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ABSTRACT: 

 

On the way to make energy supply independent from fossil resources more and more renewable energy sources have to be explored. 

Biomass has become an important energy resource during the last years and the consumption is rising steadily. Common sources of 

biomass are agricultural production and forestry but the production of these sources is stagnating due to limited space. To explore 

new sources of biomass like in the field of landscape conservation the location and available amount of biomass is unknown. 

Normally, there are no reliable data sources to give information about the objects of interest such as hedges, vegetation along streets, 

railways and rivers, field margins and ruderal sites. There is a great demand for an inventory of these biomass sources which could 

be answered by applying remote sensing technology. As biomass objects considered here are sometimes only a few meters wide, 

spectral unmixing is applied to separate different material mixtures reflected in one image pixel. The spectral images are assumed to 

have a spatial resolution of 5-20m with multispectral or hyperspectral band configurations. Combining the identified material part 

fractions with height information and GIS data afterwards will give estimates about the location of biomass objects. The method is 

applied to test data of a Sentinel-2 simulation and the results are evaluated visually. 
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1. INTRODUCTION 

Due to limited fossil resources the role of renewable energy is 

getting more and more important. The percentage part of 

renewable energy use in Germany has been increased from 

1.3% in 1990 to 11% in 2011. Biomass resources are an 

important component of renewable energy. The German 

production of electric energy with biomass resources changed 

from 221GWh in 1990 to 31,920GWh in 2011. In the same 

period the production of heat using biomass increased from 

28,265GWh to 118,570GWh. Biomass together with wind 

energy has been the fastest growing type in energy production 

since the last 20 years.  

Since space for biomass production is limited and energy plants 

are competing with food production new sources of biomass 

production need to be investigated. Our approach aims to use 

biomass from landscape conservation elements that are in most 

cases not used in a targeted manner. The landscape conservation 

objects under investigation are hedgerows, unploughed strips, 

vegetation beside streets, rivers, watercourses and railways, 

fallow land and protected areas, where an economic usage is 

allowed.  

For these types of biomass sources no reliable or no spatial 

information at all is area-wide available. In areas where biomass 

from landscape elements is already used, the spatial information 

about the existence is acquired manually. For a wide usage of 

these biomass types an automatic detection and inventory based 

on remote sensing is necessary to deliver a reliable source of 

information. Our approach should fill the gap of monitoring 

area-wide landscape conservation elements for biomass use. 

The paper is structured as follows: Chapter 2 gives an overview 

about existing approaches in the detection and monitoring of 

biomass objects. Moreover, the strategy of our approach is 

presented. Next, in Chapter 3 the used data sources are 

described. Chapter 4 deals with the proposed workflow in detail 

and the applied methods for each step are explained. Finally, in 

chapter 5 the objects of interest are described and the first 

results of our experiments are dicussed.  

 

2. RELATED WORK 

Remote sensing approaches that deal with biomass feedstock 

production consider in most cases only agricultural crops. An 

overview about these approaches can be found in Ahamed et al. 

(2011) who review concepts, methods and commercial software 

for monitoring energy crops.  

Only a few approaches deal with the monitoring of small 

biomass units in contrast to forests and agricultural crop 

production. For these approaches sometimes additional 

information is used in form of height information to increase the 

recognition rates. Due to the limited number of approaches, a 

general trend of promising solutions is not existing. In the 

following the ideas of approaches that deal with these small 

objects are reviewed. 

Estornell et al. (2012) use LiDAR data and airborne images to 

estimate biomass and volume of shrub vegetation. Features of 
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both data sources serve here as input to a regression model. The 

results show good accordance of the estimations and ground 

trouth.  

Forzieri (2012) relies only on spectral information from SPOT 

satellite images to retrieve an estimation of woody biomass. 

First he applies a Maximum Likelihood classifier to find regions 

of arboreal, shrub and herbaceous vegetation. The further 

approach is aimed at finding an analytical model representing 

the relationship between vegetation parameters like tree height 

and stem diameter and the spectral SPOT information by 

correlation analysis. 

Popescu (2007) applies an existing model that estimates the 

carbon content of single pine trees with the two parameters tree 

height and crown diameter. In airborne LiDAR data tree crowns 

are identified with an adaptive technique of local maximum 

focal filtering resulting in the two parameters for the carbon 

model. 

Bargiel (2013) examines the potential of TerraSAR-X High 

Resolution Spotlight images to classify the classes grasslands, 

herbaceous, trees, shrubs and flower strips. He processes a time 

series of 6 images of one year and applies with success a 

Random Forest classifier. For woody structures the approach 

delivers a producer's accuracy above 80%. 

In this work we present an approach that aims at processing low 

spatial resolution satellite data of about 10-20m GSD that is 

cost-effective and area-wide available. Due to small objects of 

interest spectral unmixing is applied to achieve the fraction of 

each material inside a single pixel. For a more precise 

estimation of the achievable harvest amount, volume parameters 

like vegetation height are determined in digital surface data. The 

estimation of the biomass amount itself is not part of this paper, 

only areas that have high potential of biomass should be 

identified here. 

 

3. DATA DESCRIPTION 

3.1 AISA Eagle 

The AISA Eagle sensor is a hyperspectral airborne line scanner 

that works in a spectral range of 400-970nm and separates up to 

488 spectral bands. For our experiments a configuration of 107 

spectral bands in a range of 431-926nm with a spatial resolution 

of 0.5m is used. The bandwidths in our test dataset of the single 

bands lie between 4.27nm and 4.81nm, the central wavelengths 

of all bands are shown in Table 1. An excerpt of the original 

input data is shown in Figure 1 a). 

 

430.51 434.79 439.23 443.72 448.22 452.72 

457.21 461.71 466.21 470.70 475.20 479.69 

484.19 488.69 493.18 497.68 502.18 506.67 

511.17 515.67 520.16 524.66 529.16 533.65 

538.15 542.65 547.19 551.87 556.56 561.24 

565.93 570.61 575.30 579.98 584.67 589.35 

594.04 598.72 603.41 608.09 612.78 617.46 

622.15 626.83 631.52 636.20 640.88 645.53 

650.18 654.82 659.47 664.12 668.77 673.41 

678.06 682.71 687.36 692.00 696.66 701.39 

706.12 710.86 715.59 720.32 725.06 729.79 

734.52 739.26 743.99 748.73 753.50 758.29 

763.07 767.86 772.65 777.44 782.23 787.02 

791.81 796.60 801.39 806.18 810.97 815.76 

820.55 825.34 830.12 834.89 839.67 844.45 

849.23 854.01 858.78 863.56 868.34 873.12 

877.90 882.67 887.45 892.23 897.01 901.78 

906.56 911.34 916.14 920.95 925.76  

 
Table 1 AISA Eagle central wavelengths [nm] bands 1 to 107. 

 

3.2 Sentinel-2 

Sentinel-2 (cp. Drusch et al. (2012)) will be a pair of two 

satellites whereof the start of the first satellite is planned in 

2014. Sentinel-2 will deliver data in the visible, near infrared 

and shortwave infrared spectrum comprising 13 spectral bands: 

4 bands at 10m, 6 bands at 20m and 3 bands at 60m spatial 

resolution (cp. Table 2), with a swath width of 290km. Sentinel-

2 will have the benefit to be available area-wide and cost-

effective therefore a simulation to prepare the usage of Sentinel-

2 of the 10m and 20m bands is fulfilled in chapter 4.1.  

 

band 

number 

band 

width 

[nm] 

band range 

[nm] 

spatial 

resolution 

[m] 

1 20 433-453 60 

2 65 457.5-522.5 10 

3 35 542.5-577.5 10 

4 30 650-680 10 

5 15 697.5-712.5 20 

6 15 732.5-747.5 20 

7 20 773-793 20 

8 115 784.5-899.5 10 

8b 20 855-875 20 

9 20 935-955 60 

10 30 1365-1395 60 

11 90 1565-1655 20 

12 180 2100-2280 20 

 
Table 2 Sentinel-2 band configuration. 

 

3.3 GIS data 

GIS data is an area-wide available and reliable source of 

information and should be used as a priori information to 

identify vegetation beside streets, rivers, watercourses and 

railways. For our experiments GIS information about streets and 

watercourses is taken from the German ATKIS Basis-DLM (cp. 

AdV, 1997) to reduce the search space in finding landscape 

conservation elements for a potential biomass usage. GIS 

information is an important source of information since the 

objects of interest are small in comparison to the available 

spatial image resolution. 



 

 

a) 

 

b) 

 

c)   

 

d) 

 

 
Figure 1 a) AISA Eagle input data band 1 b) simulated Sentinel-2 data bands 2-4, 0.5m GSD c) simulated Sentinel-2 data bands 2-4, 

10m GSD d) simulated Sentinel-2 data overlayed with input GIS, red = streets, blue = watercourses (including underground 

watercourses). 

 

 

4. METHODS 

4.1 Simulation of Sentinel-2 

Since Sentinel-2 data is not yet available simulation data is 

calculated based on a hyperspectral AISA Eagle dataset. In 

comparison to other data simulation approaches (cp. Segl et al. 

2012) where complex sensor models are known and used a 

simplified method is applied here.  

 

First, corresponding bands between the source and target 

dataset are determined. For example, band 1 of Sentinel-2 

covers a bandwidth between 433nm and 453nm. All AISA 

Eagle bands that lie in this range form the basis for the 

simulation, here bands 2 to 6. The complete band mapping that 

is used is shown in Table 3 Corresponding AISA Eagle bands 

for Sentinel-2 simulation.  

 

Second, pixel values DN are calculated for each of the 9 

Sentinel-2 simulation bands according to Equation 1, where ti is 

the band number of the target dataset, sn the band number of the 

source (AISA Eagle) dataset.  

 

max

i n

min

n

t s

n n

DN DN


               (1) 

 

Third, a resampling of the simulated bands is done to get the 

desired target resolution of 10m, 20m or 60m. In Figure 1 c) the 

simulation results for bands 2-4 with a spatial resolution of 10m 

are illustrated. The Sentinel-2 simulation data are the basis for 

the further experiments. 

 

Sentinel-2 

simulation 

band 

number 

accumulated 

AISA bands  

amount 

of AISA 

bands 

target 

spatial 

resolution 

1 2-6 5 60 

2 8-21 14 10 

3 26-33 8 10 

4 49-55 7 10 

5 60-62 3 20 

6 67-69 3 20 

7 76-79 4 20 

8 78-101 24 10 

8b 93-96 4 20 

 

Table 3 Corresponding AISA Eagle bands for Sentinel-2 

simulation. 

 

 

 



 

  
 

Figure 2 Examples of target objects in test site: vegetation 

beside streets (left), unploughed strips (right). 

 

4.2 Spectral unmixing 

Due to the limited spatial resolution of the Sentinel-2 

simulation data and objects of interest that are smaller than 

pixel size the application of multispectral classification at sub-

pixel level is limited or difficult. The smallest objects of interest 

like vegetation beside streets and unploughed strips (cp. Figure 

2) have a width of not more than 3 to 5m thus single image 

pixels represent a mixture of reflectance values of several 

materials. In our case, neighboring crops or street surface 

influence the pixel values that represent the objects of interest.  

 

In contrast to classification methods that assign the most 

probable class to each pixel, spectral unmixing decomposes a 

mixed pixel spectrum into a collection of constituent spectra, 

called endmembers, and a set of corresponding fractions, or 

abundances. Endmembers represent in this context the 

reflectance characteristics of pure material reflectances, for 

example water, soil, vegetation and street surface. The output of 

spectral unmixing is information about the number and spectra 

of the existing endmembers in an image and in contrast to 

classification methods for each pixel the individual composition 

of endmembers. 

 

For any spectral unmixing approach a mixture model has to be 

defined that describes how constituent material substances in a 

pixel combine to yield the spectrum measured at the sensor. 

Most approaches assume a linear mixture model according to 

Equation 2, where DN is a pixel value, N the number of 

endmembers, ai  the abundance of endmember i and si the 

spectrum of endmember i. According to Equation 3 the sum of 

all abundances for a unique pixel has to be 1. 
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For our experiments a powerful spectral unmixing approach 

called Sequential Maximum Angle Convex Cone (SMACC) 

that is available in the software ENVI is applied. SMACC (cp. 

Gruninger et al. 2004) works with a convex cone model 

(residual minimization) and simultaneously generates sets of 

endmembers and endmember abundance maps. The 

endmembers are selected directly from the input data set. 

SMACC starts with a single endmember and increases 

incrementally in dimension. The abundance maps are created 

and updated at each step. The data vector that builds the 

maximum angle with the existing endmember is taken as 

additional new endmember and extends the endmember set. 

After adding a new endmember, the abundances of previous 

determined endmembers are updated. The method terminates 

when all data vectors are processed and assigned to an 

endmember or if a specified number of endmembers is found.  

 

The result of this process are an abundance map, the extracted 

endmember spectra and special vector data that contain 

mapping information between each endmember and 

corresponding regions in the image that represent an 

endmember. The user can decide for the classes of interest and 

work with abundance maps for specific endmembers of interest. 

An example for an abundance map is shown in Figure 5 left. 

 

4.3 Biomass potential estimation 

The strategy for a biomass potential estimation is the 

combination of the spectral unmixing results with additional 

information that can be GIS data or height information. The 

estimation of the biomass amount itself is not topic of this paper 

as previously mentioned.  

 

Initially the endmembers that represent the objects of interest 

have to be determined under evaluation of the endmember 

allocation information results that SMACC delivers. For our 

experiments all endmembers that represent vegetation classes 

are chosen. High values indicate high fraction of the specific 

endmembers, but the objects of interest that are for example 

hedges have still to be identified in the data. 

 

One possibility to extract objects of interest is in our case the 

application of GIS data, because streets, rivers, railways and 

field borders are a good indication for the existence of biomass. 

This can be seen in Figure 1 d): nearly each object of interest is 

contained as object in the GIS data. 

 

Taking biomass sources into account that are not touched by 

GIS data the following two methods have been developed, but 

experimental results are not yet available. 

 

A promising indicator for the existence of voluminous biomass 

could be determined in data of digital surface models (DSM) 

detecting elevation of elongated shape. Possible data sources 

with sufficient spatial and height resolution are LiDAR data and 

aerial image matching results. Experiments with DSM data will 

start in a later stage of the project.  

 

Another possibility of detecting potential biomass objects is the 

evaluation of the abundance maps itself without usage of 

additional data. Edge detection could be applied on the 

abundance maps that represent the endmembers of interest. 

 

The final output results of the biomass potential analysis are 

consisting of information layers about 

 

 the location of detected biomass objects 

 the material fractions inside biomass polygons 

 height information about biomass objects  

 

http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.543794&Name=John+H.+Gruninger


 

5. RESULTS 

The proposed approach is applied to test data from a test site in 

Germany, near the city of Bottrop in North Rhine-Westphalia. 

The test site is located in a rural area with rather extensive 

agricultural use and contains also parts of a natural preserve. 

The main objects of interest inside the test site are unploughed 

strips and vegetation beside streets as exemplary illustrated in 

Figure 2. The vegetation appears in the form of trees, shrubs 

and herbaceous with object widths beginning at 1.5m.  

 

For the experiments all 4 Sentinel-2 simulation layer with a 

10m spatial resolution are used as input information to the used 

SMACC algorithm. Due to the fact that the number of occurring 

endmembers is unknown, a maximum of 30 endmembers as 

termination condition is chosen. The SMACC algorithm ends, if 

the maximum number of found endmembers is reached or if the 

maximum relative error underruns a specific threshold. In 

Figure 4 the development of the maximum relative error in 

relation to the number of endmembers is illustrated. It can be 

seen that the maximum relative error converges starting from 

the value of 5 endmembers.  

 
Figure 3 SMACC output: Behaviour of the maximum relative 

error (MRE) according to the number of endmembers. 

 

The single spectra for the first 5 most important endmembers 

are shown in Figure 4. Each spectrum is consisting of 4 values, 

one for each input band of the Sentinel-2 simulation data. A 

mapping of the automatically determined endmembers to image 

classes is done after the spectral unmixing terminates with the 

result, that endmember no. 5 represents a class containing 

vegetation. It may happen that more than one endmember is 

corresponding to vegetation classes, each one to vegetation with 

a unique spectral response.  

The abundance map for endmember 5 is shown in Figure 5 on 

the left handsite where bright pixel indicate high occurrence of 

vegetation. A visual analysis of the abundance map shows, that 

biomass objects of interest are well represented by endmember 

number 5, whereby also other vegetation objects like crops and 

forest are indicated. 

To select elongated structures that correspond to the landscape 

conservation biomass objects of interest GIS data is used. A 

simple intersect function applied to the abundance map and 

buffered GIS data is used. In Figure 5 on the right handsite the 

correspondence of a buffered GIS to the abundance map is 

exemplarily shown.  

 

 
 

Figure 4 Endmember spectra for endmember 1 to 5. 

 

 

 

  
 

Figure 5 Abundance map for endmember 5 representing 

vegetation (left), overlayed with input GIS (right). 

 
 

The application of edge detection and height data to find 

biomass objects independently of GIS data as described in 

Section 4.3 is not yet implemented. 

 

6. CONCLUSION 

In this work we presented an approach for the detection of 

biomass potential based on multispectral imagery. Due to the 

limited spatial resolution of the imagery in combination with 

small objects of interest, spectral unmixing in contrast to 

standard classification methods is applied.  

 

It must be recognized that for the experiments simulation data 

based on aerial images is applied, real satellite data might be 

different in spectral and spatial characteristics resulting in 

different unmixing results. 

 

The experiments show good results in indicating biomass 

objects. Nearly any of the biomass objects of interest could be 

detected with the approach. Spectral unmixing delivers 

abundance maps that have a higher degree of information in 

number of endmembers 

MRE 

1    2               3                  4 

band number 

http://dict.leo.org/#/search=North&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/#/search=Rhine-Westphalia&searchLoc=0&resultOrder=basic&multiwordShowSingle=on


 

comparison to standard classification results that contain only 

information about the most probable class. 

 

A further evaluation of the approach should be done in future 

based on reference data about biomass objects. Additional the 

usage of the Sentinel-2 bands of 20m spatial resolution should 

be investigated. 
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