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Abstract—This paper presents an accurate state of charge 
(SOC) estimation algorithm using a recurrent neural network 
with long short-term memory (LSTM) for lithium-ion batteries 
(LIB) performing under real conditions. With its self-learning 
ability, this data-driven approach is able to model the highly 
non-linear behavior of LIB due to changes of environment and 
working conditions all along the battery lifetime. It is shown that 
the LSTM approach outperforms common physical-based mod-
els using Extended Kalman Filters (EKF) regarding accuracy 
and stability. To demonstrate this benefit for real-world appli-
cations, the provided network is trained and tested with data 
gathered from commercial industry applications in the domain 
of energy storage. The LSTM is evaluated and compared with 
an equivalent circuit model (ECM) using EKF under different 
working conditions. For dynamic loading profiles, the ECM-
EKF achieves an error (RMSE) of 9.5% whereas the LSTM 
achieves an error (RMSE) of 5.0%. 
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I. INTRODUCTION 
According to the Paris Agreement signed in 2016, 195 

countries agreed to reduce their greenhouse gas emissions by 
at least 40 % until 2030 compared to 1990 [1]. In order to at-
tain this objective, the usage of fossil fuels has to be drastically 
diminished wherefore the renewable energies are coming to 
the fore. For an efficient and sustainable utilization of renew-
able energy sources, reliable and safe energy storage is an in-
dispensable prerequisite. The lithium-ion battery technology, 
with its high conversion efficiency provides an efficient solu-
tion as dynamic energy storage. In order to guarantee safety 
and high performance of a lithium-ion battery (LIB) for a long 
life-time, the LIB has to operate within electrical and thermal 
limits. This safe operating area (SOA) depends on the cell 
chemistry, the environment and working conditions as well as 
on the history of the battery. To ensure that LIBs operate 
within their SOA, a battery management system (BMS) is 
used to monitor battery parameters. Moreover, the BMS mon-
itors the LIB to avoid over-charging, over-discharging and 
over-current scenarios depending on external operating condi-
tions like temperature. The BMS has to precisely estimate the 
state of charge (SOC) to give an accurate estimation of the 
remaining available energy of the LIB for overall control 
units. This point is essential for a safe and economically viable 
usage of energy storage systems based on LIB [2].  

The SOC of a LIB is defined as the residual charge of the 
battery and is given by the ratio of the residual capacity to the 
nominal, fully charged capacity of the battery [3]. Since the 

SOC is not directly measurable, it is crucial to use suitable al-
gorithms for an accurate estimation. Traditionally, physical 
based SOC estimators are often limited due to their poor ro-
bustness regarding the highly non-linear dependence of the 
SOC on the changes of environment and working conditions 
during the operation of a LIB. Under laboratory conditions, 
data-driven approaches have demonstrated their potential to 
overcome these problems due to their high adaptability and 
self-learning ability [4]. 

In this work, an LSTM approach is used to determine the 
SOC of LIBs operating in industry applications. It is shown 
that this data-driven SOC estimator outperforms the physical 
based equivalent circuit model using EKF. This is especially 
the case for real-world conditions.  Following the introduc-
tion, section II is covering the data generation and prepro-
cessing. Subsequently, section III recapitulates the fundamen-
tals of the SOC estimation. Afterwards, the results of the 
LSTM and EKF are presented and analyzed. Finally, the con-
clusion of this work and the outline for future research are 
given. 

II. DATA GENERATION AND PREPROCESSING 
Common lithium-ion based energy storage systems con-

sist of one or several battery modules that in turn consist of 
multiple battery cells. The amount of the battery modules as 
well as the number of lithium-ion cells within each module 
mainly depends on the use case and the required energy and 
power. A comprehensible and reliable status monitoring of 
any energy storage system, independent of the containing 
chemistry and characteristics of the LIBs, requires a time dis-
crete measurement of the voltage, current and temperature of 
each cell. The data measurements and logs for this publication 
were performed by the internally developed open source bat-
tery management system called foxBMS® [5]. 

Since foxBMS® has permanently measured for months de-
pending on the dynamic real-world application, more than 
1 TB data was collected. Due to the high amount of collected 
data, processing is a very computational intensive challenge. 
For a better insight and understanding of the data, an unsuper-
vised learning algorithm, Gaussian Mean Mixture (GMM), is 
used to divide and cluster the preprocessed data. The resulting 
clustering of an exemplary dynamic profile of a LIB is pro-
vided by colored sections in Fig 1. The voltage and the C-rate 
of the LIB are plotted as well. The C-rate indicates the ratio of 
the current to the nominal capacity of the battery [3]. 



 
Fig. 1: Clustering of a dynamic load profile of a LIB.  

Based on the clustering, the cumulated distribution of the 
most relevant operation phases (i.e., rest, discharge-, slow- 
and fast charge) can be evaluated. Using this information, it is 
verified if representative data is used as input for the SOC es-
timators. Fig. 2 illustrates the percentage of the four operating 
phases during exemplary dynamic cycle of the battery system. 

 
Fig. 2: Percentage of four different operating phases of a LIB during dy-

namic loading profiles. 

The cell current, cell voltage and cell temperature are the 
input values for the SOC estimators considered in this work. 
This input is then mapped to the corresponding SOC. The ref-
erence SOC is calculated by the foxBMS using Coulomb 
Counting based on a shunt current sensor. 

III. SOC ESTIMATORS 
The Coulomb Counting approach is a straightforward 

method for predicting the SOC that uses current integration, 
meaning that the charge or discharge current is summed over 
time and then subtracted or added to the current SOC. How-
ever, this method has two drawbacks: the integrated value has 
to be initialized and the computed SOC shifts over time due to 
small integration errors. The initialization is usually processed 
with the open-circuit voltage (OCV): if the battery cell is at 
rest, there is a direct correspondence between the SOC and the 
battery voltage. However, this relation is not valid for the non-
stationary case, i.e. during charging and discharging of the 
battery, including its relaxation period. This is because inter-
nal voltage losses occur during operation of the LIB. The volt-
age losses, also called overpotentials, arise due to the internal 
resistance as well as due to dynamic electrochemical reactions 
inside the battery. Even in the absence of current, the open-
circuit voltage is not exactly measurable, due to relaxation 
phenomena. This renders the initialization impractical in a real 
application, as it is not wanted to immobilize the system to let 
the battery cell rest for SOC initialization. 

A. Equivalent Circuit Models with Extended Kalman Filter  
A way to overcome these issues is to use an equivalent-

circuit model (ECM) combined with an Extended Kalman Fil-
ter (EKF). A typical ECM for modelling LIB is shown in 
Fig. 3. 

 
Fig. 3: Equivalent-circuit model used to describe the electrical behavior 

of a lithium-ion battery cell. 

It contains a voltage source to model the OCV, a series 
resistance (Rseries) to model the voltage drop when current is 
flowing and one (or several) RC-networks to model the dy-
namical behavior of the cell. Using the measured voltage of 
the battery cell, the EKF can correct the deviations due to an 
incorrect initialization and due to integration errors. An EKF 
is needed as the battery model is non-linear [6]. 

The ECM has to be calibrated, typically using optimiza-
tion methods to fit experimentally measured voltage profiles. 
Since RC-models are empirical, it is awaited that they might 
not behave correctly outside of their calibration domain. Since 
the quality of the results depends on the adequacy of the 
model, the calibration effort can get high and a large amount 
of data can be needed to ensure that the model behaves cor-
rectly in all the situations that the battery system might en-
counter. Consequently, if a large amount of data is needed, a 
data-driven approach might be better suited, because it avoids 
the use of an empirical model. 

B. Recurrent Neural Network with Long Short-Term 
Memory  
Long-Short-Term Memory networks (LSTMs) are a type 

of Recurrent Neural Networks (RNNs) established in a wide 
range of time variant problems [7, 8, 9]. LSTMs as well as 
RNNs are specialized in processing time series to detect and 
memorize patterns, which are used to predict results at future 
time steps [9]. In contrast to the RNNs, which rely on simple 
feedback loops in their architecture to maintain the infor-
mation in the memory [10], LSTMs have a separate cell state, 
which learns the management of the memory (such as its ac-
cess and modification) in a more sophisticated manner. Im-
plementations of LSTM cells are provided by all common 
machine learning frameworks. In the following, the LSTM 
module of Tensorflow [11], which is visualized in Fig. 4, is 
used and adapted for the battery use case. The module con-
sists of one cell state and three gates that read and write the 
cell state. 

 
Fig. 4: Schematic setup of a long short-term memory cell. 



The cell state is the memory lane of the network. Infor-
mation that needs to be remembered is stored in the cell state 
vector and can be accessed by the LSTM at different time 
steps at later time. The three gates consist of neurons that are 
trained to decide which information should be forgotten, re-
membered and made available as output based on the previ-
ous output and current input. Since the input for the LSTM is 
a large amount of data, the network has to be fed sequentially. 
Therefore, the neural network is trained by feeding the time 
series sequentially. The deviation between the LSTM esti-
mated SOC and the calculated reference SOC has to be deter-
mined. For this, a quadratic loss function is used that indicates 
the performance of the LSTM. The LSTMs ability to incor-
porate events from arbitrarily distant time steps into its pre-
diction of future time steps is of great use for the SOC pre-
diction, due to the superposition of short and long-term pro-
cesses in real applications. While periods of fast charging and 
discharging take between several minutes up to hours, the de-
generation and ageing of the cells is in the dimension of 
months or years. To yield a reliable model of the SOC, a large 
amount of data with a representative battery usage needs to 
be used for the training of the network [10]. Based on the 
clustered battery states in Fig. 1 and Fig. 2, the data input to 
the neural network can be adapted for modified use cases. 
Due to the highly parallel implementation of the LSTM, even 
with Graphics Processing Units (GPUs), multiple GBs of data 
can be processed at once. Moreover, based on established 
transfer learning strategies [12], trained LSTM models can be 
adapted to batteries using various cell chemistries.  

IV. EXPERIMENTAL RESULTS 
In the following section, the accuracy of the SOC estima-

tion using LSTM and ECM-EKF is investigated for different 
operating scenarios. Using the information gained from the 
clustering, the same representative charge, discharge and rest 
patterns of 30 days are used for parameter fitting of the ECM-
EKF as well as for training the LSTM. After training, the two 
SOC estimators are applied to different test data sets. The test 
data sets were not used for training or fitting parameters. The 
neural network used in this work consists of three layers with 
seven neurons each. A fully connected layer follows after the 
third layer and combines the output of the layers to one output 
neuron corresponding to the SOC value. Furthermore, the 
LSTM is trained by using the Adam’s optimizer, which is an 
adaptive learning rate optimization algorithm that is specifi-
cally designed for deep learning applications [10]. The input 
for the LSTM contains the voltage, current and temperature of 
the LIB, whereas for the EKF only the measured voltage is 
used as input.  

In Fig. 5 the SOC, voltage, C-rate and temperature of a 
LIB are plotted for an exemplary dynamic battery cycle that is 
used as a test data set. After a constant current discharge and 
a rest phase, a phase follows where the battery is dynamically 
discharged as shown by the profile of the SOC. Subsequently, 
a short resting phase and a constant current – constant voltage 
(CC-CV) charging phase are ensuing. Finally, during two dy-
namic operating phases separated with two resting periods, the 
LIB is again discharged. 

 
 Fig. 5: a) SOC b) voltage c) C-rate and d) temperature of a lithium-ion 

battery during dynamic charge and discharge cycles. 

In Fig. 6, Fig. 7 and Fig. 8 the SOC profiles calculated with 
LSTM (green) and ECM-EKF (red) are provided. The SOC 
determined with Coulomb Counting (black) serves as refer-
ence. Due to the drawbacks of the Coulomb Counting ap-
proach mentioned in section III, time-consuming recalibra-
tions were done during the measurements, in order to provide 
a reliable reference SOC. 

 
Fig. 6: SOC Estimation by LSTM, ECM-EKF with CC as reference for a 

load profile. 

Fig. 6 shows the SOC estimations for a test cycle where 
only the second half of the profile contains a dynamic operat-
ing phase. Starting with a correct initialization, the estimation 
by ECM-EKF gets worse during discharging the battery. 
While the LSTM starts with a wrong initialization, the SOC 
estimation for the following first part of the load profile is very 
accurate. During the dynamic discharging, both methods are 
differing from the reference SOC. However, whereas the SOC 
computed with ECM-EKF moves away from the reference, 
the SOC profile estimated by the LSTM oscillates around the 
reference SOC.  

In Fig. 7, the SOC profiles are plotted for another dynamic 
discharging profile. The ECM-EKF and LSTM are behaving 
similarly compared to the previous test shown in Fig. 6.  



 
Fig. 7: SOC Estimation by RNN-LSTM, ECM-EKF with Coulomb 

Counting as reference for a dynamic discharging cycle. 

After a correct initialization, the SOC computed with 
ECM-EKF differs from the reference profile, while the SOC 
curve determined by LSTM oscillates around the reference so-
lution. In Fig. 8, another dynamic discharging and charging 
cycle is considered. For this test set, the SOC estimation pro-
vided by the LSTM oscillates again around the reference. 
However, in contrast to the test sets showed before, the ECM-
EKF does not drift away from the reference SOC. Despite of 
this, the LSTM performs again better than the ECM-EKF. 

 
Fig. 8: SOC Estimation by RNN-LSTM, ECM-EKF with Coulomb 

Counting as reference for a dynamic load profile. 

In order to quantify the results, three different integral er-
ror measurements are used: Root Mean Square Error (RMSE), 
Mean Average Error (MAE) and Maximum Average Error 
(MaxAE).  In Table 1, the integral errors are shown for the 
two SOC estimation methods over all test data sets.  

Models 
Error Benchmarks 
RMSE MAE MaxAE 

ECM-
EKF 9.5% 8.5% 19.3% 

LSTM 5.0% 4.1% 12.8% 
 

Table 1: Integral error measurements for the ECM-EKF and LSTM: Root 
Mean Square Error (RMSE), Mean Average Error (MAE) and Maximum Av-
erage Error (MaxAE). 

The LSTM achieves an RMSE of 5.0% whereas the ECM-
EKF achieves only an RMSE of 9.5%. Furthermore, inde-
pendent of the used error measurement, the error obtained by 
LSTM is lower than the error obtained with the ECM-EKF. 
The LSTM estimate behaves consistently for various types of 
data sets, whereas the ECM-EKF performance strongly varies 
depending on the data set it is applied too. The results can get 
very poor in some cases. The reason for this is that the ECM-
EKF adopts badly for changing environments and working 

conditions. During collecting data of over one year, these con-
ditions change drastically. Even though the parameter fitting 
for the ECM-EKF is done for a representative data set, not 
every single combination of environment and working condi-
tions is taken into account. As a result, the ECM-EKF does 
not work for profiles corresponding to conditions that were 
not exactly present in the training data set. The ECM-EKF has 
to be recalibrated in order to achieve a correct estimation. Here 
the high adaptability and self-learning ability from neural net-
works are coming to the fore, especially for real-world data 
with dynamically changing framework conditions. The LSTM 
not only outperforms the ECM-EKF, it provides a more relia-
ble SOC estimation even for a fast changing environment and 
working conditions. 

V. CONCLUSION 
Physically motivated models like ECM-EKF and data 

driven approaches like LSTMs enable the prediction of the 
time varying states of LIBs for energy storage systems. The 
usage of battery data from real world profiles in this paper, 
compared to data generated under laboratory conditions, 
yields to a significantly higher deviation between the pre-
dicted SOC and reference values for both methods. It emerges 
that the data-based LSTM outperforms the physically moti-
vated model by halving the averaged deviation to the reference 
in all cases, reached a 5% RMS error, even though the number 
and height of the error peaks have been barely reduced. Con-
sidering the growing amount of data gathered in all domains 
of energy storage, it is awaited that the accuracy of the LSTM 
approach will significantly increase. Compared to the sequen-
tial data processing needed to calibrate the ECM model in 
ECM-EKFs, the data driven approaches can be performed on 
GPU clusters, which enable the processing of multiple data 
sets containing the entire life-time of a battery system in sev-
eral hours, allowing a better description of the LIB dynamics. 
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