New vacuum coating technologies for metal strips and foils

Christoph METZNER Jens-Peter Heinß Bert Scheffel Henry Morgner Department Metal Coating and Photo Voltaics

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology (FEP)

Winterbergstrasse 28, 01277 Dresden, Germany Email: Christoph.Metzner@fep.fraunhofer.de

AIMCAL WC&H Conference 2016 – Europe 30 May – 2 June, 2016, Dresden, Germany

Content

- 1 Introduction
- 2 Vacuum in-line pre-treatment by hollow cathode sputter etching
- 3 Substrate cooling in vacuum
- 4 PECVD process for metal strips
- 5 Plasma activated high-rate electron beam PVD
- 6 Applications and results
 - Titanium based photo-catalytic and hard coatings
 - Silicon oxide layers for different applications
 - Zirconium oxide coatings for fuel cells
 - Mo layers for photo voltaic application
 - Decorative colored coatings
- 7 Equipment "MAXI"
- 8 Summary and Outlook

Page 2

1 Introduction

- Growing interest for metal strips and foils with special surface functions
- Call for very thin substrate materials for light-weight applications and saving resources
- Complex layer systems with special and high-quality properties needed
- Requirement for low cost coating technologies onto large areas
- Motivation to use PVD/PECVD processes:
 - Variety of layer materials available for deposition (metals, alloys, compounds, ...)
 - Very precise coating
 - Outstanding environmental compatibility of processes
 - Promising R&D results and first industrial applications
- Demands for new processes:
 - High-rate deposition but with excellent layer properties -> plasma assistance
 - adapted pre-treatment processes
 - active substrate cooling in vacuum during coating
- First industrial application in development, especially in the field of energy

Page 3

2 Vacuum in-line pre-treatment by hollow cathode sputter etching

2 Vacuum in-line pre-treatment by hollow cathode sputter etching

Page 5

Chr. Metzner, AIMCAL 2016

3 Substrate cooling in vacuum – Brush cooling

- Idea: realization of a large number of effective working contact points for heat transportation by brush arrangement
- Heat transmission coefficients of up to 150 W/m²K were reached with a static brush cooling device.

3 Substrate cooling in vacuum – Gas cooling drum

- Idea: realization of gas filled contact area for heat transportation between strip and cooling drum, meanwhile the requirements on the pressure for vacuum coating (1.10-4 mbar) were fulfilled.
- Heat transmission coefficients of up to 600 W/m²K were reached with a gas cooling drum. There are further potential for increasing of cooling effect.

4 PECVD process for metal strips

Principle:

- magnetron discharge burning on the metal strip (= cathode)
- Metal strip at ground potential, encapsulated anode
- MF-pulsed glow discharge

Page 8

4 PECVD process for metal strips

Examples for coatings on metal strips

	15ky Baa	X3000	1512 Baa			КУ Виш
<u>a-C:H</u>		<u>a-C:H:Si:O</u>		<u>a-Si:H</u>		
precursor:	C_2H_2	precursor:	HMDSO	precursor:	SiH ₄	
dep. rate:	110 nm/s	dep. rate:	50 nm/s	dep. rate:	3 nm/s	
thickness:	0,9 µm	thickness:	0,7 µm	thickness:	1,6 µm	
hardness:	40 GPa	hardness:	13 GPa			
		EDX:	O/Si 1,0			Page 9

Chr. Metzner, AIMCAL 2016

5 Plasma activated high-rate electron beam PVD Spotless arc Activated Deposition (SAD process)

5 Plasma activated high-rate electron beam PVD Spotless arc Activated Deposition (SAD process)

- Plasma activated deposition of high melting metals (Ti, Zr, Cr, W, Mo, ...), alloys and compounds (Nitrides, Oxides, Carbides) e.g. TiN, TiC, TiO₂, WC, ZrN, ...
- High deposition rates onto large areas up to 2 µm/s for metals and alloys up to 200 nm/s for compounds
- High ion current density at the substrate (100 – 300 mA/cm²)
- Pure metal plasma (ionisation degree up to 60%)
- Dense layers without droplets
- Arrangement for large deposition width by deflection of electron beam and spotless arc (approved up to 600 mm)

5 Plasma activated high-rate electron beam PVD Hollow cathode arc Activated Deposition (HAD process)

Page 12

5 Plasma activated high-rate electron beam PVD <u>Hollow cathode arc Activated Deposition (HAD process)</u>

- plasma activation for high-rate electron beam evaporation, especially of insulating and other compounds (SiO_X, Al₂O₃, TiO₂, TiN, CrN, ...) and C containing hard coatings
- high deposition rates onto large areas e.g.:
 50 ... 100 nm/s for Al₂O₃
 100 ... 1 000 nm/s for SiO_x
- high ion current density at the substrate (10 – 50 mA/cm²)
 - ionisation degree of the vapour up to 50%
 - dense layers without droplets
 - arrangement for large deposition width (proven up to 2 850 mm)

© Fraunhofer FEP

Chr. Metzner, AIMCAL 2016

6 Application: Photo catalysis and photo wettability (TiO₂)

Crystalline (anatas) titanium dioxide shows special properties:

- Photo catalysis
 - Stimulation of oxidation and reduction processes after activation of the coating (Exposure with UV-A or sunlight)
 - Decomposition of organic and inorganic substances on the surface
- Photo wettability / hydrophilicity
 - degradation of the contact angle against water to below 10° after activation of the layer
 - formation of a closed water film on the surface
- High deposition rates up to 100 nm/s
- Dense layer structure and high hardness by plasma activated deposition

6 Application: Hard coatings (TiC / WC)

Reactive Deposition of TiC and WC onto large areas by SAD process:

- Electron beam evaporation of Ti or W in carbon containing atmosphere
- Deposition of TiC:
 - deposition rate up to 100 nm/s
 - hardness up to 33 GPa
- Deposition of WC:
 - deposition rate up to 200 nm/s
 - hardness up to 30 GPa
- Good layer adhesion

Chr. Metzner, AIMCAL 2016

6 Application: Silicon oxide layers for transparent abrasion and corrosion resistance

- Deposition rate up to <u>150 nm/s</u> by plasma activated high-rate electron beam deposition (HAD process)
- High layer hardness (up to <u>15 GPa</u>) caused by high degree of ionization in vapor and enhanced substrate temperature (Si-rich SiO_x layers made by combination of PVD and CVD) The layer hardness is higher than hardness of bulk SiO₂ material (10 GPa).
- High hardness caused by special nano composite material structure (<u>nano crystalline Si</u> could be detected in amorphous SiO₂ matrix by XRD)
- Low absorption (<u>k< 0.01</u> @ 550 nm) in the total hardness range from 5 to 15 GPa
- Good corrosion protection due to <u>dense layer structure</u>.

6 Application: Silicon oxide layers for isolating properties

- Deposition of SiO_X based electrically insulating layers on metal strips and foils
 - layer thickness about 10 μm without delaminating
 - brake down voltage of about a few 100 V (> 10 μ m)
- Successful organic modification to reduce stress
 by introduction of a monomer in the plasma => combination of HAD + PECVD
- Isolating properties depend strongly from excellent surface quality of the substrate:
 - low roughness
 - extremely low surface defect density

6 Application: Silicon oxide layers in optical layer quality

- Plasma-activated electron beam evaporation (HAD process)
 - electron beam evaporation of Silicon Dioxide
 - hollow cathode arc discharge in vapor/argon atmosphere
 - reactive processing in oxygen atmosphere
 - large distance between crucible and substrate (about 1 m) for excellent layer homogeneity
- Substrate: aluminum strip
 - strip width 300 mm
 - surface quality mirror finished
- Characteristic parameters for SiO_X layers deposited with large crucible-substrate distance

static rate	nm/s	10	20	50
dynamic rate	nm*m/min	400	800	2000
micro hardness	GPa	6	5	4
refractive index	n @ 550 nm	1.50	1.49	1.48
absorption	k @ 550 nm	1 x 10 ⁻³	5 x 10 ⁻⁴	5 x 10 ⁻⁴

Chr. Metzner, AIMCAL 2016

6 Application: Zirconium oxide coatings for fuel cells

Reliability, ageing resistance, thermal cyclability

FEP

6 Application: Zirconium oxide coatings for fuel cells

Results:

- Strong influence of plasma activation on the microstructure
- Cubic phase with (111), (100) or (311) texture
- Additional effect on microstructure caused by pulsed bias
- Dense coatings, barrier properties for gases are promising
- High-rate PVD processes are available for dense YSZ

HAD process from ceramic
Electron beam power: 15 kW
Deposition rate: 40 nm/s
Pulsed Bias: - 120 V
Yttrium content: 5.2 at-%

SAD process from metals Electron beam power: 32 kW Deposition rate: 30 nm/s Pulsed Bias: - 120 V Yttrium content: 5.4 at-% Page 20

6 Application: Mo layers for photo voltaic application

Application:

- Electrical back contact for CIS-/CIGS solar cells
- Molybdenum coatings guarantee therefore the needed chemical stability, the barrier against diffusion of impurities into the absorbing layer and the low ohmic resistance
- During processing of CIS-/CIGS solar cells temperatures of 500 600°C are needed
- Deposition of Mo layers with plasma activated electron beam evaporation (SAD process)

6 Application: Mo layers for photo voltaic application

SEM pictures of different molybdenum layers, deposited by various PVD methods

Electron beam evaporation without plasma activation (rates up to 240 nm/s were investigated) Electron beam evaporation with plasma activation (SAD process) (actually rates up to 60 nm/s were investigated, higher rates possible) Magnetron sputtering (reference) (typical rate 7 nm/s)

Chr. Metzner, AIMCAL 2016

The deposited molybdenum layers on low sodium content glasses show the identical cell efficiency like standard layers.

Page 22

© Fraunhofer FEP

Complete processing of CIS-cells and investigation of cell efficiency were realized in the ZSW Stuttgart

6 Application: Decorative coloured coatings

- Self coloured coatings like TiN
- Corrosion, abrasion and scratch protection
- High deposition rates up to 50 nm/s
- Dense layer structure by plasma activated deposition
- Typical layer thickness about 1.5 μm

6 Application: Decorative coloured coatings

- Interference layers, transparent oxide layers based on TiO₂, Cr₂O₃, ZrO₂, ...
- Hard coatings
- Corrosion, abrasion and scratch protection
- High deposition rates up to 3 nm/s
- High layer thickness uniformity (< ± 1.5 %)
- Dense layer structure by pulsed magnetron sputtering
- Adjustable colour as a function of layer thickness
- Typical layer thickness 50 300 nm

7 FEP equipment - "MAXI" In-line Vacuum Deposition Equipment for Sheets and Metal Strips

general

(flexible technological equipment - example)

- 1...various pre-treatment processes, e.g. heating, etching, deposition of interfacial layers
- 2...high power electron beam gun
- 3...various crucibles to evaporate different materials (metals, alloys or compounds)
- 4...plasma activated deposition process
- 5...thermal post-treatment, e.g. electron beam heating
- 6...XRF-thickness-distribution-measurement-system, optical film thickness measurement system by using acromatic light
- 7...sheets in frames, stacked
- 8...valves, to decouple pressure
- 9...turn-over device for double side coating of sheets
- 10...strip edge control system
- 11...sealing roll pairs, to decouple pressure
- 12...squeeze valve, during coil change

© Fraunhofer FEP

sheets

maximum size: maximum weight: speed:

500 mm x 500 mm 15 kg 0.001 ... 1.0 m/s

strips maximum width: minimum thickness: maximum thickness: speed:

300 mm 0.04 mm 1.50 mm 0.001 ... 1.0 m/s

Page 25

8 Summary and Outlook

New vacuum coating technologies for metal strips and foils

- Many new coating technologies are on the way
- New plasma processes are developed
- New cooling possibilities developed and proven
- Fundamental research has been performed
- Quality of the deposited layer stacks is promising
- Estimated deposition cost are reasonable
- Some unique large scale laboratory equipment are available at FEP
 e.g. our MAXI line closes the gap between laboratory equipment and industrial plants
- Some new applications are well prepared for upscaling and industrialization
- Main fields of current and future applications: Energy (PV, batteries, fuel cells, mirrors, solar thermal, ...) and decorative elements

Page 26

New vacuum coating technologies for metal strips and foils

Chr. Metzner, AIMCAL 2016

Ladies and gentlemen thank you very much for your kind attention!

Prof. Dr. Christoph METZNER Department: Metal Coating and Photo Voltaics

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology (FEP)

Winterbergstrasse 28, 01277 Dresden, Germany Email: Christoph.Metzner@fep.fraunhofer.de

AIMCAL WC&H Conference 2016 – Europe 30 May – 2 June, 2016, Dresden, Germany

