative change of total PEV
stocks (including commercial PEVs).

is only incremental. This is also visible when units of the abscissae of Figure 5.12 and
Figure 5.11 are compared. Under the assumed parameters, the option to offer alternative
vehicles for days when BEVs ranges might be exceeded, seems to be interesting until 2020
where they can raise PEV market shares. When such options are considered until 2030,
results do not change noteworthy compared to the standard PEV simulation of ALADIN.

Influence of non-public charging infrastructure

In the previous subsections every vehicle has been assigned an individual charging point
at home (for private and company car owners) or at the company site (for commercial
vehicles). Yet, private vehicles might have the opportunity to recharge their vehicle at
work as well, and for some users, the charging point at work might be even more useful
than at home. For this reason, the following charging options for private users are studied
in this section: (1) home only charging, (2) work only charging, (3) home and work
charging. All simulations are performed in the medium scenario for framework conditions.
Commercial vehicles remain unaffected and private users have to pay for either one (case
1 and 2) or two (case 3) individual charging points.

Figure 5.12 shows the differences between charging options work only vs. home only
(dash-dotted blue) and home and work vs. home only (dashed red) and their timely
evolution. On the left panel the absolute and on the right panel the relative changes are
displayed. Results show that charging only at work would reduce the number of PEVs
to half of the vehicle stock in 2030. Thus, one charging point at home is a prerequisite
for PEVs given the facts that half of the registrations are commercial PEVs. Adding an
additional charging point at work would instead increase the number of PEVs in stock
by 20% by 2030. Thus, the additional charging point is affordable for a large number of
vehicles since they are able to perform a higher share of trips electrically.

Summing up, the results of this section show (1) that rental car options (or mobility
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Figure 5.12: Influence of individual charging infrastructure on PEV market diffusion. Shown are
the differences between charging options in which private users only charge at work compared to
charging at home (dash-dotted blue) and between charging options in which private users may
charge at home and at work vs. only at home (dashed red). Commercial users without changes.
Left panel: Absolute change of PEV stock. Right panel: Relative change of total PEV stocks
(including commercial PEVs).

guarantees) may increase PEV sales in the beginning, yet they are no long-term option
from a techno-economical point of view, as results in 2030 are not significantly different to
the base case. (2) Additional charging infrastructure at work may increase electric ranges
at an affordable cost for a PEV-user. This option increases the PEV-stock. (3) Charging
only at work is not sufficient for the majority of potential PEV users. The impact of public
charging points as well as the variation of battery prices will be discussed in Section 5.3.

5.2.4 Discussion

The results of the model ALADIN are subject to a number of uncertainties: (a) an inherent
model design uncertainty, (b) an uncertainty due to the data used in the model and (c)
an uncertainty caused by parameters. The uncertainty due to model design in Section 4.4
and data uncertainty was discussed in Section 3. This part focuses on the parameters
that were considered in the model and their related impacts on model results.

In Section 5.2.1 the results of market diffusion are shown for three scenarios: pro-EV,
medium and contra-EV. Although small variations between scenarios were considered, the
difference between results is noteworthy. This arises from small utility differences between
propulsion technologies (cf. Section 5.2.1). Especially for fleet vehicles, market shares can
vary largely when monetary or non-monetary factors change. The display of utility gaps
allows to interpret the changes caused by small differences in monetary and non-monetary
factors. Since the data sample is limited, results are shown with confidence bands which
cover the uncertainty due to data. Furthermore, the exact numbers of market diffusion
results should permit to understand the range of results and what influences them most,
yet they are no exact forecast. Under the assumptions made for the scenarios, PEVs
enter the market also in the contra-EV scenario. This might be different, if, e.g., battery
prices do not decline as much as assumed when PEV sales are low [Nykvist and Nilsson,
2015]. Also the composition of combining favoring and hampering factors for PEVs in
the scenarios might be discussible, yet the combination of positive and negative factors
for PEVs should show the range of results.
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All scenarios show a high share of fleet vehicles in registrations, which is slightly
decreasing over the years, in favor of a rising share of private vehicles and, delayed, a small
share of company cars. The large number of private PEVs in vehicle stock stems from their
diffusion in the secondhand car market after their first holding time. This assumption is
based on the current registrations in the second car market of conventional vehicles and
may be different for PEVs. While the large potential of fleet vehicles to gain significant
market shares has already been discussed in the previous Section 5.1, the small share of
company cars has several reasons: (1) there is no publicly available data for the WTPM
of company cars, hence the utilities for PEVs and their market shares might be slightly
higher. (2) The buying decision of company cars is more complex since the company and
the driver participate. This is incorporated into the model (Section 4.2.2), but may differ
in reality. (3) The driving behavior of company car drivers is more erratic than for fleet
vehicles, but driving distances are higher than for private cars (see Section 5.1). While a
certain mileage is important for PEVs to economize against conventional vehicles, several
long-distance trips which occur in the week of observation make it difficult for company
cars to gain high electric driving shares for PHEVs or to perform the full driving profile
with a BEV.

The last point to mention concerning vehicle distribution is the ratio of BEVs and
PHEVs, since the high shares of large PEVs in registration and stock was already dis-
cussed in Section 5.2.1. In all scenarios, PHEVs gain higher market shares than BEVs
in the early market diffusion, while BEVs catch up until 2030. This certainly stems
from battery capacities assumed in this thesis which for BEVs are difficult to economize
in the beginning. However, developments in several large car markets suggest a similar
evolution, since PHEVs allow to perform the common driving profile without behavioral
changes [Mock and Yang, 2014]. The re-use of individual charging points may be criticized
as well, yet other options were discussed thoroughly in the text.

As framework conditions have a large impact on results, several parameters were var-
ied separately in a sensitivity analysis in Section 5.2.2. The most influential factors in
utility calculation were chosen for variation. Still, several robust results on PEV mar-
ket evolution and their influence factors could be obtained as a monte-carlo-simulation
demonstrated (cf. Section 5.2.2). These are summed up in the following Section 5.2.5.
Aside from framework conditions, user acceptance has a large impact on market diffusion
but is difficult to measure and predict. Surveys clearly show that some user groups are
willing to pay a premium for new technologies in general and PEVs in particular. Thus,
the inclusion of a higher or smaller willingness to pay of some users is necessary to model
future market diffusion of PEVs. Future research could put emphasis on retrieving more
quantifiable data for the WTPM, especially for its evolution over time. Moreover, the fu-
ture development of battery technology is unclear and might change results significantly
if new battery technology generations are introduced [Thielmann et al., 2012].

The influence of individual charging infrastructure is analyzed in Section 5.2.3 and
shows that additional charging points at work for private vehicle users can increase market
shares.98 It is questionable, whether a vehicle owner would have to pay for the installation
of a charging point at work, but the employer is very likely to turn over the cost to the
employee. The individual choice per user to install one or two charging points (at home
and at work), which was not modeled, could increase PEV market shares even more.

98See [Kley, 2011,Björnsson and Karlsson, 2015,Gnann et al., 2012a] for similar results for additional
charging points at work.
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Furthermore, it is assumed that the electricity charged at work has not to be taxed by
PEV users, although this might be considered as a fringe benefit of the company to the
employee. Apart from additional individual charging points to increase the electric range
of PEVs, the option to use rental cars for occasional long-distance trips has been analyzed
in Section 5.2.3. Results show that the influence of such an offer decreases to almost zero
until 2030. However, the assumed increasing battery sizes allow longer distances over the
years. These were chosen as a reaction of car manufacturers to decreasing battery cost
and users’ demand for higher ranges. Further, results are based on techno-economical
calculations and the effect of such an offer on vehicle purchase was not analyzed.

Lastly, results should be discussed in light of other studies on the same topic. In
the introduction of Section 5.2 a comparison to [Mock et al., 2009,Propfe et al., 2012a,
Redelbach et al., 2013, Hacker et al., 2011b,Kihm and Trommer, 2014] was suggested.
In [Mock et al., 2009,Propfe et al., 2012a,Redelbach et al., 2013] the model VECTOR21
is used, a discrete choice model that bases on a large consumer survey. While assumptions
for cost and vehicles differ in the three studies, some results are observable in all of them: a
declining share of diesel vehicles and a larger share of PHEVs compared to BEVs in [Mock
et al., 2009,Redelbach et al., 2013]. This confirms the same findings in this thesis. Results
are not directly comparable to those of this thesis as also NGVs and FCEVs are considered
in the scenarios which also amount to a large share of new registrations and user groups
are not explicitly distinguished in the papers. While results in [Propfe et al., 2012a]
seem moderate and comparable to this thesis, market shares in [Redelbach et al., 2013] of
AFVs in 2030 amount to 80% which seems moderate compared to other works. Hacker et
al. (2011) studied the market penetration of PEVs based on [infas and DLR, 2008] in the
project OPTUM [Hacker et al., 2011b]. Although this work does only consider private
vehicles, some results are comparable too. Also in this study, PHEVs gain larger market
shares than BEVs and vehicles with garages are better suited than those without.99 Kihm
and Trommer (2014) use the model TREMOD for the development of a PEV market
penetration [Kihm and Trommer, 2014]. They find a higher share of PHEVs compared
to BEVs as well, yet other results differ largely to this thesis: In [Kihm and Trommer,
2014] private households dominate the vehicle sales and also company cars gain relevant
market shares. Apart from different assumptions for techno-economical parameters, their
reasoning for a non-consideration of VAT exemption is unclear and no evidence for an
introduced ”eco-factor” is given. Further, the individual analysis of driving profiles is
based on [WVI et al., 2010] and [infas and DLR, 2008] which contain only one day of
observation. Since vehicles are simulated individually and electric driving shares as well
as BEV feasibility are based on the one observation day, the results of [Kihm and Trommer,
2014] can be considered uncertain.

The comparison to other model results shows that several results and trends of this
thesis are confirmed by other research. Yet, a PEV simulation with the differentiation
of user groups and the use of driving profiles with long observation periods has to the
best of the author’s knowledge not been performed to this point. This analysis permits
to retrieve several new results summed up in Section 5.2.5.

99Although this is a premise of this thesis and users without a garage have to pay a premium for
charging infrastructure, the general assumption that the hurdle of buying a PEV when not owning a
garage is confirmed here.



104 5.2. Market diffusion of plug-in electric vehicles

5.2.5 Summary

This section analyzed the market evolution of PEVs in Germany until 2030 with non-
public charging infrastructure. An analysis of the main monetary and non-monetary
influence factors was followed by the influence analysis of additional individual charging
points. The following findings should be maintained:

• The results of market diffusion demonstrate a great deal of uncertainty regarding
the market evolution of PEVs because it heavily depends on external framework
conditions such as price developments for batteries, crude oil and electricity prices,
which may double results via small changes (±25%) of relevant input parameters.
Also non-monetary factors do have considerable influence as e.g. the willingness to
pay more for a new technology may cut the PEV stock in 2020 to half when it is
not reflected.

• Nevertheless, the target of the German government of one million PEVs by 2020
can be reached under favorable conditions for PEVs without monetary support for
the purchase of PEVs. In 2030 about 20% of of the PEV-stock could be (partly)
electrified with favorable assumptions for PEVs while also in unfavorable conditions
about 1.5-2 million PEVs in stock are possible until 2030. The most promising user
group for PEV adoption are commercial fleet vehicles, followed by private PEVs
which gain equal market shares until 2030.

• Further, results suggest a high share of PHEVs. This might derive from the strict
exclusion of BEVs, if they cannot perform all of their driving electrically. Yet, no
significant changes in the results were found when adding the possibility to use
rental cars for long-distance trips [Plötz, 2014]. Further analyses could involve car-
sharing vehicles or substitute vehicles in a multi-car household (see e.g. [Khan and
Kockelman, 2012]).

• Additional charging points at work increase the number of PEVs in stock even when
users have to pay for it. Charging only at work is not sufficient for the majority of
private PEV users. Hence, a home or primary charging point is currently a premise
for the operation of a PEV.100

100See [Zhang et al., 2013] for a similar evaluation.
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5.3 Interactive plug-in electric vehicle and

infrastructure market diffusion

While the diffusion of PEVs with non-public charging infrastructure was analyzed in detail
in the previous section, this last part of results focuses on the interaction of PEV diffusion
and public charging infrastructure. The influence of non-public charging points as well
as framework parameters on PEV diffusion was performed with driving profiles of MOP
and REM2030. These profiles also contain information about the vehicle size and several
socio-demographic attributes of vehicle and driver. However, these driving profiles do not
contain geographic information about the trips, like geographic coordinates of starting
and stopping points, which makes it impossible to simulate a joint use and occupancy
rate of public charging points. The data set MOPS and REM2030S (both introduced in
Chapter 3) contain geographic information (departure and arrival zones of each trip) and
will be used for the joint analysis in the following. Although these data sets only contain
trips for the region of Stuttgart, all results for PEV and public CP market diffusion are
converted to Germany as described in Section 4.3.6.101

In the literature analysis in Chapter 2, no model was found that treated the co-
diffusion of PEVs and their charging infrastructure which required special features (charg-
ing time and frequency as well as a distinction of charging infrastructure accessibility
types) that are not considered in the discussed models. For this reason, a comparison to
models from the literature is not possible and several sensitivity calculations are performed
instead.

This section is organized in the following way: First, a static analysis of public park-
ing spots, duration and frequency after each trip of the driving profiles is performed in
Section 5.3.1. Second, a detailed analysis of three scenarios for subsidizing public charg-
ing points is conducted in Section 5.3.2. Several variations are performed to analyze the
influence of different parameters (5.3.3) followed by a separate analysis for fast charging
points (5.3.4). A discussion (5.3.5) and summary (5.3.6) rounds up this section. As de-
scribed in Table 5.1, only the medium scenario for framework parameters will be used in
this section.

5.3.1 Static analysis of geographically distributed driving

behavior102

Before starting the simulation a minimum need for infrastructure per zone in the region of
Stuttgart is defined (cf. Section 4.2.4). In [Funke et al., 2015] differences in a geographical
coverage and a user-oriented charging infrastructure set-up were discussed, finding that
a user-oriented approach would need less charging infrastructure than an approach based
on a predefined geographical coverage (defined number of charging points per square me-
ter for three types of population densities). Still, if public authorities set up charging
infrastructure because of their public supply mandate, a geographical coverage is of in-
terest. Since there is information about user behavior and geography in the data sets, it
is possible to combine both approaches. As the option to recharge publicly is given when
a vehicle is parked in public places, the total vehicle minutes parked publicly per zone in

101This conversion will be discussed in Section 5.2.4.
102This section is based on [Gnann et al., 2015c].
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Figure 5.13: Specific zone occupancy and minimum number of public charging points in different
zones in the region of Stuttgart. Left panel: Specific zone occupancy in different zones in relation
to distance to city center. Every point corresponds to one zone. Right panel: minimum number
of public charging points in different zones in relation to distance to city center. Every point
corresponds to one zone.

the driving profiles divided by the area are summed up and defined as the specific zone
occupancy. Thus, this indicator describes how many vehicles are parked how long over
the full observation period while discrepancies in surface area are reflected. The indicator
is shown on the left panel of Figure 5.13 with respect to the zone’s distance to the city
center (central station). It is visible that zones which are closer to the city center are
more likely to have a higher zone occupancy. That implies the further one approaches
the city center the more vehicles are parked publicly. A further analysis shows that most
zones have a zone occupancy lower than 500,000 vehicle minutes parked/(km2·wk).

To transform this variation of specific zone occupancies to charging points, it is as-
sumed that users wish for a charging point within every 300 meters. This assumption
is based on the average distance people are willing to accept to walk to the next public
transport stop, which is also 300 meters according to [KVV, 2006]. With three circles that
intersect in one point, the highest coverage with lowest overlap is possible, which results
in 4.28 charging points per km2 (see e.g. [Rune, 2001]). When this average charging point
necessity is multiplied by the total area, the result would be the minimum number of pub-
lic charging points for the geographical coverage approach [Funke et al., 2015]. Instead
the zone occupancy and area are used to weigh the minimum number of public charging
points:

CPNz = Az · CPN · occz
occ

(5.1)

With CPNz being the minimum number of public charging points in zone z, Az the area
of zone z and CPN the above mentioned average minimum number of charging point, the
vehicle occupancy occz of zone z and the average occ include the user-oriented approach
to the analysis. The result of this formula for each zone can be found on the right panel
of Figure 5.13 with respect to its distance to the city center. To give an example: In zone
z1, two vehicles are parked publicly for half an hour and the area of zone z1 is 10 km2.
Zone z2 covers 1 km2 and one vehicle is parked for five hours. The specific zone occupancy
occz1 for zone z1 would be occz1 = 2 · 30 min/10 km2 = 6 min/km2 and for z2: occz2 =
300 min/1 km2. The average zone occupancy occ would be occ = 153 min/km2. Using
the same distance between two charging points, the minimum number of charging points
in the two zones would be CPNz1 = 10 km2 · 4.28 CP/km2 · 6 min/km2/153 min/km2 =



Chapter 5. Model results 107

1.67 CP/km ≈ 2CP/km and CPNz1 = 8.37CP/km ≈ 8 CP/km which is much less than
a full coverage with 4.28 CP/km2 · 11 km2 ≈ 47 CP.

One can clearly observe that zones which are further away from the city center
(< 40 km) need less charging points than those which are 10-40 km away while small
zones in the city center also need less charging points because of their size. When con-
sidering that zones are larger the further they are away from the city center (cf. Fig-
ure A.1), the low occupancy in the zones further away from the city center weighs larger
than their area.103 Also the total sum of charging points necessary for the observation
area (3,168 charging points) is significantly lower than with the geographical coverage
(15,632 charging points). This zone-specific minimum number of public charging points
will be used in the individual battery simulation where users are expected to only recharge
their vehicle when the number of charging points in the zone they are stopping is equal or
higher than the minimum number of public charging points (nCPz

≥ CPNz). Note that
this constraint is not considered in the PEV stock simulation where vehicles stop at a
charging point and charge their vehicle if it is not in use (and the battery’s SOC is below
50%).

5.3.2 Public charging infrastructure evolution

With this pre-analysis determining the minimum number of public charging points, the
simulation can be performed. Three subsidy scenarios with home and public charging
points with 3.7 kW are analyzed in detail in this section: In subsidy scenario S1 public
charging points are not subsidized while in subsidy scenario S2 the charging points are
subsidized until 2020 and in S3 until 2030. The annuities of charging point costs and
their subsidies are summarized in Table 5.6. A large subsidy for each charging point is
considered for the first five years in subsidy scenario S2 while in subsidy scenario S3 it is
phased out linearly until 2030.

Table 5.6: Cost and subsidies for public CPs with a charging power of 3.7 kW in three subsidy
scenarios. All costs in EUR2014 without VAT.

subsidy scenario option 2015 2020 2025 2030

S1 - no subsidy real CP annuity 700 596 508 434
annual subsidy - - - -

S2 - subsidy until 2020 assumed CP annuity 100 100 508 434
annual subsidy 600 496 - -

S3 - subsidy until 2030 assumed CP annuity 100 100 267 434
annual subsidy 600 496 241 -

Simulation results for the PEV and CP stocks in three subsidy scenarios for Germany
can be found in Figure 5.14 (S1 in red, S2 in blue and S3 in green). This figure uses a
double-logarithmic scale (like Figure 2.4) to compare small and large values more easily.
Several years are shown to indicate the evolution over time - every marker is equal to one
year in the simulation. The first interesting result is that public charging points are not

103Zones in the outer area, where none of the vehicle users in the data sample lives, are not considered
for a charging point setup, which explains the missing minimum numbers of charging points for zones
further away than 60 km from the city center.
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Figure 5.14: Simulation results for Germany for PEV and public CP stock with different sub-
sidies. Axes with logarithmic scales. Results without subsidies with red squares, for subsidies
until 2020 with blue circles and for subsidies until 2030 with green triangles. If the CP stock is
0, it is set to 1 because of logarithmic scales.

able to economize when they are not subsidized (subsidy scenario S1).104 Already in 2018,
all charging stations are taken out of order since they cannot economize. This is certainly
due to the number of PEVs that are in stock at this time (about 200,000 PEVs), as the
charging points have to be subsidized until a sufficient number of PEVs is in place.

Taking a look at subsidy scenario S2, the public CP stock is not falling as much as
in subsidy scenario S1, however it is much lower (about 800 public CPs in 2020) than
in the beginning (about 14,000 public CPs). After 2020, the slope is declining too, since
the amount of charging by the PEV stock at these charging stations is not sufficient for
a take up thereafter. Only some public charging points can be maintained for subsidy
scenario S2 until 2030. From 2015 until 2030, about 11 million EUR would have to be
paid for subsidies in S2. In the last subsidy scenario (S3) results differ in terms of public
charging points. The number of public CPs is rising when subsidies are still in place until
2030. Although the slope of the curve is declining, it remains positive until 2030 and
supposedly thereafter. Thus, a tipping point is reached in this subsidy scenario and the
system becomes self-sustaining. Subsidies only double (26 million EUR) when compared
to subsidy scenario S2 as the subsidy per charging point decreases after 2020. When
comparing the three subsidy scenarios the difference in public CP stock is obvious, yet
the number of PEVs in the vehicle stock does not differ at all. For all three subsidy
scenarios, about 4 million PEVs diffuse into the PEV stock until 2030 independent of the
public charging options. That implies an impact of the PEV stock on public charging
points (a sufficient number of PEVs has to be reached to pay of public charging points),
yet an influence of public charging points on the PEV market diffusion can not be found
in results. Also, the share of PHEVs in stock is similar for all three subsidy scenarios
at about 70%. These results are largely driven by the energy charged at the different
charging options which will be analyzed next.

104Since zeros are not possible to display on a logarithmic scale, results for the public CP stock are set
to one when they are actually zero.
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Distribution of energy charged

The number of public CPs is directly linked to the energy charged at these charging
options. Figure 5.15 shows the total energy charged105 at public charging points (abscissa)
with respect to the number of public charging points (ordinate) for the three subsidy
scenarios. In this display the number of charging points as well as the energy charged is
shown for the observation area (the region of Stuttgart).

While all three subsidy scenarios start at 688 public charging points and about
25,000 kWh charged at public charging points (in one year), they differ already in 2016
where in the non-subsidized scenario only 15 charging points are affordable compared to
50-60 in subsidy scenarios S2 and S3. In subsidy scenario S1 only few vehicles can charge
at the 15 charging points remaining in 2016 which leads to a decrease in energy charged
publicly to about 1,000 kWh. With a public charging price of 0.40 EUR/kWh and an
electricity price of 0.30 EUR/kWh that is used in Formula 4.15, 0.10 EUR/kWh remain to
cover the price for public charging points. Since 1,000 kWh multiplied by 0.10 EUR/kWh
is lower than the cost for one charging point per year in S1 in 2017 (656 EUR/yr), no
charging points remain in the stock after 2017. This also means that no vehicles can
charge publicly from 2017 on and the number of charging points cannot increase any-
more. The subsidies for subsidy scenarios S2 and S3 allow to keep a certain number of
charging points in the CP stock, so charging in public remains possible after 2017. How-
ever, the sudden suspension of subsidies in S2 in 2020 decreases the number of charging
points (and the amount of energy charged).106 Since the prices for public charging points
decrease over the years the decrease of S2 to one charging point is not as sudden as in
subsidy scenario S1. Also here, it is possible to keep one charging point until 2030 with a
slightly increasing amount of energy charged at this charging point. In subsidy scenario
S3 instead it is possible to keep maintain the slightly increasing cost for charging points
after 2020 lower than the additional earnings from energy sold at public charging points.
Remembering that formula 4.15 reads as follows:

ncp(t+ 1) :=
ppc(t) + pel(t)

acp(t+ 1)
·Wpc(t).

For the above mentioned case, let the public charging price ppc(t) and the price for
electricity pel(t) be constant, then the number of charging points ncp stays stable if
∆ncp = ncp(t + 1) − ncp(t) = 0 or ∆acp = ∆Wpc, the change in additional cost for
charging points is compensated by the additional energy charged. It increases if the
change in public energy charged is larger than the change in cost and subsidies respec-
tively. However, this is no trivial connection as the amount of energy charged depends on
the number of charging points and PEVs and it is not possible to draw a simplified form
of this connection.

Further, slightly differing results between subsidy scenarios S2 and S3 between 2015
and 2020 can be noted. Although the cost for public charging points is equal in both

105For a classification of amounts of energy: a medium sized BEV with a consumption of 0.2 kWh/km
and an annual mileage of 20,000 km would need 4,000 kWh per year, an average household has an
electricity consumption of about 3,200 kWh per year and the total electricity consumed in Germany in
2014 amounts to 578.5 · 109 kWh [AGEB, 2015].
106In 2020 about 7,000 kWh are charged publicly in S2 which allows a number of charging points

ncp = 7,000 kWh/a·0.10 EUR/kWh
100EUR/a = 7 charging points.
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Figure 5.15: Simulation results for the region of Stuttgart for energy consumed at public CPs
and public CP stock with different subsidies. Axes with logarithmic scales. Results without
subsidies with red squares, for subsidies until 2020 with blue circles and for subsidies until 2030
with green triangles. If the CP stock is 0, it is set to 1 because of logarithmic scales.

subsidy scenarios, there are differences in the amount of charging and charging stations.
This stems from the two random processes in the simulation: (1) Because of the limited
availability of PEVs, a limited number of PEVs is randomly chosen to diffuse into the
vehicle stock every year (cf. Section 4.2.3). However, this limitation decreases over the
years and (2) the random order of PEVs at public charging to charge may have a greater
influence. Consider a vehicle that stops at a public charging point and needs to recharge
10 kWh which takes about 2.7 hours, yet the vehicle is parked there for 10 hours. At the
same time more vehicles could have been charged while the charging point was blocked.
This could have been the case for one of the simulations and the other way round for
the other. Especially the second random process could lead to differences in charging
point usage, yet these differences decrease when only reflecting the later years with higher
amounts of PEVs and CPs where positive (higher usage of individual CPs) and negative
(lower usage) effects should cancel each other. To sum up, the subsidy to charging points
depends on their cost, the number of public CPs and the PEVs charging at them and no
trivial logic can be extracted from results to determine this number.

However, the energy charged at public charging points in relation to the full energy
consumed by PEVs in combination with the number of PEVs could be a good proxy.
Figure 5.16 shows the energy consumed at domestic, commercial and public charging
spots in subsidy scenario S3 for one week in 2030 in the observation area (region of
Stuttgart). The left panel of Figure 5.16 shows the distribution to accessibility types as
stacked area plots and the right panel as lines with domestic charging in red, commercial
charging in green and public charging in blue. Although commercial PEVs in subsidy
scenario S3 amount to one third of the PEV stock in 2030, their higher mileage results in
about 56% of the total energy consumed. Domestic charging accounts for 41% and public
charging for about 3% of total energy consumed. Further, the characteristic evening peak
for private vehicles (when returning home) is visible as well as the decreased peaks on
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Figure 5.16: Simulation results for the region of Stuttgart for energy consumed by PEV stock
over one week in subsidy scenario S3 (subsidies until 2030) in 2030. Energy charged at domestic
charging locations in red, at commercial charging spots in blue and at public locations in green.
Left panel: Total energy consumed as stacked area plot. Right panel: Energy consumed at
different locations (non-stacked).

the weekend (last two days/peaks) (see e.g. [Dallinger and Wietschel, 2012]). Commercial
charging is slightly more erratic and distributed over the day while public charging also
has the small peaks in the afternoons or early evenings. Since the locations of these peaks
are similar to those of domestic charging spots, a price independent load shift due to
public charging points cannot be drawn from results. However, comparing the height and
amount of energy charged at public charging points and in total, the impact of public
charging on the energy system is small compared to domestic and commercial charging
according to these results.

Finally, it is possible to analyze if the location of charging points has an impact on
energy consumed at public charging spots. In Figure 5.17 two results are shown: the
number of charging points with respect to their distance to the city center on the left
panel and the energy charged at these charging points in 2030 on the right panel. The
left panel of Figure 5.17 shows the timely evolution of charging points over the years.
While most charging points are built in the city center at the moment (see blue graph
for 2015), first charging points in 2020 are built further away from the city center. In
2025, several charging points are created closer to the city center, however the majority
remains at about 10–20 km away. The peaks for the graph of 2030 (turquoise) indicate
this finding even more. As the optimization of charging point setup changes in 2027/2028
from covering the minimum number of public charging points to the setup of charging
points with high PEV occupancy (cf. Section 4.2.4), these high numbers stem from the
demand for charging points in these zones.

Turning to the right panel of Figure 5.17, the usage of charging points (in 2030) is
considered as well. In this figure every charging point gets assigned the average energy
consumed by the charging points in its zone and the zone’s distance to the city center.
For example, in zone z there are ten public charging points, the energy charged in zone
z is 340 kWh in the simulated week and zone z is 13 km away from the city center.
Accordingly, ten charging points with a 34 kWh/wk and 13 km away from the city center
are used for the display of the right panel of Figure 5.17. A lot of charging points (about
200) are found within a distance 12-15 km away from the city center and an average
energy of 20 kWh/CP in one week. Yet, which amount of energy is needed for charging
stations to pay off? The simulation of subsidy scenario S3 returns a public charging
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Figure 5.17: Simulation results for the region of Stuttgart for public CP stock over time and
energy consumed at public CPs in 2030 with respect to distance to city center in subsidy scenario
S3 (subsidies until 2030). Left panel: Simulation results for public CP stock with respect to
distance to city center in subsidy scenario S3 (subsidies until 2030) in observation area. Results
are shown for different years as contours of histograms. Right panel: Shown is the the absolute
frequency (color bar) of charging points described by their average energy consumed per charging
point [kWh/CP] and the zone’s distance to the city center in kilometers in a 2D-histogram.

price of 0.44 EUR/kWh in 2030 (resulting from the energy charged at and number of all
public charging points). With the electricity price of 0.32 EUR/kWh about 65 kWh/wk
(3,338 kWh/yr) have to be charged for a public charging point to disburse. Several
charging points are above this level, however, no best location for charging points can
be found on the right panel of Figure 5.17. In combination with the left panel, the best
locations should be 10–20 km away from the city center, since most charging points are
built there and the usage would even be higher with a lower number of charging points
in these zones.

Hence, it can be retained that charging points within a distance of 10–20 km away
from the city center obtain the highest usage in the simulations and can pay off most
easily. This may have to do with the home locations of first PEV users in the simulation
who will be analyzed in the following.

Where do PEV users live?

In this last part of Section 5.3.2, the geographical location of homes of PEV users is
analyzed. For this analysis only private PEV users are analyzed since the number of
commercial driving profiles is too small for a further geographical distinction.

Figure 5.18 shows the distribution of homes of private PEVs (left panel) and all
vehicles (right panel) in the vehicle stock with respect to the distance to the city center.
While the left panel holds simulation results for several years, the right panel contains the
distribution of homes of all vehicles in MOPS. Starting with the left panel of Figure 5.18,
the simulation results of the private PEV stock are shown for 2018 until 2030 in three-
year steps. While for 2018 no clear pattern can be found, the distribution is peaked at a
distance of 20 km away from the city center in 2021. This peak is even more distinctive
in later years with more than 50% of PEV user’s homes between 10–30 km distance from
the city center in 2020. When comparing the distributions to those of all private vehicles
in stock (right panel of Figure 5.18), the image is even more clear: Potential PEV users
living in a distance between 10–30 km away from the city center are better suited for
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Figure 5.18: Simulation results for the region of Stuttgart for PEV and total vehicle stock with
respect to distance of home (private) or company (commercial) to city center in subsidy scenario
S3 (subsidies until 2030). Results are shown as contours of histograms. Left panel: PEV stock
for different years. Right panel: Total vehicle stock.

PEVs than those living closer to the city center. Vehicle owners living further away from
the city center perform higher mileages on average than users living in the inner city
and high mileages are needed for PEVs to economize against conventional vehicles. This
argumentation is supported by other studies as well [Plötz et al., 2014b,Newman et al.,
2014]. Combining the results of the distances of PEV homes (1, Figure 5.18), CP locations
(2, Figure 5.17) and vehicle zone occupancy public parking (3, Figure 5.13), the following
picture seems conceivable: Most PEV users live further away from the city center (1).
They drive into the center during the day (probably for work) (3) and go shopping or to
sports on their way home. Then they probably recharge publicly (2) in some distance to
the city center before returning home.

To sum up this section, the following findings should be recorded: (1) The availability
of public charging points has neither an influence on PEV market diffusion, nor on the
ratio of BEVs and PHEVs from a techno-economical point of view. (2) Public charging
points cannot pay off when they are not subsidized until 2030 and some public charging
points have to be retained until the number of PEVs and the energy charged publicly is
sufficient. (3) Only 3% of the total energy for PEVs is charged at public charging points,
the distribution over the day is similar to those of home charging points. (4) Public
charging points with highest usage are within 10-30 km away from the city center as are
the homes of most PEV users. The robustness of these results will be analyzed in the
following subsection.

5.3.3 Variation of assumptions

The results presented in the previous section are subject to a number of assumptions. Sev-
eral of these assumptions are varied in the following to test their influence. The following
variations are tested and results are displayed for Germany: increasing charging power,
changing the charging availability with additional charging at work, varying the individ-
ual limit to recharge, changing the initial charging price, varying the (de-)construction
strategies for the CPO and changing the battery sizes.
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Increasing charging power

The first variation is to increase the charging power. Two variations are compared to the
subsidy scenario S3 with 3.7 kW chargers subsidized until 2030: (Power1) A variation
with 22 kW chargers that are also subsidized until 2030 and (Power2) a variation with
50 kW charger and subsidies until 2030. In both variations, the assumed annual costs for
both charging options are cut down to 100 EUR/yr and subsidies are calculated thereof.107

Results for both variations and subsidy scenario S3 are displayed in Figure 5.19 which
the PEV and CP stock using the same display as Figure 5.14.

Starting with the 22 kW variation, a slight decrease of charging points can be observed
until 2017 which increases until 2021 and stays almost equal until 2030. Remembering
the calculations for the differences of additional energy charged and change in subsidies,
the amount of additional energy charged after 2021 is enough to compensate the higher
cost of charging points. When comparing this variation to S3, a lower number of charging
points is found in 2030 (34,000 vs. 78,000) and the fluctuation is not as high as in S3.
However, the number of PEVs in stock is unaffected of this change in power.

Turning to the 50 kW charging option, a decrease in public charging points until 2018
can be observed with a slight increase until 2020. Thereafter, the number of charging
points is not able to pay off, though subsidized until 2030, and decreases to zero in 2026.
The high costs of the 50 kW charging points cannot be compensated by the amount of
energy charged after 2020. Also in this variation, the number of charging points has no
influence on the number of PEVs (and the share of PHEVs) and the subsidies for public
charging points only determine the total number of public CPs. Hence, it can be stated
that the power at public charging points does not influence the market diffusion of PEVs
and only determines the number of public charging points due to their cost.

Additional charging at work

The second variation is to change the availability of charging options. Here, three different
charging options are compared to subsidy scenario S3: Charging at home-only (and at
commercial charging spots for fleet vehicles respectively), charging at home and at work
for private vehicles and charging at home, work and in public. Since public charging
infrastructure is only contained in subsidy scenario S3 and the variation with home, work
and public charging, these are shown on the left panel of Figure 5.20 with the same display
as in Figures 5.14 and 5.19. On the right panel, the total number of PEVs in stock in
2030 for all four options is visualized instead.

On the left panel of Figure 5.20 the green graph is used for subsidy scenario S3 and the
orange one for the home, work and public charging variation, i. e. in the orange variation
all private users are able to recharge at work additionally (cost for charging points at
work in Table 4.2). All assumptions for subsidies to public charging points are equal in
both variations. One observes a slightly higher starting point in terms of PEVs in 2015
for the orange graph due to the higher registrations of private PEVs. Also the number of
public charging points in the home, work and public charging variation does not decrease
as much as for home and public charging since the number of PEVs and their amount
of public charging is higher. Most interesting, the number of PEVs in 2030 is higher
when additional charging at work is possible for private users (4.7 million vs. 3.9 million

107See Table B.6 for all cost assumptions.
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Figure 5.19: Simulation results for Germany for PEV and public CP stock with variation of
charging power. Axes with logarithmic scales. Results for subsidy scenario S3 with 3.7 kW
(subsidies until 2030) with green triangles, charging power of 22 kW (with subsidies until 2030)
with blue diamonds and for 50 kW charging power (with subsidies until 2030) with red squares.
If the CP stock is 0, it is set to 1 because of logarithmic scales.

PEVs in S3) and also the number of public charging points differs slightly with a higher
number of public CPs in subsidy scenario S3. While the latter can be explained with the
less frequent use of public charging points when additional work charging is available, the
change in PEV stock has to be further analyzed. The question is, whether the additional
charging spot at work or the combination of home, work and public charging is responsible
for the change in the number of PEVs?

On the right panel of Figure 5.20 the amount of PEVs in 2030 for all four charging
availability options is analyzed. Here, it is possible to compare whether public charging
may help to increase the number of PEVs in stock. By comparing the green (subsidy
scenario S3) and red bars (home-only charging), it can be confirmed that additional
charging in public has no positive influence on the PEV stock when added to home-
only charging. It even decreases the number of PEVs slightly due to some users that may
incorporate public charging in their buying decision although charging at home would have
been more economical for them. Then, the utility values for PEVs for these users may be
higher than for conventional fuels and the number of registrations decreases. Although
this effect should not be overstated as variations are only low, the non-existence of an
influence of public charging points can be approved. Considering the blue (home and work
charging) and orange bar (home, work and public charging), the same effect is visible as
for the other two variations - additional public charging slightly decreases the number of
PEVs. For all PEV options the share of PHEVs does not change significantly. While the
same explanation holds for this comparison as given earlier, there are two main results
from this part of the analysis: (1) no influence of public charging points on PEV diffusion
results can be found and (2) charging at work increases the number of PEVs.
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Figure 5.20: Left panel: Simulation results for Germany for PEV and public CP stock with
variation of infrastructure availability. Axes with logarithmic scales. Results for subsidy scenario
S3 (subsidies until 2030) with green triangles, additional charging at work (home, work & public)
with orange diamonds. Right panel: PEV stock in scenario S3 (home&public, green), and
variations home-only (red), home-and-work (blue) and home, work & public (orange).

Varying individual recharging limits and changing the initial charging price

After analyzing the influence of charging power and charging point availability, two more
model assumptions are checked for their influence of simulation results: the limit of PEVs
to recharge and the initial charging price.

As explained in Section 4.2.1, BEVs are always assumed to recharge when their bat-
tery’s SOC is below 50%. The same holds for PHEVs for which driving with publicly
charged electricity has to be cheaper than driving with conventional fuels additionally.
This limit is changed to 70% and to 30% for two more calculations, which can also be
understood as the range anxiety level of PEV users. Subsidies to public CPs are equal to
subsidy scenario S3. Results for this analysis are shown on the left panel of Figure 5.21.

Surprisingly, results are almost equal for both variations and all public charging points
are taken out of service until 2018. How can these very different assumptions return the
same results? Turning to the variation with a limit of 30% at first. This variation
assumed that vehicles are only recharged publicly when their battery’s SOC is below
30%. Considering a case where a BEV arrives at a charging point with the battery SOC
at 45% and it would not recharge although this would not be sufficient to return home.
This may exempt several users from buying a BEV, if the individual simulation a BEV
could not fulfill all his trips. Thus, only users that could fulfill their trips without public
recharging would buy a BEV in this variation in the beginning, leading to a low amount
of energy charged publicly and a deconstruction of charging points. Also the PEVs in
vehicle stock would recharge only at a SOC of less than 30%, hence the amount of energy
charged publicly would decrease even further. The variation with a 70% recharging limit
suffers from a different problem: Vehicles that could return home to recharge now charge
at public charging points. This increases their TCO for BEVs and they buy a PHEV or
conventional car instead. In fact, results for BEVs decrease in the early years of market
diffusion which decreases the amount of public charging. A higher subsidy to charging
points would have been needed to keep them in stock.

Another option to increase the profitability of public CPs would be an increase of
the public charging price to cover the cost for public charging points. A variation of an
initial public charging price of 0.50 EUR/kWh is tested and results are shown on the right
panel of Figure 5.21. Results are even more drastic than before, as now all PHEVs do
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Figure 5.21: Simulation results for Germany for PEV and public CP stock with variation of
recharging level when vehicles are expected to recharge and initial public charging price. Axes
with logarithmic scales. Left panel: Variation of recharging level. Results for subsidy scenario
S3 (subsidies until 2030) with green triangles where PEVs are assumed to recharge publicly at
an SOC of less than 50%, an increased limit of 70% with red squares and a decreased limit
with blue diamonds. Right panel: Variation of initial public charging price. Results for subsidy
scenario S3 (subsidies until 2030) with green triangles where the initial public charging price is
at 0.40 EUR/kWh and an increased price of 0.50 EUR/kWh with blue diamonds. If the CP
stock is 0, it is set to 1 because of logarithmic scales.

not charge in public anymore since it is cheaper to drive with conventional fuels. This
simply decreases the amount of public charging and the number of public charging points
close to zero in the first years. A change to less than 0.4 EUR/kWh is not considered as
the difference between the price for public charging (pcp(t)) and electricity (pel(t)), used
to pay of public charging points, is already small.

These analyses showed that the initial public charging price as well as the level to
recharge for public charging points have a major impact on the number of public charging
points, yet the number of PEVs diffusing into the vehicle stock remains unaffected.

Changing the CPO strategies for charging point deconstruction and setup

As in all variations analyzed so far the deconstruction of public charging points has a
major influence on the number of charging points. Hence, two further variations are
tested in which a deconstruction is not considered: a variation without any subsidies for
charging points (shown in blue on the left panel of Figure 5.22) and with subsidies until
2030 and a recharging level of 70% (in red). Results for the variation without subsidies
show that the public CP stock stays equal until 2030 without changing the number of
PEVs. This means that the energy charged at the public charging points is not sufficient
for them to economize until 2030. The total energy charged at public charging points
in the observation area is 2.5 million kWh/yr which is sufficient for 570 charging points
(12,000 public CPs in Germany) to economize in 2030.108 Thus again, public charging
points do not diffuse into market without subsidies. This is also visible in the second
variation without deconstruction that incorporates subsidies until 2030 and a higher SOC-
limit (or level of concern) to recharge (70%). In this variation, the number of charging
points increases for the first time in 2023 and reaches a higher number of public charging

108With a public charging price of 0.42 EUR/kWh and the price for electricity of 0.32 EUR/kWh,
0.10 EUR/kWh can be used to cover the cost for public charging points. This leads to ncp =
0.10EUR/kWh·2.5GWh

434EUR/(CP yr) = 576CP.



118 5.3. Interactive plug-in electric vehicle and infrastructure market diffusion

Figure 5.22: Simulation results for Germany for PEV and public CP stock with variation of
charging point setup strategies. Axes with logarithmic scales. Left panel: Results for subsidy
scenario S3 (subsidies until 2030) with green triangles, a variation where a deconstruction is
not considered (no subsidies) with blue diamonds and a variation with non-consideration of
deconstruction, necessity to recharge at 70% SOC and subsidies until 2030 with red squares.
Right panel: Results for subsidy scenario S3 (subsidies until 2030) with green triangles and
variation with a changed setup strategy with violet crosses.

points (185,000) than subsidy scenario S3 (78,000) because of the changed SOC-limit to
recharge which increases the amount of public charging.

Although these results suggest a very clear picture, the location of initial charging
points may not be well chosen and thus the amount of energy charged publicly could
depend on the initial CP placement. Hence, on the right panel of Figure 5.22 a variation
with a changed setup strategy is tested shown in comparison to subsidy scenario S3. In
this variation, the minimum number of public charging points per zone is set to one.
This allows a faster setup in zones with high demand for charging points and a lower
minimum level of service. This variation shows similar results for the PEV stock like
other variations as it does not change compared to subsidy scenario S3. In contrast to
that, the CP stock is much higher (188,000 CPs) than in other variations (e.g. 78,000 CPs
in S3). Thus, a different strategy for the setup of charging points could lead to a higher
number of charging points or to a lower need for subsidies. However, it has no influence
on the market diffusion of PEVs.

Variations of BEV battery sizes

Lastly, the model results are tested with a variation of battery sizes. Since the level
to recharge also depends on the battery size, this assumption may influence results for
charging infrastructure as well. While in subsidy scenario S3 a battery size of 40 kWh
is assumed, it is changed to 24 kWh in the first variation and increasing from 24 kWh
(2014) to 40 kWh in 2020 and remaining stable afterwards in variation 2. In all varia-
tions, charging points are subsidized until 2030 and results are shown on the left panel of
Figure 5.23.

A higher starting point of PEVs in stock can be observed in both variations and
the typical decrease in the number of public charging points (until 2018/2019) as well.
However the number of PEVs is higher in the variation with a 24 kWh BEV battery
as a higher share of potential users can afford a PEV. In this variation, the number of
PEVs in 2030 is 6.5 million PEVs and the number of charging points is higher as well
(315,000 CPs). This stems from the affordability of BEVs for a large number of users
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Figure 5.23: Simulation results for Germany for PEV and public CP stock with variation of
BEV battery sizes. Axes with logarithmic scales. Left panel: Results for subsidy scenario S3
(subsidies until 2030) with green triangles where the BEV battery capacity is 40 kWh, a variation
with BEV battery capacities of 24 kWh and CP subsidies until 2030 with blue diamonds and a
variation with BEV battery capacities of 27 kWh in 2015 rising to 40 kWh in 2020 and remaining
stable afterwards plus CP subsidies until 2030 with red squares. If the CP stock is 0, it is set
to 1 because of logarithmic scales.

and the PEV stock changes ratios from two thirds PHEVs in S3 to two thirds BEVs in
the 24 kWh BEV battery variation. The variation with changing battery sizes returns
the same number of PEVs as subsidy scenario S3 although the number of public CPs is
different. The PEV stock changes from mostly BEVs in this variation in the beginning
to a higher number of PHEVs which might explain the variation in the CP stock.

Having found a variation with more PEVs, the influence of public charging points
should be tested again. On the right panel of Figure 5.23 three different subsidies are
shown for the 24 kWh battery: (B1) no subsidies for public CPs (with red squares),
(B2) with subsidies until 2020 (blue diamonds) and (B3) with subsidies until 2030 (with
violet crosses). The results are similar to those shown in Figure 5.14: (1) The height and
timing of subsidies changes the amount of public charging points in 2030. (2) Subsidies
have to be granted also after 2020 to reach a tipping point where they economize on their
own. Although the number of charging points varies (3) no influence of public charging
infrastructure on the market diffusion of PEVs can be found as results for PEVs in stock
are equal in 2030.

Having changed various assumptions for charging infrastructure and PEVs, it can
be retained that the market diffusion of public charging points has no influence on the
market diffusion of PEVs as well as the ratio of PHEVs and BEVs. The number of
PEVs instead determines the profitability of public charging points. For this reason,
public charging infrastructure has to be subsidized until a critical mass of PEVs with the
respective amount of public energy charged is in the vehicle market. According to various
calculations this tipping point is after 2020.

5.3.4 Estimation of fast charging need

In the previous subsection, the influence of different power levels was analyzed. Charging
stations with 50 kW were analyzed and could not economize until 2030. However, in
the combined market diffusion approach for PEVs and their charging infrastructure, it
is assumed that PEVs are connected to the charging points whenever they are parked.
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Since the charging time at 3.7 kW or 22 kW chargers is frequently exceeding the parking
time this assumptions seems to be in order for so-called slow-charging options [BMWE,
2015]. For fast charging options, like the 50 kW charging stations, the charging time
per charging event often exceeds the time connected to a charging point. With a higher
amount of energy necessary to amortize, this approach could underestimate the potential
for fast charging stations. Further, the possibility to interrupt a trip and recharge if the
battery capacity is sufficient, is not considered in this approach.

In Section 5.2.3, an approach was introduced in which BEVs could replace their
vehicles by rental or car-sharing cars if the battery capacity was exceeded. This approach
bases on the methodology of [Plötz, 2014] that permits to estimate the days on which
the BEV battery capacity is exceeded. Instead of rental cars, long-distance trips could
be covered by recharging at fast charging points as well (cf. [Lin and Greene, 2011] for
a similar approach). A simple assumption is used for a rough calculation: For every day
on which the electric range of a BEV is exceeded, a potential BEV buyer would once
have to pay 10 EUR (for 20 kWh of public charging, i. e. a public charging price of
0.50 EUR/kWh) to cover his mobility need. The additional range from recharging of
about 100 km is sufficient for most profiles. PEV simulations with ALADIN are run with
parameters of the medium scenario and the profiles of MOP to test this option.

The total number of PEVs increases with the fast charging approach by about 15%
from 4.8 million PEVs to 5.5 million PEVs, thus this approach returns more PEVs. The
BEVs in stock need to refuel 30 times per year on average, thus the total amount of money
that could be earned with such an offer would sum up to 2.0 billion EUR between 2015
and 2030. While of the 0.50 EUR/kWh, 0.30 EUR/kWh would have to be subtracted for
electricity, the remaining 0.20 EUR/kWh or 800 million EUR would serve to cover the
cost for charging infrastructure. In [Plötz et al., 2013, p.158,159] the average terminal
value109 for a fast charging point is on average 70,000 EUR (between 2015 and 2030),
so about 12,000 such charging points could be covered with the assumed costs.110 Thus,
the fast charging option can be considered a more economic charging option than the
slow-charging point. Yet, what would the usage rate of such charging facilities be?

The vehicle stock in 2030 contains about 1.2 million BEVs in the variation calculated
with additional cost for fast charging. If these vehicles recharge 30 times per year at
public fast charging stations, about 36 million fast charging events would take place over
the year or about 96,000 per day. If these were equally distributed to the fast charging
stations that contain three charging spots, then at every charging spot, 3.2 BEVs would
recharge per day taking 1.25 hours. This charging time seems possible, yet it is based on
the assumption that fast charging events are equally distributed over the year and between
all charging stations. Since this approach does not analyze any simultaneous arrival at
charging stations, it can only be considered a rough estimate. However, in contrast to
slow charging stations, the PEV stock can be increased with such fast charging options
and the economics seem more favorable than for slow charging points.

109Here the terminal value of the cost is considered which combines investments and running costs of
charging points to the TCO and transfers them to their end point.
110For charging points with a 50 kW, costs are taken from [Plötz et al., 2013, p.152].
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5.3.5 Discussion

In the following, the data used for the analysis, several specific assumptions for public
charging and the main results with respect to other studies are discussed.

For the co-diffusion of PEVs and their charging infrastructure a set of driving profiles
has been used that contains geographic information of the vehicle trips. This informa-
tion is decisive to determine the usage of public charging points, however, the data set
lacks some socio-demographic attributes that could have been used in the simulations or
for the assignment of a WTPM. For this reason, the following adjustments were made
(cf. Section 4.3.6): (1) The WTPM was randomly assigned to private driving profiles.
(2) Company car users were assigned to the private vehicle profiles based on the attributes:
sex, occupation, household size, cars in household and driving behavior. (3) Garage own-
ership was randomly assigned to driving profiles based on the settlement structures of their
homes and [infas and DLR, 2002]. By comparing market diffusion results of simulations
with the two data sets and home-only charging, the influence of these assignments can
be tested. Table 5.7 shows the results of the German PEV stock in 2030 for simulations
with home-only charging for both data sets.

Table 5.7: Comparison of results with data for Germany and Stuttgart. All results for PEVs in
vehicle stock in Germany in 2030 based on the medium scenario and home-only charging.

German data Data for region of Stuttgart

data sets MOP & REM2030 MOPS & REM2030S
total number of PEVs 4,839,000 100% 3,991,000 100%
private PEVs 3,388,000 70% 2,685,000 67%
company car PEVs 273,000 6% 0 0%
private PEV garage owners 3,039,000 63% 2,219,000 56%
PHEVs 2,946,000 61% 2,830,000 71%

Results for both data sets differ in terms of total PEVs in stock in 2030 while the
share of private vehicles is about equal. Company car PEVs are not found in the results
simulated with MOPS & REM2030S at all and private PEVs are less frequently bought
by garage owners for the data from Stuttgart. In contrast to that, the share of PHEVs
is higher with the data from Stuttgart. How can these changes be explained? As shown
in Section 5.2.2, a random allocation of the WTPM to private driving profiles decreases
results until 2020 by about 10% and 5% in 2030. Thus, decreasing the total number of
PEVs in stock in 2030 by 5% (of private vehicles) would return 4,577,000 PEVs. By
further subtracting all company car PEVs (273,000 PEVs) the total number reduces to
4,304,000 PEVs in 2030 which is very close to the results with the data from the region of
Stuttgart and certainly within the 90%-confidence bands due to limited sample sizes (cf.
Figure 5.5). Thus, the results for PEVs presented in Section 5.3 should be about 20%
higher, however, the conclusions do not change. The slightly lower vehicle mileage in the
MOPS-data (cf. Section 3.2.2), the differentiation of vehicle sizes as well as the changing
battery sizes111 may influence the PEV garage ownership as well as the share of PHEVs.
Also garage ownership for PEV users could be correlated to the WTPM and hence cause
an error. Yet, these effects have not been quantified up to now.

111The simulation of the German data (MOP, REM2030) was performed with a battery size of 27 kWh
in 2015 for medium sized BEV increasing to 40 kWh in 2020 and thereafter.
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Several assumptions for charging points were discussed in Section 5.3.3 in which the
influence of charging power, charging infrastructure availability, SOC-limits for users to
recharge or another initial charging price were discussed. Also different strategies for the
CPO for CP deconstruction and setup as well as different battery sizes were investigated.
The minimum number of public charging points also influences results as the first charging
points to be built are created based on the (driving and) parking behavior of conventional
vehicles. It could be better to focus on the parking of PEVs, however in the beginning the
limited number of PEVs is not expressive for the zone occupancy and a CPO would focus
on the congestion and zone occupancy of conventional vehicles. With a certain number
of PEVs his focus would change to PEVs. Another option would be to combine the two
setup strategies, however no good mechanism was found to combine the occupancy of
a small number of PEVs (e.g. 0.5 million in 2020) and a large number of conventional
vehicles (45 million conventional vehicles), since their occupancy rates differ largely. A
different initial charging infrastructure could also be used, e. g. a randomly distributed.
Yet, the current public CPs in the observation area are already in place and should not
be neglected. Moreover, in all variations most of this initial charging infrastructure is
deconstructed.

Further, the more general assumption every user needs one home-charging point may
be doubted. Yet, in Section 5.2.3, it was shown that charging at work-only would decrease
the number of PEVs by 50%. Since vehicles park even less in public than at work, a fre-
quently used charging point seems to be a valid presumption. Combining investment and
variable cost to a TCO for public charging points might be discussible as well. Especially
when investments are much higher than running cost, this might be true, although the
reproduction of diesel market shares in Section 4.4.1 contradicts this hypothesis. How-
ever, at least for slow charging points the operating expenditure often exceeds the annual
capital expenditure which also supports the assumption to switch off charging stations
when they do no economize.

Apart from all assumptions that would change results for public CP market diffusion,
all public slow charging points would have to be subsidized until 2030. The question
is: Can a positive correlation of the timely evolution between public CPs and PEVs be
triggered with such a subsidy? Figure 5.24 shows the correlation of the timely evolution
between public CPs and PEVs with respect to the total subsidies to public CPs until 2030.
To compare small and large values of the market diffusion of PEVs and public CPs, the
logarithm to the base of 10 of values for PEV stock Sm,s(t) (with s ∈ {BEV, PHEV }) and
public CP stock nCP (t) is used for the correlation. The Pearson correlation coefficient is
applied with ρ = cov(x, y)/(σx·σy) with x(t) = log10(Sm,s(t)) and y(t) = log10(nCP (t)) (see
e.g. [Efron and Tibshirani, 1994]). The correlation coefficient for all subsidy scenarios
and variations are displayed with 90%-confidence intervals112 and the color indicates the
duration of subsidies: no subsidies with green, subsidies until 2020 with red and subsidies
until 2030 with blue markers. There are two main findings to be observed: (1) No positive
correlation can be found when public CPs are not subsidized until 2030. This is visible for
all subsidy scenarios and variations that are close to the abscissa in Figure 5.24. (2) Even
when public CPs are subsidized, a positive or negative correlation may result from the
simulations. There are several subsidy scenarios and variations where a subsidy is granted
for every public CP until 2030, yet the stock of public CPs decreases to zero. Also, (3) the

112For the determination of confidence bands, the Fisher-transformation is used with m = arctanh(ρ),
SE = 1/(

√

(n− 3)) and z = (x−m)/SE (see e.g. [Efron and Tibshirani, 1994]).
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Figure 5.24: Relation between subsidy to public charging points and correlation of timely evolu-
tion of PEV and public CP diffusion. Total subsidies on ordinate, correlation of PEV and public
CPs on abscissa. Results for all subsidy scenarios and variations of Section 5.3 shown with dif-
ferent markers and whisker for confidence intervals. Subsidy scenarios and variations without
subsidies with green, with subsidies until 2020 with red and until 2030 with blue markers.

broad confidence intervals indicate a large uncertainty in the correlation and thus to the
effect of subsidies granted (cf. [Schroeder and Traber, 2012] for a similar evaluation).

In earlier works [Plötz et al., 2013,Gnann et al., 2015b,Plötz et al., 2015], the effect
of other policy measures was analyzed of which some results are briefly repeated here to
set the subsidies for charging points into context. Three of the policy options analyzed
in [Gnann et al., 2015b] are shown in Table 5.8: (P1) A flat-rate subsidy given to users
which started with 1,000 EUR in 2013 and decreased linearly to 300 EUR in 2020. (P2) A
decrease of the interest rate for private users from 5% to 4% and (P3) a tax exemption for
PHEVs. For these policy options the market diffusion of PEVs was analyzed until 2020
with slightly different parameters than throughout this thesis. Yet, the relative difference
to the medium scenario and the range of subsidies of policy options should be comparable.

The total subsidies that had to be paid for these policy options until 2020 (744 mil-
lion EUR for P1, 2,493 million EUR for P2 and 68 million EUR for P3) are generally
higher than those for public charging points (26 million EUR in S3 and 211 million EUR
in Power1).113 As public charging points are subsidized until 2030 the subsidy per PEV
user is obviously lower, yet the the PEV stock does not change when public charging
points are subsidized. For an uptake of PEV market diffusion the three other policy
options would offer a more effective solution, even when their total subsidies are consid-
erably higher. Which policy option is best for an introduction of PEVs is subject of a
controversial public and scientific discussion [Srivastava et al., 2010,Diamond, 2009,Mock
and Yang, 2014,NPE, 2014,Gass et al., 2014,Bakker and Trip, 2013,Jin et al., 2014].

113Also Dong et al. (2014) state that subsidies to public charging points are generally low compared to
other policy options [Dong et al., 2014].
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Table 5.8: Financial policy options modeled. Shown are the PEVs resulting from the policy
options as well as necessary subsidies in total and per user. All subsidies in EUR2014.

Policy option PEV stock total subsidy subsidy per PEV

Units PEVs 2020 million EUR EUR/PEV

Medium scenario 631,000 - -
(P1) Flat-rate subsidy of
EUR 1,000, decreasing

1,118,000 744 1,529

(P2) Lowering private
interest rate on investment

1,143,000 2,493 4,873

(P3) Tax exemption for
PHEV, REEV

685,000 68 1,248

Units PEVs 2030 million EUR EUR/PEV

(S1) No subsidies to 3.7 kW
chargers

3,991,000 - -

(S3) Subsidies to 3.7 kW
chargers until 2030

3,896,000 26 7

(Power1) Subsidies to 22 kW
chargers until 2030

3,860,000 211 55

For fast charging a rough estimate showed that this charging option might be more
promising for CPOs and the PEV market diffusion than slow charging points. This
estimate could certainly be extended in further research, since it also covers a general
criticism of charging simulations based on driving profiles: the possible interruption of a
trip to recharge that is not covered in the PEV simulation of the proposed model.

These results are based on the model proposed in Chapter 4 in which public charging
infrastructure is modeled from a mostly techno-economical point of view. In Section 5.3.1,
a zone-specific minimum number of public charging points was defined which has to be
in place for a vehicle buyer to consider it in his buying decision (see Section 4.2.1). Al-
though minimum number of charging points symbolizes a potential barrier to the adoption
of PEVs, the option to potentially recharge could have a greater influence on model re-
sults. However, the lack of data in this field of research does not permit a more detailed
integration into the vehicle buying decision.

To the best of the author’s knowledge, there are no studies treating the interaction
of PEVs and their charging infrastructure that could serve for comparison. The studies
analyzed in Section 2.2 treated different AFV-types, yet several results could be general-
ized to all AFVs. Köhler et al. (2010) found that only a small subsidy is needed for the
initial refueling infrastructure and infrastructure was not a major barrier for the diffusion
of FCEVs [Köhler et al., 2010]. While the small subsidy to public charging can be con-
firmed with this analysis, the present study shows that public charging infrastructure is
not necessary for a PEV market diffusion when PEV users buy a private or commercial
home-charging point. This primary charging point is necessary for a market diffusion of
PEVs as stated by [Schwoon, 2007,Stephan and Sullivan, 2004,Melaina, 2003].



Chapter 5. Model results 125

5.3.6 Summary

In this subsection the co-diffusion of PEVs and public charging infrastructure has been
studied. A 3.7 kW charging option with three subsidy options was studied in detail in
Section 5.3.2 with respect to the number of PEVs and CPs, several energy related aspects
as well as locations of charging points and PEV users homes. Thereafter a number of
variations was analyzed to test the robustness of results. A brief analysis of fast charging
points and a discussion rounded up this section. The following findings can be extracted
from this analysis:

• No impact of public slow charging points on the market diffusion of PEVs can be
determined in any subsidy scenario or variation analyzed. The number of PEVs
on the other hand influences the profitability of public charging points. Until a
sufficient number of PEVs has diffused into the vehicle stock, a subsidy to charging
points is needed to cover the expenses. A tipping point will most likely be beyond
2020.

• The energy charged at public charging points will not have a significant impact on
the energy system, since the load shift potential from private load to public charging
stations is low as both are most occupied at the same times. Also the energy charged
at public charging points is only around 3% of the total energy charged by PEVs.

• Charging points with the highest use rates and PEV owners’ homes are located
10–30 km away from the city center.

• An increase of power, a variation of the minimal SOC before recharging and the
initial public charging price have no influence on the PEV market diffusion.

• Decreasing the battery sizes of PEVs or offering additional charging points at work
to private users increases the number of PEVs in stock. However, this increase is
not connected with public slow charging infrastructure.

• First calculations indicate that public fast charging points could increase the number
of PEVs and offer a more economic public charging point option. More effort needs
to be spend on their investigation.
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5.4 Synopsis of simulation results

This chapter aimed at analyzing the market diffusion of PEVs and their charging infra-
structure using the model proposed in Chapter 4. Three parts were presented with a
rising model complexity: the market potential of PEVs as private or commercial vehicles
(Section 5.1), the market evolution of PEVs with non-public infrastructure (Section 5.2)
and the co-diffusion of PEVs and their infrastructure (Section 5.3). Here, results are
compared to each other and their implications are discussed.

Commercial fleet vehicles are the most important user group for PEV sales, followed
by private and lastly company cars. Commercial fleet vehicles show a higher market
potential for PEVs than private vehicles. The larger shares of commercial vehicles in
new registrations in Germany as well as the reimbursement of VAT and depreciation
allowances for commercial vehicles increase the market potential for PEVs in general.
The analysis of commercial fleet driving profiles collected for this thesis also shows a
favoring higher mileage and regularity compared to private driving profiles. This results
in higher PEV market shares in registrations for fleet vehicles than for private vehicles.
That also influences the need for public charging infrastructure, as commercial PEVs
charge less often in public.

Framework conditions have the largest impact on PEV diffusion, followed by battery
sizes and charging options at work. Public (slow) charging points have no impact on PEV
market diffusion. While market shares are larger for commercial fleet vehicles, the stock
is dominated by private users in which PEVs diffuse through the second-hand car market.
The market diffusion of PEVs is strongly dependent on framework conditions, especially
on energy and battery prices. Results for three scenarios range from 2 to 10 million PEVs
in Germany in 2030. This is also visible on the left panel of Figure 5.25 which shows a
comparison of results for the market diffusion of PEVs that were shown in Section 5.2.
Non-monetary factors like a WTPM or the cost for individual charging infrastructure
have an influence on PEV market diffusion in the beginning (cf. Section 5.2.2 and [Gnann
et al., 2015b]), yet it decreases over time (as assumed ex ante). Apart from framework
conditions, only additional charging points at work have a considerable influence on the
diffusion of PEVs in the simulations without public charging infrastructure.
The interaction of PEVs and their charging infrastructure is complex, since charging
options for PEVs have to be divided into three groups: domestic or commercial, work
and public charging points. Section 5.3 especially focused on the interaction of public
CPs and PEVs. The right panel of Figure 5.25 shows all simulation results of Section 5.3
with the number of public CPs in 2030 on the ordinate and the number of PEVs in stock
in 2030 on the abscissa. This figure again demonstrates that most subsidy scenarios and
variations are on a horizontal line, indicating that the number of public charging points
has no influence on the PEV diffusion. Only two options increase the PEVs in stock
in 2030: A decrease of BEV battery sizes (raises the PEV stock by about 2.5 million
additional PEVs) and additional charging points at work (about 700,000 PEVs). Also
the decrease of BEV battery sizes raises the PEV stock independent of the number of
charging points.

For a PEV diffusion, most important are domestic and commercial charging points,
followed by charging points at work and lastly in public. Results show that the availability
of domestic or commercial charging points has the most impact on market diffusion of
PEVs which is cut to half when only charging at work is possible and to zero with public
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Figure 5.25: Comparison of simulation results. Left panel: Results of PEV market diffusion
without public charging infrastructure from Section 5.2. Framework scenarios with blue crosses
and sensitivity calculations with red diamonds. Right panel: Results of PEV and public CP
market diffusion in 2030. Calculations of Section 5.3 shown with green crosses.

charging points only. The number of PEVs can be increased with additional charging
points at work, also when users have to pay for it. Public slow charging points (≤22 kW)
can not increase the number of PEVs, independent of their exact configuration, while
public fast charging points (>22 kW) indicate slight increases in a rough estimate. Lin
and Greene (2011) come to similar conclusions for charging power (cf. [Lin and Greene,
2011]). The market diffusion of PEVs has a noteworthy impact on the diffusion of charging
points on the other hand. For the assumed one-to-one allocation of individual charging
points this connection is predefined, yet the number of PEVs is also decisive for the
diffusion of public charging points. Public (slow) charging infrastructure needs to be
subsidized until reaching their tipping point. In all calculations made in this thesis, this
tipping point is beyond 2020.

The problem of a limited range of BEV users can best be addressed by a switch to
PHEVs, then by a increase of battery sizes. Additional charging options and rental cars
are less important from a techno-economical point of view. Resuming the possibilities to
increase the assumed range of BEVs in Section 5.2.3, four possibilities were discussed:
(1) switch from BEV to PHEV, (2) use substitute vehicles, (3) raise charging options and
(4) increase a BEVs battery size. In Section 5.2.3, the alternative use of rental cars for
long-distance trips was discussed (case 2), which might help in the beginning of a market
diffusion, yet not in the long term. Additional charging options (case 3) would help to
increased the BEV range if created at work and increase the PEV stock in 2030. Also
public fast charging points may be an option, yet slow charging in public does not increase
the PEV stock in 2030. Increasing the battery size (case 4), to simply gain range, may not
be affordable for a large number of vehicles (cf. Section 5.3.3). Thus, offering affordable
BEVs with an user-accepted range will be the key task for the automotive industry in the
next years. Switching to a PHEV (case 1) does not increase the range of the BEV, but
it may be the favorite option for a large number of potential PEV customers during the
next years. Almost all results throughout this thesis confirm this statement.





Chapter 6

Conclusions and further research

6.1 Summary and conclusions

Plug-in electric vehicles are a means to reduce greenhouse gas emissions and the de-
pendency on fossil fuels from the transportation sector. However, their diffusion depends,
among other factors, on the prevalence of a charging infrastructure and vice versa. Hence,
the aim of this thesis was to answer the following question: ”How do the diffusion of plug-
in electric vehicles and the diffusion of their charging infrastructure mutually influence
each other?”

For this purpose, an agent-based model has been developed that simulates potential
PEV buyers individually with the existing charging infrastructure and jointly simulates
PEV users and their interaction at public charging points for Germany until 2030. A
charging infrastructure agent decides about the setup or deactivation of public charging
points based on the publicly charged energy and associated revenues. The individual anal-
ysis permits to examine charging at different infrastructure facilities - at home (domestic
or commercial), at work and in public - which is decisive since the usage of one charging
facility influences the other [Schroeder and Traber, 2012].
The model is based on driving profiles with an observation period of at least one week to
cope with the variation in driving between users and days. Two household travel surveys
with an observation period of one week were used to extract the driving behavior of pri-
vate vehicles. As for commercial vehicles, driving profiles with an observation period of
more than one day were not publicly available, more than 500 commercial vehicle driv-
ing profiles with an observation period of three weeks have been collected for this thesis.
Further, two types of PEVs are distinguished in the analyses - PHEV and BEV - that
have different needs for the charging infrastructure since PHEV can refuel conventionally
as well.
Three scenarios were defined with different prices for the most important framework con-
ditions: electricity, fuel and battery prices. A scenario with favorable conditions for PEVs
(pro-EV) and a scenario with unfavorable conditions (contra-EV) were completed by a
medium scenario in between the two. None of the scenarios makes extreme assumptions,
e.g. the oil price lies between 115 $2014/bbl and 180 $2014/bbl in 2030. The following
scenario-independent findings respond to the initially proposed research questions (Chap-
ter 1). They are divided into contentual and methodological results and conclusions.

There is no lock-in in the co-diffusion of PEVs and their charging points for countries
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with a large availability of home charging points. Model results show that, a domestic or
commercial charging infrastructure has a strong influence on PEV diffusion results and
covers the needs of most PEV users. A simulation of charging only at work showed that
the PEV stock was cut by half and charging only at public charging points would return
even fewer PEVs since parking durations at these sites are too short. Thus, charging at
home is a prerequisite for a large number of PEVs. Additional charging at work could
increase the number of PEVs since this would effectively increase PEVs’ electric ranges.
Additional charging at public slow charging points (≤22 kW) has no influence on market
diffusion results of PEVs which was demonstrated in multiple scenarios. Parking times
are either not sufficient or public charging is not necessary to be able to drive PEVs.
Additional calculations with a slightly adapted approach for public fast charging points
(>22 kW) indicate a potential stimulation of PEV diffusion, though further research on
this topic is needed.

The diffusion of public charging points follows the diffusion of PEVs. The influence of
PEVs on home and work charging points was not analyzed since their one-to-one alloca-
tion (one home and/or work charging point per vehicle) was a prerequisite of the model.
For public charging points a strong influence of the number of PEVs was found. The
number of PEVs and their usage determines the profitability of public charging points.
Until there is a sufficient number of vehicles charged with a good amount of public energy
charged, public charging points have to be subsidized in large measure. Yet, the most
important charging infrastructure type for PEV diffusion are charging points at home
(domestic or commercial), followed by charging points at work and lastly by public charg-
ing points.

Framework conditions are more important than public charging points. With charging
infrastructure only at domestic and commercial sites, a PEV market diffusion of 2-10 mil-
lion PEVs, depending on assumptions, is possible for Germany until 2030. However, the
diffusion of PEVs is largely influenced by framework conditions, such as oil, electricity
and battery prices. While the influence of a PEV diffusion on energy prices is supposedly
low until 2030, potential policies to foster PEV market diffusion should be dynamically
adaptable to react to changing framework conditions. Further, the configuration of ve-
hicles (especially battery sizes) influences the total number of PEVs. Thus, car makers
have to find the right balance between vehicles with high ranges and their affordability
to the customer. All simulations show a higher share of PHEVs and commercial vehicles
which both have a limited need for a public charging infrastructure. It can be confirmed
that ”inadequate recharging availability will not be the key barrier in holding back the
near-term penetration of BEVs-PHEVs” [Lin and Greene, 2011]. This statement may also
apply to public charging points in the medium-term if battery technology keeps developing
and electric ranges are extending.

In countries with home-charging options, an extensive public charging infrastructure
roll-out is not necessary from a techno-economical point of view. As a result, policy mak-
ers should focus on facilitating the access to home charging points for potential PEV
buyers with monetary or non-monetary instruments. Similarly, regulatory barriers for
charging at work may be reduced, e. g. a tax exemption for charging at work which could
be considered a fringe benefit to the employee (see also [Trigg et al., 2013]). For public
charging points the focus should lie on fast charging which is not an unusual situation
to the user because of the similarity to conventional refueling stations and fewer charg-
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ing points are needed. Here, the terms of billing, like the exact measurement of energy
charged, could be facilitated. Investments in public charging infrastructure remain a risk
though [Schroeder and Traber, 2012]. In EU directive 2014/94/EU, which deals with
the deployment of an alternative fuels infrastructure, 150,000 public charging points in
Germany by 2020 were proposed [EC, 2014], while the BMWE suggested 35,000 public
charging points by 2020 [BMWE, 2015]. The model results contradict these numbers from
a techno-economical point of view as the availability of home charging options and actual
user behavior should to be taken into account.

The distinction of different access types for charging infrastructure - at home, at work,
in public - is obligatory for a model development. The analysis of the co-diffusion of PEVs
and their charging infrastructure is different to studies for other alternative drive trains,
since the usage of different charging options depends on each other. Especially the public
charging infrastructure diffusion should not be analyzed independently of home charging
infrastructure diffusion which covers high shares of charging needs.

Driving behavior differs between drivers, days of individual drivers and user groups.
While most studies focus on the typical mileage of a user on an average day, this is neither
sufficient to identify early niche markets, nor does it reflect the requirements for PEVs to
become economically viable. High annual mileage paired with regular driving within the
electric range require a detailed analysis of individual driving behavior in different user
groups. This requires driving profiles of more than one day.

The differentiation between BEVs and PHEVs is important. While BEVs are limited
to the use of (public) charging points, PHEVs can also use refueling stations for range
extension. The use of public slow charging points by PHEVs will most likely be oppor-
tunity charging only, while it may be a requirement for some BEVs. The large share of
PHEVs throughout all model results indicates the necessity for their consideration.

Agent-based simulation models fit best for these various modeling requirements. The
previously mentioned aspects make agent-based models the most promising approach to
gain insights into the co-diffusion of PEVs and their charging infrastructure, since agent-
based models are useful ”when the population is heterogeneous, when each individual is
(potentially) different.” [Bonabeau, 2002]

Studies which analyze driving profiles individually should use driving profiles with long
observation periods. Driving profiles are often used to cope with the variation in driving
between different vehicle users. When driving profiles are used for an individual analysis
of PEVs, a long observation period is decisive. This lowers an eventual overestimation of
PEV-potentials as it covers the variation in driving.

Commercial vehicles should be analyzed individually when they have significant market
shares. In Germany, commercial users account for more than half of the vehicle market and
thus represent an important market segment for PEVs. Since special rules apply to their
buying decision which differ from private vehicles, e. g. the exemption from VAT, they
should be modeled separately. This applies for other vehicle markets as well if market
shares have a relevant size or accounting rules differ between private and commercial
vehicles.
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6.2 Discussion and further research

Discussion

Different approaches to the diffusion of PEVs and the diffusion of their charging infra-
structure are conceivable, e.g. modeling of coupled differential equations in a top-down
approach. However, as mentioned in the last section, charging infrastructure should be
divided into subgroups and their usage depends on each other. Also a distinction be-
tween PHEVs and BEVs is necessary, since the ability of PHEVs to refuel conventionally
incorporates another option to refuel. The diversity of users and the task to identify a
niche with convenient attributes for PEVs make such top-down approaches inadequate
for this research question. Since no overall objective function can be formulated for this
research question (PEVs could be maximized, however the number of public charging
infrastructure may be maximized or minimized), an optimization model does not seem
useful either. The individual rules that can be formulated for this large number of differ-
ently behaving users favor the use of a simulation model which is confirmed by previous
modeling approaches (cf. Chapter 2). Further, the analysis is a model-based assessment
and no probabilities of occurrence of the three scenarios can be given. Hence, conclusions
are drawn related to the influencing factors of the diffusion of PEVs and their charging
infrastructure, but not on their absolute number.

Concerning data, driving profiles with a ”long” observation period were used. Al-
though driving profiles with an observation period of one week or three weeks are more
reliable for an individual analysis, they still do not cover all aspects of driving behavior,
e.g. long-distance travels. This issue was addressed with an estimated number of days
that exceed the electric range of PEVs in Section 5.2.3. Further, the number of driving
profiles is limited, yet their representativeness was discussed in Chapter 3 and some re-
sults are shown with confidence bands due to the sample size (see Section 5.2.1). Like
most studies, the analyses performed in this thesis could be improved with larger data
sets. This especially applies to commercial fleet vehicle and company car profiles, but also
to the magnitude and evolution of the WTPM. Since the joint simulation was performed
with data for the region of Stuttgart, their results should not be directly transferred to less
populated areas. However, the transferability to Germany was discussed in Section 5.3.5,
finding comparable results for the market diffusion of PEVs for Germany. A projection to
other countries might be a further field of research (see e.g. [Pasaoglu et al., 2014,Seixas
et al., 2015]), but was beyond the scope of this thesis.

Moreover, results are based on scenarios and assumptions that were discussed thor-
oughly throughout this thesis. Yet, not all aspects influencing this topic could be incor-
porated into the model and some important facets should be mentioned: The simulations
for the co-diffusion of PEVs and their charging infrastructure are performed for Germany
from 2015 until 2030. This is an early market phase of PEVs in a highly industrialized
country, and, e.g., not comparable to a complete replacement of conventional vehicles by
plug-in electric vehicles. Results might differ for countries in which the electricity grid
is not as elaborated and stable as for Germany. Several aspects could affect results in
the long term, but are not incorporated into the model: Improvements in battery tech-
nology [Nykvist and Nilsson, 2015] are currently unknown and results for studies vary
largely. Three evolutions were chosen that were discussed thoroughly with a groups of
experts in this field [Plötz et al., 2013]. An inclusion of fuel cell electric vehicles like
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in [Propfe et al., 2012a] could be a model extension for the future, yet the focus of this
study was to analyze the connection between PEVs and their charging infrastructure. In
addition, an increasing use of car-sharing programs could affect the diffusion of PEVs in
the long term, but until 2030 the number of PEVs in car-sharing is expected to not be the
main driver for overall PEV diffusion. Rebound effects [Frondel et al., 2012] or a change
in mobility behavior would both influence results, yet data on both effects is not publicly
available in the desired granularity. Further on, feedback loops for the costs of batteries
and vehicles representing economies of scale could also be incorporated into a later version
of the model. Further, aspects like the ban on driving in cities due to air pollution, an
intensification of European directive 443/2009 [EC, 2009], which treats the regulations of
CO2 emissions in the vehicle fleet, after 2020 or a tax on electricity charged for driving
could affect PEV diffusion by large, yet they are beyond the scope of this study. Also, the
psychological effect of a (public) charging infrastructure which might increase the need
for public charging infrastructure was not the focus of this study.

Further research

This thesis aimed at analyzing the co-diffusion of PEVs and their charging infrastructure.
While the author focused on answering this question, several further fields of research
could be identified.

Modeling of public charging infrastructure in this thesis focused on techno-economical
aspects. The psychological need for charging points for potential users is often stated, yet
to the best of the author’s knowledge unquantified. Retrieving quantitative data on the
vehicle buyer’s utility of charging infrastructure and integrating it into his buying decision
would certainly improve the model. Also survey data about neighboring effects would
ameliorate the interaction in the model and the switch to a multi-agent simulation could
be possible. More research is needed that combines psychological and techno-economical
aspects in general and for PEVs and their charging infrastructure in particular.

Further, initial calculations were made for the influence of fast charging points on
PEVs in this thesis. Results showed that the profitability of fast charging points was
higher and also their contribution to PEV diffusion is noticeable. These calculations were
made with a different approach since staying connected to a charging point as long as
vehicles are parked is appropriate for slow charging, yet not for the interruption of long-
distance trips for fast charging. However, this analysis did not consider the simultaneity
of charging events. Further research on the interaction of PEV diffusion and fast charging
points could be an interesting research topic.

Moreover, energy-related aspects like load shifting, buffering energy for intermittent
renewable energy or energy storage for PEVs have a minor relevance for Germany until
2030 [Dallinger and Wietschel, 2012,Heinrichs, 2014]. Yet, these could become relevant in
local networks or with a faster increasing number of PEVs which may include additional
benefits that make public charging points more profitable. In connection with a public
charging infrastructure, this could be a further field of research as well.

Finally, the publicly available information about company cars is scarce. Their buying
decision is more complex than for fleet vehicles and private cars, since the company (with
a pre-selection) and the private user (with the final choice) are involved. Also data
on driving behavior and their WTPM is hardly available. Understanding their buying
behavior and their potential to adopt PEVs is an uncovered field of research.





Appendix A

Vehicle usage data

A.1 Extraction of private driving profiles

The private data sets MOP [MOP, 2010] and MOPS [Hautzinger et al., 2013] are both
household travel surveys which contain the trips of all members of participating house-
hold.114 Since in this analysis the movement of vehicles is of concern, all vehicle trips have
to be assigned to vehicles where unambiguously possibly. The following assumptions are
used (see also [Kley, 2011,Chlond et al., 2014]):

1. If there is only one vehicle in the household, trips of all household members as vehicle
driver are assigned to the vehicle. In this case the socio-demographic information
of the first driver is assigned to the vehicle profile.

2. If the number of vehicles exceeds the number of drivers, the trips of the first house-
hold member are assigned to the first vehicle, those of the second driver to the
second vehicle until the last driver’s trips are assigned. This might overestimate the
driving of single vehicles.

3. If the number of vehicles is smaller than the number of household members, the
vehicles will be exempted from the further analysis, since the allocation of trips to
vehicles is unknown.

These assumptions are valid for both private data sets used in the analysis, MOP and
MOPS, while details for both are explained in the following.

Extraction of vehicle driving profiles from MOP

The part of MOP used in this thesis contains mobility behavior of the years 1994 until
2010. For every year, there are four tables in MOP (XX indicates the year):

• hhXX : Household table which contains information about the household, e.g. house-
hold size, household income, city size, parking situation of vehicles in the household.

• pXX : Person table contains information about all members of participating house-
holds, e.g. their age, sex or education.

114For more details refer to Section 3.2. Note, that MOPS is a synthetic data set, yet the structure of
tables is similar to MOP.
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• wXX : Trip table that comprises all trips performed in the observation period and
the means of transport.

• tank(XX+1)115: Refueling table which includes all information about the vehicles
and their refueling behavior.

All files can be connected with their primary keys [MOP, 2010]. To retrieve the above men-
tioned cases in which an allocation of trips of persons to vehicles is possible, all trips are
extracted with a vehicle as means of transport and the person as driver (wXX.vmdiw=4 ).
For plausibility reasons, also the possession of a driving license is checked (pXX.fspkw=1 ).
Then all households with only one vehicle (case 1) are extracted and all trips are assigned
to the vehicle (see Listing A.1). Thereafter, all trips of persons in households with more ve-
hicles than driver (case 2) are assigned to the vehicles while trips of the first stating driver
are assigned to the first stated vehicle (pkwXX.persnr = wXX.persnr, see Listing A.1).

Listing A.1: MOP vehicle driving profiles extraction part 1

SELECT

pkw10 . hhid , pkw10 . persnr , w10 . j ahr AS jahr , w10 . wotag , w10 . bertag ,
w10 . datum , w10 . abze i t , w10 . zweck , w10 . anze i t , w10 .km, p10 . sex ,
p10 . gebjahr , p10 . schulab , p10 . beruf , hh10 . raumtyp , hh10 . k r e i s ,
hh10 . ewzahl , hh10 . hhtyp , hh10 . einko ,
CASE tank11 . pkwordnr

WHEN 1 THEN hh10 . pa rk s t r 1
WHEN 2 THEN hh10 . pa rk s t r 2
WHEN 3 THEN hh10 . pa rk s t r 3
ELSE hh10 . parkgar+1

END AS garage , tank11 . privpkw , tank11 . nutzung , tank11 . marke ,
tank11 . baujahr , tank11 . hubraum , tank11 . benzin , tank11 . kmjahr ,
tank11 . hub klas , pkw10 . per snr AS pkwno , hh10 . hhgro AS hhgro

FROM

(SELECT
wege . hhid , 1 AS per snr

FROM

(SELECT
DISTINCT hhid , per snr

FROM

(SELECT
id AS hhid , per snr

FROM

w10
WHERE

vmdiw = 4
)

) wege ,
(SELECT

DISTINCT pp . hhid , pp . persnr , pp . hh po t dr iv e r s , hh . pkwhh
FROM

(SELECT
DISTINCT p1 . hhid , p1 . persnr , p2 . hh po t d r i v e r s

FROM

(SELECT
id AS hhid , per snr

115The household, person and trip table use the same year for one survey wave while the refueling table
has the following year as connection: tank11 belongs to hh10.
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FROM

p10
WHERE

fspkw = 1
) p1
LEFT OUTER JOIN

(SELECT
id AS hhid , COUNT( per snr ) AS hh po t d r i v e r s

FROM

p10
WHERE

fspkw = 1
group by id
) p2
on ( p1 . hhid = p2 . hhid )

) pp , hh
WHERE

( hh po t d r i v e r s > pkwhh AND pkwhh = 1)
AND

pp . hhid = hh . id
) personen
WHERE

wege . hhid = personen . hhid
AND

wege . per snr = personen . per snr
) pkw10

, p10 , hh10 , w10 , tank11
WHERE

pkw10 . hhid = p10 . id
AND

pkw10 . per snr = p10 . per snr
AND

pkw10 . hhid = hh10 . id
AND

pkw10 . hhid = w10 . id
AND

pkw10 . hhid = tank11 . idhh
AND

pkw10 . per snr = tank11 . pkwnr

Listing A.2: MOP vehicle driving profiles extraction part 2

SELECT

pkw10 . hhid , pkw10 . persnr , w10 . j ahr AS jahr , w10 . wotag , w10 . bertag ,
w10 . datum , w10 . abze i t , w10 . zweck , w10 . anze i t , w10 .km, p10 . sex ,
p10 . gebjahr , p10 . schulab , p10 . beruf , hh10 . raumtyp , hh10 . k r e i s ,
hh10 . ewzahl , hh10 . hhtyp , hh10 . einko ,
CASE tank11 . pkwordnr

WHEN 1 THEN hh10 . pa rk s t r 1
WHEN 2 THEN hh10 . pa rk s t r 2
WHEN 3 THEN hh10 . pa rk s t r 3
ELSE hh10 . parkgar+1

END AS garage , tank11 . privpkw , tank11 . nutzung , tank11 . marke ,
tank11 . baujahr , tank11 . hubraum , tank11 . benzin , tank11 . kmjahr ,
tank11 . hub klas , pkw10 . per snr AS pkwno , hh10 . hhgro AS hhgro

FROM

(SELECT
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wege . hhid , wege . per snr
FROM

(SELECT
DISTINCT hhid , per snr

FROM

(SELECT
id AS hhid , per snr

FROM

w10
WHERE

vmdiw = 4
)

) wege ,
(SELECT

DISTINCT pp . hhid , pp . persnr , pp . hh po t dr iv e r s , hh . pkwhh
FROM

(SELECT
DISTINCT p1 . hhid , p1 . persnr , p2 . hh po t d r i v e r s

FROM

(SELECT
id AS hhid , per snr

FROM

p10
WHERE

fspkw = 1
) p1
LEFT OUTER JOIN

(SELECT
id AS hhid , COUNT( per snr ) AS hh po t d r i v e r s

FROM

p10
WHERE

fspkw = 1
group by id
) p2
on ( p1 . hhid = p2 . hhid )

) pp , hh
WHERE

hh po t d r i v e r s <= pkwhh
AND

pp . hhid = hh . id
) personen
WHERE

wege . hhid = personen . hhid
AND

wege . per snr = personen . per snr
) pkw10

, p10 , hh10 , w10 , tank11
WHERE

pkw10 . hhid = p10 . id
AND

pkw10 . per snr = p10 . per snr
AND

pkw10 . hhid = hh10 . id
AND

pkw10 . hhid = w10 . id
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AND

pkw10 . per snr = w10 . per snr
AND

pkw10 . hhid = tank11 . idhh
AND

pkw10 . per snr = tank11 . pkwnr

Since the data structure changed over the years, this allocation has to be adapted for
every year. Table A.1 shows the differences between the years with respect to the data of
2010.

Table A.1: Changes between observation waves in data set MOP.

Field Problem Concerns
years

Solution

hhXX.Parkstr1 not
available

1994-2002 hhXX.parkgar+1 as garage

hhXX.Parkstr2 not
available

1994-2002 hhXX.parkgar+1 as garage

hhXX.Parkstr3 not
available

1994-2002 hhXX.parkgar+1 as garage

tankXX.privpkw not
available

1995-1999 NULL as privpkw

tankXX.nutzung not
available

1995-1999 NULL as nutzung

tankXX.typ k a different
coding

1995,1996,
2000-2002

case tankXX.typ k a when 2 then 3
when 3 then 5 else tankXX.typ k a
end as benzin

tankXX.typ k a different
coding

1997-1999 case tankXX.typ k a when 2 then 5
when 3 then 4 when 4 then 2 else
tankXX.typ k a end as benzin

tankXX.kmjahr not
available

1995-2003 NULL as kmjahr

tankXX.hub klasnot
available

1995,1996,
2002

NULL as hub klas

tankXX.id Combination
of HHID
and PersNr

1995-2001 hh94.id = tank95.id/10 (div);
p94.pkwnr = tank95.id %10 (modulo)

tankXX.pkwnr not
available

1995-2001 tankXX.pkwnr = tankXX.id %10
(modulo)

tankXX.pkwnr not
available

2002 tankXX.pkwnr = tankXX.pkwnrhh

tankXX.marke ASCII-
coding

1994 coding like 2010

After the extraction of all driving profiles, trips with 0 km are deleted (three cases) and
trips with arrival times prior to departure (two cases). Since the field tankXX.hub klas,
which contains the vehicle size, is not completely filled, the size of the vehicles is de-
termined by their cubic capacity: small (< 1,400 ccm), medium (1,400 ccm ≤ CC <
2,000 ccm) and large (CC ≥ 2,000 ccm). This yields to 6,339 vehicles with 172,978 vehi-
cle trips.
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Extraction of vehicle driving profiles from MOPS

A similar procedure is performed for MOPS. This data set is slightly different fromMOP as
it contains no information about the vehicles used and less socio-demographic information
about the households and persons. Thus, there are three tables:

• Haushalt: Contains the information about households, i.e. the four attributes:
household-id, zone of the household, household size (persons) and vehicles in house-
hold.

• Personen: Information about the persons (nine attributes): household-id, person-id,
sex, employment status, possession of a transit pass, possession of a driving license,
zone of working place, zone of apprentice position.

• Wege: Information on all trips performed (twelve attributes): household-id, person-
id, day of week, departure time, arrival time, duration of trip, starting zone, stopping
zone, distance, means of transport, trip purpose, duration of following activity.

Since the number of vehicles is only available in the household table, the allocation
of person trips to vehicles runs as in Listing A.1.

Listing A.3: MOPS vehicle driving profiles extraction

CREATE TABLE mops weg miv AS

(SELECT
∗

FROM

mops weg
WHERE

modus LIKE ’MIV ’ )

CREATE TABLE mops pkw hh AS

(SELECT
hh . hhid AS hhid ,
hh . hh g ro e s s e AS pkw in hh ,
count (miv . pid ) AS pkw driv ing

FROM

mops haushalt hh ,
mops weg miv miv

WHERE

hh . hhid = miv . hhid
GROUPBY

miv . hhid ) ;

CREATE TABLE mops weg pkw AS

SELECT

a l l t r i p s . hhid ,
CASE f e a s i b l e . pkw in hh

WHEN 1 THEN 1
ELSE a l l t r i p s . pid

END AS pkwid ,
a l l t r i p s . wochentag ,
a l l t r i p s . abze i t ,
a l l t r i p s . anze i t ,
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a l l t r i p s . dauer ,
a l l t r i p s . vz ab ,
a l l t r i p s . vz an ,
a l l t r i p s . s t r e cke ,
a l l t r i p s . modus ,
a l l t r i p s . zweck ,
a l l t r i p s . d a u e r a k t i v i t a e t

FROM

(
SELECT

∗
FROM

mops pkw hh
WHERE

pkw in hh = 1
OR (

pkw in hh > 1
AND pkw driv ing <= pkw in hh

)
) f e a s i b l e ,
mops weg miv a l l t r i p s

WHERE

f e a s i b l e . hhid = a l l t r i p s . hhid ;

In the initial data set, there are 21,949,597 vehicle trips available performed by
1,585,271 vehicles. The allocation reduces the data sample to 20,514,826 vehicle trips
of 1,312,817 vehicles. For practical reasons, especially computing time, the time intervals
of trips were reduced to 15 min sections, which further decreases the number of trips to
19,100,429. A further partition is described in Section 4.3.6.

A.2 Further information about MOPS

An important advantage of MOPS in comparison to MOP is the availability of geograph-
ical information. This information is necessary for the joint simulation of PEVs at public
charging points. Yet, the geographic information in the driving profiles are no coordi-
nates, but geographic zones in GIS-format. A map of these zones is shown in Figure 3.2
in Section 3.2, yet the 1,173 zones are hardly visible on the map. For a better interpreta-
tion of results, Figure A.1 shows the connection of zone area and its distance to the city
center.

Figure A.1 shows the area of the zones on the ordinate and the distance to the city
center on the abscissa. Both axes use a logarithmic scale to be able to compare small to
large values and every dot corresponds to one zone. It is clearly visible that the area of
zones rises with the distance to the city center which was already mentioned in Section 3.2.
Also two groups are visible for zones with a distance of 1 to 10 km distance to the city
center (inner city zones) and from 10 to 100 km distance (outer city zones).
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Figure A.1: Distance and area of zones in observation area of MOPS. Both axes with logarithmic
scales. Every point corresponds to one zone.

A.3 Collection of commercial vehicle usage data

The data collection of REM2030 was performed from June 2011 until June 2014. The goal
was to collect data of commercial vehicles for at least three weeks and to be representative
for the distribution of vehicles to commercial branches in commercial vehicle registrations.
The data collection was carried out in 13 survey waves with 50 GPS-trackers of which 45
on average were used during the surveys and 40 sent usable data (see next paragraph for
data correction). Companies were asked by phone to participate in a data collection for
the application of PEVs as commercial vehicles and the rate of participation was at about
20% on average. GPS-trackers were sent to companies who distributed them to vehicle
users who were willing to participate in the data collection personally116. The vehicle
movements were audited in an online portal and companies were contacted in case the
cars were not moving. All vehicle trips including their starting and stopping time and ge-
ographical coordinates were collected. After 4-5 weeks, participants had to fill out a small
questionnaire indicating the vehicles’ sizes (small, medium, large, LCVs) and the company
size (<10, 11-50, 51-100, 101-250, 251-1,000, 1,001-5,000, >5,000). Since 2014 also the
common parking spot (”own parking spot on company site”, ”varying spots on company
site”, ”no parking on company site”), the number of car users (one/multiple) and the
vehicle usage (as fleet vehicle or company car) were requested. These questionnaires were
digitized and reports for every company with vehicle-specific recommendations about the
PEV-replaceability based on the driving behavior were sent to companies. Additionally
the city size of the company’s main site, the commercial branch and commercial segment
according to [Eurostat, 2008] were collected as additional information.

This procedure allows to pursue the representativity regarding the commercial bran-
ches in vehicle registrations. However, incorrect reporting of additional information in the

116Participants had to agree personally because of data privacy.
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questionnaire cannot be precluded. Several plausibility checks of the trips were performed
to correct some technical issues. Since the data recording with GPS-trackers suffers from
dead spots of GPS and radio communication, the recorded trips were tested for plausi-
bility and, if necessary, adapted or additional trips were inserted. There were two types
of trips that had to be adapted: (1) the distance between starting and stopping point
was shorter than the minimal distance extracted from Google-maps and (2) the length
of the trips resulted in an average speed below 1 km/h or the duration was below one
minute. The first case of incorrect distances concerned 2,585 trips with an mean distance
of 4.2 km (SD: 30.3 km). Incorrect driving times (case 2) were found in 2,397 cases with
a mean distance of 1.1 km (SD: 13.4 km). Furthermore, additional trips were inserted
if the destination of trip i differed from the origin of the trip i + 1. Then an additional
trip was determined using Google-maps, which concerned 2,597 trips with a mean value
of 15.6 km (SD: 67.6 km).





Appendix B

Techno-economical parameters

This annex holds the parameters used for calculations and their references were discussed
in Section 4.3. Table B.1 holds the parameters for small vehicles, Table B.2 for medium
sized vehicles, Table B.3 for large vehicles and Table B.4 for light commercial vehicles.
For all BEVs a maximum depth of discharge of 90% is used, while PHEVs may use 80%
of their battery capacity [Plötz et al., 2013].

The limited availability of PEVs as described in Section 4.3.5 is shown in Table B.5.
Lastly, the cost and subsidies to public charging points with 22 kW and 50 kW charging
power used in Section 5.3.3 are shown in Table B.6.

Table B.1: Parameters for small vehicles. All prices and costs without VAT in EUR2014.

Parameter unit 2015 2020 2025 2030

battery capacity BEVa kWh 20 20 20 20
battery capacity PHEVa kWh 8 8 8 8

conventional consumption Gasolineb l/km 0.058 0.054 0.051 0.048
conventional consumption Dieselb l/km 0.046 0.043 0.041 0.038
conventional consumption PHEVb l/km 0.054 0.051 0.048 0.045
electric consumption BEVb kWh/km 0.164 0.155 0.146 0.138
electric consumption PHEVb kWh/km 0.153 0.144 0.135 0.127

O&M cost Gasolinec EUR/km 0.026 0.026 0.026 0.026
O&M cost Dieselc EUR/km 0.026 0.026 0.026 0.026
O&M cost PHEVc EUR/km 0.023 0.023 0.023 0.023
O&M cost BEVc EUR/km 0.018 0.018 0.018 0.018

net list price Gasolined EUR 10,477 10,699 11,033 11,403
net list price Dieseld EUR 12,666 12,888 13,222 13,592
net list price PHEV w/o batteryd EUR 14,991 14,556 14,556 14,556
net list price BEV w/o batteryd EUR 10,923 10,480 10,480 10,480

vehicle tax Gasolinee EUR/yr 65 50 50 50
vehicle tax Diesele EUR/yr 139 126 126 126
vehicle tax PHEVe EUR/yr 26 26 26 26
vehicle tax BEVe EUR/yr 0 0 0 0

a: [Hacker et al., 2011b,Gnann et al., 2012a,Linssen et al., 2012,Pfahl, 2013]
b: [Helms et al., 2011]; c: [Propfe et al., 2012b]; d: [Pfahl, 2013]; e: [BMF, 2014]
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Table B.2: Parameters for medium sized vehicles. All prices and costs without VAT in EUR2014.

Parameter unit 2015 2020 2025 2030

battery capacity BEVa kWh 27 40 40 40
battery capacity PHEVa kWh 10 10 10 10

conventional consumption Gasolineb l/km 0.072 0.066 0.062 0.057
conventional consumption Dieselb l/km 0.057 0.053 0.049 0.046
conventional consumption PHEVb l/km 0.066 0.062 0.058 0.055
electric consumption BEVb kWh/km 0.201 0.190 0.180 0.170
electric consumption PHEVb kWh/km 0.189 0.179 0.168 0.159

O&M cost Gasolinec EUR/km 0.048 0.048 0.048 0.048
O&M cost Dieselc EUR/km 0.048 0.048 0.048 0.048
O&M cost PHEVc EUR/km 0.043 0.043 0.043 0.043
O&M cost BEVc EUR/km 0.033 0.033 0.033 0.033

net list price Gasolined EUR 17,298 17,698 18,298 18,965
net list price Dieseld EUR 19,485 19,885 20,485 21,152
net list price PHEV w/o batteryd EUR 21,677 21,116 21,116 21,116
net list price BEV w/o batteryd EUR 17,613 17,042 17,042 17,042

vehicle tax Gasolinee EUR/yr 125 101 101 101
vehicle tax Diesele EUR/yr 226 209 209 209
vehicle tax PHEVe EUR/yr 34 34 34 34
vehicle tax BEVe EUR/yr 0 0 0 0

a: [Hacker et al., 2011b,Gnann et al., 2012a,Linssen et al., 2012,Pfahl, 2013]
b: [Helms et al., 2011]; c: [Propfe et al., 2012b]; d: [Pfahl, 2013]; e: [BMF, 2014]

Table B.3: Parameters for large vehicles. All prices and costs without VAT in EUR2014.

Parameter unit 2015 2020 2025 2030

battery capacity BEVa kWh 59 80 80 80
battery capacity PHEVa kWh 13 13 13 13

conventional consumption Gasolineb l/km 0.095 0.087 0.080 0.074
conventional consumption Dieselb l/km 0.071 0.066 0.061 0.056
conventional consumption PHEVb l/km 0.084 0.078 0.072 0.067
electric consumption BEVb kWh/km 0.216 0.204 0.193 0.183
electric consumption PHEVb kWh/km 0.204 0.193 0.182 0.171

O&M cost Gasolinec EUR/km 0.074 0.074 0.074 0.074
O&M cost Dieselc EUR/km 0.074 0.074 0.074 0.074
O&M cost PHEVc EUR/km 0.066 0.066 0.066 0.066
O&M cost BEVc EUR/km 0.051 0.051 0.051 0.051

net list price Gasolined EUR 30,755 31,355 32,255 33,255
net list price Dieseld EUR 32,987 33,587 34,487 35,487
net list price PHEV w/o batteryd EUR 34,986 34,351 34,351 34,351
net list price BEV w/o batteryd EUR 30,932 30,232 30,232 30,232

vehicle tax Gasolinee EUR/yr 229 193 193 193
vehicle tax Diesele EUR/yr 349 325 325 325
vehicle tax PHEVe EUR/yr 46 46 46 46
vehicle tax BEVe EUR/yr 0 0 0 0

a: [Hacker et al., 2011b,Gnann et al., 2012a,Linssen et al., 2012,Pfahl, 2013]
b: [Helms et al., 2011]; c: [Propfe et al., 2012b]; d: [Pfahl, 2013]; e: [BMF, 2014]
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Table B.4: Parameters for LCVs. All prices and costs without VAT in EUR2014.

Parameter unit 2015 2020 2025 2030

battery capacity BEVa kWh 32 32 32 32
battery capacity PHEVa kWh 16 16 16 16

conventional consumption Gasolineb l/km 0.119 0.110 0.102 0.095
conventional consumption Dieselb l/km 0.089 0.083 0.077 0.072
conventional consumption PHEVb l/km 0.104 0.098 0.092 0.086
electric consumption BEVb kWh/km 0.324 0.306 0.289 0.274
electric consumption PHEVb kWh/km 0.301 0.285 0.269 0.255

O&M cost Gasolinec EUR/km 0.050 0.050 0.050 0.050
O&M cost Dieselc EUR/km 0.050 0.050 0.050 0.050
O&M cost PHEVc EUR/km 0.044 0.044 0.044 0.044
O&M cost BEVc EUR/km 0.034 0.034 0.034 0.034

net list price Gasolined EUR 38,000 38,600 39,500 40,500
net list price Dieseld EUR 40,200 40,800 41,700 42,700
net list price PHEV w/o batteryd EUR 42,853 42,171 42,171 42,171
net list price BEV w/o batteryd EUR 38,215 37,477 37,477 37,477

vehicle tax Gasolinee EUR/yr 161 161 161 161
vehicle tax Diesele EUR/yr 161 161 161 161
vehicle tax PHEVe EUR/yr 161 161 161 161
vehicle tax BEVe EUR/yr 0 0 0 0

a: [Hacker et al., 2011b,Gnann et al., 2012a,Linssen et al., 2012,Pfahl, 2013]
b: [Helms et al., 2011]; c: [Propfe et al., 2012b]; d: [Pfahl, 2013]; e: [BMF, 2014]

Table B.5: Limited availability of PEVs.

Parameter unit 2015 2020 2025 2030

limited availability BEV smalla - 0.482 0.845 0.970 0.995
limited availability PHEV smalla - 0.037 0.650 0.989 1.000
limited availability BEV mediuma - 0.480 0.876 0.982 0.998
limited availability PHEV mediuma - 0.539 0.982 1.000 1.000
limited availability BEV largea - 0.043 0.184 0.532 0.852
limited availability PHEV largea - 0.273 0.889 0.994 1.000
limited availability BEV LCVa - 0.260 0.632 0.893 0.976
limited availability PHEV LCVa - 0.018 0.461 0.976 0.999

a: Assumptions based on press announcements summed up in [Plötz et al., 2013, Ch. 7.4].

Table B.6: Cost and subsidies for public CPs with a charging power of 22 kW and 50 kW. All
costs in EUR2014 without VAT.

scenario option 2015 2020 2025 2030

Power1 (22 kW) assumed CP annuity 100 100 466 883
annual subsidy 1,254 1,114 557 -

Power2 (50 kW) assumed CP annuity 100 100 1,840 3,580
annual subsidy 6,693 5,196 2,444 -
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nur für sein stetiges inhaltliches Hinterfragen, sondern auch für sein großes Engagement
sehr dankbar bin. Eine bessere wissenschaftliche und persönliche Betreuung hätte ich mir
nicht wünschen können.
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List of Abbreviations and Variables

Abbreviations Full Expression
ABS Agent-based Simulation
ABM Agent-based Model
AC Alternating Current
AFV Alternative Fuel Vehicle
AG Argentina
ALADIN Alternative Automobiles Diffusion and Infrastructure

(ALADIN-model)
ASTRA Assessment of Transport Strategies (ASTRA-model)
BEV Battery Electric Vehicle
BMWE Federal Ministry of Economics Affairs and Energy

(Bundesministerium für Wirtschaft und Energie; formerly:
Federal Ministry of Economic Affairs and Technology,
Bundesministerium für Wirtschaft und Technologie)

BR Brazil
CAGR Compound Annual Growth Rate
CH Switzerland
CNG Compressed Natural Gas
CO2 Carbon Dioxide
CP Charging Point
CPO Charging Point Operator
CV Conventional Vehicle
DC Direct Current
DE Germany
EC European Commission
ENTD National survey on transport and movements (Enquête

Nationale des Transports et des Déplacements)
EREV Extended-range Electric Vehicle (see also REEV)
FCEV Fuel Cell Electric Vehicle
GHG Greenhouse Gas
GPS Global Positioning System
HEV Hybrid Electric Vehicle
IT Italy
KBA Federal Motor Transport Authority

(Kraftfahrt-Bundesamt)
KiD Motor Traffic in Germany (Kraftfahrzeugverkehr in

Deutschland)
LCV Light Commercial Vehicle
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LPG Liquefied Petroleum Gas
LPGV Liquefied Petroleum Gas Vehicle
MAS Multi-agent Simulation
MiD Mobility in Germany (Mobilität in Deutschland)
MOP German Mobility Panel (Deutsches Mobilitätpanel)
MOPS Mobility Panel for the region of Stuttgart
NGV Natural Gas Vehicle
NHTS National Household Travel Survey
NL Netherlands
PEV Plug-in Electric Vehicle
PHEV Plug-in Hybrid Electric Vehicle
REEV Range-Extended Electric Vehicle (see also EREV)
REM2030 Regional Eco Mobility commercial vehicle driving profiles
REM2030S Regional Eco Mobility commercial vehicle driving profiles

for the region of Stuttgart
SCMD Swedish Car Movement Data
SD Standard Deviation
SOC State of Charge
TCO Total Cost of Ownership
VAT Value Added Tax
VKT Vehicle Kilometers Traveled
VRI Vehicle to Refueling station Index
WTPM Willingness To Pay More

Symbol Unit Explanation
a years Vehicle age
acp(t) EUR/a Annuity for charging point in year t

aCI,opex
i,s (t) EUR/a Annuity of operating expenditure for

individual charging infrastructure in year t

aCP,opex
i,s (t) EUR/a Annuity of operating expenditure for public

charging point in year t

aveh,capexi,s (t) EUR/a Annuity of capital expenditure for vehicle

aveh,opexi,s (t) EUR/a Annuity of operating expenditure for vehicle
ACDi(t) km Average commuting distance of user i in year

t
Az km2 Area of zone z
bi - Brand of the vehicle i
ccr,s(t) l/km Conventional vehicle consumption
cer,s(t) kWh/km Electric vehicle consumption
Ce

i (t) EUR/a Annual cost for energy charged by user i in
year t

Cr,s(t) kWh Net capacity of vehicle with vehicle size r
and propulsion technology s in year t

CPNz CP/km2 Minimal number of charging points in zone z
d(∆τ) km Distance driven in time period ∆τ



Chapter B. Techno-economical parameters 153

deli,s(t) km Kilometers driven in electric mode by user i
with propulsion system s in year t

di km Kilometers driven by user i

depveh,capexi,s (t) EUR/a Depreciation for vehicle capital expenditure
of user i for propulsion system s

depveh,opexi,s (t) EUR/a Depreciation for vehicle operating
expenditure of user i for propulsion system s

DR - Depreciation rate
fm,s(t) - Share of driving profiles of users of group m

and propulsion system s in year t
fi,m,s(t) - Share propulsion system s in driving profile i

and group m in year t
gvehi,s (t) EUR/a Fringe benefit tax for company cars for user i

and propulsion system s in year t
i - Index for driving profile
ICI(t) EUR Investment for individual charging

infrastructure
ICP (t) EUR Investment for public charging points
ITRi(t) - Income tax rate of user i in year t
kc
r,s(t) EUR/l Costs for conventional fuel

kOM
r,s (t) EUR/km Costs for operations and maintenance for

vehicle of size r and propulsion system s in
year t

ktax
r,s (t) EUR/a Vehicle tax for vehicle of size r and

propulsion system s in year t
l - Location type index; l ∈ {domestic,

commercial, work, public}
L(a) - Vehicle survival probability until year a
limm,s(t) - Limited availability of vehicle in group m for

propulsion system s in year t
LPG

r,s(t) EUR Gross list price of vehicle of size r and
propulsion technology s in year t

LPr,s(t) EUR Net list price of vehicle of size r and
propulsion technology s in year t

LPPEV
r,s (t) EUR Net list price of vehicle of size r and

propulsion technology s in year t that is a
PEV

ncp(t) - Number of public charging points in year t
nCP,z(t) - Number of public charging point in year t

and zone z
nm(t) - Vehicle registrations of group m in year t
Nm,s(t) - Vehicle registrations of group m and

propulsion technology s in year t
m - Index for vehicle group; m ∈ {private small,

private medium, private large, fleet small,
fleet medium, fleet large, fleet LCV, company
small, company medium, company large}
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occz Vehicle min
parked/(km2·wk)

Specific zone occupancy of zone z

occz,PEV (t) Vehicle min
parked/(km2·wk)

Specific zone occupancy of zone z by PEVs

pbatts (t) EUR/kWh Battery price for vehicle of propulsion
technology s in year t

pcarr,s (t) EUR Price for vehicle without battery of size r
and propulsion technology s in year t

pcp(t) EUR Price for a public charging point in year t
pel(t) EUR/kWh Price for electricity at a public charging

point in year t
pi,l(t) EUR/kWh Charging price for user i at location l in year

t
ppc(t) EUR/kWh Price for public charging in year t
Pl(τ, t) kW Power for charging at the location l where

vehicle i was parked at τ and year t
Pp,z(t) kW Power for public charging in zone z at time t
P scrap(a) - Probability of scrapping a vehicle of age a
r - Index for vehicle size; r ∈ {small, medium,

large, LCV}
s - Index for propulsion technology;

s ∈ {Gasoline, Diesel, PHEV, BEV}
si,s(t) - Electric driving share of vehicle i with

propulsion system s
Sm,s(t) - Vehicle stock of vehicle group m and

propulsion technology s in year t
SOCi(τ, t) kWh Battery’s state of charge of vehicle i at time

τ in year t
SPi,s(t) EUR Resale price of vehicle i and propulsion

technology s in year t
t years Year of observation
TCI
u (t) years Investment horizon of charging infrastructure

for user group u in year t
T dlim years Maximum depreciation period of vehicles
T veh
u (t) years Investment horizon of vehicles for user group

u in year t

TCOa,veh
i,s (t) EUR/a Annual total cost of ownership for vehicle i

and propulsion technology s in year t

TCOa,CI
i,s (t) EUR/a Annual total cost of ownership for individual

charging infrastructure for vehicle i and
propulsion technology s in year t

TEPEV
r,s (t) EUR Amount of tax exemption for PEVs of size r

and propulsion technology s in year t
u - Index for user group; u ∈ {private, fleet,

company}
ua
i,s(t) EUR/a Utility value of propulsion technology s for

user i in year t
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usez(t) kWh/yr Usage of public charging points in zone z and
year t

VKTi km/a Annual vehicle kilometers traveled by vehicle
i

Wi,l(t) kWh/a Annual amount of energy charged by vehicle
i at location l in year t

Wi,l(τ, τ + 1, t) kWh/a Amount of energy charged by vehicle i at
location l in year t between τ and τ + 1

Wpc(t) kWh/a Total amount of energy charged at public
charging points in year t

WTPMa
i,s(t) EUR/a Annuity of willingness to pay more by the

owner of vehicle i for propulsion technology s
in year t

wtpmi,s(t) - Willingness to pay more by the owner of
vehicle i for propulsion technology s in year t
as a percentage compared to a conventional
vehicle

z - Index for zones
zu(t) - Interest rate for user group u in year t

α1 - Parameter for calculation of residual values
β1 - Parameter for calculation of residual values

(age)
β2 - Parameter for calculation of residual values

(mileage)
β3 - Parameter for calculation of residual values

(list price)
β - Parameter for stock calculation (shape)
∆ncp - Difference between charging points between

two periods of time t
∆τ min Time period between τ1 and τ2
κr,s(t) kWh Gross battery capacity of vehicle with size r

and propulsion technology s in year t
τ min Time section in observation period
τ 0i min Initial point in time of observation of vehicle

i
τmax
i min Last point in time of observation of vehicle i
θ - Parameter for stock calculation (scale)
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