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Abstract

The optimal design of rotational production processes for glass wool manufacturing poses severe computational
challenges to mathematicians, natural scientists and engineers. In this paper we focus exclusively on the spinning
regime where thousands of viscous thermal glass jets are formed by fast air streams. Homogeneity and slenderness
of the spun fibers are the quality features of the final fabric. Their prediction requires the computation of the fluid-
fiber-interactions which involves the solving of a complex three-dimensional multiphase problem with appropriate
interface conditions. But this is practically impossible due to the needed high resolution and adaptive grid
refinement. Therefore, we propose an asymptotic coupling concept. Treating the glass jets as viscous thermal
Cosserat rods, we tackle the multiscale problem by help of momentum (drag) and heat exchange models that are
derived on basis of slender-body theory and homogenization. A weak iterative coupling algorithm that is based on
the combination of commercial software and self-implemented code for flow and rod solvers, respectively, makes
then the simulation of the industrial process possible. For the boundary value problem of the rod we particularly
suggest an adapted collocation-continuation method. Consequently, this work establishes a promising basis for
future optimization strategies.

Keywords: Rotational spinning process, viscous thermal jets, fluid-fiber interactions, two-way coupling, slender-
body theory, Cosserat rods, drag models, boundary value problem, continuation method

MSC-Classification. 76-xx, 34B08, 41A60, 65L10, 65Z05

1 Introduction
Glass wool manufacturing requires a rigorous understanding of the rotational spinning of viscous thermal
jets exposed to aerodynamic forces. Rotational spinning processes consist in general of two regimes: melting
and spinning. The plant of our industrial partner, Woltz GmbH in Wertheim, is illustrated in Figure 1.
Glass is heated upto temperatures of 1050◦C in a stove from which the melt is led to a centrifugal disk. The
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Figure 1: Rotational spinning process of the company Woltz GmbH. Sketch of set-up, some glass jets are
exemplarily plotted as black curves. The color maps visualize axial velocity and temperature of the air flow,
respectively.

walls of the disk are perforated by 35 rows over height with 770 equidistantly placed small holes per row.
Emerging from the rotating disk via continuous extrusion, the liquid jets grow and move due to viscosity,
surface tension, gravity and aerodynamic forces. There are in particular two different air flows that interact
with the arising glass fiber curtain: a downwards-directed hot burner flow of 1500◦C that keeps the jets near
the nozzles warm and thus extremely viscous and shapeable as well as a highly turbulent cross-stream of
30◦C that stretches and finally cools them down such that the glass fibers become hardened. Laying down
onto a conveyor belt they yield the basic fabric for the final glass wool product. For the quality assessment
of the fabrics the properties of the single spun fibers, i.e. homogeneity and slenderness, play an important
role. A long-term objective in industry is the optimal design of the manufacturing process with respect to
desired product specifications and low production costs. Therefore, it is necessary to model, simulate and
control the whole process.

Up to now, the numerical simulation of the whole manufacturing process is impossible because of its
enormous complexity. In fact, we do not long for an uniform numerical treatment of the whole process, but
have the idea to derive adequate models and methods for the separate regimes and couple them appropriately,
for a similar strategy for technical textiles manufacturing see [1]. In this content, the melting regime dealing
with the creeping highly viscous melt flow from the stove to the holes of the centrifugal disk might be certainly
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Temperature Velocity Diameter
Burner air flow in channel Tair1 1773 K Vair1 1.2 · 102 m/s W1 1.0 · 10−2 m
Turbulent air stream at injector Tair2 303 K Vair2 3.0 · 102 m/s W2 2.0 · 10−4 m
Centrifugal disk Tmelt 1323 K Ω 2.3 · 102 1/s 2R 4.0 · 10−1 m
Glass jets at spinning holes θ 1323 K U 6.7 · 10−3 m/s D 7.4 · 10−4 m

Table 1: Typical temperature, velocity and length values in the considered rotational spinning process,
Figure 1. There are M = 35 spinning rows, each with N = 770 nozzles. The resulting 26950 glass jets are
stretched by a factor 10000 within the process, their slenderness ratio is δ ≈ 10−4.

handled by standard models and methods from the field of fluid dynamics. It yields the information about
the melt velocity and temperature distribution at the nozzles which is of main importance for the ongoing
spinning regime. However, be aware that for their determination not only the melt behavior in the centrifugal
disk but also the effect of the burner flow, i.e. aerodynamic heating and heat distortion of disk walls and
nozzles, have to be taken into account. In this paper we assume the conditions at the nozzles to be given
and focus exclusively on the spinning regime which is the challenging core of the problem. For an overview
of the specific temperature, velocity and length values we refer to Table 1. In the spinning regime the
liquid viscous glass jets are formed, in particular they are stretched by a factor 10000. Their geometry is
characterized by a typical slenderness ratio δ = d/l ≈ 10−4 of jet diameter d and length l. The resulting
fiber properties (characteristics) depend essentially on the jets behavior in the surrounding air flow. To
predict them, the interactions, i.e. momentum and energy exchange, of air flow and fiber curtain consisting
of MN single jets (M = 35, N = 770) have to be considered. Their computation requires in principle a
coupling of fiber jets and flow with appropriate interface conditions. However, the needed high resolution and
adaptive grid refinement make the direct numerical simulation of the three-dimensional multiphase problem
for ten thousands of slender glass jets and fast air streams not only extremely costly and complex, but also
practically impossible. Therefore, we tackle the multiscale problem by help of drag models that are derived
on basis of slender-body theory and homogenization, and a weak iterative coupling algorithm.

The dynamics of curved viscous inertial jets is of interest in many industrial applications (apart from glass
wool manufacturing), e.g. in nonwoven production [1, 2], pellet manufacturing [3, 4] or jet ink design, and
has been subject of numerous theoretical, numerical and experimental investigations, see [5] and references
within. In the terminology of [6], there are two classes of asymptotic one-dimensional models for a jet,
i.e. string and rod models. Whereas the string models consist of balance equations for mass and linear
momentum, the more complex rod models contain also an angular momentum balance, [7, 8]. A string
model for the jet dynamics was derived in a slender-body asymptotics from the three-dimensional free
boundary value problem given by the incompressible Navier-Stokes equations in [5]. Accounting for inner
viscous transport, surface tension and placing no restrictions on either the motion or the shape of the
jet’s center-line, it generalizes the previously developed string models for straight [9–11] and curved [12–14]
center-lines. However, already in the stationary case the applicability of the string model turns out to
be restricted to certain parameter ranges [15, 16] because of a non-removable singularity that comes from
the deduced boundary conditions. These limitations can be overcome by a modification of the boundary
conditions, i.e. the release of the condition for the jet tangent at the nozzle in favor of an appropriate interface
condition, [17–19]. This involves two string models that exclusively differ in the closure conditions. For
gravitational spinning scenarios they cover the whole parameter range, but in the presence of rotations there
exist small parameter regimes where none of them works. A rod model that allows for stretching, bending
and twisting was proposed and analyzed in [20,21] for the coiling of a viscous jet falling on a rigid substrate.
Based on these studies and embedded in the special Cosserat theory a modified incompressible isothermal rod
model for rotational spinning was developed and investigated in [16,19]. It allows for simulations in the whole
(Re,Rb,Fr)-range and shows its superiority to the string models. These observations correspond to studies
on a fluid-mechanical ”sewing machine”, [22, 23]. By containing the slenderness parameter δ explicitely in
the angular momentum balance, the rod model is no asymptotic model of zeroth order. Since its solutions
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converge to the respective string solutions in the slenderness limit δ → 0, it can be considered as δ-regularized
model, [19]. In this paper we extend the rod model by incorporating the practically relevant temperature
dependencies and aerodynamic forces. Thereby, we use the air drag model F of [24] that combines Oseen and
Stokes theory [25–27], Taylor heuristic [28] and numerical simulations. Being validated with experimental
data [29–32], it is applicable for all air flow regimes and incident flow directions. Transferring this strategy,
we model a similar aerodynamic heat source for the jet that is based on the Nusselt number Nu [33]. Our
coupling between glass jets and air flow follows then the principle that action equals reaction. By inserting
the corresponding homogenized source terms induced by F and Nu in the balance equations of the air flow,
we make the proper momentum and energy exchange within this slender-body framework possible.

The paper is structured as follows. In Section 2 we start with the general coupling concept for slender
bodies and fluid flows. Therefore, we introduce the viscous thermal Cosserat rod system and the compressible
Navier-Stokes equations for glass jets and air flow, respectively, and present the models for the momentum
and energy exchange: drag F and Nusselt function Nu. The special set-up of the industrial rotational spinning
process allows for the simplification of the model framework, i.e. transition to stationarity and assumption
of rotational invariance as we discuss in Section 3. Section 4 deals then with the numerical treatment.
To realize the fiber-flow interactions we use a weak iterative coupling algorithm, which is adequate for the
problem and has the advantage that we can combine commercial software and self-implemented code. Special
attention is paid to the collocation and continuation method for solving the boundary value problem of the
rod. The convergence of the coupling algorithm and simulation results for a specific spinning adjustment
are shown in Section 5. This illustrates the applicability of our coupling framework as one of the basic tools
for the optimal design of the whole manufacturing process. We conclude with some remarks to the process
in Section 6.

2 General coupling concept for slender bodies and fluid flows
We are interested in the spinning of ten thousands of slender glass jets by fast air streams, MN = 26950. The
glass jets form a kind of curtain that interact and crucially affect the surrounding air. The determination of
the fluid-fiber-interactions requires in principle the simulation of the three-dimensional multiphase problem
with appropriate interface conditions. However, regarding the complexity and enormous computational
effort, this is practically impossible. Therefore, we propose a coupling concept for slender bodies and fluid
flows that is based on drag force and heat exchange models. In this section we first present the two-way
coupling of a single viscous thermal Cosserat rod and the compressible Navier-Stokes equations and then
generalize the concept to many rods. Thereby, we choose an invariant formulation in the three-dimensional
Euclidian space E3.

Note that we mark all quantities associated to the air flow by the subscript ? throughout the paper.
Moreover, to facilitate the readability of the coupling concept, we introduce the abbreviations Ψ and Ψ?

that represent all quantities of the glass jets and the air flow, respectively.

2.1 Models for glass jets and air flows
2.1.1 Cosserat rod

A glass jet is a slender body, i.e. a rod in the context of three-dimensional continuum mechanics. Because of its
slender geometry, its dynamics might be reduced to a one-dimensional description by averaging the underlying
balance laws over its cross-sections. This procedure is based on the assumption that the displacement field
in each cross-section can be expressed in terms of a finite number of vector- and tensor-valued quantities. In
the special Cosserat rod theory, there are only two constitutive elements: a curve specifying the position r :
Q→ E3 and an orthonormal director triad {d1,d2,d3} : Q→ E3 characterizing the orientation of the cross-
sections, where Q = {(s, t) ∈ R2|s ∈ I(t) = [0, l(t)], t > 0} with arclength parameter s and time t. For more
details on the Cosserat theory see [6]. In the following we use an incompressible viscous Cosserat rod model
that was derived on basis of the work [20,34] on viscous rope coiling and investigated for isothermal curved
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inertial jets in rotational spinning processes [16, 19]. We extend the model by incorporating temperature
effects and aerodynamic forces. The rod system describes the variables of jet curve r, orthonormal triad
{d1,d2,d3}, generalized curvature κ, convective speed u, cross-section A, linear velocity v, angular velocity
ω, temperature T and normal contact forces n ·dα, α = 1, 2. It consists of four kinematic and four dynamic
equations, i.e. balance laws for mass (cross-section), linear and angular momentum and temperature,

∂tr = v − ud3 (1)

∂tdi = (ω − uκ)× di

∂sr = d3

∂sdi = κ× di

∂tA+ ∂s(uA) = 0

ρ (∂t(Av) + ∂s(uAv)) = ∂sn + ρAgeg + fair

ρ (∂t(J · ω) + ∂s(uJ · ω)) = ∂sm + d3 × n

ρcp (∂t(AT ) + ∂s(uAT )) = qrad + qair

supplemented with an incompressible geometrical model of circular cross-sections with diameter d

J = I(d1 ⊗ d1 + d2 ⊗ d2 + 2d3 ⊗ d3), I =
π

64
d4, A =

π

4
d2

as well as viscous material laws for the tangential contact force n · d3 and contact couple m

n · d3 = 3µA∂su, m = 3µI

(
d1 ⊗ d1 + d2 ⊗ d2 +

2

3
d3 ⊗ d3

)
· ∂sω.

Rod density ρ and heat capacity cp are assumed to be constant. The temperature-dependent dynamic
viscosity µ is modeled according to the Vogel-Fulcher-Tamman relation1. The external loads rise from
gravity ρAgeg with gravitational acceleration g and aerodynamic forces fair. In the temperature equation
we neglect inner friction and heat conduction and focus exclusively on radiation qrad and aerodynamic heat
sources qair. The radiation effect depends on the geometry of the plant and is incorporated in the system
by help of the simple model

qrad = εRσπd(T 4
ref − T 4)

with emissivity εR, Stefan-Boltzmann constant σ and reference temperature Tref . Appropriate initial and
boundary conditions close the rod system.

2.1.2 Navier-Stokes equations

A compressible air flow in the space-time domain Ωt = {(x, t)|x ∈ Ω ⊂ E3, t > 0} is described by density
ρ?, velocity v?, temperature T?. Its model equations consist of the balance laws for mass, momentum and
energy,

∂tρ? +∇ · (v?ρ?) = 0 (2)

∂t(ρ?v?) +∇ · (v? ⊗ ρ?v?) = ∇ · ST? + ρ?geg + fjets

∂t(ρ?e?) +∇ · (v?ρ?e?) = S? : ∇v? −∇ · q? + qjets

supplemented with the Newtonian stress tensor S?, the Fourier law for heat conduction q?

S? = −p?I + µ?(∇v? +∇vT? ) + λ?∇ · v?I, q? = −k?∇T?,
1The Vogel-Fulcher-Tamman relation for the temperature-dependent viscosity reads µ(T ) = 10p1+p2/(T−p3) Pa s where we

use the parameters p1 = −2.56, p2 = 4289.18 K and p3 = (150.74 + 273.15) K, [33].
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as well as thermal and caloric equations of state of a ideal gas

p? = ρ?R?T?, e? =

∫ T?

0

cp?(T )dT − p?
ρ?

with pressure p? and inner energy e?. The specific gas constant for air is denoted by R?. The temperature-
dependent viscosities µ?, λ?, heat capacity cp? and heat conductivity k? can be modeled by standard poly-
nomial laws, see e.g. [33, 35]. External loads rise from gravity ρ?geg and forces due to the immersed fiber
jets fjets. These fiber jets also imply a heat source qjets in the energy equation. Appropriate initial and
boundary conditions close the system.

2.2 Models for momentum and energy exchange
The coupling of the Cosserat rod and the Navier-Stokes equations is performed by help of drag forces and
heat sources. Taking into account the conservation of momentum and energy, fair and fjets as well as qair and
qjets satisfy the principle that action equals reaction and obey common underlying relations. Hence, we can
handle the delicate fluid-fiber-interactions by help of two surrogate models, so-called exchange functions, i.e.
a dimensionless drag force F (inducing fair, fjets) and Nusselt number Nu (inducing qair, qjets). For a flow
around a slender long cylinder with circular cross-sections there exist plenty of theoretical, numerical and
experimental investigations to these relations in literature, for an overview see [24] as well as e.g. [29,30,33,36]
and references within. We use this knowledge locally and globalize the models by superposition to apply
them to our curved moving Cosserat rod. This strategy follows a Global-from-Local concept [37] that turned
out to be very satisfying in the derivation and validation of a stochastic drag force in a one-way coupling of
fibers in turbulent flows [24].

2.2.1 Drag forces – fair vs. fjets
Let Ψ and Ψ? represent all glass jet and air flow quantities, respectively. Then, the drag forces are given by

fair(s, t) = F(Ψ(s, t),Ψ?(r(s, t), t)), fjets(x, t) = −
∫
I(t)

δ(x− r(s, t))F(Ψ(s, t),Ψ?(x, t)) ds

F(Ψ,Ψ?) =
µ2
?

dρ?
F (d3,

dρ?
µ?

(v? − v))

where δ the Dirac distribution. By construction, they fulfill the principle that action equals reaction and
hence the momentum is conserved, i.e.∫

IV (t)

fair(s, t) ds = −
∫
V

fjets(x, t) dx

for an arbitrary domain V and IV (t) = {s ∈ I(t)|r(s, t) ∈ V (t)}. The (line) force F acting on a slender body
is caused by friction and inertia. It depends on material and geometrical properties as well as on the specific
inflow situation. The number of dependencies can be reduced to two by help of non-dimensionalizing which
yields the dimensionless drag force F in dependence on the jet orientation (tangent) and the dimensionless
relative velocity between air flow and glass jet. Due to the rotational invariance of the force, the function

F : S2 × E3 → E3

can be associated with its component tupel F for every representation in an orthonormal basis, i.e.

F : S2
R3 × R3 → R3,

F = (F1, F2, F3) with

3∑
i=1

Fi(τ,w)ei = F

(
3∑
i=1

τiei,

3∑
i=1

wiei

)
for every orthonormal basis {ei}.
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For F we use the drag model [24] that was developed on top of Oseen and Stokes theory [25–27], Taylor
heuristic [28] and numerical simulations and validated with measurements [29–32]. It shows to be applicable
for all air flow regimes and incident flow directions. Let {n,b, τ} be the orthonormal basis induced by the
specific inflow situation (τ ,w) with orientation τ and velocity w, assuming w 6‖ τ ,

n =
w − wττ

wn
, b = τ × n, wτ = w · τ , wn =

√
w2 − w2

τ .

Then, the force is given by

F (τ ,w) = Fn(wn)n + Fτ (wn, wτ )τ (3)

Fn(wn) = w2
n cn(wn) = wn rn(wn), Fτ (wn, wτ ) = wτ wn cτ (wn) = wτ rτ (wn).

according to the Independence Principle [38]. The differentiable normal and tangential drag functions cn,
cτ are

cn(wn) =


4π/(Swn) [1− w2

n(S2 − S/2 + 5/16)/(32S)] wn < w1

exp(
∑3
j=0 pn,j lnjwn) w1 ≤ wn ≤ w2

2/
√
wn + 0.5 w2 < wn

cτ (wn) =


4π/((2S − 1)wn) [1− w2

n(2S2 − 2S + 1)/(16(2S − 1))] wn < w1

exp(
∑3
j=0 pτ,j lnjwn) w1 ≤ wn ≤ w2

γ/
√
wn w2 < wn

with S(wn) = 2.0022 − lnwn, transition points w1 = 0.1, w2 = 100, amplitude γ = 2. The regularity
involves the parameters pn,0 = 1.6911, pn,1 = −6.7222 · 10−1, pn,2 = 3.3287 · 10−2, pn,3 = 3.5015 · 10−3

and pτ,0 = 1.1552, pτ,1 = −6.8479 · 10−1, pτ,2 = 1.4884 · 10−2, pτ,3 = 7.4966 · 10−4. To be also applicable
in the special case of a transversal incident flow w ‖ τ and to ensure a realistic smooth force F , the drag
is modified for wn → 0. A regularization based on the slenderness parameter δ matches the associated
resistance functions rn, rτ (3) to Stokes resistance coefficients of higher order for wn � 1, for details see [24].

2.2.2 Heat sources – qair vs. qjets
Analogously to the drag forces, the heat sources are given by

qair(s, t) = Q(Ψ(s, t),Ψ?(r(s, t), t)), qjets(x, t) = −
∫
I(t)

δ(x− r(s, t))Q(Ψ(s, t),Ψ?(x, t)) ds

Q(Ψ,Ψ?) = 2k? Nu

(
v? − v

‖v? − v‖
· d3,

π

2

dρ?
µ?
‖v? − v‖, µ?cp?

k?

)
(T? − T ).

The (line) heat source Q acting on a slender body also depends on several material and geometrical properties
as well as on the specific inflow situation. The number of dependencies can be reduced to three by help of
non-dimensionalizing which yields the dimensionless Nusselt number Nu in dependence of the cosine of the
angle of attack, Reynolds and Prandtl numbers. The Reynolds number corresponds to the relative velocity
between air flow and glass jet, the typical length is the half jet circumference.

For Nu we use a heuristic model. It originates in the studies of a perpendicular flow around a cylinder
[33] and is modified for different inflow directions (angles of attack) with regard to experimental data. A
regularization ensures the smooth limit for a transversal incident flow in analogon to the drag model for F
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in (3). We apply

Nu : [−1, 1]× R+
0 × R+

0 → R+
0 (4)

Nu(c,Re,Pr) = (1− 0.5h2(c,Re))

(
0.3 +

√
Nu2

lam(Re,Pr) + Nu2
turb(Re,Pr)

)
Nulam(Re,Pr) = 0.664Re1/2Pr3/2, Nuturb(Re,Pr) =

0.037 Re0.9Pr

Re0.1 + 2.443(Pr2/3 − 1)

h(c,Re) =

{
cRe/δh Re < δh

c Re ≥ δh

2.3 Generalization to many rods
In case of k slender bodies in the air flow, we have Ψi, i = 1, ..., k, representing the quantities of each
Cosserat rod, here k = MN . Assuming no contact between neighboring fiber jets, every single jet can be
described by the stated rod system (1). Their multiple effect on the air flow is reflected in fjets and qjets.
The source terms in the momentum and energy equations of the air flow (2) become

fjets(x, t) = −
k∑
i=1

∫
Γi

δ(x− ri(s, t))F(Ψi(s, t),Ψ?(x, t)) ds

qjets(x, t) = −
k∑
i=1

∫
Γi

δ(x− ri(s, t))Q(Ψi(s, t),Ψ?(x, t)) ds.

3 Models for special set-up of rotational spinning process
In the rotational spinning process under consideration the centrifugal disk is perforated by M rows of N
equidistantly placed holes each (M = 35, N = 770). The spinning conditions (hole size, velocities, tempera-
tures) are thereby identical for each row, see Figure 1. The special set-up allows for the simplification of the
general model framework in Section 2. We introduce the rotating outer orthonormal basis {a1(t),a2(t),a3(t)}
satisfying ∂tai = Ω × ai, i = 1, 2, 3, where Ω is the angular frequency of the centrifugal disk. In partic-
ular, Ω = Ωa1 and eg = −a1 (gravity direction) hold. Then, glass jets and air flow become stationary,
presupposing that we consider spun fiber jets of certain length. In particular, we assume the stresses to be
vanished at this length. Moreover, the glass jets emerging from the rotating device form dense curtains for
every spinning row. As a result of homogenization, we can treat the air flow as rotationally invariant and
each curtain can be represented by one jet. This yields an enormous complexity reduction of the problem.
The homogenization together with the slender-body theory makes the numerical simulation possible.

3.1 Transition to stationarity
3.1.1 Representative spun jet of certain length

For the viscous Cosserat rods (1), the mass flux is constant in the stationarity, i.e. uA = Q/ρ = const. We
deal with Ω-adapted linear and angular velocities, vΩ = v−Ω×r and ωΩ = ω−Ω, which fulfill the explicit
stationarity relations

vΩ = ud3, ωΩ = uκ

resulting from the first two equations of (1). Moreover, fictitious Coriolis and centrifugal forces and associated
couples enter the linear and angular momentum equations. Using the material laws we can formulate the
stationary rod model in terms of a boundary value problem of first order differential equations. Thereby,
we present it in the director basis {d1,d2,d3} for convenience (see (5) and compare to [19] except for the
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temperature equation). Note that to an arbitrary vector field z =
∑3
i=1 z̆iai =

∑3
i=1 zidi ∈ E3, we indicate

the component tupels corresponding to the rotating outer basis and the director basis by z̆ = (z̆1, z̆2, z̆3) ∈ R3

and z = (z1, z2, z3) ∈ R3, respectively. The director basis can be transformed into the rotating outer basis
by the tensor-valued rotation R, i.e. R = ai ⊗ di = Rijai ⊗ aj ∈ E3 ⊗ E3 with associated orthogonal matrix
R = (Rij) = (di · aj) ∈ SO(3). Its transpose and inverse matrix is denoted by RT. For the components,
z = R · z̆ holds. The cross-product z×R is defined as mapping (z×R) : R3 → R3, y 7→ z× (R · y). Moreover,
canonical basis vectors in R3 are denoted by ei, i = 1, 2, 3, e.g. e1 = (1, 0, 0). Then, the stationary Cosserat
rod model stated in the director basis for a spun glass jet emerging from the centrifugal disk at s = 0 with
stress-free end at s = L reads

∂sr̆ = RT · e3 (5)

∂sR = −κ× R

∂sκ = − ρ

3Q

κn3

µ
+

4πρ2

3Q2

u

µ
P3/2 ·m

∂su =
ρ

3Q

un3

µ

∂sn = −κ× n +Quκ× e3 +
ρ

3

un3

µ
e3 + 2QΩ(R · e1)× e3 +QΩ2 1

u
R · (e1 × (e1 × r̆))

+Qg
1

u
R · e1 − R · f̆air

∂sm = −κ×m + n× e3 +
ρ

3

u

µ
P3 ·m−

Q

12π

n3

µ
P2 · κ−

QΩ

12π

n3

µu
P2 · (R · e1)−

Q2Ω

4πρ

1

u
P2 · (κ× R · e1)

− Q2

4πρ

1

u2
P2 · (uκ+ ΩR · e1)× (uκ+ ΩR · e1)

∂sT =
1

cpQ
(qrad + qair)

with qrad = 2
√
πεRσ

√
Q/ρ (T 4

ref−T 4)/
√
u and diagonal matrix Pk = diag(1, 1, k), k ∈ R. It is supplemented

with

r̆(0) = (H,R, 0), R(0) = e1 ⊗ e1 − e2 ⊗ e3 + e3 ⊗ e2, κ(0) = 0, u(0) = U, T (0) = θ

n(L) = 0, m(L) = 0

(cf. Table 1). Considering the jet as representative of one spinning row, we choose the nozzle position to
be (H,R, 0) with respective height H, R is here the disk radius. The initialization R(0) prescribes the jet
direction at the nozzle as (d1,d2,d3)(0) = (a1,−a3,a2).

Remark 1. The rotations R ∈ SO(3) can be parameterized, e.g. in Euler angles or unit quaternions [39].
The last variant offers a very elegant way of rewriting the second equation of (5). Define

R(q) =

 q2
1 − q2

2 − q2
3 + q2

0 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) −q2

1 + q2
2 − q2

3 + q2
0 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) −q2
1 − q2

2 + q2
3 + q2

0

 , q = (q0, q1, q2, q3),

with ‖q‖ = 1, then we have ∂sq = A(κ) · q with skew-symmetric matrix

A(z) =
1

2


0 z1 z2 z3

−z1 0 z3 −z2

−z2 −z3 0 z1

−z3 z2 −z1 0

 .
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3.1.2 Rotationally invariant air flow

Due to the spinning set-up the jets emerging from the rotating device form row-wise dense curtains. As
a consequence of a row-wise homogenization, the air flow (2) can be treated as stationary not only in the
rotating outer basis {a1(t),a2(t),a3(t)}, but also in a fixed outer one. Because of the symmetry with respect
to the rotation axis, it is convenient to introduce cylindrical coordinates (x, r, φ) ∈ R× R+ × [0, 2π) for the
space and to attach a cylindrical basis {ex, er, eφ} with ex = a1 to each space point. The components to an
arbitrary vector field z ∈ E3 are indicated by ẑ = (zx, zr, zφ) ∈ R3. Then, taking advantage of the rotational
invariance, the stationary Navier-Stokes equations in (x, r) simplify to

∂x(ρ?vx?) +
1

r
∂r(rρ?vr?) = 0 (6)

∂x(ρ?v
2
x?) +

1

r
∂r(rρ?vr?vx?)

= −∂xp? + ∂x(2µ?∂xvx? + λ?∇ · v̂?) +
1

r
∂r(rµ?(∂xvr? + ∂rvx?))− ρ?g + (fx)jets

∂x(ρ?vx?vr?) +
1

r
∂r(rρ?v

2
r?)−

1

r
ρ?v

2
φ?

= −∂rp? + ∂x(µ?(∂xvr? + ∂rvx?)) +
2

r
∂r(rµ?∂rvr?) + ∂r(λ?∇ · v̂?)−

2

r2
µ?vr? + (fr)jets

∂x(ρ?vx?vφ?) +
1

r
∂r(rρ?vr?vφ?) +

1

r
ρ?vr?vφ? = ∂x(µ?∂xvφ?) +

1

r2
∂r(r

3µ?∂r(
1

r
vφ?)) + (fφ)jets

∂x(ρ?e?vx?) +
1

r
∂r(rρ?e?vr?)

= −p?∇ · v̂? + µ?(2(∂xvx?)
2 + 2(∂rvr?)

2 + (∂xvr? + ∂rvx?)
2 + (∂xvφ?)

2 + (r∂r(
1

r
vr?))

2 +
2

r2
v2
r?)

+ λ?(∇ · v̂?)2 + ∂x(k?∂xT?) +
1

r
∂r(rk?∂rT?) + qjets

with ∇ · v̂? = ∂xvx? + (∂r(rvr?))/r and equipped with appropriate inflow, outflow and wall boundary condi-
tions, cf. Figure 1.

3.2 Exchange functions
To perform the coupling between (5) and (6), we have to compute the exchange functions in the appropriate
coordinates. These calculations are simplified by the rotational invariance of the problem. As introduced,
we use the subscripts ˘ and ˆ to indicate the component tupels corresponding to the rotating outer basis
{a1(t),a2(t),a3(t)} and the cylindrical basis {ex, er, eφ}, respectively. Essentially for the coupling are the
jet tangent and the relative velocity between air flow and glass jet, they are

τ̆ = RT · e3, τ̂ =

(
τ̆1,

r̆2τ̆2 + r̆3τ̆3√
r̆2
2 + r̆2

3

,
r̆2τ̆3 − r̆3τ̆2√

r̆2
2 + r̆2

3

)
,

v̆rel =

(
vx?,

r̆2vr? − r̆3(vφ? − Ωr)√
r̆2
2 + r̆2

3

,
r̆3vr? + r̆2(vφ? − Ωr)√

r̆2
2 + r̆2

3

)
− uτ̆ , v̂rel = (vx?, vr?, vφ? − Ωr)− uτ̂ .
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Then, the drag forces are

f̆air(s) = F̆(Ψ(s),Ψ?(r̆1(s),
√
r̆2
2(s) + r̆2

3(s)))

f̂jets(x, r) = −N
2π

∫
I

1

r
δ(x− r̆1(s)) δ(r −

√
r̆2
2(s) + r̆2

3(s)) F̂(Ψ(s),Ψ?(x, r)) ds

F̆(Ψ,Ψ?) = 2

√
Q

πρ

µ2
?

ρ?

1√
u

F

(
τ̆ , 2

√
Q

πρ

ρ?
µ?

1√
u

v̆rel

)
, F̂(Ψ,Ψ?) = 2

√
Q

πρ

µ2
?

ρ?

1√
u

F

(
τ̂ , 2

√
Q

πρ

ρ?
µ?

1√
u

v̂rel

)
and the heat sources

qair(s) = Q(Ψ(s),Ψ?(r̆1(s),
√
r̆2
2(s) + r̆2

3(s)))

qjets(x, r) = −N
2π

∫
I

1

r
δ(x− r̆1(s)) δ(r −

√
r̆2
2(s) + r̆2

3(s)) Q(Ψ(s),Ψ?(x, r)) ds

Q(Ψ,Ψ?) = 2k? Nu

(
v̆rel
‖v̆rel‖

· τ̆ ,

√
πQ

ρ

ρ?
µ?

1√
u
‖v̆rel‖,

µ?cp?
k?

)
(T? − T ).

Here, f̂jets and qjets represent the homogenized effect of the N glass jets emerging from the equidistantly

placed holes in an arbitrary spinning row. Correspondingly, system (5) with f̆air and qair describes one
representative glass jet for this row. To simulate the full problem with all MN glass jets in the air, jet
representatives Ψi, i = 1, ...,M for all M spinning rows with the respective boundary and air flow conditions
have to be determined. Their common effect on the air flow is (cf. Section 2.3)

f̂jets(x, r) = −N
2π

M∑
i=1

∫
Ii

1

r
δ(x− r̆1,i(s)) δ(r −

√
r̆2
2,i(s) + r̆2

3,i(s)) F̂(Ψi(s),Ψ?(x, r)) ds

qjets(x, r) = −N
2π

M∑
i=1

∫
Ii

1

r
δ(x− r̆1,i(s)) δ(r −

√
r̆2
2,i(s) + r̆2

3,i(s)) Q(Ψi(s),Ψ?(x, r)) ds.

4 Numerical treatment
The numerical simulation of the glass jets dynamic in the air flow is performed by an algorithm that weakly
couples glass jet calculation and air flow computation via iterations. This procedure is adequate for the
problem and has the advantage that we can combine commercial software and self-implemented code. We
use FLUENT, a commercial finite volume-based software by ANSYS, that contains the broad physical
modeling capabilities needed to describe air flow, turbulence and heat transfer for the industrial glass wool
manufacturing process. In particular, a pressure-based solver is applied in the computation of (6). To
restrict the computational effort in grid refinement needed for the resolution of the turbulent air streams
we consider alternatively a stochastic k-ω turbulence model.2 Note that this modification of the model
equations has no effect on our coupling framework, where the exchange functions are incorporated by UDFs
(user defined functions). For the boundary value problem of the stationary Cosserat rod (5), systems of
nonlinear equations are set up via a Runge-Kutta collocation method and solved by a Newton method
in MATLAB 7.4. The convergence of the Newton method depends thereby crucially on the initial guess.
To improve the computational performance we adapt the initial guess iteratively by solving a sequence of
boundary value problems with slightly changed parameters. The developed continuation method is presented
in Section 4.1. Moreover, to get a balanced numerics we use the dimensionless rod system that is scaled
with the respective conditions at the nozzle. The M glass jet representative are computed in parallel. The
exchange of flow and fiber data between the solvers is based on interpolation and averaging, as we explain
in the weak iterative coupling algorithm in Section 4.2.

2For details on the commercial software FLUENT, its models and solvers we refer to http://www.fluent.com.

11



4.1 Collocation-continuation method for dimensionless rod boundary value problem
The computing of the glass jets is based on a dimensionless rod system. For this purpose, we scale the
dimensional equations (5) with the spinning conditions of the respective row. Apart from the air flow
data, (5) contains thirteen physical parameters, i.e. jet density ρ, heat capacity cp, emissivity εR, typical
length L, velocity U and temperature θ at the spinning hole as well as hole diameter D and height H,
centrifugal disk radius R, rotational frequency Ω, reference temperature for radiation Tref and gravitational
acceleration g. The typical jet viscosity is chosen to be µ0 = µ(θ). These induce various dimensionless
numbers characterizing the fiber spinning, i.e. Reynolds number Re as ratio between inertia and viscosity,
Rossby number Rb as ratio between inertia and rotation, Froude number Fr as ratio between inertia and
gravity and Ra as ratio between radiation and heat advection as well as `, h and ε as length ratios between
jet length, hole height, diameter and disk radius, respectively

Re =
ρUR

µ0
, Rb =

U

ΩR
, Fr =

U√
gR

, Ra =
4εRσθ

3R

ρcpUD
, ` =

L

R
, h =

H

R
, ε =

D

R
.

In addition, we introduce dimensionless quantities that also depend on local air flow data, similarly to the
Nusselt number in (4)

A1 =
4µ2

?R

πρ?ρU2D3
, A2 =

ρ?UD

µ?
A3 =

8k?R

πρcpθD2
, A4 =

µ?cp?
k?

.

Here, A4 is the Prandtl number of the air flow. To make (5) dimensionless we use the following reference
values:

s0 = L, r0 = R, κ0 = R−1, u0 = U, T0 = θ

µ0 = µ(T0), n0 = πµ0UD
2/(4R), m0 = πµ0UD

4/(16R2).

We choose the disk radius R as macroscopic length scale in the scalings, since it is well known by the set-up.
As for L, we consider jet lengths where the stresses are supposed to be vanished. In general, R and L are of
same order such that the parameter ε can be identified with the slenderness ratio δ of the jets, cf. Section 1.
The last two scalings for n0 and m0 are motivated by the material laws and the fact that the mass flux is
Q = πρUD2/4. Then, the dimensionless system for the stationary viscous rod has the form

1

`
∂sr̆ = RT · e3 = τ̆ (7)

1

`
∂sR = −κ× R

1

`
∂sκ = − 1

3µ
κn3 +

4

3µ
uP3/2 ·m

1

`
∂su =

1

3µ
un3

1

`
∂sn = −κ× n + Reu

(
κ× e3 +

1

3µ
n3e3

)
+

2Re

Rb
(R · e1)× e3 +

Re

Rb2

1

u
R · (e1 × (e1 × r̆))

+
Re

Fr2

1

u
R · e1 − Re A1

√
uR · F

(
τ̆ ,A2

1√
u

v̆rel

)
1

`
∂sm = −κ×m +

4

ε2
n× e3 +

Re

3µ

(
uP3 ·m−

1

4
n3P2 · κ

)
− Re

4Rb

1

u
P2 ·

(
1

3µ
R · e1n3 + κ× R · e1

)
− Re

4

(
1

u2
P2 · (uκ+

1

Rb
R · e1)

)
×
(
uκ+

1

Rb
R · e1

)
1

`
∂sT = Ra

1√
u

(T 4
ref − T 4) + A3 Nu

(
v̆rel
‖v̆rel‖

· τ̆ , π
2

A2
1√
u
‖v̆rel‖,A4

)
(T? − T ),
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with

r̆(0) = (h, 1, 0), R(0) = e1 ⊗ e1 − e2 ⊗ e3 + e3 ⊗ e2, κ(0) = 0, u(0) = 1, T (0) = 1

n(1) = 0, m(1) = 0.

Here, Tref and the air flow associated T? and v̆rel are scaled with θ and U , respectively. System (7) contains
the slenderness parameter ε (ε � 1) explicity in the equation for the couple m and is hence no asymptotic
model of zeroth order. In the slenderness limit ε → 0, the rod model reduces to a string system and their
solutions for (̆r, τ̆ , u,N = n3, T ) coincide. Only these jet quantities are relevant for the two-way coupling, as
they enter in the exchange functions. However, the simpler string system is not well-posed for all parameter
ranges, [15, 16]. Thus, it makes sense to consider (7) as ε-regularized string system, [19]. We treat ε as
moderate fixed regularization parameter in the following to stabilize the numerics, in particular we set
ε = 0.1.

For the numerical treatment of (7), systems of non-linear equations are set up via a Runge-Kutta col-
location method and solved by a Newton method. The Runge-Kutta collocation method is an integra-
tion scheme of fourth order for boundary value problems, i.e. ∂sz = f(s, z), f : [a, b] × Rn → Rn with
g(z(a), z(b)) = 0. It is a standard routine in MATLAB 7.4 with adaptive grid refinement (solver bvp4c.m).
Let a = s0 < s1 < ... < sN = b be the collocation points in [a, b] with hi = si − si−1 and denote zi = z(si).
Then, the nonlinear system of (N + 1) equations, S(zh) = 0, for the discrete solution zh = (zi)i=0,...,N is set
up via

S0(zh) = g(z0, zN) = 0

Si+1(zh) = zi+1 − zi −
hi+1

6

(
f(si, zi) + 4f(si+1/2, zi+1/2) + f(si+1, zi+1)

)
= 0,

zi+1/2 =
1

2
(zi+1 + zi)−

hi+1

8
(f(si+1, zi+1)− f(si, zi))

for i = 0, ..., N − 1. The convergence and hence the computational performance of the Newton method
depends crucially on the initial guess. Thus, we adapt the initial guess iteratively by help of a continuation
strategy. We scale the drag function F with the factor C−2

F and the right-hand side of the temperature
equation with CT and treat Re, Rb, Fr, `, CF and CT as continuation parameters. We start from the
solution for (Re,Rb,Fr, `,CF,CT ) = (1, 1, 1, 0.15,∞, 0) which corresponds to an isothermal rod without
aerodynamic forces that has been intensively numerically investigated in [19]. Its determination is straight
forward using the related string model as initial guess. Note that we choose ` so small to ensure that
the glass jet lies in the air flow domain. The actual continuation is then divided into three parts. First,
(Re,Rb,Fr,CF) are adjusted, then CT and finally `. In the continuation we use an adaptive step size control.
Thereby, we always compute the interim solutions by help of one step and two half steps and decide with
regard to certain quality criteria whether the step size should be increased or decreased.

4.2 Weak iterative coupling algorithm
The numerical difficulty of the coupling of glass jet and air flow computations, Sjets and Sair, results from
the different underlying discretizations. Let Ih denote the rod grid used in the continuation method and
I∆ be an equidistant grid of step size ∆s with respective jet data Ψ∆ for data exchange. Moreover, let
Ωh denote the finite volume mesh with the flow data Ψ?,V for the cell V . For the air associated exchange
functions, the flow data is linearly interpolated on Ih. Precisely, the linear interpolation L with respect to
r̆(sj), sj ∈ Ih is performed over all V ∈ N (sj), where N (sj) is the set of the cell containing r̆(sj) and its
direct neighbor cells,

f̆air(sj) ≈ F̆(Ψ(sj),LN (sj)[Ψ?,V ]), qair(sj) ≈ Q(Ψ(sj),LN (sj)[Ψ?,V ]).

For the jet associated exchange functions entering the finite volume scheme, we need the averaged jet
information for every cell V ∈ Ωh. We introduce I∆,V = {sj ∈ I∆ |̆r(sj) ∈ V } and |IV | = ∆s|I∆,V |, then the
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averaging E with respect to V is performed over the I∆,V -associated data,

2π

|V |

∫
V

r f̂jets(x, r) dxdr ≈ −N |IV |
|V |

F̂(EV [Ψ∆],Ψ?,V ),

2π

|V |

∫
V

r qjets(x, r) dxdr ≈ −N |IV |
|V |

Q(EV [Ψ∆],Ψ?,V ).

The ratio |IV |/|V | can be considered as the jet length density for the cell V . In case of M jet representatives,
we deal with I∆,V,i and |IV,i| for i = 1, ...,M . Consequently, we have I∆,V = ∪Mi=1I∆,V,i and |IV | =∑M
i=1 |IV,i|. Note, that the interpolation and averaging approximation strategies have the disadvantage that

they are qualitatively different. Thus, momentum and energy conservation are only ensured for very fine
resolutions.

Summing up, the algorithm that we use to couple glass jet Sjets and air flow Sair computations has the
form:

Algorithm 1.
Generate flow mesh Ωh
Perform flow simulation Sair without jets to obtain Ψ

(0)
?

Initialize k = 0
Do

- Compute: Ψ
(k)
i = Sjets(Ψ(k)

? ) for i = 1, ...,M
where flow data is linearly interpolated on Ih

- Interpolate jet data on equidistant grid I∆
- Find for every cell V in Ωh the relevant rod points I∆,V and average the respective data

- Compute: Ψ
(k+1)
? = Sair(Ψ(k))

- Update: k = k + 1
while ‖Ψ(k) −Ψ(k−1)‖ > tol

Remark 2. From the technical point of view, the efficient management of the simulation and coupling
routines is quite demanding. In a preprocessing step we generate the finite volume mesh Ωh via the software
Gambit and save it in a file that is available for FLUENT and MATLAB. The program of Algorithm 1 is then
realized with FLUENT as master tool. After the air flow simulation FLUENT starts MATLAB. MATLAB
governs the parallelization of the jets computation via MATLAB executables. Collecting the jets information,
it provides the averaged jets data on Ωh in a file. FLUENT reads in this data and performs a new air flow
simulation with immersed jets.

5 Results
In this section we illustrate the applicability of our asymptotic coupling framework to the given rotational
spinning process. We show the convergence of the weak iterative coupling algorithm and discuss the effects
of the fluid-fiber-interactions.

For all air flow simulations we use the same finite volume mesh Ωh whose refinement levels are initially
chosen according to the unperturbed flow structure, independently of the glass jets. This implies a very fine
resolution at the injector of the turbulent cross flow which is coarsen towards the centrifugal disk. For mesh
details see Figure 2 (left). The turbulent intensity is visualized in Figure 2 (right). As expected it is high at
the injector and moderate in the remaining flow domain. In particular, it is less than 2% in the region near
the centrifugal disk where the glass jets will be presumably located. Thus, we neglect turbulence effects on
the jets dynamics in the following. However, note that such effects can be easily incorporated by help of
stochastic drag models [24, 37, 40] that are based on RANS turbulence descriptions (e.g. k-ε model or k-ω
model). For the jet computations the grid Ih is automatically generated and adapted by the continuation
method in every iteration. To ensure that sufficient jet points lie in each flow cell and a proper data exchange
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Figure 2: Left: finite volume mesh Ωh for air flow computations (mesh detail). Right: turbulent intensity of
the air flow.

is given we use an equidistant grid I∆ with appropriate step size ∆s, (at minimum 2 jet points per interacting
flow cell).

The weak iterative coupling algorithm is fully automated. Each iteration starts with the same initial-
ization. There is no parameter adjustment. The algorithm turns out to be very robust and reliable in
spite of coarse flow meshs. For our set-up an air flow simulation takes around 30 minutes CPU-time, and
the computation of a single jet takes approximatively just as long. The algorithm converges within 12-14
iterations. Figure 3 shows the relative L2-error of all jet curve components over the number of iterations k,
i.e.

M∑
i=1

‖r̆(k)
j,i − r̆

f
j,i‖L2(Ii)

‖r̆fj,i‖L2(Ii)

, with r̆fj,i final solution, j = 1, 2, 3.

The effects of the fluid-fiber interactions and the necessity of the two-way coupling procedure for the
rotational spinning process can be concluded from the following results. Figure 4 shows the swirl velocity
of the air flow and the location of the immersed glass jets over the iterations. In the unperturbed flow
without the glass jets there is no swirl velocity. In fact, the presence of the jets cause the swirl velocity,
since the jets pull the flow with them. Moreover, the jets deflect the downwards directed burner flow, as
seen in Figure 5. The jets behavior looks very reasonable. Trajectories and positions are as expected.
Furthermore, their properties, i.e. velocity u and temperature T , correspond to the axial flow velocity and
flow temperature, which implies a proper momentum and heat exchange. For jet details we refer to Figure 6.
It shows the influence of the spinning rows. The jet representative of the highest spinning row is warmer
than the one of the lowest row which implies better stretching capabilities. It is also faster and hence thinner
(A = u−1). This certainly comes from the fact that the highest jet is longer affected by the fast hot burner
flow. However, in view of quality assessment, slenderness and homogeneity of the spun fiber jets play an
important role. This requires the optimal design of the spinning conditions, e.g. different nozzle diameters
or various distances between spinning rows. But for this purpose, also the melting regime has to be taken
into account in modeling and simulation which is left to future research.
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Figure 3: Convergence of the weak iterative coupling algorithm. Relative error of all M curve coordinates
in L2(I)-norm over number of iterations, plotted in logarithmic scale.

6 Conclusion
The optimal design of rotational spinning processes for glass wool manufacturing involves the simulation of
ten thousands of slender viscous thermal glass jets in fast air streams. This is a computational challenge
where direct numerical methods fail. In this paper we have established an asymptotic modeling concept
for the fluid-fiber interactions. Based on slender-body theory and homogenization it reduces the complexity
of the problem enormously and makes numerical simulations possible. Adequate to problem and model we
have proposed an algorithm that weakly couples air flow and glass jets computations via iterations. It turns
out to be very robust and converges to reasonable results within few iterations. Moreover, the possibility
of combining commercial software and self-implemented code yields satisfying efficiency off-the-shelf. The
performance might certainly be improved even more by help of future studies. Summing up, our developed
asymptotic coupling framework provides a very promising basis for future optimization strategies.

In view of the design of the whole production process the melting regime must be taken into account in
modeling and simulation. Melting and spinning regimes influence each other. On one hand the conditions
at the spinning rows are crucially affected by the melt distribution in the centrifugal disk and the burner air
flow, regarding e.g. cooling by mixing inside, aerodynamic heating outside. On the other hand the burner
flow and the arising heat distortion of the disk are affected by the spun jet curtains. This obviously demands
a further coupling procedure.
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Figure 4: Illustration of iterative coupling procedure. Iteration results for air swirl velocity and immersed
glass jets (plotted as white curves).

Figure 5: Final simulation result. Glass jets and air flow in given rotational spinning process. The color maps
visualize axial velocity and temperature of the air flow, respectively. In addition, the immersed M = 35 glass
jet representatives are colored with respect to their corresponding quantities, i.e. u and T . The dynamics
and properties of the highest and lowest jets are shown in detail in Figure 6.
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Figure 6: Dynamics of the jets emerging from the highest and lowest spinning rows of the centrifugal disk.
Left: side and top view of the plant. Right: jets velocity u(s) and temperature T (s), s ∈ [0, L].
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