

High-Performance Heating Elements

CNT Films on Thin and Flexible Substrates

Dominik Nemec

Overview

- collaboration between applied research and industry
- how runs such a project
- ideas
- reality
- project \rightarrow it is always a compromise

Why a new type of heating elements?

Motivation/benefits

- industrial partner → need for innovation
- saving production costs → building-up a own production
- less metal and simple building → saving of space and weight
- energy saving
- environmental protection

Requirements and specifications

- thin film/coating
- Iow heat capacity
- homogeneous heat distribution
- substrates mica (unique electrical and thermal insulating properties, low cost for mass production)
- power supply 230 V
- operating temperature 100 to 150 °C
- short-term temperature stress 250 °C

Dispersion and film production

part of Fraunhofer IPA:

- development of CNT dispersion
- production of thin CNT films
- adhesion properties on substrate
- electrical and thermal properties

Dispersion

- carbon nanotubes (CNTs) \rightarrow C150P (Baytubes)
- water based dispersion
- additives
 - gum Arabicum as dispersant
 - ethanol to minimize the surface tension
- dispersion quality → quantity, distribution and particle size of CNTs in the dispersion

CNT dispersion

incorporation of CNTs in the dispersion

CNT dispersion

• particle size and distribution

			Diam. (nm)	% Intensity	Width (nm)
Z-Average (d.nm):	220	Peak 1:	305	73.3	101
PdI:	0.362	Peak 2:	113	21.9	23.8
Intercept:	0.870	Peak 3:	5290	4.8	652

Substrates

- mica (mica plates)
 - electrically insulating
 - stable for thermal and heating capacity up to 350 °C or 3,5 W/cm²
 - low cost for mass production
- CNT film production
 - spray coating
 - good wetting of the surface
 - low adhesion → exfoliation of the mica sheets

Substrates

- polyimide film (kapton developed by DuPont)
 - electrically insulating
 - thermal stable up to 400 °C
 - flexible
- CNT film production
 - spray coating
 - good wetting of the surface
 - very good adhesion
 - coating thickness 9 to 10 μm
 - sheet resistance ~ 40 Ω/sq

polyimide film on mica and aluminum plates

- for the first coating tests polyimide film was applied on mica and aluminum plates
- non-homogeneous temperature/heat distribution
- low adhesion of polyimide film to mica plate → adhesive is not temperature stable

- dimension of the samples
 50 x 100 mm²
- power supply 35 V
- ambient temperature
- cooled with fan

number of cycles	heating	cooling	temperature
0 to 3385	1 min	12 s	ca. 90°C
3386 to 7691	2 min	12 s	ca. 100°C
7692 to13167	3 min	18 s	ca. 110°C

- lifetime tests → up to 13000 cycles
- acceptable resistance change
- homogeneous temperature/heat distribution

sample number	cold resistivity	after 3385 cycles	change from the beginning	after 7691 cycles	change from the beginning	after 13167 cycles	change from the beginning	
6	92 Ohm	87 Ohm	-5,40%	87 Ohm	-5,40%	-	-	
10	103 Ohm	100 Ohm	-2,90%	100 Ohm	-2,90%	99 Ohm	-3,90%	
11	107 Ohm	104 Ohm	-2,80%	104 Ohm	-2,80%	-	-	
12	110 Ohm	105 Ohm	-4,50%	105 Ohm	-4,50%	107 Ohm	-2,70%	
17	91 Ohm	90 Ohm	-1,10%	90 Ohm	-1,10%	90 Ohm	-1,10%	
18	84 Ohm	80 Ohm	-4,80%	81 Ohm	-3,60%	92 Ohm	9,50%	

 dimension of the sample – 108 x 48 mm²

heating element - CNT coating on polyimide foil - 90 V (~1 W/cm²)

Experiments

• CNT film on mica plate in air and oil

Experiments

- CNT film on polyimide, glued on mica plate, in oil
- dimension of the sample – 100 x 50 mm²
- 300 V; 4,7 A
 - \rightarrow 1400 W
 - \rightarrow 28 W/cm²

Outlook

insulating

- \rightarrow electrically for voltage > 48 V
- \rightarrow oxidation of the CNT film for temperature > 250 °C
- contacting of samples
- film thickness controlled by spray coating
- reduce the electrical conductivity for 230 V
- concepts for mass production implemetation in the application

Acknowledgement

Fraunhofer IPA

Harun Erismis, Michael Geiß

Eichenauer Heizelemente GmbH & Co. KG

Thank you for

your attention!

Dr. Dietmar Schelb, Christian Wildegger

Gefördert durch:

Bundesministerium für Wirtschaft und Technologie

aufgrund eines Beschlusses des Deutschen Bundestages

© Fraunhofer IPA