

–

Selection Criteria and Process for Quality
Model Tailoring

Authors:
Constanza Lampasona
Michael Kläs
Reinhold Plösch

IESE-Report No. 034.12/E
Version 2.0
June 2012

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Fraunhofer-Platz 1
67663 Kaiserslautern

Copyright © Fraunhofer IESE 2012 v

Abstract

The objective of WP 3.3 in the Quamoco project was to develop a procedure
for quality model adaptation based on existing content and on the proposed
selection criteria.

In this document we present the mentioned selection criteria and an adapta-
tion process for Quamoco quality models, which are both based on the re-
quirements for adaptation mechanisms defined in the project as well as on the
results from WP 3.1 on variability and tailoring mechanisms for quality models,
and on the Quamoco meta-model v2.5.

We define the operations that are allowed to be performed when tailoring a
quality model. These are basic operations (delete, add, and modify) and com-
pound operations (tag, select, slit, and combine). The scope of the adaptation
process is also defined in this document, based on the three levels where we
consider that quality models can exist: public, organization and project levels.

The adaptation process itself is described by means of interconnected activities
with defined inputs and outputs. We tried to leave this part as independent as
possible from the quality meta-model. However, specific examples are given in
connection with the Quamoco meta-model v2.5.

We complement the adaptation process with guidelines for quality model ad-
aptation and typical adaptation scenarios. These are described less formally and
intend to support the stakeholder performing the adaptation as much as possi-
ble.

Keywords: Adaptation, tailoring, quality model, methodological support, Quamoco.

Copyright © Fraunhofer IESE 2012 vii

Table of Contents

1 Introduction 1

2 Requirements for Adaptation Mechanisms 4

3 Adaptation Operations 5
3.1 Basic Adaptation Operations 5
3.2 Compound Adaptation Operations 6

4 Scope of Quality Model Adaptation 9

5 General Quality Model Process 12

6 Typical Adaptation Scenarios 19

7 Selection Criteria 22

8 Goal Definition and Pre-Tailoring 28
8.1 Goal Definition 28
8.2 Pre-Tailoring 29

9 Iterative Model Changes 31

10 Reporting of Changes 35

11 Quality Model Maintenance 37

12 Interface to Further Quamoco Deliverables 48
12.1 Meta-Model 48
12.2 Base Model 49
12.3 Assessment Method 59
12.4 Requirements Method 59

References 61

Appendix A Adaptation Decisions and Adaptation Tasks 64

Appendix B Practitioners’ Pocket Guide 67

Appendix C Tool Guide – Adaptation 72

Introduction

Copyright © Fraunhofer IESE 2012 1

1 Introduction

Software quality models concretize the concept of software quality. In general,
this is achieved by describing it as a set of quality attributes and related
measures that can be used to evaluate the quality of software with respect to
those attributes. Quality models can be created from scratch using methods to
guide the derivation of custom-tailored quality attributes and metrics (define-
your-own-model approaches), or, existing fixed quality models specifying a pre-
scriptive set of quality characteristics or metrics can be reused. Unfortunately,
fixed models are very often focused on a very specific context or are too gen-
eral, and deriving a model from scratch very often requires intensive expert ef-
fort. Balanced quality models [18] are based upon the idea of adapting a core
model for specific domains and specific purposes. This adaptation should be as
much repeatable as possible and should therefore be methodically performed
and guided by a tailoring process. The use of a base quality model and its sys-
tematic customization may support the cost-effective handling of quality needs
within an organization or a project. Furthermore, the existence of a quality me-
ta-model, as in the case of Quamoco, which specifies the same structure for all
quality models, represents another potential advantage because it supports sys-
tematical quality model adaptation.

A central challenge for the model-based evaluation of software quality is the
identification of an adequate model to be customized and successfully tailor-
ing it to the needs defined by specific quality goals. Another fundamental chal-
lenge for effectively tailoring software quality models is identifying necessary
changes (what, when and how is to be modified) as well as concrete conse-
quential changes to guarantee the consistency of the tailored model. Further-
more, tailoring can occur at different levels of abstraction, which also should be
considered, in order to allow tailoring a model from different points of view.

Existing software quality models are deficient when it comes to their adapta-
tion to the needs of a specific organization or project in a reusable, reproduci-
ble manner. Based on our literature review [19], adaptations of quality models
are generally based on ISO9126 [16]. Some common modifications are to de-
fine new attributes [2] or to add quality characteristics for a very specific do-
main [25, 4].

The literature related to adaptation methods for software product quality mod-
els is rather meager. For adapting the ISO9126 quality model to the do-main of
component-based software development, Andreou and Tziakouris [2] take into
account the users: component developers, re-users, and end users. The out-
come is a quality model especially for original software components. Calero et

Introduction

Copyright © Fraunhofer IESE 2012 2

al. [6] use a general portal quality model for the creation of a spe-cial quality
model for eBanking: BPQM (eBanking Portal Quality Model). To achieve the
specialization of the model, a survey was performed among domain experts.
Unfortunately, these specific adaptations focus on the resulting adapted quality
models and not on a reproducible customization process.

Plösch et al. present in [23] a tool-supported approach to derive an adapted
quality model for source code evaluation. They focus on tailoring a set of rules
provided by static code analysis tools based on a set of defined criteria (e.g.,
relevant quality attributes or trustworthiness of the rule results). Although the
scope and structural complexity of the models is limited compared to the
Quamoco models, the general idea of providing a well detailed and compre-
hensive model that is primarily reduced during the adaption following certain
criteria seem promising to ensure an efficient adaptation.

Other authors use define-your-own-model tools to refine their specific mod-els.
These customizations have a narrow focus and are difficult to transfer to other
contexts. Andersson and Eriksson [1], for example, present a process for the
construction of a quality model founded on a basic quality model with existing
metrics (SOLE quality model). They illustrate how to customize the model to the
specific needs of an organization, including how to identify quality factors and
mapping them to metrics. The SOLE quality model [11] has the factor-criteria-
metric [21] structure. Bianchi et al. [5] use GQM [3] to refine a specific model.
They center their research on quality model reuse, i.e., which changes can be
requested when a quality model is reused, how to verify that despite the
changes made in the reused quality model, it remains suitable for its goals, and
what the side effects caused by changing the metrics are on the quality model.
Horgan and Khaddaj [15] propose an approach for model refinement based on
expert knowledge. Franch and Carvallo [13] present a very general process to
build an ISO9126 quality model.

The project Quamoco adheres to the concept of balanced quality models and
therefore proposes the creation and maintenance of a domain-independent
base quality model which may be adapted according to specific quality needs.
This document describes such an adaptation process and gives guidelines for
tailoring by proposing a series of selection criteria that should help the stake-
holders when adapting a quality model.

In chapter 2 we address the requirements for adaptation mechanisms ex-
tracted from the quality model requirements specified in WP 1.1 [20]. We de-
fine the operations which can be performed to customize quality models in
chapter 3. In chapter 4 we specify the scope of quality model adaptation.
Chapter 5 gives an overview on the general adaptation process. In chapter 6
we give a detailed analysis of the typical scenarios for using the adaptation pro-
cess. Chapter 7 describes criteria which support the stakeholder in taking the

Introduction

Copyright © Fraunhofer IESE 2012 3

right decisions when adapting a quality model. Chapter 8 explains in detail how
to define a goal for an adapted quality model and how use it for pre-tailoring a
model. Chapter 9 describes in detail how to iteratively perform quality model
modifications. Chapter 10 explains how changes are docu-mented. Chapters
11 and 12 present topics closely-related with quality model adaptation and
how they influence each other.

Requirements for Adaptation
Mechanisms

Copyright © Fraunhofer IESE 2012 4

2 Requirements for Adaptation Mechanisms

The mechanisms to adapt the Quamoco quality models are related to the fol-
lowing requirements, which were specified in WP 1.1 [20]

• Requirement 96: Ensure Proper Configuration and Application

• Requirement 98: Setup Possible within a Few Days

• Requirement 123: Adaptation of Quality Models

• Requirement 124: Conformance of Adapted Quality Models

• Requirement 129: Base Model

Based on these requirements, we condensed three major requirements with re-
spect to the adaptation process:

(R1) Correctness – An adapted quality model must be syntactically correct in
that it remains compliant to the underlying meta-model and defined consisten-
cy rules. In addition, the resulting model should be sound. However, the adap-
tation process can only support but not enforce the soundness (e.g., by guiding
the adaptation hints or providing support for making the decisions taken dur-
ing the adaptation traceable).

(R2) Goal Orientation – The adaptation of a base model should be driven by
organizational needs and capabilities. In particular, organization-specific and
project-specific software quality objectives should be considered.

(R3) Efficiency – This is concerned with the overhead (e.g., personnel, time,
and budget) needed for adapting a quality model. Acceptable overhead would
differ depending on the organizational level (e.g., more overhead will be al-
lowed for adapting a quality model at the level of the whole organization,
where such adaptation has a larger scope and is performed relatively rarely).

We refer to the solutions proposed for each requirement throughout the doc-
ument.

Adaptation Operations

Copyright © Fraunhofer IESE 2012 5

3 Adaptation Operations

Which changes can be requested when a quality model is adapted?

The process of adapting a quality model can be seen as a series of transfor-
mation steps. Each transformation would convert a quality model into anoth-er
one, by performing an operation. We call basic or primitive operations those
operations that can produce atomic transformations in the model (add, delete
and modify). Moreover, we refer to compound operations to those operations
that support a transformation in a higher level of abstraction (select, tag, com-
bine and split). All compound operations can be constructed by combining
basic operations.

3.1 Basic Adaptation Operations

From the analysis of the existing tailoring mechanisms [19], including those be-
ing used by the Quamoco partners, we deduced that any customization can be
reduced or organized into a combination of atomic changes. We define, there-
fore, three primitives or basic operations, which are used to perform those ele-
mental changes:

• Delete: Identification of elements not needed and their removal. We use
DEL to represent this operation.

• Add: Identification of needed elements not included and their incorpora-
tion. We use ADD to represent this operation.

• Modify: Identification of further needed adjustments and their implementa-
tion. We use MOD to represent this operation.

Figure 1 presents a simplified adaptation process for tailoring a quality model
which depicts the definition of the three basic operations. In essence, deleting
something in a model results in a reduced model, adding something to a model
produces an extended model, and adjustments of existing content in a model
are accomplished by means of modifications. We call the model used as input
for the adaptation reference quality model. The quality model obtained after
tailoring is an adapted quality model. Although the figure presents a sequence
of three operations, they do not have to happen in this order. Instead, a series
of many operations are performed iteratively.

Adaptation Operations

Copyright © Fraunhofer IESE 2012 6

Figure 1: General adaptation steps

3.2 Compound Adaptation Operations

While the basic operations serve to implement any desired quality model cus-
tomization, we list here also compound operations that refer to predefined
combinations of basic operations which have a strong semantic power in the
context of adaptation. These operations are:

Tag: This is the assignation of a mark, i.e., a tag name and a tag value, to an
element or group of elements. This operation serves to add additional infor-
mation to elements which was not defined as an element attribute in the meta-
model. Normally, this additional information is something specific related to the
context in which the model will be used. Therefore, we refer to a tag also as a
context attribute. This operation is particularly useful when the stakeholder
needs to add specific information to a model. For example, “programming par-
adigm = OO” or “inclusion of element = mandatory”.

Select: A selection is an indirect implementation of the delete operation, that
is, elements needed are identified and all other elements are removed from the
model.

Combine: Using this operation two or more elements can be merged into one
element.

Split: This operation is used to divide one element into two or more elements.

Move: This operation moves one element including its sub-elements to a new
position. This equals a combination of a delete and an add operation.

Simple Import: This operation consists in adding a whole tree from another
model. This assumes that the quality model and the tree added are independ-
ent. Diff and Merge functions are out of scope the work package.

In Figure 2, we schematically illustrate the adaptation operations delete (a), se-
lect (b), combine (c), split (d), move (e) and simple import (f).

Adaptation Operations

Copyright © Fraunhofer IESE 2012 7

Adaptation Operations

Copyright © Fraunhofer IESE 2012 8

Figure 2: Adaptation of quality aspects: On the left we show the quality aspect hierarchy in the reference model and
on the right the quality aspect hierarchy on the adapted model. a) Delete the quality aspect in black. b) Select
the quality aspects in black. c) Combine the quality aspects in black. d) Split the quality aspect in black. e)
Move the quality aspect in black to the right sub-tree. f) Import tree in QM2 to QM being imported.

Scope of Quality Model
Adaptation

Copyright © Fraunhofer IESE 2012 9

4 Scope of Quality Model Adaptation

Considering that software quality models may exist and be applied at different
levels, tailoring a quality model may also be needed at those different levels.
Analogically to the levels for tailoring software processes, quality models may
be developed and maintained at three levels (Figure 3):

Public level: The models at this level are universally available, may be intended
for general use (e.g., ISO9126 [16], Quamoco Base Model), or may be intended
for some specific domain (e.g., IEC 61508 [9] for safety in embedded systems,
EN 60601-1-4 [10] for medical devices). This level is comparable to the broad
industry level described by Fitzgerald [12]. Most of the models at this level are
very generic and usually not operational and need to be customized. Using and
tailoring these models is however useful for showing adherence to a public
standard.

Organization level: At this level, the main emphasis is on creating quality
models that satisfy the quality aspects of interest for an organization such as a
whole organization, a business unit, or a project portfolio. The quality models
here focus on issues that are relevant organization wide, i.e., they include over-
all organization’s quality requirements. They are more specific than quality
models at public level and include aspects not covered at it. They are common
models intended to be tailored for particular projects. An organization can have
more than one organization quality model, each adapted to a different scope.
Sub-organizations or projects may adapt the models at organization level ac-
cording to what is relevant for them. At the organizational level, the perfor-
mance of quality models is the subject of continuous improvement, and, in or-
der to increase efficiency and decrease costs at project level, major quality
model adaptations should take place at this level. Mandatory quality model el-
ements, which must be considered by every project in an organization, are de-
fined here. However, optional elements that do not have to be taken into ac-
count by every project but reflect the implementation of good practices can al-
so be included at this level.

Scope of Quality Model
Adaptation

Copyright © Fraunhofer IESE 2012 10

Figure 3: In this example, a public quality model (Quamoco base model) is adapted for organization x. This organiza-
tion is divided into three sub-organizations, which adapt the organization quality model for specific needs:
automotive electronics, smart buildings, and consumer electronics. The smart building division is structured
into two departments: lightening systems and infotainment. The latter has tailored quality models for many
projects. Specific adaptations are given as feedback to be considered when maintaining reference models.

Project level: At the project level, quality models are put into operation, i.e.,
they are used for their application purpose with respect to software product
quality. At this level, quality model adaptation should be limited to minor ad-
justments driven by project-specific quality requirements, without drastically
changing the structure of the quality model, in order to preserve conformance
of quality evaluations across software products created at the project level. Or-
ganization’s quality models are tailored for specific projects by performing only
fine tuning, i.e., at the project level organization-wide models are further re-
fined for a particular project. At this level, those quality model elements are
chosen that are needed by a project and the quality models produced at this
level should be always operational, i.e., tailoring at this levels is of pragmatic
nature. Major quality model adaptations may take place also here, if a project is
large enough to justify the costs.

The reuse of a quality model for adaptation is in essence more efficient than
creating a new model from scratch for each project. We recommend tailoring
models stepwise, for organizations and for projects. In this way, requirement 01
is addressed. As illustrated in the picture, we enforce that a model inherits only
from one reference model explicitly. This limitation avoids the inherent prob-
lems with multiple-inheritance. However, this fact does not prohibit that certain
parts of non-reference models are reused in the adapted model (which means

1 0 (R3) Efficiency – This is concerned with the overhead (e.g., personnel, time, and budget) needed for

adapting a quality model. Acceptable overhead would differ depending on the organizational level (e.g.,
more overhead will be allowed for adapting a quality model at the level of the whole organization, where
such adaptation has a larger scope and is performed relatively rarely).

 Quamoco base model

Embedded systems domain

Organization X

Consumers electronicsSmart buildings

Lightening systems Infotainment

Project 1 Project n...

Automotive electronics

Quamoco
partners’ models

Quamoco
partners’ models

Scope of Quality Model
Adaptation

Copyright © Fraunhofer IESE 2012 11

that an independent tree from another quality model is imported to the mod-
el).

General Quality Model Process

Copyright © Fraunhofer IESE 2012 12

5 General Quality Model Process

The process for tailoring a quality model consists of 5 steps (Figure 4). First of
all, the quality model goal has to be identified. This goal can then be mapped
to the quality model selection criteria. The criteria help the user in two ways.
First, they help the stakeholder to choose the model to be tailored (the refer-
ence model). Second, they help to decide which changes are needed on the
reference model in order to make it satisfy the goal defined. Detailed adapta-
tion scenarios where this process is instantiated are provided in chapter Typical
Adaptation Scenarios6 “Typical Adaptation Scenarios”.

Once a reference model was chosen, the actual tailoring process can start. The
adaptation typically starts by discarding elements that are not needed in the
model (pre-tailoring or pre-selection). Afterwards, tailoring operations (delete,
add, modify) are performed iteratively. Parallel to this, a list of adaptation tasks
is generated that suggests further customization based on the relationships
among the model elements and on the selection criteria. Consistency checks
are triggered after each operation. The tasks needed to bring the model into a
state which is consistent with the structure of the meta-model are given to the
user in a list of adaptation tasks. The process is documented during adaptation.
In the next paragraphs we give a detailed description of the process.

General Quality Model Process

Copyright © Fraunhofer IESE 2012 13

Figure 4: Adaptation process and piloting, schematic view.

General Quality Model Process

Copyright © Fraunhofer IESE 2012 14

Step 1 (S1): Identify goal of adapted quality model

INPUT: Organization/project quality needs, context information (e.g., domain,
programming language).

OUTPUT: Adapted quality model goal.

ACTIVITIES: In this step, a quality model goal is defined. The objective is to
identify the fundamental characteristics of the desired quality model (i.e., the
adapted quality model). The organization/project quality needs and context in-
formation are used to define this goal.

The goal of the adapted quality model is formulated in a structured way. This
can be done using the GQM goal template [3], which contains five parame-
ters: (1) Object (the entities to be considered), (2) Viewpoint (from which per-
spective we consider them, e.g., quality in use or technical issue), (3) Quality
Focus (the factors of interest), (4) Purpose (the intention of the adapted quality
model), and (5) Context (the circumstances under which the quality model is
used). Formulating the goal in this way allows easily using the adaptation sup-
port provided by the selection criteria, which are also based on these five goal
parameters. The adapted quality model goal and the selection criteria provide
fundamental support for identifying necessary changes (what, when and how is
to be modified). The goal is documented and can be used later, if the model is
inspected, to corroborate that it actually serves for the stated goal.

The goal of a model is used to characterize it. We use the term quality model
attributes to refer to the different parts of a goal in a model.

A goal can be, for example:

Purpose Object Viewpoint Quality Focus Context
Evaluate the source

code
from the perspective of
Product Quality

with respect to
Reliability

for a product devel-
oped with Java.

RELATED ROLES2: Project Leader, Quality Assurance Manager (QAM).

2 Roles as defined in [14].

General Quality Model Process

Copyright © Fraunhofer IESE 2012 15

Step 2 (S2): Identify and duplicate reference quality model

INPUT: Adapted quality model goal, base model, domain-specific models, or-
ganization’s models (if available).

OUTPUT: Reference quality model, duplicate of reference quality model.

ACTIVITIES: In this step, a reference model that best fits the adapted quality
model goal defined in STEP 1 is selected. A reference quality model is the model
on which the adaptation is based. This means that an adapted quality model is
derived from a reference model. It can be, for example, the Quamoco base
model, a domain-specific model, or an organization’s model.

In order to find a reference model, the values of the goal parameters are used.
These values are searched among the quality model attributes of the available
models and among the hierarchies of factors and entities to exclude quality
models that are not interesting with regard to the adapted quality model goal.

If no model exactly fits the goal, then the goal is used partially to search for
models satisfying the most relevant goal parameters. I.e., the goal parameters
can be prioritized and used as a filter to select the model that at least satisfies
the goal parameters that are considered more important. The quality model
that best fits the adapted quality model goal is now the reference model.

Once the reference model was found, a copy of it can be created, on which the
adapted quality model will be built, and values can be assigned to its attributes
(purpose, object, viewpoint, quality focus, and context).

RELATED ROLES: QAM.

Step 3 (S3): Reduce quality model (Pre-Tailoring)

INPUT: Reference quality model, duplicate of reference quality model.

OUTPUT: Modified quality model, list of adaptation tasks, list of consistency
tasks.

ACTIVITIES: Once the new model has been created, only quality model compo-
nents in the reference model that are relevant for the new model are taken
over. In this way, unnecessary quality model components are eliminated (this is
a select operation). In this step, the elements that are included in the new qual-
ity model are taken over together with all their related elements. For example:

General Quality Model Process

Copyright © Fraunhofer IESE 2012 16

Top-down pre-tailoring: if we choose the factor maintainability, we are auto-
matically including all maintainability sub-factors, all the factors that influence
them, measures related, etc. (unless they are explicitly unselected).

Bottom-up pre-tailoring: in this case pre-selection of quality model elements is
based on, for example, the availability of measurement tools. For example, the
tool PMD may be chosen and only the factors that can be measured with it will
be automatically selected.

The selected parts are the foundation for further adaptation. Basically, two
things are identified in this step: the factors relevant for the model quality focus
and the entities that are to be considered. During this step, the lists of adapta-
tion and consistency tasks are created. These tasks guide the further adaptation
steps. The list of consistency tasks includes hints that indicate which actions
must be taken to bring the model into a syntactically valid state, i.e., conform
to the structure prescribed by the meta-model.

RELATED ROLES: QAM, optionally: stakeholders with experience with respect to
the quality foci in the goal of the adapted quality model.

Step 4 (S4): Iterative tailoring

INPUT: Modified quality model, list of adaptation tasks, list of consistency tasks.

CONDITION TO FINISH THIS STEP: List of adaptation tasks and list of consistency
tasks are empty, i.e., the adaptation is done, the quality model is syntactically
correct, and the quality model content satisfies the defined goal.

INTERMEDIATE OUTPUT (BETWEEN ITERATIONS): Modified quality model, list of ad-
aptation tasks, list of consistency tasks.

FINAL OUTPUT: Adapted and consistent quality model.

The adaptation approach uses the basic operations to stepwise tailor the mod-
el. The model transformations resulting from the execution of an operation do
not necessarily produce a syntactically correct, consistent quality model. Com-
pound operations, i.e., tailoring operations that involve a combination of basic
operations, e.g., splitting a factor into two quality aspects, are also performed
here.

The preservation of consistency is achieved through the use of consequential
changes, which in turn may generate further consequential changes. If an ele-
ment is deleted from the model, and the element had related elements that are
no longer needed in the model, those elements should also be deleted.

General Quality Model Process

Copyright © Fraunhofer IESE 2012 17

These consequential changes needed to bring the quality model back into a
consistent state and produced by the adaptation of an element are based on
the meta-model structure and are saved on the list of consistency tasks, as
mentioned in STEP 3. This list is organized as a set of basic operations on the
model elements.

A basic adaptation produces a list of tasks, i.e., needed consequential changes,
to be performed in order to reach consistency. The sub-steps delete, add, and
modify are performed iteratively until no more customization is needed. The ex-
tent to which these operations are used depends on the appropriateness of the
reference model, i.e., it depends on how similar the goals of the reference
model and of the adapted quality model are.

Step 4.1: Delete

ACTIVITIES: This sub-step focuses on performing delete operations, i.e., in iden-
tifying elements not needed and removing them. Once an element is eliminat-
ed from the model, consequential tasks are generated and added to the lists 3.

Step 4.2: Add

ACTIVITIES: Here, elements needed, which are still not included in the model,
are incorporated. Add operations extend the quality model by adding quality
model elements, such as factors and measures. A new element can be created
by the user, or, can be searched in another model. That is, individual elements
partially satisfying the goal of the adapted model can be taken from other
models and reused in the new model.

If a new element is created, its relationship to the already existing elements in
the model is analyzed. For example, if we create a factor, as a sub-factor of
maintainability, we need to study the relationship of the new sub-factor with
the quality model, the factor maintainability, the other sub-factors of maintain-
ability, the factors related to the new factor, etc.

If an element is selected from another quality model, its relationship to the al-
ready existing elements in the model is likewise analyzed. For example, if we
take a factor from another model, we have to harmonize it with the model.
This means that we are not only taking an isolated element. We are adding a
factor with sub-factors. All the related elements of the one being added have
to be controlled, i.e., if they already exist in the model, they will not be dupli-
cated, but their associations with other elements are updated.

3 Consequential tasks are used to manage change throughout the adaptation process, based on the structure provided by the meta-
model. A table documents the consequences of the changes in one element on other elements, whether the task can be performed
automatically or if it requires user interaction.

General Quality Model Process

Copyright © Fraunhofer IESE 2012 18

Step 4.3: Modify

ACTIVITIES: Further needed adjustments are performed according to the needs of
the lists of adaptation and consequential tasks. This can be, for example,
changing the metrics used in a measure, or changing the contribution points
for assessment.

RELATED ROLES: QAM, stakeholders with experience with respect to the quality
foci in the goals of adapted quality model.

Step 5 (S5): Piloting/Test

INPUT: Adapted and consistent quality model, a selected product for test.

OUTPUT: Tested adapted and consistent quality model.

ACTIVITIES: In this step, the adapted quality model is tested at a small scale, i.e.,
pilots can be conducted to validate the adapted quality model. This can lead to
a rejection of the model. Based on the results further adaptations can be per-
formed.

RELATED ROLES: QAM.

Step 6 (S6): Documentation

ACTIVITIES: In parallel to quality model adaptation, relevant decisions and justifi-
cations are documented, and, for projects, especially those changes that ex-
clude elements that were tagged as mandatory in the organization’s model.

RELATED ROLES: QAM, organizational QAM (responsible for organizational qual-
ity model and the mandatory use of elements).

Typical Adaptation Scenarios

Copyright © Fraunhofer IESE 2012 19

6 Typical Adaptation Scenarios

Based on discussions with the Quamoco project partners, we formulated a set
of typical adaptation scenarios. The scenarios presented here complement the
existing general adaptation procedure. They should help making the adaptation
process more concrete and easier to apply in practice by providing scenario-
specific guidance for the adaptation of quality models. We proposed 16 differ-
ent scenarios:

Q1.- New data sources (e.g., add an additional static analysis tool): A model
exists and is extended. This means that it is not necessary to reduce the quality
model. Therefore, jump to iterative tailoring. Add new tool and associate to
measures through instruments. If the tool covers new measures, they may need
to be added to the model as well as the associated instruments and factors.
Evaluation specifications have to be checked for correctness.

Q2.- New modeling/implementation languages (e.g., add additional pro-
gramming language): A model exists and is extended. This means that it is not
necessary to reduce the quality model. Therefore, jump to iterative tailoring. If
the existing factors are not adequate for the new programming language, new
factors have to be added to the model, as well as measures, instruments, and
tools. If the factors can be reused, measures can be modified, as well as instru-
ments and tools.

Q3.- New technologies or paradigms: In the case of extending the model for
new technologies or paradigms, new factors relevant for the new technology
are added. This means that also measures and measurement instruments/tools
as well as evaluations for the new factor are to be defined. If existing factors
can be reused, additional evaluations applying for the new technology, are to
be defined, for example, where the weights are different.

Q4.- New artifacts (e.g., add additional entities): A model exists and is extend-
ed. This means that it is not necessary to reduce the quality model. Therefore,
jump to S4 Iterative tailoring. If, for example, the current model considers only
source code and it should also consider design documents, new entities describ-
ing design documents have to be added to the model, as well as factors de-
scribing their quality, measures associated to the factor, instruments and tools.
If some factors can be reused, the new entities have to be related with them,
new measures can be defined for them, and also the evaluations have to be re-
calculated.

Typical Adaptation Scenarios

Copyright © Fraunhofer IESE 2012 20

Q5.- New domains: For adapting a model for a new domain, we recommend
beginning with pre-tailoring. During that activity the elements which both do-
mains have in common can be adopted for the new model and the other ele-
ments simply discarded. Afterwards iteratively tailoring the model is necessary
to complete the model with new factors, measures, instruments and tools that
are relevant for the new domain and were not included in the reference model.

Q6.- New/modified quality requirements: In the case of new quality re-
quirements, for instance, a factor is selected that is appropriate for a goal as
well as product factors influencing it. Requirements are then built from these
and evaluations are defined which describe the fulfillment of the requirements.
This means, that new factors and evaluations are needed, where the impact of
product factors is assessed.

Q7.- New/updated perspectives: In case of adding a new perspective, this
would translate in adding an additional factor tree, which contains new factors
and sub factors describing quality from that new viewpoint. New impacts from
an existing product factor hierarchy into the new defined hierarchy are to be
set. Existing factors may be copied into the new tree. In that case, it would be
necessary to adapt the factors’ evaluations, e.g., weights, in order to reflect fac-
tors’ importance for the new perspective.

Q8.- Using a subset of data sources: In this case, the available resources can
be selected during pre-tailoring, for instance, selecting only the available tools,
or measures according to the cost of data collection, trustworthiness or rele-
vance. Afterwards, during iterative tailoring, the model can be brought into a
consistent state, by executing the tasks in the To-do-List, such as re-assigning
weights to measures.

Q9.- Focusing on specific modeling/implementation languages: If the
model contains, for example, many implementation languages, and only a sub-
set of them are to be addressed in the adapted model, the model can be pre-
tailored, and during this operation, the relevant languages are defined in the
model goal. In this way, only the model elements tagged with the relevant lan-
guages are filtered and the uninteresting ones discarded.

Q10.- Reduce technology or paradigm scope: In this case, the procedure is
similar with Q9. During pre-tailoring, the relevant technology or paradigm are
defined in the context of the new model and only the model elements tagged
with the relevant paradigm/technology are kept. The elements that are not rel-
evant are discarded.

Q11.- Assessing a subset of artifacts: For selecting a subset of artifacts, rele-
vant entities are selected during pre-tailoring. That is, for example, if the refer-

Typical Adaptation Scenarios

Copyright © Fraunhofer IESE 2012 21

ence model describe quality based on source code and documentation, but only
source code is interesting, the documentation entities are discarded in the pre-
tailoring step, and the source code ones are kept in the model.

Q12.- Focusing on actual domain: If the model is constructed for many do-
mains, such as information systems and embedded systems, and, only embed-
ded systems is valid for the target product, during pre-tailoring, the context of
the new model is defined as embedded systems and the elements which only
apply for information systems are discarded.

Q13.- New/modified project-specific quality requirements: In this case, if a
requirement for a specific project changes, for example, if a lower coupling lev-
el is required than the one defined in the reference model, the evaluation defin-
ing the fulfillment condition of that requirements has to be adapted, for exam-
ple, by defining a new threshold.

Q14.- Performing assessments limited to specific perspectives: In order to
tailor the model to a specific perspective, this must be defined in the model
goal. Then, only the relevant factor hierarchy addressing that specific perspec-
tive is kept in the model.

Q15.- Fixing observed assessment problems: Assessment problems may oc-
cur, for example if measures or evaluations were wrongly defined. In this case it
is necessary to track the problem back to the faulty model elements and correct
the modeling mistake, for example if an inadequate measure was used for
normalization or weights were wrongly assigned.

Q16.- Calibrating the model for future assessments: In this case, evalua-
tions rules can be modified in order to fit better into the environment. For ex-
ample, by giving a higher weight to more trustworthy measures.

Selection Criteria

Copyright © Fraunhofer IESE 2012 22

7 Selection Criteria

An adaptation decision is taken after considering a criterion, which supports
the decision. A justification (adapted from [22]) is a property of an adaptation
decision and it captures a summary of the reasons for taking that adaptation
decision, especially when an adaptation decision did not arise from an existing
criterion. A criterion is the base on which an adaptation decision is taken. Cri-
teria support the stakeholder in taking the right decisions, i.e., the decisions
that trigger the adaptation tasks which transform the reference model into a
model which satisfies the goal of the adapted quality model. Defining such a
goal is the first step for any adaptation of quality models. Conformance with
the meta-model is achieved by performing consistency tasks, which bring the
model into a syntactically correct state (Figure 5).

Figure 5. Structure of an adaptation decision, its causes and consequences.

What are influencing factors and motivations for adjustments?

The selection criteria supporting an adaptation decision is also structured in a
goal-oriented manner. A goal-oriented approach supports a methodical adap-
tation process in that the criteria are categorized and can be systematically
mapped to quality model elements. This approach helps also the stakeholders
in focusing on the needs of the organization or project.

Each one of the goal elements can trigger adaptation decisions, that is, the
goal parameters are bases for criteria. The adaptation decisions can include the

Selection Criteria

Copyright © Fraunhofer IESE 2012 23

justification of a change in the quality model and serve to document specific
tailoring decisions, which are based on particular criteria (e.g., a decision taken
by the quality assurance manager without considering the criteria proposed
here, but based on previous experience).

The criteria presented here have a rather general character. As the model and
the experience using it increases, the criteria can be extended and concretized
adding more details within quality model maintenance (whether this is done
with the Quamoco base model or with the models in an organiza-tion).

Object-related Selection Criteria

The object of a goal refers to one or more entities in the quality model. Ac-
cording to the Quamoco meta-model v2, entities are described by the entities
hierarchy, and they are characterized by a factor, which can be measured and,
it is either a refinement of other factors or influences one or more other fac-
tors.

Examples for entities are: documentation, source code, requirements, design,
build process, test suite, components, statements, classes, memory, sub-
routines, macros, functions, and procedures.

An abbreviated name is given to each criterion: [Cr=Criterion, Ob=Object-
related | V=Viewpoint-related | QF=Quality Focus-related | P=Purpose-related |
C=Context, consecutive numbering].

[CrOb1] Need to exclude from the model all entities which are not included
in the object of the goal: All factors in which the entity does not
corre-spond to the object specified in the quality model goal can
be re-moved from the quality model by applying the rule:
DEL(entities � instance_of(Object)). For example, if we are interest-
ed in source code, this operation removes requirements- and de-
sign-related factors from the quality model.

[CrOb2] Need to include in the model all entities which are included in the
object of the goal: It may also happen that some entities of interest
are still not included in the model, so they need to be included in
it.

Viewpoint-related Selection Criteria

A viewpoint can be, e.g., developer, management, quality assurance, project
manager, customer, and user. The perspective from which quality is specified or
evaluated refers to factors hierarchies in the quality model. In one quality mod-
el, there can be many parallel factors hierarchies corresponding to differ-ent

Selection Criteria

Copyright © Fraunhofer IESE 2012 24

viewpoints. Moreover, it is possible that many viewpoints share a com-mon fac-
tor hierarchy for the specification of quality and they differ in how they evalu-
ate it. So, in order to find the right elements corresponding to the point of view
in the quality model goal, the following criteria are considered:

[CrV1] Need to identify the factor hierarchy that corresponds with the
view-point.

[CrV2] If the purpose of the adapted quality model is to evaluate, it is
needed to include the evaluation elements which reflect the per-
spective in the viewpoint of the goal.

Quality Focus-related Selection Criteria

The quality focus of the adapted model is directly related to the factors consid-
ered in the quality model. The factors are included either in the “viewpoints”
hierarchies or in the product hierarchy, according to the Quamoco meta-model
v2. Examples of quality foci are maintainability, functionality, portability, effi-
ciency, usability, and reliability.

The first thing to do is to match the adapted model quality focus with the qual-
ity focus on the reference model. If a factor already exists in the reference
model, the factors and sub-factors related to it have to be checked.

For all factors influencing a factor of interest, check if they are relevant. If they
are not relevant:

[CrQF1] Need to exclude the connection of all influencing factors that are
not relevant for a considered “quality focus” factor.

For all sub-factors that refine a factor of interest, check if they are
relevant. If they are not relevant:

[CrQF2] Need to exclude the sub-factors that are not relevant for a consid-
ered “quality focus” factor.

If a factor of interest still does not exist in the reference model:

[CrQF3] Need to add the factor of interest to the new model.

Purpose-related Selection Criteria

The practicable application purposes of a quality model are determined by
those supported by the structure given by the meta-model. For example, if the
quality meta-model does not support the estimation of final product qual-ity as

Selection Criteria

Copyright © Fraunhofer IESE 2012 25

an application purpose, the concepts relevant for final product quality estima-
tion cannot be realized by any quality model based on such meta-model.

The Quamoco meta-model v2 supports the application purposes of specifica-
tion and evaluation. Specification means that a concept is described by refin-
ing it into sub-concepts. Evaluation means that a concept is quantified, meas-
ured, and compared to defined evaluation criteria to check the fulfillment of
the criteria. The Quamoco meta-model has a specification part which qualita-
tively describes software product quality. It is represented by factors, which
characterize entities. The evaluation part of the Quamoco meta-model extends
the specification part by defining software product quality in a quantitative
way. It includes measures (quantifications of factors) and evaluations of factors,
in addition to the elements in the specification part. More tailoring criteria arise
out of these purposes supported by the meta-model v2.

If the purpose of the adapted quality model is to specify quality and the pur-
pose of the reference model is to evaluate quality:

[CrP1] Need to delete elements corresponding to the evaluation part of
the model.

If the purpose of the adapted quality model is to evaluate quality and the pur-
pose of the reference model is to specify quality:

[CrP2] Need to add elements corresponding to the evaluation part of the
model.

Context-related Selection Criteria

Although the context of a quality model is not defined in the Quamoco meta-
model v2, it is a very important aspect that should be considered, especially for
adapting quality models. The quality model context refers to environmental var-
iables that affect the model. It is an inherent characteristic of every quality
model and its elements, especially essential for making a quality model opera-
tional. That is, if a model has to be more than a conceptual abstraction of
software product quality and if it is meant to adequately serve to be applied for
actual software, it is unconceivable to exclude the model context information.
Otherwise, the model would be too general.

When we studied the existing adaptation mechanisms, we identified the most
common context attributes. They are: domain, development methodology and
practices, development paradigm, and programming language. Other more
project-/organization-specific context attributes can be also considered, such as
scope of application and the available resources.

Selection Criteria

Copyright © Fraunhofer IESE 2012 26

Domain: The domain is the sphere of application of the product. Examples for
domains are railway systems, medical devices, embedded systems, and infor-
mation systems.

Development Methodologies: This context attribute refers to the set of
methods and practices used, and rules followed for the software develop-ment.
Examples for development methodologies are agile, open source, and customer
development.

Development Paradigm: The development paradigm describes how the re-al-
world is conceptualized as software. Examples for development paradigms are
object-oriented, structured programming, event driven, and data oriented de-
velopment.

Programming Language: This is the programming language or languages
used for writing the software. Examples are C, C++, and Java.

Scope of Application: Under scope of application we want to include criteria
which are not covered by the other context attributes and which are specifically
related to software quality. Examples are: the mandatory inclusion in the quality
model of requirements for all projects within an organization, the classification
of models’ elements into levels to allow using the model for one or more levels
including more details, the use of measures based on their level of importance
(or trustworthiness) [23] for the organization according to its experience.

Elements in which the context does not correspond to the context specified in
the quality model goal can be removed from the quality model, or their con-
text must be extended to include the context specified in the quality model
goal.

[CrC1] Need to delete elements which are for contexts other than the con-
text in the goal of the model.

[CrC2] Need to modify elements which are for contexts other than the
con-text in the goal of the model, including in their context tag the
con-text specified in the quality model goal.

Elements which are relevant for the quality model context that are not consid-
ered in the model have to be included in it.

[CrC3] Need to add elements for the context defined in the goal of the
model and still are not included in it.

Concrete examples for the influence of the context on a quality model are:

Selection Criteria

Copyright © Fraunhofer IESE 2012 27

• For open source development, factors can be added reflecting the influ-ence
the development community on the product quality. Soto et al. [26] describe
three community-related quality characteristics: (1) maintenance capacity is
defined as the ability of a community to provide the resources necessary for
maintaining its product(s) over a certain period of time; (2) sustainability is
the likelihood that a free and open source software com-munity remains
able to maintain the product(s) it develops over an extended period of time;
and (3) process maturity which is defined as the ability of a developer com-
munity to consistently achieve development-related goals by following es-
tablished processes.

• For component-based development, Andreou and Tziakouris [2] redefine the
factor usability (their reference model is ISO9126). This is because the users
of components are not the end-users of software, but developers. One
change that they introduce is the addition of the sub-factor identifia-bility-
reachability which refers to the facility with which a component can be
found and identified (discovered) and retrieve for usage. This is justified by
the need of efficiently tracing and retrieving the desired components.

Chidamber and Kemerer [7] defined metrics which especially apply for ob-
ject-oriented development: weighted methods per class (WMC), depth of
inheritance tree (DIT), number of children (NOC), coupling between object
classes (CBO), response for a class (RFC), and lack of cohesion in methods
(LCOM). All these metrics serves only to measure factors, whose entities are
object-oriented concepts.

For development in the programming language Java, measures for other
programming languages are excluded.

Goal Definition and Pre-Tailoring

Copyright © Fraunhofer IESE 2012 28

8 Goal Definition and Pre-Tailoring

8.1 Goal Definition

Where do I start with quality model adaptation?

The first thing to do, as we described in STEP1 of the adaptation process is to
define the goal of the adapted quality model. In order to define the goal, we
need first to know the organization/project quality needs and context infor-
mation (scope). That is, it is necessary to identify the different parameters of
the adapted quality model goal that are consonant and aligned with the quali-
ty needs of the organization or the project, and with the context information
(the circumstances under which the quality model is used).
The very first time it is necessary to decide on the need of an organization
model. One will probably need an organization model, if the answer to the
question of how many products the organization develops is “more than 1”.
Defining a goal means identifying:

Object: The question to answer here is, what the elements in the software are,
for which quality is to be defined, measured or assessed. Example for objects
are documentation, source code, requirements, design, build process, test
suite, components, statements, classes, memory consumption, sub-routines,
macros, functions, and procedures.

Purpose: This will depend on the model capabilities defined by the meta-
model. The Quamoco meta-model v2 considers two different purposes: specifi-
cation and evaluation of quality. Specification means that quality is described,
but not quantified. For example, functionality is specified in ISO9126 as the
aggregation of suitability, accuracy, interoperability, security, and functionality
compliance. For the purpose of evaluation, quality is quantified, measured, and
compared to defined assessment criteria to check the fulfillment of those crite-
ria. For example, the response time of the application is less than 2 seconds for
each query in a defined set of typical user queries.

Viewpoint: The perspective from which quality is described or evaluated is
very important. According to the roles involved in the development process,
the viewpoints to consider can be identified. Do we have specific requirements
from the management? Which agreements do we have with the customer?
Are there established good practices on the organization that we want to con-
sider with the quality model?
Quality Focus: Which quality aspects do we want to cover with this model?
The quality focus can include general high-level aspects, such as reliability, usa-

Goal Definition and Pre-Tailoring

Copyright © Fraunhofer IESE 2012 29

bility or maintainability, but also lower-level attributes or specific aspects can be
considered, such as globalization, learnability, or training.

Context: When defining the context of the model, many things can be con-
sidered. The context may include the scope of application, which is described,
for example, by answering the question: are there things which are mandatory
within the organization? Context can also refer to the domain for which the
quality model is intended, e.g., railway, medical devices, embedded systems, or
information systems. The development methodology and practices can also be
included in the context of the model, such as component-based software de-
velopment, agile, open source, or custom development. Other things that are
part of the context are the development paradigm (e.g., object-oriented, struc-
tured programming, event driven), or the programming language (C++, Java).

By defining a goal and using it as the foundation for quality model tailoring,
we assure a goal-oriented adaptation approach, which is required by 04 More-
over, this increases efficiency5 by focusing on the key elements of the adapted
quality model goal.

8.2 Pre-Tailoring

As described in chapter Selection Criteria, all models will be created or can be
characterized after their creation having in mind the quality goal parameters,
which values constitute the premises of selection criteria.

The goal is used to look for a model and adapt it to the needs of the project or
organization. This model, on which the model adaptation is based, is called ref-
erence model. Finding the right reference model consists in finding the model
whose attributes best fit to the defined goal.

Once a reference model is chosen, elements that are not needed in the final
model are discarded according to the logical consequences of the selection cri-
teria. Only quality model components in the reference model that are relevant
for the new model are taken. Unnecessary components are eliminated at the
beginning. Sometimes, specific elements in the model can be partially reused
but need some adjustments. Such elements should stay in the model and be

4 0 (R2) Goal Orientation – The adaptation of a base model should be driven by organizational needs and ca-

pabilities. In particular, organization-specific and project-specific software quality objectives should be con-
sidered.

5 0 (R3) Efficiency – This is concerned with the overhead (e.g., personnel, time, and budget) needed for
adapting a quality model. Acceptable overhead would differ depending on the organizational level (e.g.,
more overhead will be allowed for adapting a quality model at the level of the whole organization, where
such adaptation has a larger scope and is performed relatively rarely).

Goal Definition and Pre-Tailoring

Copyright © Fraunhofer IESE 2012 30

marked for detailed inspection and modification in the next step. The parts se-
lected to remain in the model are the basis for further adjustments.

In Table 1 we show an example. The left column show the goal parts and the
right columns the consequential tasks performed during pre-tailoring.

Table 1: Example of using selection criteria for pre-tailoring a quality model

Quality Model Goal Consequential Task on Reference Model

Object: source code Delete all entities not belonging to source code (e.g.,
documentation, user manuals, test suite).

Purpose: evaluation Include measures and evaluations.

Perspective: quality in use Delete all other views (e.g., stakeholder satisfaction,
technical issue). This means: keep the quality in use
factor hierarchy and the elements in product factor
hierarchy influencing it.

Quality focus: maintainability Delete all other factor in the view. This means: keep
maintainability in the quality in use factor hierarchy and
delete factors that neither influence it nor refine it.

Context: java, automatic meas-
urement tools

Delete all non-java elements and keep only measures
which can be collected with automatic tools.

Iterative Model Changes

Copyright © Fraunhofer IESE 2012 31

9 Iterative Model Changes

Adaptation Matrix (Basic operations)

After pre-tailoring the reference quality model, the model obtained might not
be consistent or operational anymore. The removal of model components trig-
gers further adaptation tasks. These tasks help to bring the model back to a
consistent, operational state. Some adaptation tasks can be automated. Other
tasks will require user interaction, as they are based on user decisions.

Accomplishing all adaptation tasks will lead to a consistent model customized
to the user’s needs. Elements are incrementally deleted (DEL), added (ADD), or
modified (MOD) in the model until no further adaptation tasks are requested.
The extent to which these operations are used depends on the suitability of the
reference model.

New elements can be defined and added to the model or elements from mod-
els can be added to the adapted model. That is, individual elements from other
models can be taken and reused in the new model.

To manage change throughout the adaptation process, we analyze the im-pact
of changes on the quality model elements. Based on the structure pro-vided by
the meta-model, a table is created that documents the consequences of the
changes in one element on other elements, whether the task can be performed
automatically or if it requires user interaction.

Based on the structure of the Quamoco meta-model v2, we created a matrix
which summarizes the possible changes triggered by performing the basic op-
erations add/delete/modify on the different quality model elements. The struc-
ture of the matrix for adaptation is shown in Table 2. The first column contains
the elements that can be changed, associated to the different operations that
can be effected on each of them.

In the second column, consequential tasks, the changes that must be per-
formed to bring the model into a syntactically correct state are shown. In the
third column, we specify if the changes from column 2 can be performed au-
tomatically, or if they must be performed manually. In the fourth, we describe
the conditions that should be fulfilled after the tasks in column 2 were per-
formed. In the last column, type of justification for documenting the changes is
identified.

Iterative Model Changes

Copyright © Fraunhofer IESE 2012 32

Table 2. Table of consequential changes.

Action Consequential
tasks (ToDos)

Can be per-
formed
Automatically
(A)
Manually (M)

Task was per-
formed condition

Justification type:
Consequential
change (CC)
Goal-triggered
(G)
User-based (U)

QMM ELEMENT
task

Task:
Affected QMM
Element / attribute

M or A Condition CC or G or U

In Table 3, we show an example of how the adaptation matrix for the element
measure and each of the possible operations: add, delete and modify. For each
operation differing from the basic operations, a definition is additionally given,
as well as the text that is shown to the user.

Table 3: Exemplary matrix for the element measure

Action Consequential tasks (ToDos)* Can be
performed
Automati-
cally (A)
Manually
(M)

Task was
performed
condition

Justification
type:
Consequential
change (CC)
Goal-triggered
User-based

M
ea

su
re

 M
O

D
 IF MOD(Name): For all associated factors, update

the evaluations specifications using the measure.
“Check that the modified measure is correctly used
in evaluation specification”

M - CC

IF MOD(Normalization): If change to 0
Decide: “This measure is used for normalization, are
you sure that you want to change it?” Yes/No
IF Decide == No THEN normalization = 1
IF Decide == Yes THEN normalization = 0 AND
MOD(All Evaluations using the measure)
“Please choose another measure for normalization”

M No evalua-
tion uses
the measure
for normali-
zation
anymore

CC

IF MOD(MaxPoints)
“Recalculate evaluation specification of measure”

M - CC

IF MOD(Type)
“Update instrument / aggregation / evaluation
related to measure”

M - CC

IF MOD(Measures)
“Update evaluation related to measure”

M - CC

IF MOD(Refined by):
IF ADD(Refined by): MOD(Aggregation) OR
ADD(Aggregation) to the refined measure.
“The refining measure needs to be used in an
aggregation ”
IF DEL(Refined by): MOD(Aggregation).
“Check use of measure in aggregation”

M - CC

IF MOD(Refines):
MOD(Aggregation) OR ADD(Aggregation) to the
refined measure.
“For aggregation in refined measure, check use of
available measures”

M - CC

Iterative Model Changes

Copyright © Fraunhofer IESE 2012 33

Table 3 cont.: Exemplary matrix for the element measure

Action Consequential tasks (ToDos)* Can be performed
Automatically (A)
Manually (M)

Task was
performed
condition

Justification
type:
Consequential
change (CC)
Goal-triggered
User-based

M
ea

su
re

 A
D

D

MOD(Name)6
“Provide measurement name”

M Name ≠ 0

CC

MOD(Description)
“Provide measurement description”

M Description ≠
0

CC

MOD(Type)
“Provide measurement type”

M Type ≠ 0

CC

[optional] MOD(Normalization)
“If the measure is intended to be used
for normalization, mark it as normaliza-
tion measure.”

M Normalization
≠ 0

CC

IF Normalization==0, MOD(Measures)
“Define which factor is associated with
this measure”

M (Measures ≠
0) OR (Nor-
malization =1)

CC

MOD(Refines)
“If measure is part of an aggregation,
specify which measure is refined”

M Refines ≠ 0 CC

Decide: [ADD(Instrument)* XOR
ADD(Aggregation)]
“This measure needs to be associated to
an instrument or to an aggregation”
IF Decide == ADD(Instrument)
IF Type == number OR percentage THEN
ADD(metric-based or manual instrument)
“Provide a metric-based or manual in-
strument”
IF Type == points THEN ADD(manual
instrument)
“Provide a manual instrument”
IF Type == findings THEN ADD(rule-
based instrument)
“Provide a rule-based instrument”

M IF Decide ==
ADD(Instrume
nt) THEN
Check that an
instrument is
referenced by
the measure
IF Decide ==
ADD(Aggrega
tion) THEN
Check that an
aggregation is
referenced by
the measure

CC

6 This is a low level description. In this case an “empty” measure is added with
blank attributes (name, description, etc.) that need to be modified.

Iterative Model Changes

Copyright © Fraunhofer IESE 2012 34

Table 3 cont.: Exemplary matrix for the element measure

Action Consequential tasks (ToDos)* Can be performed
Automatically (A)
Manually (M)

Task was
performed
condition

Justification type:
Consequential
change (CC)
Goal-triggered
User-based

M
ea

su
re

D

EL
 AND was normalization measure THEN

Decide: “This measure is used for normal-
ization, are you sure that you want to
delete it?” Yes/No
IF Decide == No THEN measure is not
deleted
IF Decide == Yes THEN
IF Evaluations using the measure == 0
complete measure deletion
ELSE MOD(All Evaluations using the
measure)
“Please re-work the evaluations using this
measure before deleting it”

M No evaluation
uses the
measure
anymore

CC

AND was used by factor AND factor has
no refinements THEN ADD(Measure)
“Provide a measure for the factor”

M Check that
the factor has
a reference to
a measure

CC

AND was used by factor AND factor has
refinements THEN MOD(Evaluations that
were using the measure)
 “Check use of deleted measure in evalu-
ation”

M No evaluation
uses the
measure
anymore

CC

* “text to be shown to the user”

Set: a value has to be assigned to field/variable

Check references: references must be inspected

Decide: one of an n-tuple of options must be chosen

Reporting of Changes

Copyright © Fraunhofer IESE 2012 35

10 Reporting of Changes

What should be documented?

Goal of adapted quality model: The goal is a compact manageable description
of the quality model. If during tailoring the appropriateness of the model with
respect to the goal is put into question, the need to complete the model, so
that the goal can be achieved, must be documented, as well as the fact that
the model is not complete. This may happen if something cannot be modeled
before studying or finding out more specific information.

Deviations from reference model: Operations on elements which were manda-
tory for the organization and are no longer being considered in the sub-
organization or project and the reasons of non-inclusion. Eventually, an agree-
ment should be signed that those changes are approved. The QAM re-
sponsible for the organizational model can take these changes and their justifi-
cations as a source for changes on the organization quality model.

Reporting changes is an important procedure to make decisions traceable. Af-
ter performing an adaptation task, the changes can be documented as a histo-
ry, showing a list of the performed actions, the affected elements, a justifica-
tion, and a timestamp.

We group justifications according to the different tasks triggers:

Consequential changes, triggered by an adaptation task. For example, if a
measure is deleted, it should be checked if it was used by a factor, and tailor
the corresponding evaluation. The justification, as a history entry would look
like this:

Performed action Affected elements Justification Timestamp

Deleted measure from
evaluation

Measure deleted:
m_xyz from evalua-
tion: e_abc

Measure (m_xyz) de-
leted from model,
cannot be used

2011/11/22 12:23:34

Goal-related changes, triggered by the model goal parameters: For exam-ple, if
the goal specifies that the model should be for used with C++, all in-struments
which are tagged for other languages are deleted. The justifica-tion, as a histo-
ry entry would look like this:

Reporting of Changes

Copyright © Fraunhofer IESE 2012 36

Performed action Affected elements Justification Timestamp

Deleted instrument Instrument deleted:
i_xyz

Goal context = C++
Instrument i_xyz
tagged as java

2011/11/22
12:23:34

User-based changes, triggered by user decisions: For example, the user deletes
a tool because it is not available, and therefore cannot be used. The justifica-
tion, as a history entry would look like this:

Performed action Affected elements Justification Timestamp

Deleted tool Tool deleted: t_xyz Tool unavailable 2011/11/22
12:23:34

In order to make it easier for the user, we propose using some standards justi-
fications which are regularly used:

– Elements relevant / not relevant for context

– Adapted to context

– Correction of error in model

– Minor change

– Tool not available

– Limited assessment

– Improvement of assessment

Quality Model Maintenance

Copyright © Fraunhofer IESE 2012 37

11 Quality Model Maintenance

During the application of the adaptation process, information is collected based
on add, modify, and delete operations performed to adapt the reference mod-
el, i.e., the model that is the basis for the new adapted quality model.

This section shows how this context information, which could be (partially) au-
tomatically collected, can be used to improve/extend the reference model.

Available Information Resources

There are three potential information sources that can be used to provide feed-
back for the reference model: (A) the quality model goal definition, (B) the set
of context tags of each model element, and (C) the justification provided when
a model element is added, modified, or removed during adaptation.

(A) Quality model goal definition

Each Quamoco quality model is described by the goal parameters: object (e.g.,
source code), viewpoint (e.g., management), quality focus (e.g., maintainabil-
ity), purpose (e.g., evaluation), and context (e.g., embedded, avionic, pro-
gramming language “c”). Context information can be described as a set of at-
tribute-value tuples (e.g., “domain = avionics”, “language = c”).

(B) Set of context tags of each model element

Besides the context information provided as part of the quality model goal,
each element of the quality model has the possibility to independently provide
specific context information. This information is represented as a set of attrib-
ute-value tuples associated with the element.

(C) Justification for added/modify/delete

Justification: Operations performed with an element due to the changed con-
text are enriched with a justification that motivates the addition, modification,
or deletion of the element. Providing a justification has two advantages. First, it
helps to decide whether an element should be included in the reference model.
Second, it supports the Quamoco certification scenario H3 [14] because the ra-
tionale behind the adaptation can be evaluated.

Quality Model Maintenance

Copyright © Fraunhofer IESE 2012 38

Dealing with Context Tags of Elements during Model Adaptation

In order to reference to a specific set of attribute-value tuples, we will use in
this section the following abbreviations:

C_ref_g: Context information of the reference quality model provided in the
quality model goal

C_ref_e: Context information of a specific element e in the reference quality
model

C_new_g: Context information of the new quality model provided in the quali-
ty model goal

C_new_e: Context information of a specific element e in the new, adapted
quality model

C_diff_e (= C_new - C_ref): Context information that differentiate the context
of the new quality model and the existing context information of the element.

Example 11.1: Assume that we have a reference model for embedded systems
from the avionics domain developed for the programming language c.

C_ref_g = {“type = embedded”, “language = c”, “domain = avionics”}.

An element will then be tagged e.g., with

C_ref_e = {“type = embedded”, “language = c”, “domain = avionics”}.

The new model will also be used for embedded systems but in the auto-
motive domain and it has to consider also c++ code and should be focused
on a multi core environment.

C_new_g = {“type = embedded”, “language = c, c++”, “domain = automotive”,
“hardware = multi_core”}

This results in a difference between the two contexts represented by

C_diff_e = { “language = c++”, “domain = automotive”, “hardware = mul-
ti_core” }

Quality Model Maintenance

Copyright © Fraunhofer IESE 2012 39

STEP1: Keep existing context information from the reference model

The existing context tags of all elements in the reference model are kept in the
new model.

Remark: Typically, the tags of a reference model element are equal to the con-
text information of the quality model goal (C_ref_g) as in our example: C_ref_e
= {“type = embedded”, “language = c”, “domain = avionic”}. But the reference
model may also contain elements independent of specific context characteris-
tics and, therefore, tagged differently (e.g., the factor as “Modularization” is
independent of the domain).

STEP2: Extension of context information based on changes in the con-
text

Adaptations of elements based on changes in the context are performed on the
reference model motivated by the context of the new quality model. This
means the operations are not a result in a changed object, viewpoint, quality
focus, or (application) purpose.

STEP2.1a: Automatic tagging approach (no effort during quality model
adaptation)

The automatic approach requires no user interaction to extend the context in-
formation during the adaptation. All modifications in the context information
are done automatically in the background. This provides the advantage that
model adaptation can be performed more efficiently. We consider it as the de-
fault case.

ADD: Element added due to changes in the context are tagged additionally
with ADD_C_diff.

For instance, based on example 11.1, C_new_e = {“language = ADD_c++”,
“domain = ADD_automotive”, “hardware = ADD_multi_core”}.

MOD: Elements modified due to changes in the context are tagged additionally
with MOD_C_diff.

For instance, based on example.11.1, C_new_e = {“language = MOD_c++”,
“domain = MOD_automotive”, “hardware = MOD_multi_core”}.

DEL: Elements removed due to changes in the context are tagged additionally
with NOT_C_diff.

Quality Model Maintenance

Copyright © Fraunhofer IESE 2012 40

For instance, based on example 11.1, C_new_e = {“language = DEL_c++”,
“domain = DEL_automotive”, “hardware = DEL_multi_core”}.

STEP2.1b: Semi-automatic tagging approach (effort during quality mod-
el adaptation)

The semi-automatic approach requires explicit user interaction during model
adaptation to extend the context information of the elements. However, it
supports the person performing the adaptation with an automatically generat-
ed list with possible context factors to select from. This approach provides ad-
vantages during the reference model maintenance but increases the model ad-
aptation effort.

ADD: If an element of the reference model is added based on changes in the
context, the person conducting the adaptation has to decide which part of the
changed context (C_diff) is responsible for the inclusion of the new element
(C_diff_part). The element added is then tagged additionally with
ADD_C_diff_part.

Example: If a factor relevant in the new model is not part of the reference
model due to the additional development concepts that have to be considered
in the new model (e.g., classes in c++), the relevant C_diff_part would be
{“language = c++”} and would be added to the context information of the el-
ement as {“language = ADD_c++”}.

MOD: If an element of the reference model is modified based on changes in
the context, the person conducting the adaptation has to decide which part of
the changed context (C_diff) is responsible for the modification of the element
(C_diff_part). The modified element is then tagged additionally with
MOD_C_diff_part.

Example: If a factor in the reference model (from the aerospace domain) is justi-
fied by an aerospace-specific standard, the standard have to be replaced in the
new model with the automotive-relevant standard. This means the relevant
C_diff_part is {“domain = automotive”} and have to be added to the context in-
formation of the element as {“domain = MOD_automotive”}.

DEL: If an element of the reference model is removed based on changes in the
context, the person conducting the adaptation has to decide which part of the
changed context (C_diff) is responsible for the deletion of the element
(C_diff_part). The element removed is then tagged additionally with
NOT_C_diff_part.

Example: If a factor as “Redundancy of critical components” in the reference
model from the aerospace domain is not relevant in the new quality model due

Quality Model Maintenance

Copyright © Fraunhofer IESE 2012 41

the changed domain (automotive), the relevant C_diff_part would be {“domain
= automotive”} and would be added to the context information of the element
as {“domain = DEL_automotive”}.

STEP2.2: Provide justification for adaptation (e.g., for certification)

The person performing the adaptation operation can optionally provide a justi-
fication, i.e., why the operation was reasonable.

Example: If the factor “appropriate use of inheritance concept” is added, a justi-
fication may be “reference model do not consider object-oriented concepts”.

Using the Information during Reference Model Maintenance

During the maintenance of the reference model, one can make usage of infor-
mation collected during its adaptation for other applications. In Quamoco, we
distinguish between four different maintenance scenarios for quality models:
preventive, corrective, perfective, and adaptive maintenance [14]. The feedback
from the adaptation can be used in first line for perfective and adaptive
maintenance:

• Perfective maintenance is the proactive modification of the quality model
performed in the same application context to meet new, improved require-
ments.

• Adaptive maintenance is the proactive modification of the quality model
performed to keep it usable in a changed context where it should be ap-
plied.

In general, we assume that each adaptation operation (i.e., addition, modifica-
tion, or deletion) can be explained by at least one change in the quality goal
parameters. These goal parameters can be separated in two groups:

• The first group describing the application purpose, object, (general) view-
point, and the quality focus. They influence typically the need and existence
of elements in the model such as specific factors, measures and evaluation
rules.

• The second group collects all context characteristics relevant for the quality
model, they primarily influence the importance of specific factors, their rele-
vance, how they can be measured and how they influence other factors.

Quality Model Maintenance

Copyright © Fraunhofer IESE 2012 42

Therefore, the results of the adaptation operations can be used in the mainte-
nance of reference quality models in different ways depending on its motiva-
tion by the first or second group of goal parameters:

• The results of the adaption operations in the first case (object, purpose,
quality focus, and viewpoint) are candidates to be included in the existing
reference model to broaden the scope of applicability without invalidating
existing knowledge contained in the reference model. This is part of perfec-
tive maintenance activities for the reference model.

Example: If the reference model was defined only for the object “source code”
and was extended during the adaptation for the object “design” the added el-
ements are candidates to be included in the reference model to make it appli-
cable for both “design” and “source code”.

• The results of the adaption operations in the second case (context) have to
be analyzed in more detail because they are motivated by a change in the
context. The adaptation operation may be caused by a refinement of the
context (i.e., added attribute-value tuple), and extension of the context (i.e.,
added attribute-value tuple for an existing attribute), or an adjustment in the
context (i.e., changed attribute-value tuple). Depending on the type of con-
text change, the information can support different types of adaptive
maintenance.

Example: Assume, we have a model for embedded systems from the avionics
domain developed for the programming language c: C_ref = {“type = embed-
ded”, “language = c”, “domain = avionics”}. The new model will also be used
for embedded systems but in the automotive domain and it have to consider
also c++ code and should be focused on a multi core environment: C_new =
{“type = embedded”, “language = c, c++”, “domain = automotive”, “hardware
= multi_core”}. In this case, “language = c++” is an extension, “hardware =
multi_core” is a refinement, and “domain = automotive” describes an adjusted
context.

• The results of adaptation operations motivated by context extensions can
be used to extend the context of the reference model (see Figure 6(1)).

o ADD: An element added due to a context extension is a candidate
to be included when the context of the reference model should be
extended.

Example: C++-specific measures included in an adapted model to deal with
the programming languages c and c++ can be included in the reference

Quality Model Maintenance

Copyright © Fraunhofer IESE 2012 43

model, if the reference model should be extended from the context “lan-
guage = c” to “language = c, c++”

o MOD: The modification of an element due to a context extension
should be evaluated to be included in the reference model. Usually,
such modifications are generalizations to make the element fit an ex-
tended context.

o DEL: The deletion of an element due to a context extension is very
unusual. There is no reasonable example known to the authors.

o The results of adaptation operations motivated by context refine-
ments can be used to provide optional parts for the reference model
that can be used if required (e.g., an optional part for multi core sys-
tems in an embedded quality model, see Figure 6 (2)). Alternatively,
an addition, refined reference quality model can be defined, keeping
the original reference model unchanged. However, this would in-
crease the number of reference quality models to maintain. Elements
that are added, deleted, or modified as a result of a context refine-
ment are candidates to be included in the reference model.

 ADD: (A) If the element seems generally applicable (i.e., it is
estimated to be relevant for more than 80% of the reference
model applications) it can be included directly in the refer-
ence model with the standard context tags of the reference
model relevant for the element. This can be considered as an
exception since it is perfective maintenance. (B) If the ele-
ment seems to be not generally applicable (i.e., it is estimat-
ed to be relevant for less than 80% of the reference model
applications), it should be included as an optional element.
This should be marked by keeping the tagging used in the
adapted quality model.

Note: If automatic tagging is used, unnecessary context tags may have to be
removed (doing the step usually performed during semi-automatic tagging).

Example: A factor as “assure load balancing between CPU cores” that was
added in the new, adapted model due to the context extension “multi_core”
is not relevant for more than 80% of the embedded systems, which are ad-
dressed by the reference model. Therefore, it would be added with the at-
tribute value pairs {“type = embedded”, “hardware = ADD_multi_core”},
where “hardware = multi_core” is not part of the context definition of the
quality goal of the reference model (marking this element as optional).

Quality Model Maintenance

Copyright © Fraunhofer IESE 2012 44

o MOD: The approach is the same as described for added elements.
The only difference is that in case (B) two instances of the element
exist in the reference model. The original and the modified with the
additional context tag.

Example: An evaluation that was modified in the new, adapted model due
to the context extension “multi_core” is not relevant for more than 80% of
the embedded systems, which are addressed by the reference model.
Therefore, it would be added as an optional replacement for the original
element applicable in the case that multi core systems are considered. The
attribute value pairs of the added element would be {“type = embedded”,
“hardware = MOD_multi_core”}, where “hardware = multi_core” is not
part of the context definition of the quality goal of the reference model
(marking this element as optional replacement for the original element).

o DEL: The approach is the same as described for added or modified
elements. The only difference is that in case (B) the existing element
in the reference model is marked as optional in the case of the re-
fined context (i.e., it is replaced by the element from the adapted
quality model).

Example: A measure that was removed in the new, adapted model be-
cause it is not reasonable in the context “multi_core” is relevant for more
than 80% of the embedded systems, which are addressed by the reference
model. Therefore, it would be kept in the reference model with the note
that should be deleted in the case that multi core systems are considered.
The attribute value pairs of the element would be {“type = embedded”,
“hardware = DEL_multi_core”}, where “hardware = multi_core” is not part
of the context definition of the quality goal of the reference model (mark-
ing this element as removable for a specific context).

o The results of the adaptation operation motivated by context ad-
justments can support the building of a more abstract reference
model capturing the communities and a sister reference model with
a context different from the current reference model (e.g., building a
general embedded model and an automotive embedded model
based on an existing reference model for avionics embedded systems
and the results of its adaption for the automotive domain, see Fig-
ure 6(3)).

Remark: This kind of adaptation based on context adjustment implicitly builds
sister quality models under a virtual reference model.

Quality Model Maintenance

Copyright © Fraunhofer IESE 2012 45

o ADD: Elements that are added as a result of a context adjustment
are indicators for differences caused by the differences in the con-
texts. They will usually not be part of the abstract reference model
but included in the new reference model for the adjusted context.
The elements should be marked by keeping the tagging used in the
adapted quality model removing the “ADD” prefix.

Example: A measure was added in the adapted model due to the context
adjustment “automotive” (e.g., since it is requested by a domain-specific
standard). If the measure is not relevant for more than 80% of the em-
bedded systems, which are addressed by the new abstract reference mod-
el, it would not be included in the reference model. Instead, it would be
added as an element in the automotive reference model with the attribute-
value pairs {“type = embedded”, “domain = automotive”, “language=c”}.
The avionics reference model will stay unchanged.

o MOD: Elements that are modified as a result of a context adjust-
ment are also indicators for differences caused by the differences in
the context. They will usually not be part of the abstract reference
model but included in both the new reference model for the adjust-
ed context and the old existing reference model. The elements
should be marked in the new reference model by using the tagging
in the adapted quality model removing the “MOD” prefix. In the old
reference model, the element should be marked with the context
tag with the old value that was changed in the adapted model with
the new value including the “MOD” tag.

Example: A factor in the reference model (from the aerospace domain) is
motivated by an aerospace-specific standard and the standard was re-
placed in the new model with the automotive-relevant standard. This
means that the factor itself can be included in the abstract model but the
part that are specific for the domain (the standard motivating the factor)
have to be provided by the domain-specific refined reference models, in-
dependently. The element would be tagged with the respective context in
each reference model (e.g., {“type=embedded”, “domain = avionic”} in the
old reference model and {“type=embedded”, “domain = automotive”} in
the new automotive reference model). In the abstract reference model an
abstraction can be included with the tag {“type=embedded”}.

o DEL: Elements that are removed as a result of a context adjustment
are indicators for differences caused by the differences in the con-
texts. They will usually neither be part of the abstract reference
model nor of the new reference model for the adjusted context. In
the old reference model, the element should be marked with the

Quality Model Maintenance

Copyright © Fraunhofer IESE 2012 46

context tag with the old value that was changed in the adapted
model with the new value including the “DEL” tag.

Example: The factor “Redundancy of critical components” in the reference
model from the aerospace domain was considered as not relevant in the
new quality model due the changed domain (automotive). If the factor is
not relevant for more than 80% of the embedded systems, which are ad-
dressed by the new abstract reference model, it would not be included in
the reference model. Instead, it would be kept as an element in the avion-
ics reference model with the attribute-value pairs {“type = embedded”,
“domain = avionic”}.

Figure 6: Adaptation process feedback can be used for different maintenance activities in the reference model.

c and c++

Embedded, c and c++

Embedded, avionic

Embedded,
automotive, c

Embedded, automotive

Embedded

Embedded, automotive,
mulit_core

Embedded, c

c QM

Adaptive Maintenances (3)

Adaptive Maintenances (1)

Multi_core

Feedback

Feedback

Abstraction Refinement

Adapted QM

Reference QM

InputInput

Input

Extension of application context

“Extension” by optional parts

Adaptive Maintenances (2)

Feedback

Feedback Results

Quality Model Maintenance

Copyright © Fraunhofer IESE 2012 47

Dealing with changes in the Reference Model

Another important part of model maintenance is dealing with changes in the
reference model. Namely, when the adapted quality model has to be based on
or complaint to the reference model, the adapted model needs to be re-
adjusted.

There are two possible information sources to be used for re-working or updat-
ing the adapted model:

– If the provider of the reference model documents the changes, it is possi-
ble to directly introduce them into the adapted quality model.

– If that information is not provided, it the adaptation could be repeated us-
ing the adaptation history.

Interface to Further Quamoco
Deliverables

Copyright © Fraunhofer IESE 2012 48

12 Interface to Further Quamoco Deliverables

12.1 Meta-Model

The quality meta-model defines the underlying structure to which all Quamoco
quality models have to be conformant [17]. This means that all adapted quality
models must have this structure. The quality meta-model assumed by the adap-
tation process presented here is shown in Figure 8. It evolved from the quality
meta-model v2 during the second project iteration.

Figure 7: Quality Meta-Model Version 2 as described in [24].

Interface to Further Quamoco
Deliverables

Copyright © Fraunhofer IESE 2012 49

Figure 8: Quality Meta-Model Version 2.5, in which the adaptation process v2 is based.

Organization quality models may include multi-language implementations of
measures and therefore many evaluations.

Project models intended to actually be applied (executables) must have only
one evaluation associated to each factor.

12.2 Base Model

“The Quamoco base model is:

– Intended to specify basic quality properties and how to collect and evaluate
data for all kinds of software systems;

– Structured into technology-specific modules;

– Intended to provide a comprehensive off-the-shelf quality model that can
be applied instantly to assess the quality of software products.” [27, pg. 5]

Assumed Modeling Guidelines

In order to be able to use the adaptation process on the base model, we as-
sume a set of modeling rules on how the modeling should be done.

Interface to Further Quamoco
Deliverables

Copyright © Fraunhofer IESE 2012 50

G1 For modeling entities we assume a structure showing product-parts, use
case and stakeholders’ entities as described in the help of Quamoco Quality
Model Editor v2.3 [24, Entity.html]:

“Product-Parts: They describe a part of a product. If they are characterized
by a factor, a Product-Factor results.

Use Cases: A use case describes an activity conducted with the system by a
stakeholder. If they are characterized by a factor, a Use Case-Factor results.

Stakeholders: A stakeholder describes a role that is interested in the prod-
uct. If they are characterized by a factor, a Satisfaction-Factor results.”

Examples for product-parts can be syntactical elements of source code such
as source code comment, HTTP statement, and version information. Exemplary
use cases can be execute, system test, and interaction. Stakeholders can be,
for instance, architect, developer, and operator.

G2 For modeling factors we assume parallel hierarchies: a hierarchy describing
product intrinsic factors (essential) and hierarchies describing perspectives. The
current version of the base model contains five factors hierarchies:

1. Product Factor [Property @Product Part]:

“Product factors are properties of specific parts of the software product.
These parts are specified as artifacts or product entities, such as, Concise-
ness @Identifier or Appropriateness @Comment” [24, FactorBase.html]

2. Product Quality Attribute (ISO 25010) [Quality @Product]:

“Product quality attributes define one way to decompose the abstract con-
cept software quality. These quality attributes, as given in ISO 25010, relate
to the quality of the product without explicitly considering its use. These
quality attributes are colloquially called -ilities, because they contain, for ex-
ample, reliability or maintainability. In the standard, the top level attributes
are refined by so-called quality characteristics.” [24, FactorBase.html]

Interface to Further Quamoco
Deliverables

Copyright © Fraunhofer IESE 2012 51

3. Quality in Use Attribute (ISO 25010) [Quality @Use Case]:

“Quality-in-use attributes define a way to decompose the abstract concept
software quality. These quality attributes are defined in the ISO 25010 as
description of the quality in its various forms of usage. Examples are effi-
ciency or effectiveness. To be more precise, we add the activity that is char-
acterized by the attribute as entity to the factor. Activities like maintenance,
program comprehension, modification, or testing, which can be decom-
posed in their respective sub-activities, provide a means to model software
development cost structures.” [24, FactorBase.html]

4. Stakeholder Satisfaction [Satisfaction @Stakeholder]:

“On a high level of abstraction, quality is the satisfaction of stakeholders.
This can also be modeled in the base model. For this, we use the stake-
holder as an entity.” [24, FactorBase.html]

5. Technical Issue [TIC]:

“Technical issues are also a way to decompose the abstract concept of
quality. This is a technical view, which assigns problems to areas such as
memory or declaration. TIC factors do not characterize specific enti-
ties.” [24, FactorBase.html]

G3 For the adaptation process, the viewpoints in quality models goals are
given by the root-node in the hierarchies parallel to the product hierarchy.

G4 Impacts as described in the quality meta-model are only from prod-
uct hierarchy into the other hierarchies (Figure 9)

Interface to Further Quamoco
Deliverables

Copyright © Fraunhofer IESE 2012 52

Figure 9: Assumed factor hierarchies in base model.

Modularization Concepts and Tagging

Need and Advantages of Modularization for the Base Model

The Base Model aims for including basic quality properties, supporting all kinds
of software systems, and being a comprehensive off-the-shelf quality model
that can be applied instantly.

This means that it should include different implementations of factors of differ-
ent technologies, methodologies, and paradigms. This results in the need of
specializing factors, measures, and evaluations for these concepts.

For the sake of an easier modeling and maintenance of the base model and in
order to be able to instantly apply it (without adapting it), a modularization
concept was specially developed.

The module hierarchy describes in a root module the set of all basic quality
properties, not considering how the specialize on concrete technologies. The
other modules in the model implement then their concrete instance of the ab-
stract concepts on the root module, as in the example shown in Figure 10.

Factor

Factor

Factor

Factor

Factor

Product Factor Hierarchy

Factor Factor

refines

refines

refines

refines

Quality in Use Attribute
Hierarchy (ISO 25010)

Factor

Factor

Factor
refines

refines

Factor

Factor

Factor
refines

refines

Product Quality Attribute
Hierarchy (ISO 25010)

Factor

Factor

Factor
refines

refines

Factor

Factor

Factor
refines

refines

Factor

Factor

Factor
refines

refines

Factor

Factor

Factor
refines

refines

Technical Issue Hierarchy

impacts

impacts

impacts

[Property @Product part]

[Quality @Use Case]

[Quality @Product]

[TIC]

Stakeholder Satisfaction
Hierarchy

Factor

Factor

Factor
refines

refines

Factor

Factor

Factor
refines

refines

[Satisfaction @Stakeholder]

impacts

Interface to Further Quamoco
Deliverables

Copyright © Fraunhofer IESE 2012 53

Figure 10: Example of implementations of factors for specific programming languages.

Mapping of Base Model into Meta-Model Structure

The implementation of the base model as modules means that the model is
spread in many resources. For adapting a quality model, however, it should be
implemented in one resource. We agreed to create a mapping from the base
model as modules into one resource in order to be able to apply the adaptation
process on it. For this, we need to assemble all elements which are scattered in
many modules into a unique module.

We need to perform the following kind of transformations:

Factors

Factor implementation with evaluation

All implementing factors disappear

Only one factor is kept with a unique name: property @entity

The factor is connected to the evaluations of the of the disappearing im-
plementing factors

The evaluations receive a tag according to the module in which they were
included

No tags are given for root elements

 Root

C C#

Appropriateness of encapsulation
@Subroutine

C/Appropriateness of encapsulation
@Subroutine

C#/Appropriateness of encapsulation
@Subroutine

impact

Could be static @MethodProvides access to internal variable
@Subroutine

implements implements
Eval:

result=mean(allImplementingFactors)

Factor

Measure

Evaluation

Legend

… …

Interface to Further Quamoco
Deliverables

Copyright © Fraunhofer IESE 2012 54

Figure 11: Factor implementation with evaluation according to the module-based structure

Figure 12: Factor implementation with evaluation according to the concept using one module and tags

Factor implementation without evaluation

All implementing factors disappear

Only one factor is kept with a unique name: property @entity

The factor is connected to the evaluation in root

The evaluation receive a tag “All”, meaning that it is a universal evalua-
tion, and tags according to the modules in which the implementing factors
were included

No tags are given for other root elements

Complexity@Pro
duct\root

Complexity@
Function\root

Complexity@
Header\root

Complexity@
Product\OO

Complexity@
Class\OO

Evaluation\root

Evaluation\OO

b

a

implementsrefines

Complexity
@Product

Complexity@
Function

Complexity
@Header

Complexity@Class

Evaluation

TAG: OO

TAG: OO

Evaluation
a

b

Interface to Further Quamoco
Deliverables

Copyright © Fraunhofer IESE 2012 55

Figure 13: Factor implementation without evaluation according to the module-based structure.

Figure 14: Factor implementation without evaluation according to the concept using one module and tags.

Measures (A) with multiple evaluations

Implemented measures disappear

For each implementing measure, a measure is created and tagged with the
module’s name to which it belonged. They are connected to the factor
that was measured by the disappearing implemented measure.

If there different target values for the different technologies, separated
evaluations are created and tagged according to the respective measures.

 Complexity
@Product\root

Complexity@
Function\root

Complexity@
Header\root

Complexity@
Product\OO

imp

Complexity@
Class\OO

Evaluation\root

implementsrefines

“Mean()”

Complexity@Pro
duct

Complexity@
Function

Complexity
@Header

Complexity@Class

TAG: OO

Evaluation
(w1*F1+w2*F2+w3*F3)

TAG: OO

TAG: All*

*All means that the evaluation
considers all factors (independently
of their tags)

Interface to Further Quamoco
Deliverables

Copyright © Fraunhofer IESE 2012 56

 Measures (B) with single evaluation

 Implemented measure is kept

 A technology-independent aggregation is created.

 For all the measures used by the aggregation, different technology
 specific instruments are defined and tagged according to the respective
 technology.

Figure 15: Measure implementation according to the module-based structure.

Figure 16: Measure implementation according to the concept using one module and tags, with multiple evaluations (A).

 Complexity
@Function

McCabe@
Function\Java

McCabe@
Function\C

McCabe@
Function

Evaluation

implementsmeasures

Complexity
@Function

McCabe@
Function

TAG: Java

McCabe@
Function

Evaluation

Evaluation
TAG: Java

TAG: C

Relevant, if there are different
target values for Java and C in
the evaluation

TAG: C

Interface to Further Quamoco
Deliverables

Copyright © Fraunhofer IESE 2012 57

Figure 17: Measure implementation according to the concept using one module and tags, using a single evaluation.

Complexity
@Function

Instrument for
McCabe C

McCabe@
Function / LOC

Evaluation

TAG: C

Instrument for
McCabe Java

Tailoring: DEL

Aggregation

=McCabe@Function/LOC@System

McCabe@
Function LOC@System

Instrument for
LOC@System C

Instrument for
LOC@System

Java

TAG: C

TAG:
Java

TAG:
Java

Interface to Further Quamoco
Deliverables

Copyright © Fraunhofer IESE 2012 58

Adaptations using tags

Complexity
@Product

Complexity@
Function

Complexity
@Header

Complexity@Class

Evaluation

TAG: OO

TAG: OO

Evaluation
a

b

Adaptation for OO:

Complexity
@Product

Complexity@
Function

Complexity
@Header

Complexity@Class

Evaluation

TAG: OO

TAG: OO

Evaluation
a

b

Adaptation for not OO:

Complexity@Pro
duct

Complexity@
Function

Complexity
@Header

Complexity@Class

TAG: OO

Adaptation for OO:
Evaluation

(w1*F1+w2*F2+w3*F3)

TAG: OO

Complexity@Pro
duct

Complexity@
Function

Complexity
@Header

Complexity@Class

TAG: OO

Evaluation
(w1*F1+w2*F2+w3*F3)

Adaptation for not OO:

Evaluation (w2’*F2+w3’*F3)

TAG: OO

generated

Interface to Further Quamoco
Deliverables

Copyright © Fraunhofer IESE 2012 59

12.3 Assessment Method

When adapting a quality model, it may happen that an evaluation specification
becomes invalid, due to the changes performed.

Changes invalidating “Evaluation Functions”: Evaluation functions are used
to map a measure’s value into points for the factor being measured. In this
case, if the measures used by the evaluation function change, or are deleted,
the evaluation specification must be recalculated.

Changes invalidating “Factors Aggregations”: Factor aggregations are used
to aggregate points of refining or influencing factors. This kind of evaluation
specification becomes invalid has to be recalculated by the following changes:

 Adding a sub-factor/impact

 Removing a sub-factor/impact

 Changing the MaxPoints of the factor

 Changing the ranking of sub-factors/impacts

 Changing the Contribution Points of sub-factors/impacts

 Changing the effect of impacts

Depending on the affected element the recalculation consists in:

– For a new factor, the Contribution Points or the Ranking must be changed

– For changed Contribution Points, the factor’s MaxPoints are recalculated

– For changed Ranking, the sub-factors/impacts’ Contribution Points are re-
calculated

– For changed MaxPoints, the sub-factors/impacts’ Contribution Points are
recalculated

12.4 Requirements Method

When requirement factors are iteratively constructed from the product factors
in an existing quality model, it is equivalent to a special pre-tailoring of an exist-
ing quality model.

This consists in selecting the relevant parts of a quality model from which the
requirements are derived: suitable factors, sub-factors, or measures; and after-

Interface to Further Quamoco
Deliverables

Copyright © Fraunhofer IESE 2012 60

wards in defining the evaluations that describe how requirement fulfillment is
calculated from product factor fulfillment.

This interface with the adaptation process can be seen when using the tool im-
plementing the process. A detailed example will be given with the tool doc-
umentation.

References

Copyright © Fraunhofer IESE 2012 61

References

1. Andersson, T.; Eriksson, I. V. (1996): Modeling the quality needs of an or-
ganization’s software. In: HICSS ‘96: Proceedings of the 29th Hawaii Inter-
national Conference on System Sciences Volume 4: Organizational Systems
and Technology. Washington, DC, USA: IEEE Computer Society, p. 139.

2. Andreou, A. S.; Tziakouris, M. (2007): A quality framework for developing
and evaluating original software components. In: Inf. Softw. Technol., vol.
49, no. 2, pp. 122-141.

3. Basili, V.; Weiss, D. (1984): A methodology for collecting valid software en-
gineering data. In: IEEE Transactions on Software Engineering, vol. 10(3),
pp. 728-738.

4. Behkamal, B.; Kahani, M.; Akbari, M. K. (2009): Customizing ISO 9126
quality model for evaluation of B2B applications. In: Inf. Softw. Technol.,
vol. 51, no. 3, pp. 599-609.

5. Bianchi, A.; Caivano, D.; Visaggio, G. (2002): Quality models reuse: experi-
mentation on field. In: COMPSAC ‘02: Proceedings of the 26th Interna-
tional Computer Software and Applications Conference on Prolonging
Software Life: Development and Redevelopment. Washington, DC, USA:
IEEE Com-puter Society, pp. 535-540.

6. Calero, C.; Cachero, C.; Córdoba, J.; Moraga, M. (2007): PQM vs. BPQM:
Studying the tailoring of a general quality model to a specific domain. In:
Advances in Conceptual Modeling - Foundations and Applications, pp.
192-201.

7. Chidamber, S. R.; Kemerer, C. F. (1994): A metrics suite for object oriented
design. In: Software Engineering, IEEE Transactions on, vol. 20, no. 6, pp.
476-493.

8. Deissenböck, F.; Herrmannsdörfer, M.; Wagner, S. (2009): Quality meta-
model (QuaMoCo WP1.3, Deliverable #6).

9. E DIN IEC 61508-3:2006-07: Functional safety of electri-
cal/electronic/programmable electronic safety-related systems.

10. EN 60601-1-4:1999: Medical electrical equipment - Part 1-4: General re-
quirements for safety - Collateral standard: Programmable electrical medi-

References

Copyright © Fraunhofer IESE 2012 62

cal systems.

11. Eriksson, I.; Törn, A. (1991): A model for IS quality. In: Softw. Eng. J., vol.
6, no. 4, pp. 152-158.

12. Fitzgerald, B.; Russo, N. L.; O’Kane, T. (2003): Software development meth-
od tailoring at Motorola. In: Commun. ACM, vol. 46, no. 4, pp. 64-70.

13. Franch, X.; Carvallo, J. P. (2003): Using quality models in software package
selection. In: IEEE Softw., vol. 20, no. 1, pp. 34-41.

14. Gruber, H.; Dautovic, A.; Lochmann, K. (2009): Application scenarios for
QMs (QuaMoCo WP2.1, Deliverable #11).

15. Horgan, G.; Khaddaj, S. (2009): Use of an adaptable quality model ap-
proach in a production support environment. In: Journal of Systems and
Software, vol. 82, no. 4, pp. 730-738.

16. ISO/IEC 9126-1:2001: Software Engineering - Product Quality - Part 1:
Quality Model.

17. Kläs, M.; Lampasona, C.; Nunnenmacher, S.; Wagner, S.; Herrmannsdörfer,
M.; Lochmann, K. (2010): How to Evaluate Meta-Models for Software
Quality? In: Abran, Alain (Ed.) ; Büren, Günter (Ed.) ; Dumke, Reiner (Ed.) ;
Cuadrado-Gallego, Juan J. (Ed.) ; Münch, Jürgen (Ed.): Applied Software
Measurement. Proceedings of the joined International Con-ferences on
Software Measurement. IWSM/MetriKon/Mensura 2010, pp. 443-462.

18. Kläs, M.; Münch, J. (2008): Balancing upfront definition and customization
of quality models. In: Softwarequalitätsmodellierung und -bewertung
SQMB’08, pp. 26-30.

19. Lampasona, C. (2010): Quamoco WP 3.1 Variability and Tailoring Mecha-
nisms for Quality Models. Deliverable #17.

20. Mayr, A.; Plösch, R.; Körner, C.; Dautovic, A.; Wagner, S.; Trendowicz, A.
(2009): Requirements for quality models (QuaMoCo WP1.1, Deliverable
#4).

21. McCall, J. A.; Richards, P. K.; Walters, G. F. (1977): Factors in software
quality. Concept and definitions of software quality: Final technical report.
Springfield: National Technical Information Service (NTIS), Reportnr. RADC-
TR-77-369 (I, II and III).

22. Ocampo, A. (2009): The REMIS approach to rationale-based support for
process model evolution. Univ., Diss.--Kaiserslautern, 2008. Stuttgart:

References

Copyright © Fraunhofer IESE 2012 63

Fraunhofer IRB-Verl. (PhD Theses in Experimental Software Engineering,
25).

23. Plösch, R.; Gruber, H.; Körner, C.; Pomberger, G.; Schiffer, S.: Adapting
quality models for assessments - Concepts and tool support. In: Proceed-
ings of SQMB 2010 Workshop, held in conjunction with SE 2010 confer-
ence, February 22nd 2010, Paderborn, Germany, published as Technical
Report TUM-I1001 of the TUM.

24. Quamoco Quality Model Editor v2.3 (11/2010).

25. Sharma, A.; Kumar, R.; Grover, P. S. (2008): Estimation of quality for soft-
ware components: an empirical approach. In: SIGSOFT Softw. Eng. Notes,
vol. 33, no. 6, pp. 1-10.

26. Soto, M.; Izquierdo-Cortazar, D.; Ciolkowski, M. (2009): Measuring the
per-formance of open source development communities: The QualOSS ap-
proach. In: Büren, Günter; Dumke, Reiner R. (Eds.): MetriKon 2009 - Praxis
der Software-Messung. Tagungsband des DASMA Software Metrik Kon-
gresses MetriKon 2009, 19. - 20. November 2009, Kaiserslautern. Aachen:
ShakerMagdeburger Schriften zum empirischen Software Engineering, pp.
219-233.

27. Winter, S.; Göb, A., Trendowicz, A.; Wagner, S.; Kläs, M.; Körner, Ch.
(2010): Quamoco WP 1.5. Evaluation of the Base Model. Deliverable #44.

Adaptation Decisions and
Adaptation Tasks

Copyright © Fraunhofer IESE 2012 64

Appendix A Adaptation Decisions and Adaptation Tasks

In chapter 9 Iterative Model Changes, we provided an example for an adapta-
tion task. In this appendix, we provided the complete adaptation matrix for me-
ta-model v2.5.

Action Consequential tasks (ToDos) Can be
performed
Automati-
cally (A)
Manually
(M)

Task was
performed
condition

Justification
type:
Consequen-
tial change
(CC)
Goal-
triggered
User-based

M
ea

su
re

 M
O

D

IF MOD(Name): For all associated factors, update the evaluations specifications
using the measure.
“Check that the modified measure is correctly used in evaluation specification”

M - CC

IF MOD(Normalization): If change to 0
Decide: “This measure is used for normalization, are you sure that you want to
change it?” Yes/No
IF Decide == No THEN normalization = 1
IF Decide == Yes THEN normalization = 0 AND MOD(All Evaluations using the
measure)
“Please choose another measure for normalization”

M No evaluation uses
the measure for
normalization
anymore

CC

IF MOD(MaxPoints)
“Recalculate evaluation specification of measure”

M - CC

IF MOD(Type)
“Update instrument / aggregation / evaluation related to measure”

M - CC

IF MOD(Measures)
“Update evaluation related to measure”

M - CC

IF MOD(Refined by):
IF ADD(Refined by): MOD(Aggregation) OR ADD(Aggregation) to the refined
measure.
“The refining measure needs to be used in an aggregation ”
IF DEL(Refined by): MOD(Aggregation).
“Check use of measure in aggregation”

M - CC

IF MOD(Refines):
MOD(Aggregation) OR ADD(Aggregation) to the refined measure.
“For aggregation in refined measure, check use of available measures”

M - CC

M
ea

su
re

 A
D

D

MOD(Name)
“Provide measurement name”

M Name ≠ 0

CC

MOD(Description)
“Provide measurement description”

M Description ≠ 0

CC

MOD(Type)
“Provide measurement type”

M Type ≠ 0

CC

[optional] MOD(Normalization)
“If the measure is intended to be used for normalization, mark it as normaliza-
tion measure.”

M Normalization ≠ 0

CC

IF Normalization==0, MOD(Measures)
“Define which factor is associated with this measure”

M (Measures ≠ 0) OR
(Normalization =1)

CC

MOD(Refines)
“If measure is part of an aggregation, specify which measure is refined”

M Refines ≠ 0 CC

Decide: [ADD(Instrument)* XOR ADD(Aggregation)]
“This measure needs to be associated to an instrument or to an aggregation”
IF Decide == ADD(Instrument)
IF Type == number OR percentage THEN ADD(metric-based or manual instru-
ment)
“Provide a metric-based or manual instrument”
IF Type == points THEN ADD(manual instrument)
“Provide a manual instrument”
IF Type == findings THEN ADD(rule-based instrument)
“Provide a rule-based instrument”

M IF Decide ==
ADD(Instrument)
THEN Check that
an instrument is
referenced by the
measure
IF Decide ==
ADD(Aggregation)
THEN Check that
an aggregation is
referenced by the
measure

CC

Adaptation Decisions and
Adaptation Tasks

Copyright © Fraunhofer IESE 2012 65

M
ea

su
re

D

EL

AND was normalization measure THEN
Decide: “This measure is used for normalization, are you sure that you want to
delete it?” Yes/No
IF Decide == No THEN measure is not deleted
IF Decide == Yes THEN
IF Evaluations using the measure == 0 complete measure deletion
ELSE MOD(All Evaluations using the measure)
“Please re-work the evaluations using this measure before deleting it”

M No evaluation uses
the measure
anymore

CC

AND was used by factor AND factor has no refinements THEN ADD(Measure)
“Provide a measure for the factor”

M Check that the
factor has a
reference to a
measure

CC

AND was used by factor AND factor has refinements THEN MOD(Evaluations
that were using the measure)
 “Check use of deleted measure in evaluation”

M No evaluation uses
the measure
anymore

CC

Fa
ct

or
 M

O
D

 IF Purpose==Evaluation
IF MOD(name): For all refined/impacted factors: check evaluations for correct use
of changed factor.
“Check correct use of modified factor in evaluation”

 No evaluation on
refined or impact-
ed factors uses the
old name of the
factor being
modified.

CC

IF Purpose==Evaluation
IF MOD(maxPoints): Check consistency of rule in evaluation
“Check rule consistency in evaluation / regenerate QIESL”

M - CC

IF Purpose==Evaluation
IF MOD(refinedBy): If a sub factor is deleted, check consistency of rule in
evaluation.
“Check rule consistency in evaluation / regenerate QIESL”

M Deleted sub factor
is not used in the
factor’s evalua-
tion.

CC

IF Purpose==Evaluation
IF MOD(refinedBy): If a sub factor is added, check consistency of rule in evalua-
tion.
“Check rule consistency in evaluation / regenerate QIESL”

M All sub factors are
used in the
factor’s evalua-
tion.

CC

IF Purpose==Evaluation
IF MOD(influencedBy): If an influencing factor is deleted, check consistency of
rule in evaluation.
“Check rule consistency in evaluation / regenerate QIESL”

M Deleted influenc-
ing factor is not
used in the
factor’s evalua-
tion.

CC

IF Purpose==Evaluation
IF MOD(influencedBy): If an influencing factor is added, check consistency of rule
in evaluation.
“Check rule consistency in evaluation / regenerate QIESL”

M All influencing
factors are used in
the factor’s
evaluation.

CC

IF MOD(measured by): update rule in evaluation.
“Check rule consistency in evaluation / regenerate QIESL”

M - CC

IF MOD(evaluated by): define rule in evaluation.
“Define / generate new QIESL”

M - CC

Fa
ct

or
 A

D
D

 MOD(name)
“Provide factor name”

M Name ≠ 0 CC

MOD(description)
“Provide factor description”

M Description ≠ 0 CC

MOD(maxPoints)
“Provide maxPoints”

M MaxPoints ≠ 0 CC

MOD(characterizes)
“Define which entity is characterized by this factor”

M Characterizes ≠ 0 CC

IF Purpose==Evaluation AND IF ≠Product Factor
MOD(measuredBy) OR
MOD(refinedBy) OR
MOD(influencedBy)
“Associate the factor with a measure or refine the factor or define an impact on
this factor”

M Measured by ≠ 0
OR
Refined by ≠ 0
OR
Influenced by ≠ 0

CC

IF Purpose==Evaluation AND IF Product Factor
MOD(measuredBy) OR
MOD(refinedBy)
“Associate the factor with a measure or refine the factor”

M Measured by ≠ 0
OR
Refined by ≠ 0

CC

IF Purpose==Evaluation
MOD(evaluatedBy)
“Provide an evaluation for the factor”

M Evaluated by ≠ 0 CC

[optional] IF Purpose==Evaluation AND IF Product Factor
MOD(influences)
“(optional) Define which factors are influenced the new one”

M Influences ≠ 0 CC

Fa
ct

or
 D

EL
 IF Product Factor

1) DEL(influences)
2) Check consistency of rule in evaluations of influenced factors.
“Check rule consistency in evaluation / regenerate QIESL in influenced factors”

1) A
2) M

- CC

IF characterized entity is a leaf in its hierarchy AND its sub entities and it are not
used by other factors: DEL(entity)

A - CC

IF measures used are no longer used by other factors or aggregations:
DEL(measure)

A - CC

DEL(evaluation) A - CC
DEL(subordinated factors) A - CC

Adaptation Decisions and
Adaptation Tasks

Copyright © Fraunhofer IESE 2012 66

Im
pa

ct
 M

O
D

 MOD(justification)
IF justification == null: “Provide a justification”

M Justification ≠ 0 U

MOD(effect) (from positive to negative or vice versa)
“Check rule consistency in evaluation of target factor / regenerate QIESL”

M - U

MOD(source) OR MOD(target)
A) IF source.“type” ≠ “product factor” AND target.“type” ≠ “viewpoint factor”
”Impacts can only be used from product factors into viewpoint factors.”
“Check rule consistency in evaluation of target factor / regenerate QIESL”

M - U

Im
pa

ct
 A

D
D

 “Provide a justification”
“Provide a target”
“Provide an effect”

M Justification ≠ 0
Target ≠ 0
Effect ≠ 0

U

Im
pa

ct
 D

EL
 “Check rule consistency in evaluation of target factor / regenerate QIESL” M - U

Ev
al

ua
tio

n
M

O
D

MOD(specification)
IF “test” ≠ “all ok”:
“Check rule consistency in evaluation / regenerate QIESL”

M - U

Ev
al

ua
tio

n
A

D
D

“Provide a name”
“Provide a description”
“Provide a specification”

M Name ≠ 0
Description ≠ 0
Specification ≠ 0

U

Verify that refinements / impacts have also an evaluation. A Refinements and
impacts have an
evaluation.

CC

If a factor has more than one evaluation and the model is intended to be
operational, the user needs to choose which one to use (if not resolved during
pre-tailoring).
“Choose an evaluation for factor to be used”

M Factor.number of
evaluations = 1

CC

Ev
al

ua
tio

n
D

EL

 IF Purpose == Evaluation AND Factor.number of evaluations == 0:
“Define an evaluation for the factor”

M Factor.number of
evaluations ≠ 0

CC

En
tit

y
M

O
D

MOD(name) THEN (factors characterizing it change their name also)
“Check rule consistency in evaluations using factors characterizing the entity /
regenerate QIESL”

M - CC

En
tit

y
A

D
D

“Provide a name”
“Provide a description”
“Add factor(s) characterizing entity”

M Characterized by ≠
0

CC

En
tit

y
D

EL

For all associated factors: DEL(factor)
For all subordinated entities: DEL(entity)

A - CC

Practitioners’ Pocket Guide

Copyright © Fraunhofer IESE 2012 67

Appendix B Practitioners’ Pocket Guide

 What’s Quality Model Adaptation About?
Software quality models are used for describing and assessing the quality of
software products. They can be created from scratch, which very often requires
intensive expert effort. Alternatively, quality models specifying a prescriptive set
of quality characteristics or metrics can be reused. Unfortunately, those models
are very often focused on a very specific context or are too general, making it
difficult to reuse them.

Quamoco models offer the possibility of adapting quality models according to
your specific purposes.

Why not create a huge all-purpose model?

Using a “monster” quality model influences the assessment results. You won’t
always be able to collect many (probably a lot) of the measures and conse-
quently you will need to somehow handle that missing information. In fact,
specially adapted quality models will make it easier to compare software prod-
ucts and will help you make decisions regarding those products.

This document guides you through the steps of quality model adaptation such
as identifying an adequate model to be customized and identifying necessary
changes (what, when and how is to be modified).

Furthermore, tailoring7 can occur at different levels of abstraction, which also
should be considered, in order to allow customizing a model from different
perspectives.

 Scoping Quality Model Adaptation
Software quality models may exist and be applied at different levels:

Public level: The models at this level are universally available, they may be in-
tended for general use (e.g., Quamoco base model), or for some specific do-
main (e.g., embedded systems). Using and tailoring these models could be use-
ful for showing adherence to some standard.

7 We use the terms adaptation, tailoring, and customization interchangeably.

Practitioners’ Pocket Guide

Copyright © Fraunhofer IESE 2012 68

Organization level: At this level, quality models focus on satisfying the inter-
ests of an organization such as a whole organization, a business unit, or a pro-
ject portfolio. The quality models here focus on issues that are organization
wide relevant. They are more specific than quality models at public level. They
are common models intended to be tailored for particular projects. At the or-
ganization level, public models are refined for a particular organization.

Project level: At the project level, quality models are put into operation; they
are applied to describe and assess quality. At this level, quality model adapta-
tion should be limited to minor adjustments driven by project-specific quality
requirements, without drastically changing the structure of the organization’s
quality model. This helps to preserve the conformance of quality evaluations
across software products created at the project level. At the project level, or-
ganization-wide models are further refined for a particular project.

Decide the scope of the quality model you will obtain using adaptation:
is it for your organization or for a specific project?

The reuse of a quality model for adaptation is in essence more efficient than
creating a new model from scratch for each project. We recommend tailoring
models stepwise: for organizations and for projects.

 Adapting a Quality Model

 Identifying a Reference Quality Model

Where do I start?

The first thing you need to do is to define the goal of the quality model which
will result from the adaptation. Think: which is the intention of the model I
need?

In order to define the goal, you need first to know the organization/project
quality needs and context information. That is, it is necessary to identify the cir-
cumstances under which the quality model will be used.

You need to think about:

1. What are the elements in the software, for which quality is to be de-
fined, measured or assessed? For example documentation, source
code, requirements, design, build process, test suite, components,
statements, classes, memory, sub-routines, macros, functions,
procedures, etc. This information is the object of in your goal.

2. For which purpose do I need the quality model? The Quamoco meta-
model considers two different purposes: specification and evalua-
tion of quality. Specification means that quality is described, but

Practitioners’ Pocket Guide

Copyright © Fraunhofer IESE 2012 69

not quantified. For the purpose of evaluation, quality is quanti-
fied, measured, and compared to defined assessment criteria to
check the fulfillment of those criteria.

3. From which perspective is quality described or evaluated? Do we have
specific requirements from the management? Which agreements
do we have with the customer? Are there established practices on
the organization that we want to consider with the quality mod-
el?

4. Which properties of the software product do we want to cover with this
model? Quality can focus on general attributes, such as reliability,
usability or maintainability, but also lower-level attributes or spe-
cific aspects can be considered, such as globalization, learnability,
or training.

5. Which is the context of the software products to be judged by the mod-
el? The context may include many different things. Are there
things which are mandatory within the organization? Which do-
main should be covered by the quality model? E.g., railway, med-
ical devices, embedded systems, information systems, etc. Which
methodologies, practices, or technologies should be supported?
E.g., component-based software development, agile develop-
ment, open source software, custom development, C++, Java,
automatic measurement tools, etc.

All your answers to these questions are now part of your goal, which will help
focusing on the key elements of the adapted quality model.

Don’t forget to document the goal of your adaptation!

To get the best of your work, we recommend documenting the adaptation
goal in a structured way by listing the five categories, or goal parameters you
have thought about using the GQM goal template8: (1) Object, (2) Purpose, (3)
Viewpoint, (4) Quality Focus and (5) Context.

The documented goal can be used later, for example, if the model is inspected,
to corroborate that it actually serves for the stated goal.

How do I find the right model for adaptation?

Now you can search a model and adapt it to the needs of your project or or-
ganization. We call this model, the model on which for the adaptation is based,

8 Basili, V.; Weiss, D. (1984): A methodology for collecting valid software engineering data. In: IEEE Transac-

tions on Software Engineering, vol. 10(3), pp. 728-738.

Practitioners’ Pocket Guide

Copyright © Fraunhofer IESE 2012 70

a reference model. Finding the right reference model consists in finding the
model whose attributes best fit your defined goal.

If no model exactly fits the goal, then you need to use it partially and search for
models satisfying the most relevant parameters in your goal.

 Sorting Out Irrelevant Information

Once you chose a reference model the actual tailoring can start. The adaptation
typically starts by discarding elements that are not needed in the model. Only
quality model components in the reference model that are relevant for your
new model are taken over. In this way, unnecessary quality model components
are eliminated. The parts selected to stay in the model are the foundation for
further adaptation.

 Fine Tuning

After sorting out irrelevant information, the model you obtain may not be con-
sistent or operational anymore. For this reason, the removal of model compo-
nents triggers further adaptation tasks. These adaptation tasks help you to
bring the model back into a consistent, operational state.

Adaptation tasks can be, for example:

 Add an Evaluation to a Factor. This is based on the rule:

 If a Factor influences another Factor(s), it must have an Evaluation.

 Choose an Evaluation for a Factor. This is based on the rule:

 If a Factor has many Evaluations, the user must tell the model which is the
“active” one, the Evaluation which will be used for assessment.

Many adaptation tasks can be automated. Other tasks will require your interac-
tion as they are based on your decisions.

Accomplishing all adaptation tasks will lead you to obtain a correct model cus-
tomized to your needs. You need to stepwise delete, add or modify elements in
the model until no more adaptation tasks are requested. The extent to which
these operations are used depends on the appropriateness of the reference
model. At this point, you have successfully adapted the quality model to satisfy
the goal you defined.

Reusing parts of other models

You can add new elements to the model, or, you search them in other models.
That is, you can take individual elements from other models and reuse in your
new model.

Practitioners’ Pocket Guide

Copyright © Fraunhofer IESE 2012 71

What should be documented?

Relevant decisions: In parallel to quality model adaptation, you need to docu-
ment relevant decisions, especially those changes that exclude elements that
were marked as mandatory in the organization’s model.

Goal of adapted quality model: The goal is a compact manageable description of
your quality model. If during tailoring the appropriateness of the model with
respect to the goal is put into question, the need to complete the model, so
that the goal can be achieved, must be documented, as well as the fact that
the model is not complete. This may happens if something cannot be modeled
before studying or finding out more specific information.

Deviations from reference model: Operations on elements which were mandatory
for the organization and are no longer being considered in the sub-
organization or project and the reasons of non-inclusion. Eventually, an agree-
ment should be signed that those changes are approved. The QAM responsible
for the organizational model can take these changes and their justifications as a
source for changes on the organization quality model.

 Testing your Adapted Quality Model

In this step, you need to test your adapted quality model at a small scale, i.e.,
you can conduct pilots to validate the adapted quality model. This will lead you
to a final acceptance or rejection of the model. Based on the results, you can
perform further adjustments.

Tool Guide – Adaptation

Copyright © Fraunhofer IESE 2012 72

Appendix C Tool Guide – Adaptation

 Using the Adaptation Wizard

• Right-click on the model you want to adapt, and choose „Adapted Quality
Model“(merge the reference models to a single model first, not done here if
you wonder about the screenshots).

• Click next and choose the file name of the new model.
• On the next page choose a name, a description, an object, a viewpoint and

a quality focus.
• Furthermore, select a purpose (this influences which pages of the wizard are

shown) and a context. You can also filter by all these criteria by press-ing the
magnifying glass on the right to search for a matching model in the work-
space.

• Click next, the dialog that will open presents the transitive reflective closure
around all defined pre-selections (see next section). In the bottom left corner
there are two buttons, one for displaying a hierarchy (all that are defined in
the adaptation model) can be used here, and another one for selecting all.
By default, all elements are selected, click OK to continue.

Tool Guide – Adaptation

Copyright © Fraunhofer IESE 2012 73

 The next page is a typical „Selection page“
o On the left page the reference model is presented, on the right

the resulting adapted model.
o Above the tree viewers there is a filter box so search for entries

 In the left bottom corner there are two buttons and a
checkbox

 Triggers the hierarchy, the dropdown below lets you
choose a hierarchy (if there is more than one defined)

 Selects all elements that are currently visible in the tree
(if a filter text is applied the select all only applies for the
visible ones)

Tool Guide – Adaptation

Copyright © Fraunhofer IESE 2012 74

The next figure shows the filtering. It should be mentioned that elements can be
shown twice in a hierarchy (when it's not a strict hierarchy).

Tool Guide – Adaptation

Copyright © Fraunhofer IESE 2012 75

That's basically it. Click through the rest of the wizard pages and select the
elements that you want in your adapted model and click finish.

● Finally, the wizard creates the adapted model and opens the quality model

editor with it.

The Adaptation History View

● The history view allows you to track all actions performed for the adaptation
model. It also lists the source where the actions took place (adaptation wiz-
ard or editor).

● You can enter justifications for the performed actions in the justification col-
umn

● Click in the upper right corner of the view to open the menu which allows
you to delete the complete history

The Adaptation Task View

● The adaptation task view shows you all open tasks for the currently opened
quality model as defined in the adaptation model

● The button in the upper right corner lets you filter the completed (or ig-
nored) tasks

● The view is linked to the editor, so every task you double click on will select
the corresponding element in the editor. If you select an element in the edi-
tor, the corresponding tasks in the view will be selected

● Right-click on tasks, you can:
● Mark them as completed (only for manual tasks, not for those re-
quiring to set an attribute or reference)
● Choose to ignore them
● Delete them (note if tasks for missing attributes / references will
reoccur when the quality model is loaded again → better choose to ig-
nore them)
● Select all (visible – you can filter in the top box) tasks
● Delete completed tasks from the model

4. The Adaptation Model

● The adaptation model describes the behavior of the wizard and the adapta-
tion tasks that are created.

● Choose New → Other → Adaptation Model and make sure “Use default
adaptation model as draft” is checked, this will copy the default model for
you so you don't have to start from scratch.

● In the following all elements will be explained

Tool Guide – Adaptation

Copyright © Fraunhofer IESE 2012 76

Adaptation Model
The root element of the
model.

Name The name of the adaptation model (as will show in the selection
dialog if there are multiple models available)

Description Describes the model

Override Default Adapta-
tion Model

If set to true, this model will be used as default if it is the only one in
the workspace – the built-in default model will not be used. If set to
false, the user is asked which one to use (e.g. when the wizard
starts)

Quality Model Version This is used to check if the adaptation model corresponds to the
current quality model version. If this attribute does not match to the
currently plugged-in QM version, a warning will occur when the
model is loaded

Possible Sub-elements:
Wizard (1)

Wizard
The root element describ-
ing the wizard.

Show Final Comparison
Page

This feature is currently out of use, it was supposed to trigger a
comparison page at the end of the page where the old and the
adapted model could be compared (using the standard Eclipse
mechanism)

Show Preview Buttons This feature is currently out of use, the individual wizard pages had
preview buttons that would open a comparison dialog for the cur-
rently edited elements

Possible Sub-elements:
Adaptation Element (n),
Purpose (n), Attributes
Page (1)

Adaptation Element
An adaptation element is a
type (like Entity) which may
be modified during wizard
execution.
If “show on purposes” is
set, the wizard will show a
selection page for this
element.

Title The title of the wizard page for this element

Tool Guide – Adaptation

Copyright © Fraunhofer IESE 2012 77

Description The description for the wizard page of this element

Reference Name The reference of the quality model which holds the elements that
shall be specified here (e.g. entities)

Show Hierarchy By Default Whether to toggle the first “Element Hierarchy” for the wizard page
or not (if false the view will be flat, if true the first hierarchy will be
used to show a tree)

Show On Purposes Defines on which purposes a selection page will be shown for this
element (the user chooses a purpose in the beginning of the wizard)

Possible Sub-elements:
Unselected Element Ac-
tions Remove Element
Action (n), Pre-selection
Descriptor (n), Element
Hierarchy (n), Feature
Required Action – ignore
the rest!

Unselected Element
Actions Remove Element
Action
The default action that
must be there for every
element that has a selec-
tion dialog. The element is
deleted if the element is
unselected in the wizard.

Name A name for this action, will be shown in the history view

Description Describes the action (actually pretty useless)

Possible Sub-elements: -

Pre-selection Descriptor
If the owning adaptation element is selected a pre-selection descriptor describes which elements
shall also be selected.

Possible Sub-elements: Feature Descriptor (1)

Feature Descriptor
Describes a feature which
is defined in the QM meta-
model.

Reference Type Incoming or outgoing reference; if it is an outgoing reference the
owning adaptation element has a reference to the other element
type; if incoming the other element type has a reference to the
owning adaptation element

Other Element Type Name The type of the other end of the reference

Tool Guide – Adaptation

Copyright © Fraunhofer IESE 2012 78

Feature Name The name of the feature

Possible Sub-elements: -

Element Hierarchy
Defines a hierarchy that
can be offered to the user
to show a tree instead of a
flat view.

Label Will be shown to the user to identify the hierarchy

Feature Type Parent feature or children feature; parent feature means that the
children have a reference to their parents; children feature means
that the parent has a reference to their children.

Reference Name The name of the reference as defined in the meta-model

Possible Sub-elements: -

Feature Required Action
This action is performed at the
end of the wizard or during
adaptation in the editor. Dur-
ing adaptation in the editor,
only actions with “delete if not
set” = false will be considered
– since no elements shall be
deleted during editing. If the
feature is not set then, a to-do
task will be generated with the
message specified in the ac-
cording attribute.
If “delete if not set” is true,
the wizard will at the end
delete all elements whose
specified features are not set
(i.e. null or empty list) – in this
case to-do message is obvious-
ly not necessary.

Name A name for this action

Description Describes the action (actually pretty useless)

Consider Subclasses True if subclasses of the owning adaptation element shall be
considered, false if not

Delete If Not Set Deleted the instance of the adaptation element if the feature is
not set at the end of the wizard execution

To-do Message If the element is not deleted, an adaptation task will be generat-
ed with this to-do message

Possible Sub-elements: Feature
Descriptor (1)

Tool Guide – Adaptation

Copyright © Fraunhofer IESE 2012 79

Purpose
Defines a purpose for the exe-
cution of the adaptation wiz-
ard. Depending on the pur-
pose, selection pages for adap-
tation elements will be shown
or not, as specified.

Name The name as the purpose, is shown to the user

Description Describes the purpose

Possible Sub-elements: Remove
elements of type

Remove elements of type
This action removes all ele-
ments in the adapted quality
model of a certain kind, when
the owning purpose is selected.

Name The action name

Description Describes the action (actually pretty useless)

Type Class Name The class name specifying the type that shall be removed

Possible Sub-elements: -

Attributes Page
Sets some values for the “Se-
lect Attributes” right in the
beginning of the adaptation
wizard.

Title The title of the page, will be shown to the user

Description The description of the page, will be shown to the user

Object Hierarchies Defines which hierarchy shall be used for filling the Object
dropdown and how deep. Level = 1 means that only the top-
level elements in the selected hierarchy will be used to popu-
late the dropdown

Object Hierarchy Level

Quality Focus Hierarchies As above, same for quality focus

Quality Focus Hierarchy Level

Viewpoint Hierarchies Defines which hierarchy shall be used for the Viewpoint
dropdown, there will always be top-level elements

Viewpoint Exceptions Defines which factors will be included in the pre-selection
anyway

Possible Sub-elements: -

Document Information

Copyright 2012 Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Title: Selection Criteria and Pro-
cess for Quality Model Tai-
loring

Date: June 2012

Report: IESE-034.12/E
Status: Final
Distribution: Public Unlimited

