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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

The systematic analysis of robotic arc welding processes requires unified structured data, which is currently not available due to the diversity
of data sources. This paper proposes an integrated data structure for the specific domain of robotic gas metal arc welding. The presented data
structure contains a description of the welding system, the design of the welded parts, welding instructions, and time series of measured process
data. Collected data enriched with semantic context is stored and analyzed using this data structure. The usefulness is exemplified but not limited
by a use-case suggesting welding process parameters to the worker.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems.
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1. Introduction

Robotic gas metal arc welding is a widely used bonding
technique in manufacturing processes. Due to its complexity,
the configuration and setup of a robot cell (see Fig. 1) still re-
quires humans with expert knowledge to adapt the parameters
to achieve the required quality of the welding seam. An ap-
proach to make the required process knowledge available in a
computerized and digital form is using data mining techniques
on welding data. Generating knowledge about the welding pro-
cess by using data mining techniques requires a large and com-
plete data basis of welding data. The term large in this context
means that the data basis consists of multiple robot cells of dif-
ferent types and welding equipment. The term complete means
that all information about the setup and configuration of the
robot cell, which would be required to reproduce the welding
seam, is included in the data basis. For an automated evaluation,
the data base has to be structured, self describing and standard-
ized. This means analysis algorithms can access a standardized
data structure without the need of individual adaption to vendor
specific formats.

Robot arc welding cells consist of different devices (see sec-
tion 3.1), at least a robot and a welding power supply. Fur-
thermore, these devices are provided by a number of different
manufacturers and can be found in a large amount of combina-
tions and configurations in different robot cells. If communica-
tion interfaces to those devices for reading data are available,
they are implemented using a large variety of different data for-
mats. Thus, automatic analysis is not applicable without further

preparation of the data. Recently, the preparation of the data is
done for each use-case, but there is a lack of interchangeability,
reusability and comparability with other use-cases.
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Fig. 1. Robot welding cell at Fraunhofer IPA.

With regards to data analysis based on large databases tak-
ing different configurations of robot welding cells into account
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the authors propose a generic data structure for the domain of
robotic arc welding with a self describing semantic to store
welding data.

Robot arc welding cells consist of different devices (see sec-
tion 3.1), at least a robot and a welding power supply. Fur-
thermore, these devices are provided by a number of different
manufacturers and can be found in a large amount of combina-
tions and configurations in different robot cells. If communica-
tion interfaces to those devices for reading data are available,
they are implemented using a large variety of different data for-
mats. One approach of storing this data is the so called data
lake [1,2], where the raw and unstructured data is stored in one
database. Using a data lake simplifies the process of storing
data, because of the reduced data modeling and integration ef-
fort. However, it still requires structuring effort later on, when
data analysis should be performed. Thus, automatic analysis is
not applicable without further preparation of the data. Recently,
the preparation of the data is done for each use-case, but there is
a lack of interchangeability, reusability and comparability with
other use-cases. With regards to data analysis based on large
databases taking different configurations of robot welding cells
into account the authors propose a generic data structure for the
domain of robotic arc welding with a self describing semantic
to store welding data.

This paper is structured as follows: In section 2, the state of
the art is presented. The setup of a typical robot cell is explained
and an overview of relevant data formats to describe a robot
cell is given. In section 3, the approach for a novel generic data
structure for the domain of robotic arc welding is presented. An
exemplary implementation of a robot cell with the novel data
structure is shown in section 4. Section 5 presents a use-case to
demonstrate an automated evaluation of welding data to extract
process knowledge.

2. State of the art

2.1. Data formats and semantic web technologies in robotics

Methods for information management stemming from IT
and the semantic web have been used in automation and
robotics for a while. Ontologies offer context to information
and it is expected that the use of semantics will ease integra-
tion and increase autonomy of robotic systems. In the field
of service robotics several ontologies have been developed [3–
5]. This has sparked the development of a set of ontologies in
robotics by IEEE [6,7].

The technical basis for the use of semantics in robotics typi-
cally stems from IT from the Semantic Web [8]. The Resource
Description Format (RDF) [9] allows to represent information
in triples and to model relations similar to human language
using subject, verb and object. RDFS (Resource Description
Framework Schema) [10] extends RDF with basic concepts for
ontologies. The Web Ontology Language (OWL) [11] further
extends the capabilities of RDFS and is very commonly used
for the description of ontologies. Several subdialects, e.g. OWL
DL and OWL lite, are available and impose additional restric-
tions to facilitate reasoning. The SPARQL protocol and RDF
Query Language (SPARQL) [12] are the query languages of
the semantic web that allows retrieval of structured information
stored in RDF.

The Semantic Web technologies are used in several robotic
applications from plant information processing [13,14], knowl-
edge integration [15], robot programming [16] or CAD de-
sign [17]. However, Semantic Web technologies are not pro-
viding a generic and complete data structure for the domain of
robotic arc welding.

AutomationML is a format for the description and exchange
of plant engineering information. It is an open standard for-
mat (IEC 62424) based on XML [18]. AutomationML relies
on different other open standards from the IT-world: Computer
Aided Engineering Exchange (CAEX) is used to model the hi-
erarchical structure of the plant. COLLAborative Design Ac-
tivity (COLLADA) is used for geometry data and interactive
3D applications although it is easy to reference other geome-
try data formats. PLCopen XML is used for PLC programs
and generally for storing logic information. The Standard for
the Exchange of Product Model Data (STEP) offers similar fea-
tures, e.g. mechanical design, electrical design, material and
information on the machine structure.

A high level framework for process descriptions in differ-
ent domains, e.g. manufacturing and business processes is of-
fered by the Process Specification Language (PSL) [19]. PSL
was developed to enable the exchange of process data between
different software systems. It has a strong focus on enabling
automatic reasoning on processes and for example allows the
evaluation of process consistency and rule compliance.

Due to the importance of welding processes for the indus-
try, extensive research led to multiple norms for various coun-
tries to standardize and classify welding processes. A welding
procedure specification (WPS) specifies the necessary steps to
achieve repeatable weld quality [20]. The norm EN ISO 15609
[21] describes a set of variables that are required for a specific
application to assure repeatability. The American Welding So-
ciety, acting under ANSI rules for consensus standards, pub-
lishes a Standard Welding Procedure Specifications (SWPSs)
[22].

The process variables of a welding process can be recorded
as time series data. Bader et al. define in [23] a time series
data base (TSDB) as a system that can (i) store a row of data
that consists of timestamp, value, and optional tags, (ii) store
multiple rows of time series data grouped together (e.g., in a
time series), (iii) can query for rows of data, and (iv) can contain
a timestamp or a time range in a query. Storing time series data
in a TSDB compared to storing it in an XML file requires less
disk space and brings faster read and write access. Therefore
TSDB are well suited for storing welding process data.

2.2. Data mining techniques for welding data

Several data driven approaches for robotic welding applica-
tions exist to extract process knowledge from welding data. In
[24] a decision tree algorithm is presented to predict weld ge-
ometry parameters based on welding process data. The dataset
includes 3573 welding test cases with process data. In [25] a
model tree trained on more than 3000 classified welds is used
to predict the weld diameter. The data was collected with the
same type of robot cell and identical equipment. In [26] the Ma-
halanobis distance method is used to predict the welding bead
geometry based on the current and voltage waveforms. The
data was collected by experiments with a single robot cell and a
fixed set of welding equipment. In [27] statistical methods are
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used to extract knowledge patterns in order to suggest improve-
ments for new product development. The data source is the
ABB data center with a large collection of robot cycles from
in-field robot cells. The authors point out that due to the versa-
tile use of robots, finding a generic representation for the data
is still a challenge.

2.3. Conclusion from the State of the Art

The given examples of data mining techniques (see section
2.2) in the domain of robotic welding show that it is possible
to generate process knowledge from welding data [24–27]. For
all examples a data set is required to develop algorithms and
train models. The data is either collected for a specific use-
case and is stored in a data structure that fits this use-case, or
the data is manually converted to a target data structure to fit
the target use-case. No generic data structure to store welding
data is used to enable the exchange of data without the need of
manually converting for each specific use-case.

AutomationML is capable of describing plant data. How-
ever, it is not designed to store time series of process data. Time
Series Data Bases, like InfluxDB, are capable of storing time
series data, but they are not well suited to store plant data. Doc-
ument based databases like MongoDB are designed for storing
documents, like CAD or PCD files, without the need of defin-
ing a scheme upfront. But to the best of the author’s knowledge
there exists no generic data structure for the domain of robotic
arc welding with a self describing semantic to store welding
data in a complete and reproducible way.

3. Approach

The novel approach of this paper is to define a generic data
structure for the domain of robotic arc welding. The first de-
sign goal of this data structure is reproducibility for the weld-
ing seam, meaning that all information required to setup a robot
cell (see section 3.1) and perform the same welding seam again
is included. This goal is reached by keeping the data structure
generic, so it is possible to add devices from different vendors
with different data formats.

The second design goal is to use data formats which are al-
ready well established. The CAEX format of AutomationML
(see section 3.2) is used to model a robot cell with a self de-
scribing semantic. However, using just AutomationML to store
welding data of a robot cell will run into a scalability problem,
which is described in section 3.3. Therefore, the proposed data
structure stores the welding data in separate databases and in-
tegrates the meta data and access information of this data into
AutomationML.

3.1. A typical robot cell

A typical industrial robot cell for welding (see Fig. 2) con-
sists of a robot arm and welding equipment. A welding torch is
mounted as a tool at the robot flange and supplied with weld-
ing wire by the wire feeder. A robot control unit commands the
motion of the mechanical robot arm. The welding torch and the
wire feeder are controlled by the welding power supply.

The robot control unit is running the robot program and is
sending position setpoints to the drives via fieldbus with a cycle
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Fig. 2. Topology of a typical robot welding cell.

Table 1. List of sensors in a robot cell and their possible data format.

Sensor type Purpose Possible
data format

3D Camera 3D stereo cameras are used to cap-
ture three dimensional pictures to
measure e.g. the real geometry or
position of the workpiece

*.pcd

2D Laser scanner 2D laser scanners can be used for
quality tests of the welding seam
e.g. to check the design throat
thickness or to determine the angle
between the welded parts

*.slk

Microphone,
Piezoelectric sensor

The acoustic information can be
used to analyse the welding process
regarding process stability like in
[28]

*.wav

Temperature sensor,
Humidity sensor

With a temperature and humidity
sensor it is possible to record en-
vironmental conditions during the
welding process

*.csv

time of a few milliseconds. The robot control unit also sends
process parameter settings to the power supply unit and com-
mands the start and stop of the welding process. The current
control loop of the welding process is closed inside the welding
power supply.

Besides the robot controller and the welding power supply,
a robot welding cell can have additional sensors to measure the
welding process. Those sensors can be vision sensors, accous-
tic sensors or environmental sensors measuring the temperature
or the humidity. In table 1 an exemplary and incomplete list
of sensors used in robot welding cells is given. Depending on
the type of the sensor their data is stored in different data for-
mats like point cloud data (PCD) for vision systems or comma
separated values (CSV) for temperature and humidity sensors.

3.2. Generic data structure

The proposed data structure does contain (i) plant data, (ii)
document data and (iii) cyclic data. Plant data contains all phys-
ical devices, their connections, their interfaces and topology. It
also maps the available variables to the devices. Document data
does contain all configuration files, firmware files or parameter
setting files. Cyclic data are all time series variables that can be
stored as a value/timestamp pair. This data structure is focused
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on welding process data for data mining techniques, therefore
it does not contain ERP data, like part numbers, prices or cus-
tomer names.

The modelling language AutomationML is well suited for
describing a plant topology. In AutomationML, the semantics
of an element can be defined using role classes. Two new role
classes, Document and TimeSeriesVariable (TSV), are intro-
duced. They have attributes like unit, data type and descrip-
tion to store the meta information of this element. A Document
is for example a configuration file, which contains the param-
eter settings of a welding power supply or a robot controller.
TimeSeriesVariable are for example trajectories of welding cur-
rent and voltage or the welding torch position. The hierarchical
structure of the CAEX format allows to add and map new time
series variables or document elements to devices and then map
devices to robot cells (see Fig. 3).

Fig. 3. Hierarchical structure of elements in a robot cell.

3.3. Scalability problem of single file solutions

AutomationML is capable of storing the topology informa-
tion of the robot cell in a human readable form. In section 3.2, it
is shown how elements with their meta information are added to
the devices. Besides just adding the meta information, it would
also be possible to add the time series or document data itself to
the AutomationML file. This file would then contain all re-
quired information to run automated data mining techniques
and could be used as exchange format between different par-
ties. However, this single file approach has a scalability prob-
lem. With a growing file size, reading and writing operations
will become slower. When the file size grows beyond the maxi-
mum storage of a single hard disk, the single file approach will
fail.

An alternative approach is to use databases. Databases are
optimized for efficient storage of large amounts of data. Dis-
tributed databases can also locate the data on multiple physical
storage devices and therefore solve the scalability problem of
the single file approach.

3.4. Integrating databases into AutomationML

Each type of data has different use-case characteristics and
therefore different requirements for its data format in terms of
human readability, frequency of read and write access, or the
compression level. Thus, each type is stored in the data format

and database that is best suited to meet the specific require-
ments. However, to enable the exchange of welding data be-
tween multiple parties, a common and standardized data for-
mat is required. Therefore, the authors propose a data structure
which uses databases for storing data and integrates the meta in-
formation of this data into the CAEX format of AutomationML.
A single AutomationML file can then be used to exchange the
meta information of a robot cell, while the data itself is stored
in separate databases.

To build data mining techniques on top of the CAEX for-
mat, a mechanism is required to receive the welding data from
the databases. Therefore, the information on how to access a
database and query the data of a specific variable is also stored
as attributes in the CAEX format. Each element in the CAEX
format receives a unique id. All data related to this element are
tagged with this id. This structure allows an automatic evalua-
tion of welding data of different robot cells, which are stored in
different databases.

4. Exemplary implementation of the data format

An exemplary implementation using the proposed data for-
mat is realized by describing a complete robot cell. This robot
cell consists of a Reis robot, a Fronius Welding Power Sup-
ply, a Wire Feeder and an Ensenso Camera for measuring the
welding seam geometry. All documents are stored in the object
database MongoDB and all time series variables are stored in
the time series database InfluxDB. The robot cell is modelled
in AutomationML by using the AutomationML Editor to repre-
sent the hierarchical structure of the plant in CAEX format (see
Fig. 4). The AutomationML file is then stored as a document
in the MongoDB. Each document has a timestamp and a unique
id, so it is possible to track the change history of the AML file
to see which elements have been added or removed.

Fig. 4. Excerpt of the CAEX model in AutomationML Editor.

The time series variables are stored in an InfluxDB instance.
Each variable is stored as a stream of timestamp and value pairs
and is tagged with the unique id used in the CAEX model. In
figure 5 the complete architecture is shown.

Other documents like CAD files for the welded part, welding
procedure specifications or robot programs are also stored in the
object database MongoDB. Each of those documents are tagged
with a timestamp and their unique id, which are initially defined
in the CAEX file.
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Fig. 5. Multiple database architecture with InfluxDB and MongoDB.

5. Use-Case

In this section an exemplary use-case for generating process
knowledge by applying data mining techniques on welding data
is presented. Most robot welding systems are still manually pa-
rameterized. The parameterization process has multiple degrees
of freedom and requires expert knowledge. One degree of free-
dom is the velocity of the welding torch, which has a significant
impact on the quality of the welding seam. The correct setpoint
for the velocity depends among other variables on the type and
thickness of the material and the type of seam. An experienced
user of robot welding systems has implicit knowledge on how
to set the welding velocity parameter for a specific set of bound-
ary conditions.

By having a large set of welding data, it is possible to find of-
ten used and well tested velocity setpoints given a set of bound-
ary conditions. The first step is to find welding datasets with
similar boundary conditions (type and thickness of material,
type of seam). With the proposed data format, it is possible
to filter all datasets for boundary conditions. In figure 6 the ve-
locity of the welding torch for multiple data samples is plottet
with respect to the thickness of the material. The data samples
are filtered for the type of seam and the material.

The second step is to analyse the welding data and draw con-
clusions for the quality of the welding seam. Assuming that
an operator will change the parameterization until the resulting
quality is satisfying, an exemplary algorithm for estimating the
welding quality is based on the following steps:

(i) identify a welding order with a lot size greater than ten

(ii) identify the index i of the welding job, for which the weld-
ing parameters have last been modified

(iii) all parameterizations for welding job index smaller than i
are considered to have bad quality, all parameterizations
with a welding job index greater or equal i are considered
to have good quality

The quality of the weld in figure 6 is indicated by the shape
(filled circle: good quality; hollow circle: bad quality). This
plot requires welding data samples of lots of different parts,
with different material, thickness, velocity setpoints and type
of seams. Since the presented data format is not yet adopted by
the industry, such a large set of data samples does not yet exist,
therefore the plot is created with dummy data to better illus-
trate how this use-case works. The required number of recorded

welding seams for a meaningful evaluation of the use-case dis-
played in figure 6 can be extrapolated as follows. It is assumed
that on average 10 welds of one type of material and thickness
will generate 2 data points (one with bad quality and one with
good quality). Choosing a thickness resolution of 0.1 mm in
the range of 0 to 10 mm will result in 100 steps. For each step
10 data points will be required, which results in 50 welds and
thus for 100 steps in 5 000 welds. Therefore, generating a map
for 20 different types of seam increases the number of needed
welds to 100 000.
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Fig. 6. Exemplary visualization of welding data samples (dummy data).

The third step is to analyse the velocity setpoints with data
analysis methods like regression or cluster analysis. The pri-
mary goal is not to find optimal settings, but rather to reduce
the degrees of freedom in the parameterization process. The
operator of the welding robot system therefore no longer needs
to decide which value for the welding velocity is used, instead
he receives a suggested setpoint by the welding assistent sys-
tem. This makes it possible for non-experts to use robot weld-
ing systems. However, the semantic modeling of welding data
still requires an expert, which is a general limitation of semantic
modelling.

This use-case takes only three input variables (type of ma-
terial, thickness of material, type of seam) and produces one
output variable (quality of seam). However, more use-cases are
possible, taking the information provided by the robot program,
design data, welding procedure or camera sensors into account.
The presented data format can store all the required informa-
tion and save the context of the data to enable more use-cases
in the future. One example could be the automatic workpiece
position presented by Diaz et. al. [29]. Having a large set of
welding data available, would also allow to validate new algo-
rithms without the need of running test series.

6. Conclusion and Future Work

In this paper, a novel data structure for the domain of robotic
arc welding is proposed. The scalability problem of single file
solutions is solved by storing the welding data in databases. The
exchangeability of welding data is achieved by storing the meta
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data and access information to the databases in a defined se-
mantics in the CAEX format of AutomationML. An exemplary
implementation of the data structure for a complete robot weld-
ing cell was presented. The usefulness of having a complete set
of welding data for data mining techniques was demonstrated
by an exemplary use-case. Due to the diversity of manufacturer
specific data formats, the data still needs to be converted before
it can be stored in this generic data structure. Thus, individual
expert knowledge and effort is required for creating the seman-
tic model.

The exchange of welding data with mutual benefits between
parties is still an unsolved problem. Currently, the users of
robot welding systems lack incentives to collect and share their
welding data or make it publicly available. An incentive could
be to get access to the results of analytic services based on weld-
ing data. However, most data mining techniques require a large
set of welding data to extract knowledge of the welding process,
which is currently not available.
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