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Abstract

Researches in biological sciences are knowledge based, where any prior knowledge in
a given research field is as important as the formulation of a hypothesis. Text mining
and knowledge discovery methods have been utilized in human genomics and related
fields for identifying genes, proteins, related networks and to enrich the identified entities
with external database information, the important prior knowledge in the field. But, in
livestock genomics however, the extraction of prior information is restricted to traditional
keyword search and document retrieval. The aim of this thesis is the introduction of text
mining applications to livestock genomics and associated field. ProMiner, a dictionary
and rule based named entity recognition system and the associated knowledge dscovery
platform SCAIView has been successfully used in human, mouse and plant genomics
and related fields. Through this thesis the existing SCAIView and the associated system
was adapted for the use in livestock genomics field and the present version works with
cattle and pig data. Considering the importance given to the preimplantation period
in cattle genomics, a terminology for cattle preimplantation period was developed and
integrated into the adapted livestock genomics version of SCAIView to aid concept based
search. The present version of livestock genomics SCAIView is intended as a prototype
for demonstrating possibilities of text mining and knowledge discovery to the researchers
in livestock genomics.
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1 Introduction

The practice of raising livestock has been in existence from a very early time in human
history. Yet how much do we know about them? Most of the livestock animals have been
a major source of protein, fiber (wool, hides) and labour since domestication. Besides
these qualities, farm animals can also be used as models for pathological and physiological
studies, since the physiology and anatomy of farm animals like pig, sheep and even cattle
are similar to that of human beings. Also, there are less ethical issues concerned with the
use of livestock animals for these studies. The phenotypic diversity and large population
of these animals make them suitable candidates for wide scale genome analysis. The study
and analysis of genes and proteins of these animals are of a wide interest to researchers,
as the knowledge gained from the study of genome and proteome analysis can be used to
make these animals more healthy and high yielding. Many researchers are interested in
farm animal genomics because of the benefits of understanding proteomics and genomics
of various organisms (Roberts et al., 2009). Numerous instances can be pointed out where
domesticated farm animals could be effectively used as model organisms. Domesticated
sheep species are widely used for studying the effect of environmental factors on developing
embryo. Piglets are used as model organisms for human infant nutrition and pigs are
also prone to diseases like artherosclerosis, gastric ulcers and obesity like humans, which
makes them a model organism for these diseases (Roberts et al., 2009). Hence, it can be
said that livestock genomics can play a major role in improving the overall quality of
human life.

Figure 1.1: Chart showing growth veterinary corpus in PubMed over a period of ten
years from 1998 to 2008
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In the whole animal genomics and proteomics domain, what is the role of bioinformatics
tools and other computational techniques? Bioinformatics tools, computational techniques
and other information retrieval systems come into picture in data storage, data retrieval
and data analysis from databases. A most common example is PubMed1 (refer to Section
3.1.2), one of the largest sources of electronic biomedical data. In Pubmed, the number
of animal science and animal genomics documents show a steady increase. PubMed has
a special collection of documents relating to the animal science domain, the Veterinary
corpus2 and the corpus is presently a collection of more than 1.5 million documents.
Figure 1.1 shows the increase in number of documents in veterinary corpus over a period
of ten years and Figure 1.3 shows the number of documents present in the corpus for
organisms such as cattle, mouse and pig. The use of high throughput technologies
in livestock genomics has lead to an ever-increasing amount of data in the livestock
genomics field. But, to make use of these additional information, enrichment with external
information is necessary. For example, overlaying functional gene annotation data on
micro array experimental data. However, most of the “enrichment“ information needed
is present in free written texts like scientific publications, not in databases as structured
information. This information in free text is often considered as hidden information, and
the search and retrieval of this information are not trivial
(Leser and Hakenberg, 2005). Text mining is the process of retrieving high quality,
“hidden“ information from written texts. Knowledge discovery is a term that is used
quite often with text mining and is defined as the extraction of previously unknown,
hidden and potentially useful information. In a broad sense of view text mining can be
categorized as one of the methods for knowledge discovery. Powerful text mining tools
are in existence in the human genomics field, which could extract high quality gene and
protein information from free texts. A classical example of such a system is ProMiner
(Hanisch et al., 2005), a dictionary and rule based text mining tool and associated search
engine SCAIView (Hofmann-Apitius et al., 2008), developed at the Fraunhofer Institute
of Algorithms and Scientific Computing (SCAI). An example of knowledge discovery
through text mining can be demonstrated through the ABC model of complementarity,
(Laine, 2008), (Swanson and Smalheiser, 1997) where two concepts from different domains
are joined thorough a set of concepts that is common to both the domains. This was
explained through demonstrating connection between fish oil and Multiple Sclerosis (MS).
A component of fish oil is its omega 3 essential fatty acid- “docosahexaenoic acid“, which
has beneficial effects on the disease, yet without proofs then. When a PubMed search was
conducted with “Multiple Sclerosis“ and, “docosahexaenoic acid“ as individual terms,
the search returned 38113 for the former and 4370 for the latter. But for the query
“Multiple Sclerosis AND docosahexaenoic acid“ the query returned 8 articles as hits. But
a close inspection of the contents of the initial search results reveals that the search terms
has a set of concepts and terms in common. For example, the biological entities like
“MMP9“ and “TIMP“ occurred frequently in both the abstracts. The literature about
Multiple Sclerosis treated inflammation as a concept, as the disease often characterizes

1http://www.ncbi.nlm.nih.gov/pubmed last accessed 3 November 2009
2http://www.nlm.nih.gov/bsd/pubmed subsets.htmllast accessed 3 November 2009
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inflammations in the central nervous system. The literatures describing the role of MMP9
in Multiple Sclerosis also points out that expression tissue inhibitors of metalloproteinases
(TIMP) can control the activity of MMP9 and the relative under expression of TIMP
proteins in Multiple Sclerosis conditions. The literature about docosahexaenoic acid also
mentions the beneficial effects of the fatty acid on levels of TIMP. So by analyzing the two
separate classes of facts mentioned in separate literature sets, it was concluded that fish
oil has healthful effects on Multiple Sclerosis (Laine, 2008). Thus by analyzing common
concepts and information conveyed these concepts in two different but overlapping fields,
it was able to reach a possible conclusion for a question, demonstrating the use of mining
free text to find information (see Figure 1.2).

Figure 1.2: ABC model of complementarity adopted from Laine (2008)

But so far, animal genomics has been entirely concentrated on data from databases
and data derived through experiments. The purpose of this thesis is the introduction of
a text mining tool to the animal science domain, adapting the existing system SCAIView
to suit the needs of researchers in the animal science field.

The first chapters of the thesis are focused on animal genomics, particularly cattle
and pig genomics, the research directions in these fields, and the use of bioinformatics
tools in farm animal genomics field. The follow on chapters are concentrated on problem
definition, state-of-the art, text mining, the current status of text mining followed by brief
descriptions on ProMiner and SCAIView. The end chapters are dedicated to materials
and methods used, and the results and discussions.
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Figure 1.3: Comparison of number of PubMed abstracts for cattle,mouse and pig present
in Veterinary corpus: data as of 3 November 2009
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2 Livestock genomics: an overview

The origins of modern livestock genomics could be traced back to a series of conferences
in the early 1990s, where schemes were developed, and collaborations were established,
which aided in maximizing the resources that were available to the livestock genomics
in that period. The advances in the human genome initiative paved the way for animal
genetics. While animal genomics was still in its infancy, animal geneticists initiated
genome projects for some of the most widely used species, which is a reason for the
current collection of genomic resources (Womack, 2005). The advances in the genomic
studies of farm animals can be categorized into four major sections (1) construction of
markers and genes, (2) identifying genes responsible for commercially important traits,
(3) use of genome maps to scan across genomes, to identify quantitative trait loci of
commercially important traits (4) and all of these finally leading to the production of
livestock animals with desirable agronomic (agricultural and economic) qualities
(Bulfield, 2000) (see Figure 2.1).

Figure 2.1: Reasearch directions in farm animal genomics

A comparison of human genomics with animal genomics reveals the differences in
the research directions of the two fields. In human genomics importance is given to
diseases, and the research revolves around genetic diseases, genetic disorders, their
prevention, treatment and pharmacogenomics, whereas in case of animal genomics
research, commercially important traits are in lime light and attention is given to
increasing productivity, better growth yield and rate, and disease resistance.

The advanced knowledge about genomics of behavior, disease susceptibility, morphology
and phenotypic diversity of livestock animals combined with advanced and cost effective
genotyping technologies have resulted in genomic selection. Advancements in genomic
selection could finally lead to marker assisted selection of commercially important animals.
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2.1 Cattle and Cattle Genomics: An Overview

Cattle, domesticated even-toed ungulates1 are raised for meat, dairy products, hides
and labour. They were domesticated in the early Neolithic era. Cattle is a ruminant, a
mammal of the order Artiodactyla with three fore stomachs and one true stomach.

Table 2.1: Cattle general information

Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Artiodactyla
Family: Bovidae
Genus: Bos
Number of chromosomes: 30 (28+2)
Taxonomy ID: 9913

Figure 2.2: German Holstein cattle Figure 2.3: Brown Swiss cattle

There are more than 800 recognized cattle breeds worldwide. Most of the breeds
generally fall into two subspecies Bos indicus or Bos taurus. Bos indicus or
Bos taurus indicus, (also called zebu) are adapted for hot climates. Bos taurus or
Bos taurus taurus, adapted to cool climates, typical cattle found in Europe and are
referred to as “taurine“ cattle. Hybrids of Taurus and Indicus can be found and are
mostly adapted for warmer climates2. The cattle breeds present in the Institute of Animal
Science Frankenforst research station are German Holsteins (see Figure 2.2) and Brown

1Ungulates are animals that use tip of their toes (usually enlarged toe nails called hoof) to sustain
body weight

2http://www.absoluteastronomy.com/topics/List of breeds of cattle last accessed 3 November 2009

6

http://www.absoluteastronomy.com/topics/List_of_breeds_of_cattle


2.1 Cattle and Cattle Genomics: An Overview

Swiss3 (see Figure 2.3). The cattle genome (Bos taurus) is fully sequenced as of now
and according to Ensembl4 database the cattle genome has 24,580 genes and has 80%
similarity to that of human genome. The bovine genome sequencing project has also
shown that human chromosome assembly is more similar to cattle than that of mice or
rat. Cattle is the first livestock animal to have its genome completely sequenced and
analysed.

Cattle genomics originated from somatic cell genomics, and the first cattle genome
maps were synteny groups. Somatic cell genetics and in situ hybridization were combined
to assign the synteny groups5 into chromosomes. An international cattle linkage map was
created in the early 1990s and from then on cattle genomics has undergone significant
development (Bishop et al., 1994). The development and use of radiation hybrid6 (RH)
maps in high resolution comparative mapping was one of the significant advancements in
the cattle genomics field. All these developments led to the final complete assembly of
bovine genome. At first, cattle cloning was guided by commercial interest to produce
genetically superior animals with commercially desired phenotypic traits. Although the
primary objective remains the same, researchers are now using cattle cloning to answer
questions in diverse fields such as reproduction biology, developmental and cell biology
(Fulka,Jr and Fulka, 2007). Affymetrix has developed microarrays for bovine, called
as GeneChip® Bovine Genome Array7. The chip was developed through developed
through GeneChip® Consortia Program8 and was built based on Bovine Unigene build
57 data. Bovine Genome Array contains about 24,072 probe sets and they represent
approximately 23,000 bovine transcripts and 19,000 Unigene clusters9. Illumina has
introduced SNP gene chips for cattle in association with United States Department
of Agriculture Agriculture Research Service (USDA ARS), University of Missouri and
University of Alberta and is called as BovineSNP50 BeadChip. The chip has more that
54,000 SNP probes. The probes are derived from various sources like novel SNPs from
Illumina‘s Genome Analyzer, Bovine HapMap data set, and various whole-genome shot
gun reads and Holstein (cattle breed ) BAC sequence data10.

3http://uf.ilb.uni-bonn.de/versuchsgueter/Frankenforst/de/Betrieb/Tierhaltung/index.html last ac-
cessed 8 November 2009

4 http://www.ensembl.org/index.html last accessed 10 September 2009
5Synteny is defined as the co-localization two or more genes are present close together in a chromosome

independent of the linkage between them.
6Chromosomes are separated from one another and high dose X rays are used to break into several

fragments. The order of markers on a chromosome can be determined by estimating frequency of
breakage. RH mapping is used to create whole genome radiation hybrid map

7http://www.affymetrix.com/products services/arrays/specific/bovine.affx#1 1last accessed 3 Novem-
ber 2009

8http://www.affymetrix.com/partners programs/programs/consortia.affx last accessed 3 November
2009

9http://www.affymetrix.com/support/technical/datasheets/bovine datasheet.pdf last accessed 3
November 2009

10http://www.illumina.com/Documents/products/datasheets/datasheet bovine snp5O.pdflast accessed
3 November 2009
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Table 2.2: Cattle: genome information
Source: Ensembl database, data as of 02 May 2009

Number of chromosomes: 30 (28+2)
Known protein-coding genes: 20,118
Projected protein-coding genes: 521
Novel protein-coding genes: 686
RNA genes: 2,846
Gene exons: 224,748
Gene transcripts: 30,509
SNPs: 2,057,872

Currently, ruminant biology is making use of the advancements in functional genomics.
In addition, developments in comparative functional genomics of cattle genome can also
provide significant data on interspecies differences in cell, tissue and organismal biology
(Lewin, 2003). Cattle genomics is also focused on producing offsprings with desired
phenotypic qualities through various manipulations of embryo, and most of these embryo
manipulations are done on embryo at the preimplantation stage. Various keys word
search experiments done in PubMed also shows that the number of documents relating
to cattle preimplantation in PubMed is also increasing (see Figure 2.5)

Preimplantation stage (see Figure 2.4) is defined as the time period between fertil-
ization and embryo implantation in the uterus, and in cattle preimplantation period is
approximately 10 days. This stage is important, in terms of growth and development
of the cattle embryo and commercial interests. The beginning of genome transcription
of the embryo (embryonic genome activation) and other major morphological and non
morphological changes happening in the embryo are crucial to its development whereas
commercially, cattle embryos are transferred to the recipient cows when embryos are
7-8 days old at the blastocyst stage. So, any aberrations to the embryo at this stage
will adversely affect the proper growth and development of the embryo and commercial
interests (Wilmut et al., 1998). In vitro production (IVP) techniques and nuclear transfer
(NT) technologies are commonly used for embryo manipulations.
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Figure 2.4: Preimplantation embryo development
adopted from http://stemcells.nih.gov/StaticResources/info/scireport/
images/figurea3.jpg last accessed 02 October 2009

However, it was noted that there are differences in embryos produced in vivo, and
those produced using various embryo manipulation and production techniques. The
morphology, gene expression and metabolism of in vitro produced embryos were often
different from normal in vivo embryo. In vitro produced embryos also showed problems
like increased rated of abortion, large calf size (large offspring syndrome in cattle),
aberrant muscle gene expression, increased neonatal mortality and a sex ratio that is
skewed towards males (Hansen and Block, 2004). Lower developmental competence, cell
number at embryo stages, differences in gene expression, mitochondrial genetics and
embryonic, fetal and neonatal problems are accounted for defects and problems related
to NT-derived embryos. Researchers in cattle genomics are investigating the genetic
reasons behind the problems associated with IVP and NT derived embryos, especially at
the preimplantation stage. Hence preimplantation genetics has evolved into a major field
in cattle genomics. A list of various genes expressed during cattle preimplantation period
in embryos derived from different sources are given in Figure 2.6. A survey of existing
cattle genome databases was done for this thesis and is presented in Section 6.1.1.
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Figure 2.5: Graph showing growth in number of cattle preimplantation related abstracts
in PubMed over a period of ten years
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Figure 2.6: List of Preimplantation genes in cattle adopted from Wrenzycki et al. (2004)
Legend: ˘up regulated, ˇdown regulated, + expression, - no expression, n.a.
not analysed, ˘/Ø, ˇ/Ø varies with different expression systems
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2.2 Pig and Pig Genomics: An Overview

Pig, domesticated even toed ungulate is raised solely for its meat.

Table 2.3: Pig general information

Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Artiodactyla
Family: Suidae
Genus: Sus
Number of chromosomes: 20 (18+2)
Taxonomy ID: 9823

Figure 2.7: German Landrace pig Figure 2.8: Pietrain pig

There are more than 100 pig breeds worldwide and German pig breeds include Angeln
Saddleback11 (Angler Sattelschwein) and Bentheim Black Pied12 (Buntes Bentheimer
Schwein), both of which are considered as rare breeds. Some of the common pig races that
are used in the institute of animal science research station are: DL (German Landrace
(see Figure 2.7)), DE, Pi (Pietrain (see Figure 2.8)), Du (Duroc), PixDu13. Linkage maps
for the pig genome were created by European PiGMap initiative and USDA-MARC swine
genome project in the midst 1990s. Somatic cell genetic and RH mapping speeded up
swine comparative mappings (Womack, 2005).

11http://www.ansi.okstate.edu/breeds/swine/angelnsaddleback/index.htm last accessed 3 November
2009

12http://www.ansi.okstate.edu/breeds/swine/bentheimblackpied/index.htm last accessed 3 November
2009

13http://uf.ilb.uni-bonn.de/versuchsgueter/Frankenforst/de/Betrieb/Tierhaltung/index.html last ac-
cessed 8 November 2009
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Although many sequencing projects have been undertaken for pig (Sus scrofa), the
amount of information on pig genes and proteins in the public databases is sparse. A $10
million project is currently undertaken by an international consortium for pig sequencing,
with Wellcome Trust Sanger Institute heading the genome sequencing14. The pig genome
is similar to human genome and has 18 autosomes and 2 sex chromosomes. Similar
to bovine gene chips, Affymetrix has developed GeneChip® Porcine Genome Array15

and is also derived as a part of GeneChip® Consortia Program. The array contains
23,937 probsets for 23,256 transcripts from 20,201 genes. The data for the probesets
are compiled from UniGene build 28, Genebank mRNAs till August 2004 and GenBank
pig mitochondrial and rRNA sequences. Illumina and International Porcine SNP Chip
Consortium have jointly developed a Porcine 60K BeadChip with a total of 62,163 snps
on the chip.

Since pig is used as one of the major source of meat, research in pig genomics is also
concerned with the genetic factors that affect the quality of porcine meat. In case of
meat quality the targets are colour, intramuscular fat, tenderness, pH and water holding
capacity. It was found that there are three major commercially important gene effects
for porcine meat quality, such as:-

� The sex chromosome effect: the quality difference in meat between barrows
(castrated male hog) and gilts (female hog). The difference is that barrow meat
has a marbling effect16 compared to gilt meat and barrows have more back fat and
less meat yield percentage when compared to gilts.

� Stress gene effect: which was first described as porcine stress syndrome. It was
found that when some hogs were stressed physically, were more susceptible to
death and produced a pale soft and exudative meat, a condition referred to as
Porcine Stress Syndrome (PSS). Meat pH, colour, drip loss, intra muscular fat and
tenderness are deleteriously affected by the HAL gene.

� Napole effect: the condition caused by the Napole (RN-) gene, the result of which
is a low muscle pH, cooking loss and water holding capacity, yet, Napole gene has a
positive effect on meat tenderness. The state caused by Napole gene is mentioned
as the Hampshire effect.

In the quest for improved meat quality, researchers in pig genomics are working on
two separate directions. In the first direction, researchers are working on identification
of major genes and polymorphisms in them, which are responsible for the basis meat
qualities. In the second direction, scientists use DNA marker information to identify the
stretch of DNA that is closely linked to the gene responsible for a target trait (QTL).
This method is addressed as Quantitative Trait locus Mapping (QTL mapping)
(de Vries et al., 1998). A survey of existing pig genome databases was done for this thesis
and is presented in Section 6.1.2.

14http://www.sanger.ac.uk/Info/Press/2006/060116.shtml last accessed 15 July 2009
15http://www.affymetrix.com/products services/arrays/specific/porcine.affx last accessed 4 November

2009
16the presence of intramuscular fat in red meat giving the appearance of a marble like pattern in meat
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2.3 MicroRNAs: An Overview

“MicroRNAs (miRNAs) are endogenous ∼22 nt RNAs that can play important regulatory
roles in animals and miRNAs plants by targeting mRNAs for cleavage or translational
repression“ (Bartel, 2004). The microRNAs were initially discovered in C. elegans,
(Grad et al., 2003) in which two 22 nucleotide long noncoding RNAs were found to
interfere in growth and regulation. The let-7 RNA was found to promote the transition
from late larval to adult cell fates and second on lin-4 RNA was found to act in the
development to promote progression from the first larval stage to second. Experimental
and computational methods have helped in the identification of miRNAs in most of
the organism including plants. In different organisms they function differently, in flies
miRNA functions include control of cell proliferation, cell death and fat metabolism,
where as miRNAs have a role in neuronal patterning in nematodes and in mammals
the function include modulation of hematopoietic lineage differentiation. In plants, they
control the leaf and flower development.

MicroRNA biogenesis (see Figure 2.9) begins with the transcription of the miRNA gene
by RNA polymerase II, which generates a long primary miRNA that contains mature
miRNA as RNA hair pin (see Figure 2.10). A 70 bp precursor miRNA is formed as the
primary miRNA is cleaved by Drosha, an endonuclease. Exportin-5 protein transfers the
precursor miRNA from the nucleus to the cytoplasm where it is further processed by
an endonuclease enzyme called as Dicer. In this step, the ∼21 nucleotide long hairpin
loop of miRNA is cut. The resulting miRNA:miRNA*(miRNA* is the complementary
microRNA strand) duplex is identified by RISC(RNA Induced Silencing Complex ) and
the microRNA complementary strand is generally degraded. The resulting complex
functions as mechanism of post transcriptional control. The miRNA attached to RISC
targets specific binding sites of mRNA is the 3’ UTR (untranslated region) (Kim, 2005).
RISC is a ribonucleoprotein complex needed for the miRNA mediated gene silencing.
The component proteins of the RISC include agronuate proteins (AGO1 to AGO4)
(Rand et al., 2004), the Dicer protein and human immunodeficiency virus-1 transactivating
response element RNA binding protein.
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Figure 2.9: MicroRNA biogenesis adopted from Kim (2005)

Figure 2.10: MicroRNA hairpins adopted from
http://openlearn.open.ac.uk/file.php/2645/S377 1 019i.jpg last accessed
November 2 2009
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Three major theories have been postulated on the post transcriptional gene regulation
mechanism by miRNA (McDaneld, 2009). The first theory proposes that the target
mRNA is endonucleotycally cleaved at the binding site by miRNA. This theory proposes
that miRNA targeting of mRNA is based on number and type of base pairs that match
at the 3’ UTR binding site of miRNA (Engels and Hutvagner, 2006). A second theory
proposes blocking of initiation by miRNA:RISC complex. This theory proposes that
although the miRNA:RISC complex binds to the 3’ UTR region of miRNA the post
transcriptional gene regulation is achieved through a cascade of events that finally block
the initiation proteins from binding to the 5’ cap of mRNA (Chendrimada et al., 2007). A
third theory proposes that miRNA:RISC complex transports mRNA to P-bodies (Chan
and Slack, 2006). P- bodies are regions in cytoplasm which are rich in enzymes and
factors for mRNA turnover and repression of translation but lacks ribosomal proteins
for translation. P bodies are believed to be site of miRNA action (McDaneld, 2009). A
noteworthy characteristic of animal microRNA is that the genes coding for microRNAs
in animals are grouped and clustered together in genome and these clustered miRNAs
are produced from a single mRNA molecule resulting from the translation of several
genes. It was also found that if the produced miRNA molecules have sequence similarity,
the association might contribute an additive effect to gene regulation. For example, the
miRNA genes miR-125 and let-7 are clustered together in fly genome and these are
regulated together (Ambros, 2004). Figure 2.11 gives a graphic representation of various
theories proposed for microRNA gene regulation.

The advancements in miRNA research has led to the research of miRNA for traits of
economical importance in farm animals. The first subject of interest was the factors that
affect the development and growth of economically important tissues like skeletal muscle
and adipose tissue. There were instances pointed out where several miRNAs were found
to have a direct influence on myogenesis and associated pathways and certain muscle
specific miRNAs that has a direct influence on economic traits in livestock were also
reported (McDaneld, 2009). A mutation in the myostatin gene of the heavily muscled
Belgian Texel sheep creates a target site for the microRNAs miR-1 and miR-206 in
the 3’ UTR region of the transcript. This mutation results in a decreased translation of
the myostatin protein and a resulting increase in muscle mass. In addition to miRNAs
affecting muscles, research was also done in miRNAs having an effect on adipose tissue. In
human pre adipocytes, miR-143 was found identified; the amount of the same increased
during adipocyte differentiation and it was noted that adipocyte differentiation rate was
decreased upon the inhibition of the miRNA (Esau et al., 2004). Transcriptome profiling
of miRNAs were done to determine the role of miRNAs in livestock species. It was found
that a large proportion of miRNAs were expressed in all cell types and a certain number
of miRNA were expressed in certain cell types and during certain developmental stages
of the embryo. The emerging areas of microRNAs research in livestock genomics include
reproduction, immunology and feed efficiency. Recent developments in this field include
identification of bovine miRNAs expressed in cumulus oocyte complexes during late
oogenesis (Miles et al., 2009) and determining the miRNA motifs that are associated
with genetic variants that are responsible for different residual feed intake
(Barendse et al., 2007).
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Table 2.4: Number of microRNAs identified in cattle, human and mouse:
data as of 28 Septemer 2009, source miRBase version 14.0

Organism Number of microRNAs
identified

Cattle 356
Human 706
Mouse 547

Pig 77

Figure 2.11: MicroRNA RISC assembly and functions adpted from Engels and Hutvagner
(2006)
Legend: (1-4) miRNA complex formation with RISC, (5) endonucleolytic
cleavage of mRNA, (11) mRNA further degradation, (6) Blocking translation
initiation, (7-9) mRNA excluded from translation and transported to P-
bodies storage and degradation, (10) RISC assembly
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3 Knowledge discovery and text
mining in biomedical domain: an
overview

3.1 Sources of biomedical literature

With the onset of online publication, literature published anywhere in the world has
become accessible to anyone in any part of the world. Especially the Biomedical domain
saw a boost in the number of literatures published. Online publishing also helped
scientists to understand what their counterparts on other side of the globe is interested
in, on a daily basis. Although the overall amount of data accessible has been increased
tremendously, the reliability of these data is at question. But, this problem can be
alleviated by using reliable online data sources. If analyzed from a biomedical framework,
the largest data source in the World Wide Web is PubMed, a service of the United
States National Library of Medicine (NLM1). PubMed, along with its largest component
MEDLINE, covers over 19 million citations and some full text articles in PubMed Central.
Other major players in this field include Nature Publishing Group2, Science3, Science
Direct or Elsevier4 who provides access to high quality journals based on a licensing fee
system. At this point, it is worth mentioning about some of the other publishers like
Oxford Journals, which also has high screening standards for the journals selected for
publishing. Now, the major sources of biomedical literature, PubMed and MEDLINE
will be explained in detail.

3.1.1 MEDLINE (Medical Literature Analysis and Retrieval System
Online)

MEDLINE is a leading bibliographic database containing literatures from the fields
of medicine, nursing, dentistry, veterinary medicine, the health care system, and the
preclinical sciences by United States National Library of Medicine (NLM). Literature
Selection Technical Review Committee (LSTRC) gives recommendations for journals to
be selected for MEDLINE. Currently MEDLINE holds more than 19 million citations from
5,200 worldwide journals in 37 languages. MEDLINE comes under PubMed, which is a

1http://www.nlm.nih.gov last accessed 2 November 2009
2http://www.nature.com last accessed 10 November 2009
3http://www.sciencemag.org last accessed 10 November 2009
4http://www.us.elsevierhealth.com/index.jsp last accessed 10 November 2009
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part of Entrez series of databases maintained by NLMs National Center for Biotechnology
Information (NCBI). A unique feature of MEDLINE is that the records in MEDLINE are
indexed by MeSH (Medical Subject Headings) controlled vocabulary by NLM. Since its
introduction in 1971, MEDLINE quickly gained popularity. Since 2005 around 2000-4000
completed references are added each day, Tuesday through Saturday. Figure 3.1 shows
the number of PubMed searched made in a span of ten years, showing the increasing
popularity of PubMed.

Figure 3.1: Number of MEDLINE searches made from Jan. 97 to July 07

MEDLINE search engines are designed to use a Boolean expression that combines
MeSH terms, keywords in abstract and title of the article, author names, published date
and so on. MEDLINE search engines allow also querying for similar abstracts depending
on a mathematical scoring function which takes into account the word content of the
abstract and title of the article5.

3.1.2 PubMed

PubMed is the search engine that is primarily used to access MEDLINE, which is built to
search MEDLINE for abstracts, citations and full text articles in fields relating to biology
and medicine. Some of the services provided by PubMed include free access to MEDLINE,
links to full text article sites and related information sources, links to PubChem and
many other molecular biology databases, links to articles related to a selected citation
and so on. In addition to MEDLINE, PubMed also contains the following:

5http://www.nlm.nih.gov/pubs/factsheets/medline.html accessed September 13, 2009
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� In process citations provides a record of an article before the article is indexed
with MeSH or changed as out of scope article.

� Some of the OLDMEDLINE citations which are not updated with the present
vocabulary.

� Out of scope citations from certain general science and general chemistry journals.

� Some full text articles that are submitted to PubMedCentral, but not recommended
for inclusion in MEDLINE.

� Some early physics journals which were a part of the prototype in the early 1990s.

� Some citations that were done before the journal was subjected for MeSH indexing6.

A detailed analysis of the difference between information content of full texts in PubMed
Central and abstracts in PubMed documents was done (Mueller, 2009). In the study it
was found that there are approximately more than 1.89 million full text documents in
PubMed Central. As a part of this thesis full text documents in PubMed Central for
cattle and pig were searched and it was found that PubMed Central contains 1363 cattle
related full texts and 643 pig related full texts.

When a search query is submitted in PubMed, PubMed will try to match the terms
in the query to a series of lists through a feature called as Automatic Term Mapping.
PubMed will try to match the terms in the search query to subject in the MeSH translation
table (an alphabetical list of MeSH terms, subheadings, references, names of substances
and synonyms). If the term was not successfully matched to a MeSH term Automatic
Term Mapping will try to match the query as a journal in the Journal Translation table
or as Author and Investigator names in Full Author translation table, author index, Full
Investigator translation table or investigator index. If PubMed is not able to match the
phrases, then those are broken apart and the process is repeated. PubMed also matches
the terms and phrases to a stopword list (a list of the most commonly occurring words).
These terms are not included in the search or indexing, as a search with these terms
would return almost all of the articles as a hit.

PubMed also supports search using Boolean operators (AND, OR, NOT), a search
in PubMed using Boolean operators requires the use of Boolean operators in capital
letters. PubMed supports nesting of Boolean operators. Normally Boolean operators in a
search are processed from left to right. When search terms along with Boolean operators
are enclosed in parentheses, these are processed as a single unit. For example a search
query like “cattle preimplantation AND IVF OR cloning“ will retrieve all the documents
citing cattle preimplantation period and IVF along with all the documents with the term
cloning in it (see Figure 3.2). If the same terms and Boolean expressions are used with
parentheses like “cattle preimplantation AND (IVF OR cloning)“, the result would be
different(see Figure 3.3).

6http://www.nlm.nih.gov/pubs/factsheets/pubmed.html accessed September 13, 2009
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Figure 3.2: PubMed un-nested search Figure 3.3: PubMed nested search

This versatility of the PubMed search engine is the main reason why most of the text
mining approaches in biomedical domain to use PubMed as one of the prime search
engines to retrieve text.

3.2 Knowledge discovery

Knowledge discovery is a term that is used in close association with data mining and
text mining. Knowledge discovery is defined as “the nontrivial extraction of implicit,
previously unknown, and potentially useful information from data“ (Frawley et al., 1992).

The proposed knowledge discovery process consisted of nine stages which were summa-
rized as (Fayyad, Piatetsky-Shapiro and Padhraic 1996):

� Developing and understanding the application domain.
The first step, where the needs of the end user are understood and basic knowledge
about the domain is gathered.

� Creating a target data set.
This step involves querying the already existing data set to select the target subset
and sampling variables (attributes) and data points (examples) that are to be used
to perform knowledge discovery task.

� Data cleaning and preprocessing.
The tasks such as removing the outliers, noise reduction and dealing with missing
values are done at this stage.

� Data reduction and projection.
This step includes processes like data transformation and data dimension reduction
which would finally the projection of data in its homogeneous form.
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� Choosing the data mining task.
Here decision is made on the data mining task (like classification, clustering or
regression) to be used, so that the objectives defined in the first step are met.

� Choosing the data mining algorithm.
The data mining task selected in the previous step is put to use at this phase. The
models used and parameters applied in the method are adjusted to produce an
optimum result.

� Data mining.
The patterns are generated at this stage. For example, patterns like classification
rules, decision trees, regression models and trends etc.

� Interpreting mined patterns.
The extracted patterns and models are visualized and the visualization of the data
is based on the models that are extracted.

� Consolidating discovered knowledge.
The final step, where the discovered knowledge is incorporated into the performance
system and is also done at this stage.

Figure 3.4: Knowledge discovery process
Adopted from http://liris.cnrs.fr/abstract/fayyad1996.png last accessed 02
October 2009

The process is iterative and at each and every step a change of parameter or further
refinement of the data would result in an altered knowledge representation (Figure 3.4).
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3.3 Text mining

Text mining can be summarized as the process of extracting previously unknown informa-
tion from different written sources, and linking together the newly derived information to
frame new hypothesis or facts. In the biomedical domain, text mining is primarily used to
recognize biological entities through named entity recognition. Text mining in biological
domain is involved mainly in recognizing biological entities such as genes and proteins in
written text, extracting protein-protein interactions through automated processes and
mapping proteins to their functions. From the very beginning, applications of Information
Extraction systems in the biomedical world have been concentrated on Medline abstracts.
Recent developments point out that text mining in biomedical domain also involves
identifying drug names, protein drug interactions, host pathogen interactions and units
important in the biomedical domain. From a text mining point of view, Knowledge
discovery can be redefined as the nontrivial extraction of implicit, previously unknown,
and potentially useful information from data by the analysis of complexities of textual
data.

Biomedical text mining started in the late 1990‘s with gene protein name identification
and protein-protein interaction detection. In a biomedical background, named entity
recognition (NER) can be outlined as identification of biomedical entities like genes,
proteins, drugs, enzymes and so on. A prime source for NER in biomedical domain
would be dictionaries containing the entities and their synonyms used in the domain. An
error at this step can lead to problems in later stages. For instance, in a protein and
gene name dictionary, the entries need to be unambiguous and uniquely mapped to a
database identifier (like Entrez Gene or UniProt). Given below is a classical case of gene
name ambiguity:

In many abstracts, the term “GC“ is used to refer to the gene named “Group specific
Component“. The same term GC is used to cite “Guanylate Cyclase“ in a lot of other
instances and finally, GC is used while mentioning the occurrences of the nucleotides
“Guanine“ and “Cytosine“ (GC rich region in a gene, for example). Term normalization
is the name given to the process by which ambiguous gene and protein names are disam-
biguated and mapped to a unique database identifier. The outcome of disambiguation
process depend on the organism under consideration, the quality of gene annotation
and the amount of gene and protein data that is present in public databases (Entrez
Gene, UniProt ) for the organism (Erhardt, Schneider and Blaschke 2006). Biomedical
knowledge discovery/text mining has special importance, given the fact that the number
of scientific journals in the biomedical context is increasing steadily and not all of the
hidden information in texts makes it to the public domain databases. For example,
it would be interesting for the researchers in the animal science domain to capture
information about a previously unidentified protein-protein (gene-gene) interaction that
is causing structural differences of an artificially transferred embryo, which is hidden
within the latest research publications.

Traditional text retrieval or information retrieval method comprises of formulating
search queries and submitting them to the search engines. Here the quality of the returned
hit depends on the expertise of the user in formulating search queries. Normal text
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based search engines sees the document as a ‘bag of words‘ and index words associated
with each document. Based on the algorithms in search engines, the user formulated
queries are related to the indexed terms and relevant hits are returned. Still the end
result of text searching is a collection of documents, where the information is hidden in
plain sight from the user. Text based knowledge discovery can be regarded as a method
of refining the user query, retrieving and visualizing the relevant information in the
documents and using the patterns in the retrieved data to present new information and
frame hypothesis. Using text mining methods can improve the search quality, assist in
information extraction and leads the way to knowledge discovery from text.

Normal search methods are highly influenced by the search pattern and search behavior
of the user, meaning that the results returned depend on how user formulated the search
query. There are methods in existence, which would improve the search. One of the
methods is the query refinement method. This method works on the concept that the
search terms submitted by the user are not the best ones to express the information as
these terms do not match the terms expressed in the documents. The purpose of the
query refinement method is to assist user in distinguishing those terms which would
probably appear in the documents. One classical example is the feedback system, where
user has an option to retrieve more documents like the one which has best matching
to the query terms. The second approach, natural language searching gives user more
freedom in expressing the search query. These methods allow users to submit queries
like “What are the genes that are expressed in the 32 cell stage of the cattle embryo“.
These methods extract and index the semantic structure of the query terms and also
give importance to relationship between terms. The third method is the clustering of
documents. The clustering is based on content similarity of the documents explained
by prominent terms, which are shared by all the documents in the cluster. The next
method is document categorization, where documents are ordered by separating them
into different categories. Before document categorization can be done for a particular
field, a domain expert should define and name the categories that make up the field. The
final method is the document summarization method, where an abstract or summary
of a full text document is generated automatically. Different techniques are used for
document summarization; some involve extracting the keywords from a document and
presenting these keywords as a summary, some others include scanning for significant
terms in a document and presenting the sentence containing those terms as summary.
Certain sophisticated techniques modify the sentence selected from different parts of a
document to produce a uniform text.

Information extraction methods in text mining are aimed at the automated identifica-
tion of entities, in this case biological entities such as gene/protein names, enzymes, drugs
and the relationship between those terms. The enhanced search methods explained in
the previous section (refer to Section 3.1.2) also extracts the key entities in the text, but
information extraction is more focused towards extracting entities and entity relationships
that expresses a fact. Two different kinds of relationship modeling exist in biomedical text
mining. The first one is the co-occurrence based relationship mining, where relationship
is established between two entities if they occur together. The next one involves the use
of natural language processing (NLP) methods. NLP methods involves use of natural
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language grammar based rules and statistical methods over text to define relationship
between entities. Visualization of extracted terms and relationship is also an important
part of information extraction (Robert and Michael, 2002).

Information extraction can enrich the text based understanding by identifying relevant
entities and relationship between them and provides a better way of understanding the
data in the text. But, researchers in the biomedical domain are interested in acquiring
novel facts about biological entities than knowing about the entities and entity relationship
in a document. Knowledge discovery and knowledge environment representation gain
importance in this context. Knowledge discovery in a biomedical angle concerns with
associating and assembling textual descriptions of data along with other data forms ( data
from biological databases, experimental data etc) to create a descriptive medium that
could help in understanding the meaning and significance of data. The biological database,
UniProt can be modeled as a knowledge environment representation. It integrates data
from multiple sources. The UniProt database itself, data from GO annotation (functional
gene annotation), Interpro database for protein family classification accounts for some
of the database information in UniProt, where as matched text sentences, PubMed ID
and comments on the protein are associated textual information present in the database.
The data from experiments are present in the form of some of the protein sequence
information, confirmation of existence of protein and method of protein crystal study.
Another example for a knowledge environment representation is SCAIView, explained in
the material section of materials and methods chapter.

3.4 Named Entity Recognition Systems

Based on the algorithmic approach used, Named Entity Recognition systems can be
sorted into different approaches. They are:

� Dictionary based approach: Method of matching an entry from a large collection
of names (dictionaries) against text. This approach also includes fuzzy matching
or inexact matching to include spelling variants, use of Greek numerals and use of
hyphen (-) instead of space.

� Rule base approach: Separation of different entity classes using a set of custom
designed rules. For example, use of term topology information like use of capital
letters, symbols and digits to identify gene and protein names.

� Classification based approach: The systems making use of this approach reduces
the task of NER into classifying entities into different classes. In this case, into
different biological classes like genes, proteins, enzymes and so on.

� Sequence based approaches: Sequence based approaches consider the order of
words and phrases into account, and performs a statistical analysis to figure out
the most probable sequence of words and phrases for a given set of words.
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3.5 NER Performance evaluation

The performance evaluation of named entity recognition systems are done by calculating
precision, recall and F-score (F 1 measure) of the system. Precision of a system is defined
as the proportion of relevant entries (for example, genes) in the entries retrieved in total.
True positive is defined as an entity identified by both the ‘gold standard‘ considered and
the system under evaluation. False positive in a system is defined as the entity found
only by the system under evaluation, not by the gold standard, that is an entity that
is incorrectly identified by the system under evaluation. False negative is defined as an
entity that is found only by the gold standard, not by the evaluated system, that is an
entity missed by system under evaluation. F-score is defined as the weighted average
of precision and recall or in other terms the harmonic mean of precision and recall.
Maximum value for F-score is 1 and the least is 0.

Precision =
True Positive

True Positive+ False positive
(3.1)

Recall =
True Positive

True Positive+ False negative
(3.2)

F 1 score = 2× Precision×Recall
Precision+Recall

(3.3)

Since F 1 measure is defined as the balanced harmonic mean between Precision and
Recall, it can also be written as:

F β score =
(β2 + 1)Precision×Recall
β2 Precision+Recall

(3.4)

for a non negative real β, where β is used as a parameter to control the relative weights
that are given to precision or recall. Here, F β is defined as “F β measures the effectiveness
of retrieval with respect to a user who attaches β times as much importance to recall as
precision“ (Rijsbergen, 1979).

All these calculations are done by comparing the results of the system to a gold
standard. In case of system for gene and protein identification, the gold standard is a
corpus with its genes and proteins annotated by an annotator.

BioCreAtIvE: Benchmarking biomedical text mining

For the evaluation of text mining systems and information extraction systems in Biology,
a community wide effort called the BioCreAtIvE7 (Critical Assessment of Information
Extraction systems in Biology) has been initiated. Text mining approaches in biology
were addressing different problems and the performance evaluation of each method was
done using private data sets. BioCreAtIvE was introduced as a performance measure to
determine the quality of existing biomedical text mining tools in biomedical domain, to
test their real world applications and to determine the performance.

7http://biocreative.sourceforge.net last accessed 2 November 2009
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There were two BioCreAtIvE challenges so far, first one in 2004 and a second one in
2006. In BioCreAtIvE 2003/4 the challenges were the identification of gene mentions
in text and linking protein database entries to abstracts and extraction of human gene
product with GO terms. The focus of BioCreAtIvE I (2003/4) was on model organisms
fly mouse and yeast. In 2006/7 the tasks were gene mention tagging, gene normalization
and extraction of protein-protein interactions from text. The second BioCreAtIvE
(BioCreAtIvE II) challenges were focused on human genes.

3.6 State-of-the-art dictionary based approaches

3.6.1 ProMiner

ProMiner is a dictionary and rule based Named Entity recognition system developed at
Fraunhofer Institute for Algorithms and Scientific Computing SCAI. ProMiner has been
successfully tested and is being used along with the associted knowledge environment
platform SCAIView a as a Named Entity Recognition tool and knowledge recognition
platform in human, mouse and Arabidopsis genomics and associated fields. ProMiner
and SCAIView are explained in detail in Section 7.1.11.

3.6.2 AliBaba

AliBaba is a dictionary based NER system for recognizing biomedical objects developed
at the Humboldt University, Berlin. AliBaba was developed as an interactive graphical
tool that graphically summates the search results. AliBaba is designed to extract
associations between cells, drugs, proteins species and tissues. The dictionary used in
AliBaba is gathered from different databases providing information on proteins and
genes. Along with the dictionaries, AliBaba also uses regular expressions to account
for spelling variants. The algorithm in AliBaba uses two different approaches are used
in parallel: pattern matching and co-occurrence filtering. AliBaba uses the former
to extract protein-protein interactions and protein cellular locations. The patterns in
the pattern matching algorithm are extracted from annotated task specific corpora and
are made up of regular expressions using tokens, part of speech tags and entity classes.
Based on the match quality between the sentence and the pattern, pattern matching
algorithm provides a confidence score for each relation. The core of AliBaba is an
information extraction pipeline, named as IE Pipeline. IE Pipeline holds a sentence
splitter, a tokenizer, a part-of-speech tagger (POS), a stemmer, and a dictionary based
named entity recognizer as several modules(Palaga et al., 2009).

AliBaba is designed as a client server application for the extraction and graphical
visualization of biological entities (see Figure 3.5). AliBaba client is a Java Web Start
application which accepts queries exactly in the way PubMed does. The web interface
of AliBaba also allows limiting the number of citations to a user specified number.
When a search query is given in the web interface of AliBaba, the query is forwarded to
PubMed, the result of which is PubMed identifiers (PMIDs) of all the matching abstracts.
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The algorithm in AliBaba then searches for abstracts of the respective PMIDs in the
AliBaba server. The PMIDs which are not found in the server are sent back to the
PubMed to retrieve the abstracts, which are then sent back to the AliBaba server. The
IE Pipeline in AliBaba processes the abstracts, which are then sent back to the client.
The client enriches the abstracts with external database information and displays those
(Plake et al., 2006).

Figure 3.5: Alibaba workflow adopted from Plake et al. (2006)

The client screen of AliBaba consists of three regions (see Figure 3.6), the query
field which accepts search queries to PubMed being the first. The large window right
below the input field shows the graph resulting from parsing the abstracts obtained as
hits of the query. The nodes of the graph, representing the biological entities are colour
coded. The edges of the graph represent the association between two different entities.
The right hand pane next to the graph window consists of two tabs, the first one called
“Objects“ and the next one called “Texts“. The identified biological entities are grouped
into different classes of biological entities (proteins, enzymes). Clicking on an identified
entity in the pane gives the relevant PubMed abstract. The second tab “Texts“ consist
of a list of titles of the entire retrieved PubMed abstract and clicking on a title gives the
full abstract with the biological entities colour coded. AliBaba also provides link out to
UniProt.
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Figure 3.6: Alibaba search result view

The extensive coverage of AliBaba makes it more or less impracticable for organism
specific applications, a search for cattle proteins retrieved proteins from cat, pig, rat and
orangutan. There are problems with the mapping of external database information as
well. For example, AliBaba identified HAMP as a cattle protein, but the linking to
the UniProt provided information on HAMP protein in zebra fish (UniProt accession
Q7T273), human (UniProt accession P81172), Pig (UniProt accession Q8MJ80) and
not on cattle HAMP protein. AliBaba do not provide link outs to other important
databases such as Entrez Gene and GO annotations of the identified gene or protein is
also not available.

3.6.3 EBIMed

EBIMed is a web application by European Bioinformatics Institute (EBI), Wellcome
Trust Genome Campus. EBIMed extracts abstracts in the same way as PubMed does
and provides a service in which co-occurrence based analysis of the MEDLINE abstracts
is associated with document retrieval. The biological entities under consideration are
gene/protein names, functional annotations of genes and proteins (GO terms), drug
names and species names. Based on co-occurrence of these biological entities EBIMed
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maps protein-protein interactions, functional annotations of genes and proteins, drug-
protein interaction and does the categorization of proteins as proteins of model organisms.
The biological entities for the co-occurrence based system in EBIMed are protein names
and synonyms from UniProtKB/Swiss-Prot, GO terms, drug names from MedlinePlus
and species names from NCBI taxonomy which are provided to the system as a list of
synonyms. The MEDLINE abstracts provided by NLM are indexed with Lucene. The
current indexing covers title abstract text, author list and MeSH terms. Gene and protein
name normalization is done as a part of tokenization in indexing. Token normalization
converts the gene/protein names into lower case characters and splits characters from
digits. In the normalization step, irregular verbs are reduced to the base form and plural
forms are converted to singular.

The process pipeline of EBIMed contains certain modules, which performs the tasks
in a step by step manner. Xml is the input and output file format for these modules.
The identification of genes and proteins is based on an xml file containing all the
UniProt/Swiss-Prot protein names and synonyms. The identification of genes and
proteins follow certain set of rules, and optional characters (‘-‘,‘ ‘,‘/‘) are allowed in
protein names instead of blank spaces (‘ ‘) (Rebholz-Schuhmann et al., 2006). This allows
the system to identify the different variants of a protein name. For example, the said rule
allows the identification of ‘IGF 1‘ and ‘IGF-1‘ as the same protein. The found acronyms
are marked if the expanded form is found in parallel, or else the the acronyms are omitted
from marking. The protein names identified are tagged and linked to the corresponding
entry in the UniProt database. An approach similar to the identification of proteins is
followed for GO terms. For the co-occurrence mapping, all the sentences in which contain
a pair of terms (identified biological entities) are gathered, sorted and clustered. The
pairs are ranked according to the highest number of evidence sentences present and are
listed in a descending order according to the number of evidence sentences present.

The top most section of the result page for EBIMed provides a link to all the retrieved
abstracts and table of all the biological entity classes with the statistics for number of
hits and hit pairs found. The bottom section is divided into columns in which the first
column contains the identified gene/protein names. The names provide a hyperlink to
a page which shows the sentence in every the abstracts where in which the particular
protein was identified. This page also provides the PMID of the abstract. The second
column gives the name of all the proteins/genes which co-occurred with the protein. The
next three columns give information about the functional gene annotation (GO terms) of
the protein, followed by the column which gives information on drugs. The last column
shows the model organisms in which the particular protein was found (see Figure 3.7).
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Figure 3.7: EBIMed search result view

3.6.4 Information Hyperlinked over Proteins (iHOP)

iHOP is a NER system developed at the National Center of Biotechnology. iHOP is built
on the principle that the entire PubMed can be transformed into one navigable source
when genes and proteins are used as hyperlinks between them and knowledge discovery
through overlaying the literature network over experimental data
(Hoffmann and Valencia, 2005). The present version of iHOP is designed to work on
data from a handful of mammalian species, other medically important entities and model
organisms and plants such as Arabidopsis and rice. iHop is implemented as a dictionary
based approach. The entire architecture of iHOP (see Figure 3.8) is divided into two
parts, the iHOP factory and the iHOP web application.

Figure 3.8: iHOP architecture adopted from Hoffmann and Valencia (2005)
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The first section, the iHOP factory is responsible for source data management and
manipulation, and result files ( in XML format) for the web application. The first section
is usually hidden from the end user. The second section is the user and web interface
of iHOP responsible for the displaying the result files produced by the iHOP factory
and has stand alone capabilities. The gene/protein name dictionary of the system is
assembled from public domain databases such as LocusLink and UniProt and was then
extended to include spelling variants. iHOP also relies on indexing the abstracts for
search and retrieval purposes. The system uses a relational database (PostgreSQLTM ) to
store the text and gene data.

iHOP uses a custom created indexing procedure where the indexing process is split
into two different steps. In the first process, hash code comparisons were used to search
for parts of a gene synonym case sensitively. In the second step, taking the contextual
information into account, the genes are allocated to their respective positions in the
text. From the second step of the indexing procedure onwards, for every gene and
abstract, an XML file is produced. The XML file produced contains the abstracts with
genes, synonyms, MeSH terms and associated verbs marked and the gene document
includes database references, homologous genes list and a list of synonyms. The database
information is used by the web application to link to external databases.The iHOP factory
transfers all the XML files and a small world wide web database to the web application.
The web application uses this database to identify genes in the user query and to guide
the user to corresponding XML file.

In iHOP query page (see Figure 3.9), the user is asked submit a query a gene name,
accession number, NCBI gene entry or UniProt. A successful submission of query leads
to the hit page, where the found entities are listed down with the organism and four
icons each hyper linking to certain results. The first result is defining information for
the gene, which gives the sentences in abstracts where the queried gene is defined. The
second one gives interaction information of genes in the form of sentences form PubMed
abstracts where the interaction information is found, the third link gives the most relevant
information of the gene under study and the last one giving minimal information about
the gene such as UniProt identifiers of the gene, OMIM identifiers, NCBI Gene, protein
and nucleotide REFSEQ entries, Unigene id, Genbank accession and homologues of the
genes in different organisms. iHOP also allows the creation of an interaction network
aby adding interaction information to the existing network.

33



3.6 State-of-the-art dictionary based approaches

Figure 3.9: iHOP interaction pages (clockwise: iHOP home, iHOP search view, iHOP
interaction results, iHOP network visualization)

Some of the commercial tools used in biomedical text mining and information retrieval
include NextBio8 and novoseek9 by Bioalma10.

The NextBio is an ontology based platform. The semantic framework of Nextbio is
based on gene, tissues, disease and compound ontologies and contains documents from
text based sources such as literature, clinical data and experimental data11. Figure 3.10
shows the result interface of NextBio.

8https://www.nextbio.com/b/nextbio.nb last accessed 18 November 2009
9http://www.novoseek.com/Welcome.action last accessed 18 November 2009

10http://www.almabioinfo.com last accessed 18 November 2009
11https://www.nextbio.com/b/corp/platform.nb last accessed 18 November 2009
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Figure 3.10: Nextbio result page showing highlighted entities and popup explanations

Novoseek is a biomedical search engine for genes and proteins, chemicals, medical
procedures, authors, body parts, tissues and subcellular components on PubMed records12.
Figure 3.11 shows the result interface of Novoseek.

12http://lane.stanford.edu/howto/index.html?id=3956 last accessed 18 November 2009
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Figure 3.11: Novoseek result page showing external database information

Although the tools mentioned above work as potential NER systems, the initial
requirements that these tools were designed to meet are different from the requirements
that are under consideration here. It can also be seen that these tools do not function
as knowledge representation systems but as NER systems capable of identifying gene
and protein mentions in PubMed abstracts. Since these tools are designed to work for a
large number of genomes, often the external database mappings provided are ambiguous
and sometimes link to unrelated organisms. The extend of knowledge representation in
these systems are also limited, often restricted to functional gene annotation from Gene
Ontology and Entrez Gene or Uniprot database mappings. Most of the tools do not
support ontology or terminology based search and retrieval. Finally, the above mentioned
tools are restricted to recognition of gene and protein entities, where as SNP mentions
and microRNAs, two other major factors of importance in genomics are left behind,
which makes it necessary for a tool that is designed to meet with all the mentioned
challenges and needs.
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4 Ontology and Ontological search

Ontology is intended for the representation of the world (reality) or parts of it. An
ontology describes a concept hierarchy that are related by the rules or order that defines
the relationship in simple case, and in complex cases the relationships between the
concepts are explained by principles and these principles are also used to restrict the
possible interpretation of concepts (Guarino, 1998). Ontology provides a correct and
consistent representation of entities relevant in a field, where as text mining identifies
the collection of strings (words) that are used for communication as important. Current
applications of ontology range from fields such as natural language representation to
geographic information systems. Some instances of ontology from biomedical domain
include GO (Gene Ontology) (Ashburner et al., 2000) functional gene annotation, Open
Biomedical Ontologies1 and UMLS (Unified Medical Language System)
(Bodenreider, 2004).

Ontology developed in the biomedical domain can be a powerful tool for data integration
and representation. Since researches in biological sciences are more knowledge based
than hypothesis based, information retrieval and representation has more importance.
Ontologies in the biological domain can be visualized by a Venn diagram of three domains,
biological data, Computer science and Philosophy linguistics, biological ontologies can be
represented at the area of intersection of the three domains (see Figure 4.1). In ontology
concepts are defined as classes or groups of entities that belong to the same domain (gene,
as a concept in genetics). Concepts are categorized into two different kinds, primitive
concepts, those having just enough information to fall into a hierarchical division or
a class. Defined concepts are concepts with sufficient information to be categorized
into a specific class. Similarly, relationship between concepts can also be categorized.
The first one is taxonomy, where concepts within the same classes are subdivided. The
first division in taxonomy is specialisation relationship, and is commonly known as
“is a relationship“ as the concept under consideration has all the features of the parent
class, for example an enzyme is a protein. The second one is partitive relationship,
where concepts are defined as “part of “ or “hasComponent“ relationship, for instance,
enzyme hasComponent active site or active site is a part of enzyme. The second kind of
relationship is associative relationship. Associative relationship can be categorized into
three, nominative relationship, which describes the names of concepts (enzyme hasName
enzyme name), the second type of associative relationship describe the cellular location
of one concept with respect to another (enzyme hasCellularlocalization cytoplasm). The
third type of associative relationship describes the function or process that a concept is
involved in (enzyme hasFunction hydrolase). Figure 4.2 illustrates the ontology building

1http://www.obofoundry.org last accessed 18 September 2009
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life cycle.

Figure 4.1: Venn diagram of fields intersecting in biomedical ontolgy adopted from
Schulze-Kremer (2002)

Figure 4.2: Ontology building life cycle adopted from Stevens et al. (2000)

Ontologies can be represented in the form of a graph, where each node of the graph
represents a term or a concept and the edge connecting the nodes represent relationship
between the connected nodes.Most of the ontologies are represented as a directed acyclic
graph, where the edges of the graph are directional and there is no edges from the
bottom layer of the hierarchy to the top layer. Ontologies as a whole can be classified
into three major groups: Domain oriented ontologies, as the name suggests, ontologies
with their scope limited to a particular domain (example, Mouse gross anatomy and
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development ontology2). The second major group is task specific ontology, which are
either specific for certain task or generalizations of certain tasks (example, Ontology
for biomedical investigations3 (Smith et al. 2007)). The final group of ontologies are
the general ontologies that are for common high level concepts such as structure and
substance. Currently, the ontologies developed in the biomedical domain are expressed
in XML or knowledge representation language such as Resource Description Framework4

(RDF) or Web Ontology Language5 (OWL) or the OBO foundry format.
Three major fields were ontology developed in the biomedical domain can be of major

importance are:

� Data comparison: Data in biological sciences is scattered throughout. It is not
possible to figure out an all in one data source for biology. In the World Wide Web
biological data is wide spread in different databases and science journals. What
is really needed here is a comparison tool that could compare between different
forms and kinds of data. Data comparison can be achieved if knowledge, concepts
in data can be categorized into different domains and relations could be established
between different domains concepts.

� Data confinement: The second field of importance for a biological ontology is
data confinement and restriction. Biological databases hold large volume of data
and biological data can be quite easily linked through underlying concepts. For
example from genome information, going through underlying concepts between data
one could end up in cytological or biochemical data, adding to it is the increasing
amount of data being produced every day. Ontologies provide a hierarchical
classification of different concepts and restricting the relations allowed for each
domain facilitating concept localization (Stevens et al., 2000).

� Data integration: A third field where ontologies can be of help to biologists is
data integration (Schulze-Kremer, 2002), where data from different domains in
biology can be integrated by following the underlying concepts and relations which
can be applied to relate the different fields together.

The major uses of ontologies in the biomedical domain include:- Neutral authoring
(Community reference): All the different concepts in a domain can be expressed in an
ontology, provided the ontology has sufficient coverage over the subject matter of interest.
The benefits of such a representation include knowledge reusability, improved maintenance
of the knowledge and long term knowledge (Uschold and Gruninger, 2004). Defining a
database schema or a common vocabulary for database annotation: Using ontology as a
specification can assure that a common vocabulary is available for knowledge description,
sharing and querying. The advantages of using ontology as a database specification
includes improved documentation, maintenance and reliability of the data and enable

2http://www.obofoundry.org/cgi-bin/detail.cgi?id=emap last accessed 18 September 2009
3http://www.obofoundry.org/cgi-bin/detail.cgi?id=obi last accessed 18 September 2009
4http://www.w3.org/RDF/ last accessed 18 September 2009
5http://www.w3.org/TR/owl-guide/ last accessed 18 September 2009
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the reuse of knowledge. Ontologies for common access to information: The data in
biological databases are accessed by different softwares that use different formats for
data representation. This creates the need for format translators which can make inter
conversion of different formats. The use of ontologies eliminates this problem by the use
of a common agreed neutral format that can become the basis for format conversion and
data mapping. Interoperability of format is an advantage of using ontologies for common
access to information.

4.1 Major Biomedical ontologies

Ontologies and ontology development is in the main stream activity of bioinformatics.
The use of ontologies in the biomedical domain started in the 1990‘s. One of the early
biomedical ontologies is RiboWeb (Altman et al., 1999), developed to aid the construction
of 3d models of ribosomal components and to compare the results with existing ones.
RiboWeb is a collection of four ontologies, the physical-thing ontology which describes
ribosomal components and associated structures as physical things, the data ontology
which is to capture the knowledge in the experimental detail and data on the structural
details of “physical things“. The method ontology incorporate knowledge about the
techniques applied to data and inputs and outputs of each method. EcoCyc (Encyclopedia
of Escherichia coli K-12 Genes and Metabolism) is a database for genome information
and biochemical machinery of E. Coli. EcoCyc uses ontology for database definition
(Stevens et al., 2000).

The major wave of change in biomedical ontologies came with the implementation of
Gene Ontology (GO)6 (Ashburner et al., 2000). Gene ontology was developed to alleviate
the problem of comparing the gene functional annotation of various organisms. The
Gene Ontology project came into reality as the collective effort of three model organism
databases, Flybase (Drosophila)7(Gelbart et al., 1997), Saccharomyces Genome Database
(SGD)8(Cherry et al., 1998) and Mouse Genome Database (MGD)9(Blake et al., 2003a).
The GO project has developed three ontologies, Molecular function, Cellular component
and Biological process. Molecular function accounts for catalytic or binding activities
that occur at the molecular level. Cellular component describes the components of a cell
or part of a large entity (anatomical structure or gene product group). Biological process
explains the events that carried out by series of molecular functions10. Gene ontology is
modelled as a DAG (Directed acyclic graph).

6http://www.geneontology.org last accessed 18 September 2009
7http://flybase.org last accessed 18 September 2009
8http://www.yeastgenome.org last accessed 18 September 2009
9http://www.informatics.jax.org last accessed 18 September 2009

10http://www.geneontology.org/GO.doc.shtml last accessed 18 September 2009
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Table 4.1: Gene Ontology statistics as of 2 November 2009

28594 terms 99.0% with definitions
17454 biological process
2482 cellular component
8658 molecular function

The relations modelled in Gene Ontology (see Figure 4.3) include is a relation, part of
relation and regulates relation. In GO relations is a relation is described as “is a subtype
of“ and does not include the relation “is an instance of“. For two entities A and B the
relation part of in GO is stated only if B is a component of B and B exists only as a
component of A and presence of B necessarily means presence of A and not vice versa.
The relation regulates is modelled for two processes, if one process has a direct effect on
the other. The two subtypes of the relation are positively regulates and negatively
regulates. For two processes A and B the relation regulates can be modelled only if the
process B regulates A whenever B is present.

Figure 4.3: Relationships modelled in Gene Ontology Relationships modelled: is a: is a
subtype of, part of.
adopted from http://www.yeastgenome.org/help/images/cytokinesisDAGrels.
jpg
last accessed 18 September 2009

The success of Gene Ontology saw the development of similar ontologies in the
biomedical domain for different purposed. The OBO consortium11 (Smith et al., 2007)
was formed for coordinating these efforts. The current principles of OBO foundry are12:

11http://www.obofoundry.org last accessed 18 September 2009
12http://www.obofoundry.org/crit.shtml last accessed 18 September 2009
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4.1 Major Biomedical ontologies

� The ontology must be open and available to use for all, the origin must be acknowl-
edged and cannot be altered and redistributed under original same or with original
identifiers.

� A common shared syntax can be used for expressing ontology; it can be OBO
syntax, its variations or OWL (Golbreich et al., 2007).

� There is a identifier space for each ontology within the OBO foundry.

� The content of the ontology is clearly specified and described.

� There are textual definitions for all terms in the ontology.

� The relations used in ontology are unambiguously defined in OBO relation ontology
(Smith et al., 2005) and the ontology is well documented.

� The ontology has a large group of independent users.

� And OBO members collaboratively develops the ontology.

OBO foundry has candidate ontologies in domains ranging from anatomy to taxonomy
(see Figure 4.4).

Figure 4.4: OBO ontologies arranged on a spectrum adopted from Bodenreider and
Stevens (2006)

Two of the most important ontologies in the OBO foundry are Gene Ontology and
Sequence Ontology(SO) 13(Eilbeck et al., 2005). The former is explained in the beginning

13http://www.sequenceontology.orglast accessed 18 September 2009
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of this section. The latter is an ontology for genomic annotation, designed to provide
analysis, management and exchange of genomic data.

The SO project aims to describe the features and properties of biological sequences.
The SO project is jointly undertaken by Flybase, Wormbase14, Mouse Genome Informatics
(MGD) and Sanger Insitute 15. The ontology is based on features such as gene, exon,
promoter and binding site that can be located on a sequence with coordinates. These
properties of sequences are used to describe the attributes of the feature, such as sequence
attributes (Maternally imprinted gene), consequences of mutation
(mutation affecting editing) and chromosome variation (aneuploid). Sequence ontology is
modelled as a DAG (Directed acyclic graph). There are three basic relations modelled
in Sequence Ontology: kind of, derives from and part of (Eilbeck et al., 2005) (see
Figure 4.5). The relationship kind of is modelled like the relationship is a in GO and
describes a subset relationship. Similar is the case with part of relationship, which can
be related to part of relationship in GO with part whole relationship. The relationship
derives from describes relationship between two entities A and B, where the entity B
is derived from A and existence of the entity B depends on the existence of A.

Figure 4.5: SO relations adopted from Eilbeck et al. (2005)
Legend: d:derives from, i:kind of, P:Part of

4.2 Ontology based search

Ontology based search is a concept that developed in the late 1990‘s. One of the first
uses of ontology based search was for personalizing World Wide Web search
(Pretschner and Gauch, 1999). Ontologies can be used as structuring criteria for infor-
mation repositories. This structuring enables better organization and classification of
database repositories and repository indexing to be done based on this ontology
(Uschold and Gruninger, 2004). For ontology based annotation of the repository, the
documents in the repository should be annotated with the terms in ontology or mapping

14http://www.wormbase.org last accessed 18 September 2009
15http://www.sanger.ac.uk last accessed 18 September 2009
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of the relevant terms in the document towards ontology should be done. This method of
mapping to the terms in ontology and indexing the document with terms in ontology can
help in the search and retrieval of documents. As the ontologies can be represented as a
graph, each node of the graph holds a set of documents in which the term representing
the node is the most “frequently appearing key term“. For a query made using the key
ontological terms, document retrieval is based on the key terms in the query and further
refinement is done by following relationships in ontology. Ontology based document
search in biological sciences has a centre stage in retrieving documents of relevance
and also documents in the associated fields since associative information has greater
importance in this field. For example, a search query ‘apoptosis proteins‘ in AmiGO gene
ontology browser 16 has returned results for ‘induction of apoptosis‘, a GO biological
process term. Along with this search result, results like ‘positive regulation of apoptosis‘
and ‘regulation of apoptosis‘ were found. These results are returned by the search engine,
as a result of relationship modelling and associated search where all the protein data from
associated nodes for apoptosis, especially from those nodes with an “is a“ relationship
with node is returned. Some instances of ontology based search in biomedical realm
include Gene Ontology Annotation (GOA) database 17 (Camon et al., 2004) where all
the UniProt protein entries are annotated using Gene Ontology and GOPubMed 18

(Doms and Schroeder, 2005) where PubMed can be searched using Gene Ontology.

4.2.1 Semantic search

Semantic search used semantics of the keywords to produce relevant search results. There
are two major kinds of searches performed by the user, navigational searches and research
searches (Guha et al., 2003). Navigational searches are defined as searches were the
user query is a phrase or combination of words. In these searches the user is using the
search engine as a navigational tool to a predefined document. In this case semantic
searches cannot be applied. The second kind of searches are research searches, where
the user is trying to gather a number of documents with a search query, where semantic
searches can be applied. The search queries for a research search denotes real world
concepts, and search engines use semantics (study of the meaning of words) to understand
the concept behind the search terms. The results obtained through these searches are
added to traditional search results to produce diverse results. Semantic search has
special importance in the search and retrieval of biomedical documents since documents
containing information from different biomedical domains are interlinked by concepts
and meanings. Semantic similarity searches are achieved by analysing the topological
similarity between two documents or terms using ontology. Semantic similarity between
two sets of documents or terms under consideration is determined by the concepts
represented by them and the degree of relatedness between the concepts, determined by
the semantic relationship between concepts. Certain statistical methods are also used to

16http://amigo.geneontology.org/cgi-bin/amigo/go.cgi last accessed 18 September 2009
17http://www.ebi.ac.uk/GOA last accessed 18 September 2009
18http://www.gopubmed.org last accessed 18 September 2009
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determine semantic similarity. In the biomedical domain, primarily ontologies (especially
Gene Ontology) are used to establish semantic similarity.

Semantic similarity searches are used for wide variety of applications in biomedical
domain. Semantic similarity methods are used to validate automated annotation of gene
products and result validation (Pesquita et al., 2009). Several prediction systems, for
predicting protein-protein interaction networks (Zhu et al., 2007) and structural similarity
of protein surface (Liu et al., 2007) use semantic similarity search method. It has been
also used in protein clustering validating automatic protein annotation
(Couto et al., 2006). Gene Ontology is the base ontology for many of the semantic
similarity comparison tools in the biomedical domain. FuSSiMeG19 compares semantic
similarity between gene ontology annotations of gene products in order to establish
functional similarity between them (Couto et al., 2003). GOToolbox20

(Martin et al., 2004) is a collection of tools that used Gene Ontology resource for the
clustering of functionally related genes within a data set, retrieval of genes sharing
annotations with a query gene and identification of statistically under or over represented
terms in a gene data set. G-SESAME21 (Du et al., 2009) is an online tool for measuring
functional similarities of gene products and semantic similarities of Gene Ontology terms.
Several search engines in biomedical domain also incorporate semantic search capability.
GoWeb22 is a life science semantic search engine which integrates key word search with
ontologies and text mining technologies. Hakia PubMed23 is an ontology based semantic
search engine. For retrieving information on health Hakia uses 10 million PubMed
abstracts.

19http://xldb.fc.ul.pt/rebil/ssm/ last accessed 24 September 2009
20http://burgundy.cmmt.ubc.ca/GOToolBox/ last accessed 24 September 2009
21http://bioinformatics.clemson.edu/G-SESAME last accessed 24 September 2009
22http://gopubmed.org/web/goweb last accessed 24 September 2009
23http://pubmed.hakia.com last accessed 24 September 2009
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5 Problem definition and goals

The problem definition comes from the animal science/animal genomics field, where
scientists at the Institute of Animal science Animal husbandry/ animal genetics group,
University of Bonn are in need of a tool for mining gene, protein, associated networks
and related information concerning cattle preimplantation period, and meat quality
traits in pigs. The specific needs of the researchers are concentrated on two specific
fields. The first one is cattle preimplantation genetics, where current focus is on topics
like genetics involved in developmental competence of preimplantation embryo from in
vitro and in vivo sources, influence of various gene manipulation techniques on gene
expression and developmental competence of in vitro and NT embryos. The second topic
of research importance is pig genetics where much attention is given to on candidate
genes responsible for meat and carcass quality and disease resistance.

There are several online tools available, which could identify genes proteins and
interaction networks from scientific publications in biology (refer Section 3.6). But all
these tools mentioned focus on a large number of genomes. Although focusing on a large
number of genomes (organisms) enables a wide coverage for the tools, the specificity is
lost. The wide coverage of the tool can also lead to noise in the final result. In most of
the tools data enrichment is done only by mentioning the functional gene annotations
and protein pathways. The rest of the information content in the biological databases
are left behind, especially gene protein synonyms and sequence information from Entrez
Gene and UniProt, SNPs associated with the gene from dbSNP and protein domain
and family information from InterPro. This point to the fact that the user gets only
a part of the knowledge and some vital information is left behind. Another factor is
the method of document retrieval and sorting for result display. Majority of tools use
PubMed as the base search engine, and the documents retrieved entirely depends on the
expertise of the user in forming a search query as neither semantic search nor ontology
based search and retrieval of the document are implemented. As a result a number of
documents and information content in them are left out since those documents treat
the key terms in the query as implicit concepts and not as explicit mentions. So the
user may not be able to observe the whole picture of the domain that is searched for,
instead will be restricted to a short collection of documents where the search query
terms are found. A tool that incorporates all the above mentioned functionalities would
be more apt to the requirements of the researchers in the domain. ProMiner, along
with the knowledge discovery suite SCAIView is being used as a knowledge discovery
platform in human mouse and Arabidopsis genomics and related domain and could be
adapted to work in different fields according to the needs of the end user. The system
incorporates ProMiner as a text mining tool and the results are displayed using SCAIView
knowledge environment. ProMiner results displayed in SCAIView are enriched with
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external database information and provides document sorting based on the number of
entities found in the document and relevance of entity. The system also incorporates an
ontology based search.

The current version of SCAIView, which is adapted to work with human and mouse
genes and proteins can work cattle and pig data since all mammals have more than
∼80% gene sequence similarity among them, on the other hand, information on genes
and proteins that are unique to cattle and pigs will be left behind and external database
mappings in the present version are specifically tailored to fit human mouse and Ara-
bidopsis genes. Hence, the system needs to be adapted to suit the needs of researchers.
To utilize the full functionality of SCAIView in the livestock genomics field, the system
needs an ontology or a terminology that could represent the key domains in livestock
genomics. As of now, a specific knowledge discovery tool dedicated to livestock genomics
has not been developed. So, the livestock genomics version of SCAIView developed as
a part of this thesis project is intended as a prototype system for the introduction of
knowledge discovery methods and text mining tools to the livestock genomics field.

The final goals of this thesis include:

� Introduction of text mining tools specifically devoted to animal genetics.

� Generation and curation of gene and protein name dictionaries for cattle and pig.
Generation of microRNA dictionaries for cattle pig and the model organisms (human
and mouse). Adapting SCAIView include generation of cattle and pig gene and
protein name dictionaries, as ProMiner is a dictionary based system. The generated
dictionaries need to be curated to remove ambiguous entries. Gene/protein name
entries from the final result should be mapped to external databases and Gene
Ontology functional gene annotations for integrating external database information
to SCAIView along with ProMiner results.

� Performance evaluation of animal science version of SCAIView.

� Terminology analysis concerning cattle preimplantation period. Condensing the
entire information about cattle preimplantation period into a set of key terms
representing key concepts in cattle preimplantation domain in order to aid the
search and retrieval of documents.

� Analyzing the network of interacting gene products in cattle preimplantation
period. Analysis and validation of protein-protein interaction network (from co-
occurrence) retrieved from SCAIView validation of interaction networks obtained
from SCAIView and suggesting potential novel interaction partners.
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6 Background work: use of
bioinformatics tools and techniques
in livestock genomics

The past decade has been a time of rapid advancement for livestock genomics, during the
past years the livestock genomics has grown from synteny maps into complete genome
sequences and molecular level functional descriptions. Additionally, expression profiling
of animal genes are also being done, adding to the already existing vast amount of data
that is present in the farm animal genomic field. With the time it became a necessity
that farm animal genomics should follow the footsteps of human and murine genomics in
digital data handling, storage and retrieval. Although farm animal genomics has been
lead by human genomics, animal scientists were able to adapt the existing tools for their
needs. The use of bioinformatics tools and computational techniques in animal genomics
can be categorized into two major sections:

� Farm animal genome databases (the use of computational data storage).

� The use of bioinformatics tools (data retrieval, visualization and manipulation-
tools).

6.1 Farm animal genome databases

Farm animal genomics has dedicated genome databases for partially and completely
sequenced genome projects. But, as the scope of this thesis is limited to cattle and pig a
brief survey of some of the existing cattle and pig genome databases was done as a part
of this project and is given below:

6.1.1 Survey of existing cattle genome databases

Cattle genome coordination program

The cattle genome co ordination program is one of the projects supported by the National
Animal Genome Research Program (NAGRP) and comes under U.S Livestock Species
Genome projects. The program does not directly host a database, but provides links
to all the existing databases. NCBI/genbank, Ensembl genome browser, Cattle genome
information at NCBI, Bovine Genome Database are some of the databases to which the
cattle genome co ordination program provides direct links. It provides direct links to
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cattle genome maps, QTL maps, genome database maps and fingerprint maps that are
hosted by different databases.

Bovmap Database

The INRA Bovmap Database1 (Law and Archibald, 2000) is funded by the French
National Institute for Agricultural research (INRA). Information available from Bovmap
includes chromosome map assignments of genomes, polymorphism details, sequence
homologies and PCR primer sequences.

The search and retrieve options in the database include: a chromosome map (mapped
on the basis of loci information) with links to all the loci in the chromosome. The
respective locus page has all the basic information including locus name, locus type,
synonyms, classification, gene family, homology with other species, and effect of the locus
and Genbank/EMBL reference. This page also provides cross reference to Genbank, for
sequence retrieval, links to cattle chromosome physical and genetic map and bibliographic
reference to pubmed. Bovmap database provides links to Gene atlas2 and Gene cards3

databases also. The other search and retrieval tools in the database include: retrieval of
polymorphic locus information based on different breeds, locus information, homology
information, QTLs, Gene lists, sequence retrieval and chromosome homology. The
database does not provide adequate web links to other databases and some of the
provided links are dead.

Table 6.1: BovMap Data statistics as of 1 June 2009

LOCI: 4357 ASSIGNED LOCI: 4125
GENES: 1558 ASSIGNED GENES: 1507
MICROSATELLITES: 2402 ASSIGNED MICROSATEL-

LITES: 2244
POLYMORPHISMS: 3100 ALLELES: 551
816 BREED POLYMORPHISM
records on 103 breeds
PROBES: 169 PRIMERS: 4764
ENZYMES: 2733
6240 HOMOLOGUE LOCI on
156 SPECIES

4697 HOMOLOGUE LOCI
LINKS on 67 SPECIES(DBs)

BIBLIOGRAPHIC REFER-
ENCES: 966
GB EMBL REFERENCES: 0 SWISSPROT REFERENCES:

1019
47 EXTERNAL DATABASES
(28074 active links)

1http://locus.jouy.inra.fr/cgi-bin/bovmap/intro.pl last accessed 14 June 2009
2http://www.geneatlas.org last accessed 14 October 2009
3http://www.genecards.org last accessed 14 October 2009
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The Bovine Genome Database

The Bovine Genome Database4 is run by Bovine Genome Sequencing and Analysis
Consortium. The consortium includes members from Georgetown University, University
of Minnesota and CSIRO (Commonwealth Scientific and Industrial Research Organization)
Livestock Industries. The bovine genome database has the bovine genome sequences that
are downloaded from genbank and clustered using ENSEMBL protein dataset (version
33). The database services provided are: QTL viewer, which provides a list of QTLs and
individual QTL pages provide information such as QTL Id, trait, appearing chromosome,
family, lod score and references for the QTL. This page also provides a map of the
respective chromosome with position of QTL on the chromosome. Bovine Genome
Database also provides information on ESTs (Expressed Sequence Tags), where the
inputs can be accession identifiers from a variety of databases like Genbank, ENSEMBL,
Swiss-Prot, RefSeq5 and SPTREMBL (SWISS-PROT TrEMBL). The search results
provided include a list of all the possible hits with links to Ensembl, UniProt and NCBI
protein database. The result page also provides GO annotation of the ESTs. The other
searches provided include chromosome search to extract all the information on a specific
chromosome, and scaffold search to retrieve information on cattle genome scaffolds. The
database provides visualization of specific regions of a chromosome through composite
map and BAC6 map. This database also has a re-PCR page (reverse electronic PCR),
which allows the user to identify SNPs and QTL regions. The re-PCR outputs are printed
as tables containing the chromosome position and QTL regions in the output table, and
provides link to the ENSEMBL database.

Bovine Genome database also allows the user to BLAST sequences against Bos taurus
genome. The BLAST interface has three BLAST options, MegaBLAST, BLASTn and
BLAST oligomeric sequences. Each time a BLAST is done, the database allows the user
to retrieve SNPs that are present in the region identified. The database provides all
the basic information needed by the user but do not include a keyword search for fuzzy
searches.

Cattle Genome Database (CGD)

The Cattle Genome Database7 is hosted at the Queensland Biosciences Precinct. The
CGD is a part of an international collaboration to map the Bovine genome. CGD includes:
Chromosome maps for all the 29 autosomal chromosomes and X and Y chromosomes.
Comparative map, with the locations of genes mapped by linkage analysis in cattle and
comparison to pigs, rats mice and human genome. The search tools provided by database
includes: Locus search, pair wise Lod score of loci and search for QTLs (Quantitative
Trait Loci). The chromosome maps provided by the database are graphic images and do
not provide an interactive visual interface. The search tools used in the database provide

4http://genomes.arc.georgetown.edu/bovine last accessed 14 June 2009
5http://www.ncbi.nlm.nih.gov/RefSeq last accessed 14 June 2009
6Bacterial Artificial Chromosome used in sequencing projects to amplify target organism DNA
7http://cgd.csiro.au last accessed 17 June 2009
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with the minimal information and do not provide a mining/sequence retrieval interface.

6.1.2 Survey of existing pig genome databases

NAGRP Pig genome coordination program

Supported by the National Animal Genome Research Program (NAGRP), the coordina-
tion program provides direct link to various databases that are supported by various
organizations. Some of the database links in the web page include: pig genome at
pre-Ensembl (unfinished), NCBI Pig genome project, Danish-Chinese pig genome project
and Japan Pig EST Data Explorer.

Pig Genomic Informatics System (Pig Analysis Database)

Pig Genomic Informatics System8 (PGIS)(Ruan et al., 2007) is an online database of
pig genome and is designed to identify pig genes based on homologous human genes and
SNPs. The Pig Analysis Database integrates 3.84 million whole genome shot gun reads,
0.7 million ESTs (Expressed Sequence Tags) generated by Sino-Danish Pig Genome
Project and 1 million Genbank records. To identify pig genes, the pig genomic sequences
were aligned with human genomic sequences using BLASTX, from the results so obtained,
the regions with low identity were discarded. As the next step repeating sequences were
masked, and the resultant sequences were aligned to human exons by cross matching.
To identify SNPs, high quality genomic sequences of five pig strains in WGS reads and
ESTs were compared and the variations in base pairs were identified as SNPs. PigGIS
can be browsed to fetch information by clicking on human genome displayed on the home
page or information can be queried using a keyword for search. A keyword search with a
gene -symbol will give a result page with the respective ENSEMBL gene and transcript
ids, location in the chromosome, description and sequence information. The other search
options in the database include:

BLAST search:-to look for similar sequences in the databases.
Oligo design: - to design an oligo nucleotide based on the given sequence information.
The database incorporates some visualization interfaces, which include:

� Transcript view-shows consensus of the pig coding sequences

� Gene view- presents various splicing forms,

� Exon view- alternative sequences given in a human exon,

� Cluster view-assembly of contigs,

� SNP view-details about pig SNP and Sequence view which present complete
information of raw sequences.

8http://pig.genomics.org.cn last accessed 14 June 2009
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The database contains valid information, but the amount of information is less, does not
allow the user to mine and retrieve data.

Table 6.2: PGIS database statistics as on 1 June 2009

Reads

Hampshire 707,281
Yorkshire 1,204,666
Landrace 650,609
Duroc 1,015,722
ErHuaLian 256,993
Total 3,835,271

EST 870,084

Homolog Gene
(Human vs. Pig)

Reads covered 14,618(66%)
EST covered 12,299(55%)
Covered by both 16,309(73%)
+Genbank seq 16,958(76%)

Oligo 20,789
SNP 16,965

Swine Genome Mapping Project

The Swine Genome Mapping project is funded by the United States Department of
Agriculture, Agriculture Research Service. The services provided by the database
include: an interactive linkage map, which visualizes all the markers that are present
in each chromosome and allows the user to access the marker information. The marker
information page includes information such as chromosome, locus, marker type, the
submitted database, other information and a list of references to the marker. The marker
table provides information about markers by the respective chromosome and relative
position. The database also allows the user to search for marker information by name,
and other data provided include clones identified for each locus and overgo oligos (oligo
nucleotides conserved across species). The database does not provide direct links to cross
referenced databases.

Pig Expression Data Explorer (PEDE)

Pig Expression Data Explorer9 is a database of full-length cDNA clones and ESTs in pigs,
maintained by the Animal Genome Research Program, Japan and conducted by National
Institute of Agro biological Sciences and STAFF-Institute. The database was put together
from sequences that are assembled from porcine 5’ EST sequences. The search and
retrieval tools in the database include: the cluster viewer page (in the old version of the
database), the interface which allows searches by keyword, locus name and database
accession number. The database allows BLAST-ing on clone or assembly sequences, and
retrieving the sequences data of interest. The BLAST result page is provided with links
to the obtained sequence assemblies/clones. The sequence assembly/clone information

9http://pede.dna.affrc.go.jp last accessed 14 June 2009
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page gives links to similar assemblies/clones, to the related human genome, and links to
RefSeq and UniGene databases. This page shows other information such as nucleotide
and amino acid sequences, includes a link to retrieve the sequences in FASTA format,
shows similarity of the sequences to human genome and displays similar proteins or
peptide chains that are identified in different databases through BLAST-ing the sequence.
The GO viewer interface classifies clones or assemblies according to Gene Ontology
terms. PEDE also includes a Pig cSNP (SNPs in cDNA) database, identified from ESTs
assemblies of PEDE; the result view provides the user with SNPs that are present in
some of the pig breeds and an estimate of the amount of sequences that are needed to
encode the full-length CDS (Uenishi et al., 2004). The website also has the option to
download all the clone/assembly sequences. The database does not have a browse and
fetch interface for the users to browse through genomes and to retrieve the data needed
and some of the links provided by the data base are found to be dead.

Animal Genome Research Program (Swine)

Animal Genome Research Program (AGP) is a joint project of National Institute of
Agrobiological Sciences (NIAS) and Institute of the Society for Techno-innovation of
Agriculture, Forestry and Fisheries (STAFF-Institute) Japan. The database currently
includes only Swine genome and the services provided by the database include: Swine
linkage map viewer, plotting linkage distance between loci on a chromosome. The Swine
marker viewer gives information about marker loci, which has the information about the
forward and reverse primer of the marker and linkage analysis information along with
RH (Radiation Hybrid)10 information. All together, the database gives only the locus
centered information and gene positional information.

Recent developments in animal genomics databases include, ANEXdb , animal expres-
sion database which allows the user to store and analyze gene expression data in the
form of microarray experiments. ANEXdb11 is a joint venture by the Iowa state univer-
sity, National Science Foundation (NSF) and United States Department of Agriculture
(USDA). AgBase12 (McCarthy et al., 2006) is a curated web accessible and open source
resource for functional analysis of agriculture plant and animal gene products. AgBase is
maintained by the Missisipi state university. AgBase provides the user with tools for the
functional annotation of genes with GO terms.

10Chromosomes are separated from one another and high dose X rays are used to break into several
fragments. The order of markers on a chromosome can be determined by estimating frequency of
breakage. RH mapping is used to create whole genome radiation hybrid map

11http://www.anexdb.org last accessed 7 September 2009
12http://www.agbase.msstate.edu last accessed 7 September 2009
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6.2 MicroRNA database

miRBase13 is the major repository and resource for microRNAs data now. Each entry in
the database is a predicted hairpin portion of a microRNAs transcript and is termed mir
in the database, ‘miR‘ is the term given to mature miRNA sequence in the database with
sequence and location information. The database is currently hosted and maintained by
the faculty of Life Sciences at University of Manchester and is supported by Biotechnology
and Biological Sciences Research Council (BBSRC), United Kingdom. The database has
four major divisions:

miRBase Registry: The registry service provides the users with unique microRNA
names prior to publication in peer reviewed journals (Griffiths-Jones et al. 2006).

miRBase Sequence: miRBase sequence provides the users with sequence and anno-
tation data and references and links for microRNA data (Griffiths-Jones et al. 2006).

miRBase Targets: This service provides the user with an automated pipeline for the
prediction of targets for all animal miRNAs that have published data. The service uses
miRanda algorithm for the prediction microRNA targets (Enright et al. 2003). Recently,
mi Base Targets has been renamed as microCosm14 and is now hosted at EBI.

miRBase Genomics: miRBase Genomics gives information on genomic regions
surrounding miRNA precursors, such as transcription start sites, CpG islands, ESTs,
cDNAs, genomic repeats, conserved transcription factor binding sites, expression ditags
and polyA signals15. Currently the scope of miRBase genomics is limited to genome of
H. sapiens, M. musculus, R. norvegicus, C. Elegans and D. Melanogaster.

The database has also introduced a nomenclature schema for microRNAs. Certain key
components of the nomenclature schema are:

� The miRNA name has a three or four letter abbreviation of the species name as
prefix and a numeric suffix.

� If more than one hairpin precursor expresses the same mature miRNA, each of
them are denoted with numeric suffixes (example, dme-mir-6-1 and dme-mir-6-2)

� Lettered suffixes are given to related hair pin loci that expresses related mature
miRNA sequences (example mmu-mir-181a and mmu-mir-181b).

� For plant miRNAs different nomenclature schema is used, plant miRNAs are of the
form ath-MIR166a. The suffixes describe distinctive loci which express all related
miRNAs and numeric suffixes are avoided.

� Conventionally viral miRNAs are named after the locus form which they are derived.

The current version of the database is release 14 and it contains 10883 hairpin precursor
miRNAs entries and 10581 mature miRNA products, in 115 species. In the new version,
1367 new hairpin sequences and 1580 novel mature miR and miR* products have been
included along with the previous data.

13http://www.mirbase.org last accessed 18 September 2009
14http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5 last accessed 10 November 2009
15http://www.mirbase.org/genomics.shtml last accessed 5 November 2009
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6.3 Use of Bioinformatics tools and softwares

The bioinformatics tools used in animal genomics can be categorized into six major
sections such as:

� Sequence analysis software,

� Genetic analysis software,

� Functional Genomics Software,

� Genetic networks and synthetic biology,

� General Application software and

� other comprehensive tools16.

The tools are further classified according to the different uses in the major classification
section. For example, softwares used in sequence analysis is further classified as tools for
base calling, assembling, viewing, SNP analysis, RNAi searches and so on (Table 6.3).

In genomics, statistical and data analysis tools are used in microarray and gene
expression data in two different directions. The first one includes data normalization
and calibration and the second one is the statistical analysis itself. In livestock genomics,
the major statistical tool used is ‘R‘ and the analysis packages that are available in the
R homepage17 and website of the Bioconductor18 (Gentleman et al., 2004). The popular
data normalization ‘R‘ packages include ‘marray‘ and ‘vsn‘.

16http://www.animalgenome.org/bioinfo/resources/intro.html 14 September 2009
17http://www.r-project.org last accessed 19 October 2009
18http://www.bioconductor.org project last accessed 19 October 2009
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Table 6.3: Bioinformatics tools in livestock genomics

Major animal genomics fields Bioinformatics tools used
Sequence analysis

Base calling, assembling, viewing Phred, Phrap, Consed
SNP Analysis Consed, DnaSP, PolyPhred, SNPidenti-

fier
Alignment / Clustering Arachne, Assembler, CAP3, ClustalW
RNAi searches miRanda, MiRFinder
Similarity Search Blast, Blastz, Fasta, GMAP, Mulan
Primer design Amplify, CodeHOP, Expeditor
Genome Analysis Light weighted genome viewer, Vmatch

Genetics Analysis
Linkage analysis CarthaGene, Crimap, JoinMap
Haplotype analysis fastPHASE, PHASE
Genetics analysis epiSNP, EPISNPmpi, MiNiInbred
QTL analysis BmapQTL, MapQTL, QTL Cartogra-

pher
Phylogeny analysis Phylip, PAUP, PhyML, TimeTree
Pedigree Pedigraph, Pedigree-Draw, MiniInbred

Functional Genomics Software
Domain/Motif Prediction EST Scan, ORF Finder, ORFpredictor
Gene Prediction Augusrus, HMMgene, GENEscan, Grail
Microarray Analysis ArrayGenes, KegArray, HDB Stat
Genome analysis GenomatiX, PepTool, Genewiz
Annotation and Gene Ontology Apollo, AmiGO, ENSMART, GoSurfer
Expressoin data analysis DAVID and EASE, GenMAPP, Gaggle
Comparative analysis COGs, PEDANT 3, KEGG, TheSEED
Genetic networks and synthetic bi-
ology

SynBioSS
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7 Materials and methods

This chapter describes the materials and various methodologies that are used. First
section, Materials includes descriptions about various databases used for retrieving the
data and the tools used for data generation, analysis and manipulation. Second section
describes the methodologies followed.

7.1 Materials

The different databases and tools that were made use of in this thesis are explained in
this section.

7.1.1 Entrez Gene

The gene specific database by National Center for Biotechnology Information (NCBI)
and one of the databases in Entrez family of databases. Entrez Gene1

(Maglott et al., 2005) contains genes from the genomes that are sequenced and do not
include predicted genes. The data taken form NCBI Reference Sequence project (RefSeq),
other NCBI databases and collaborating databases, curated and automatically integrated
to Entrez Gene. The data content includes nomenclature, map location, gene products
and their attributes, markers, phenotypes, and links to citations, sequences, variation
details, maps, expression, homologs and protein domains and is updated as soon as new
data becomes available.

Entrez Gene was used to retrieve cattle and pig gene synonyms for dictionaries and for
external database mappings, Entrez Gene is used as the key identifier to which most of
the external database identifiers are mapped. Entrez Gene also provides a list of PMIDs
as references for each entry Entrez Gene. This was used to create a reference list of
Pubmed documents mentioning cattle and pig gene (gene2pubmed file from Entrez Gene
ftp service). The cattle genome build 4.1 data and pig genome build data 1.1 was used
in this thesis.

7.1.2 Ensembl

Ensembl2 genome browser database which is a joint project between EMBL-EBI and
Wellcome Trust Sanger Institute. The database contains data from sequencing projects
undertaken by the Wellcome Trust Sanger Institute. It is updated every six months and

1http://www.ncbi.nlm.nih.gov/gene/ last accessed 1 December 2009
2http://www.ensembl.org/index.html last accessed 1 December 2009
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the current release is Release 55, which contains data from fully sequenced genomes of
47 species and chromoseome assembly from 3 partially sequenced genomes. Ensembl
include gene and protein data such as gene and protein names and a few synonyms,
sequence information, chromosome location of the gene, various splice variants of the
gene, supporting experimental data, external database references and data on regulatory
genes for a gene.

Various services provided by the Ensembl database are used in this thesis. Ensembl
database has integrated BioMart (Smedley et al. 2009) data retrieval system into its
services. The BioMart service provided in the Ensembl database was used for data
retrieval purposes. The service was used for orthologue mapping of cattle genes to the
corresponding human and mouse genes and external database mapping for cattle genes.
The database provided mappings towards external databases like UniProt and InterPro
and mapping Ensembl identifiers towards Entrez Gene identifiers.

7.1.3 UniProt (Universal Protein Resource)

UniProt3 (Bairoch et al., 2005) is collaboration between EBI, SwissProt and PIR and
provides a single, centralized source for protein sequence and functional information.
Uniprot consortium was formed by uniting Swiss-Prot, TrEMBL and PIR protein sources.
UniProt has three different component databases, UniProt Archive (UniParc), UniProt
Knowledgebase (UniProtKB) and UniProt Reference Clusters (UniRef). UniParc provides
non redundant sequence data, UniProtKB is the central database with protein sequences
and functional information, UniRef has clusters of UniProtB proteins based on sequence
similarity.

UniProt data was used in the generation of gene and protein name dictionaries for
cattle and pig from cattle and pig gene/protein annotations (for creation of curated
dictionaries). The data from UniProt mapped to UniProt identifiers were used to map
Gene Ontology identifiers to UniProt data for data enrichment. Like Entrez Gene,
Uniprot also provides a list of PMIDs to identify PubMed documents from which the
protein information was retrieved. The PMIDs mapped to UniProt identifiers were
retrieved and used for generating a reference list of PMIDs and was later merged with
reference list from Entrez Gene. For this work the Uniprot release version used was 15.3
released on 26 May 2009.

7.1.4 KEGG (Kyoto Encyclopedia of Genes and Genomes)

A database for gene functions and linking gene functions to higher order functional
information. KEGG4 (Kanehisa and Goto, 2000) was initiated in 1995 by Japanese
human research program. KEGG is a collection of five databases namely, KEGG Atlas,
KEGG Pathway, KEGG Genes, KEGG Ligand and KEGG BRITE. The data in KEGG
databases are updated regularly.

3http://www.uniprot.org last accessed 1 December 2009
4http://www.genome.jp/kegg/ last accessed 1 December 2009
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It was noted that human mouse and pig genomes in KEGG was compiled from RefSeq
proteins and the resulting fasta format entries were mapped to Entrez Genes, so human,
mouse and pig protein fasta files were retrieved from KEGG and used for orthologue
mapping of pig genes to human and mouse genes using OrthoMCL (explained later in
this chapter). KEGG identifiers to Entrez Gene identifiers mapping files were retrieved
from KEGG ftp service and were used in pathway mapping of gene and protein entries.
For this work the KEGG release version used was KEGG release 50.0 released on 1 June
2009.

7.1.5 dbSNP

dbSNP5 is the SNP (Single Nucleotide Polymorphism), small scale multibase deletion
(IN-DEL) and short tandem repeat database by NCBI. Data submitted to dbSNP is
integrated with other NCBI information sources such as Entrez gene, Entrez protein,
Structure, nucleotide, taxonomy, PubMed and PubMed Central. For each of the SNP
assays submitted to dbSNP, a unique identifier is created (ss number). dbSNP maps
each of the submitted assays to genome and created a Reference SNP accession ID (rs
number) to each of the submitted assay. All the submitted SNPs that map to the same
location are clustered under one rs number. dbSNP services provide mappings from rs
number to Entrez Gene identifiers.

dbSNP ftp service was used to retrieve gene allocation files for rs numbers, and the
each file contains all the SNP gene allocation data for a single chromosome. These files
(in XML format) contain experimental data, meta data about experiment, the nucleotide
sequence accessions submitted, mRNA accession, gene accession, SNP location and 5’
and 3’ nucleotide sequences where the polymorphism is found, along with some flanking
sequences. The files were retrieved and parsed using perl scripting to obtain rs number
to Entrez Gene accession mapping. The data from Bos taurus dbSNP build 130 was
used in this thesis.

7.1.6 OrthoMCL

OrthoMCL is used in this thesis to identify human and mouse orthologs for pig genes as
satisfactory results were not obtained from databases. OrthoMCL is a graph clustering
algorithm that uses sequence similarity to identify homologous proteins. It needs BLASTP
and formatdb stand alone tools from NCBI. BLASTP is used for protein-protein BLAST
and formatdb is used to format source data files with sequences so that it can be used by
the BLAST algorithm. The algorithm works by identifying reciprocal BLAST hits (Wall
et al., 2003) across two genomes by BLASTP. OrthoMCL then creates a graph, were
the nodes of the graph are protein sequences and edges are pair based protein similarity
scores. The edge values (edge weights) are adjusted to resolve similarity averages between
the two genomes and the resulting graph is clustered using MCL algorithm to reduce

5http://www.ncbi.nlm.nih.gov/projects/SNP/ last accessed 1 December 2009
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large clusters into smaller clusters with true orthologue relations (Li et al., 2003). Figure
7.1 illustrated the OrthoMCL workflow.

Figure 7.1: OrtoMCL workflow adopted from Li et al. (2003).

7.1.7 miRanda

MiRanda algorithm (Enright et al., 2003) was developed for the prediction of microRNAs
targets in animal genome sequences. The initial use of miRanda was to predict microRNAs
targets in Caenorhabditis elegans and Drosophila melanogaster. The algorithm is written
in C and is open source software. It was used in this thesis to predict microRNA targets
for cattle and pig genomes. The inputs needed by the algorithm are two FASTA sequence
files, the first file containing the microRNA sequence and second one containing sequence
of 3’ untranslated region (UTR) of the gene. MiRanda works on a three phase process
(see Figure 7.2), where the first one is sequence matching to assess the probability of the
microRNA sequence and 3’ UTR region of the gene to bind. In the matching phase the
algorithm considers the effect of G-U wobble pairs (Varani and McClain, 2000), moderate
insertions and deletions and rewards sequence complementarity at the 5’ end of miRNA.
The sequence matching algorithm is roughly similar to Smith-Waterman algorithm,
but instead of accounting for sequence similarity, the algorithm accounts for sequence
complementarity. Finally, four empirical rules were applied for complementary sequence
matching, and the positions were counted starting from the 5’ end of miRNA. The rules
are (i) no mismatches allowed from positions 2 to 4; (ii) fewer than 5 mismatches were
allowed between positions 3 to 12; (iii) at least one mismatch is allowed between positions
9 and L-5 , L being the total alignment length and (iv) fewer than two mismatches allowed
between the last five positions of the alignment. The second phase of the algorithm is
free energy calculation of optimal strand strand interaction between miRNA and UTR
region. The free energy calculation was done using Vienna package (Wuchty et al., 1999),
the folding routines from the Vienna 1.3 RNA secondary structure programming library
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was used to determine the thermodynamic properties of a predicted duplex. The third
phase of the algorithm is the determining the conservation of miRNA and target across
different species. This step was done in the initial development of the algorithm to find
out conserved miRNA and target pairs across different Drosophila species. In this thesis,
however this step was omitted. The output file given by the algorithm contains sequence
information of miRNA target and gene along with a textual representation of the match
result and calculated score and free energy for the binding and the length of both the
sequences. The mentioned line in the output file with score and free binding energy had
the format: miRNA accession/name gene accession/name Maximum score tab Maximum
free energy Total score Total free energy miRNA length 3’ UTR length.

Figure 7.2: miRanda workflow adopted from Enright et al. (2003)

7.1.8 Lucene

Apache Lucene6 is a text search engine library originally written entirely in the java
programming language. Lucene is as open source project supported by the Apache
software foundation7 and released under Apache software license8. Indexing process is
defined as the process in which a text is indexed and converted into a special format
which allows rapid data search eliminating low and sequential scanning process and the
output is known as index. Although the Lucene was developed initially in Java (Hatcher
and Gospodneti, 2004), it was later ported into many other languages including C, C++,
Perl and Python . The versatility and adaptability of Lucene made it a widely used
information retrieval library. SCAIView index is Lucene based, but it supports additional
functionalities such as semantic search. Additional semantic search functionalities were
added to indexing (creating indexes) Lucene uses five core indexing classes which are
used for creating indexes. They are:

6http://lucene.apache.org last accessed 02 October 2009
7http://www.apache.org last accessed 02 October 2009
8http://www.apache.org/licenses last accessed 2 November 2009
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� Index writer
Index writer is the central component of indexing, which creates new indexes and
adds document to index

� Directory
The directory class represents the location of the index. The class is abstract, which
allows its subclasses to store index where they fit.

� Analyzer
Analyzer extracts tokens to be indexed from the text and eliminates others. This
class also has implementations to skip the stop words and case sensitivity.

� Document
Document class is defined as a collection of fields. This class can be considered as
a collection of data that need to be retrieved at a later time.

� Field
Field is a piece of data that is either queried against or retrieved from the index
during a search.

Lucene uses inverted index concept (see Figure 7.3), where the tokens extracted during
the index creation is used as look up keys and documents are not considered as central
entities. In the index, documents with different sets of field can co exist. Lucene also
provides the concept of appendable fields, where synonyms of a word can be appended
together into a single field and is then used to create a Lucene field. This property of
Lucene makes it highly adaptable for the use indexing documents containing gene and
protein data. For retrieving the documents associated with a search term, Lucene uses
its search classes. The Lucene search classes are:

� Index searcher
Index searcher is the central component of index search, a method that exposes
several search methods and opens an index for reading puprpses.

� Term
Term is the basic unit of searching, it consist of a pair of string elements, name of
the field and value of the field.

� Query
Query is an abstract parent classes for different query types.

� Term query
Term query is the most basic type of query used by Lucene, and is a primitive
query type. Term query is used to match documents that contain specific values.

� Hits
Hit class is used to rank search results and is a container of pointers.
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Figure 7.3: Lucene inverted index example

7.1.9 Protégé and Knowtator

Protégé9 (Gennari et al., 2003) is an open source ontology editor and a knowledge
base framework. Knowtator10 (Ogren, 2006) is a general purpose text annotation tool
integrated to the Protégé representation system as a plugin. Both Protégé and the text
annotation tool Knowtator was used in this thesis for the annotation of test corpus for
the dictionaries. The test corpus was derived through keyword search experiments in
PubMed. Protégé is a java based extensible environment and provides support for plugins.
Protégé was initially designed as an application to develop knowledge acquisition tools
for medical planning (Noy et al., 2001). A Protégé knowledge base comprises of classes,
instances, slots and facet frames. Classes represent the concepts of a domain and are
organized hierarchically. Instances represent individual entries in a class and slots define
the relationships, with a class and instances or among classes. Facets represent the values
that each slot can hold. Knowtator is designed to use the knowledge representation
capabilities of Protégé for annotation of complex schema. One key feature of Knowtator
is its pluggable infrastructure that can handle multiple data formats of texts and the
original text used is not modified during the annotation procedure. For corpus annotation,
Knowtator creates three sets of annotation files (.pins file, .pont file and .pprj file) in
which .pins file contains the annotated entities along with spans and the other two files

9http://protege.stanford.edu last accessed 05 October 2009
10http://knowtator.sourceforge.net last accessed 05October 2009
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include annotation specification and other information for the user. The .pins file was
parsed using a perl script to extract the annotation.

7.1.10 Cytoscape

Cytoscape11 (Shannon et al., 2003) is an open source bioinformatics platform that is
used to visualize molecular interaction networks. The tool was uses in this thesis to
visualize various interaction networks retrieved from SCAIView and validate the predicted
networks using experimentally predicted interaction data. Gene expression profiles and
other confirmed experimental data can be integrated into Cytoscape. It is most commonly
used with protein-protein, proteingene and gene-gene interactions. Cytoscape provides
basic functionalities for network visualisation, integration of various experimental data
to the networks and linking network nodes to external database.

7.1.11 ProMiner

ProMiner (Fluck et al., 2003) is a named entity recognition system that is already
being used the human, murine and Arabidopsis genomics domain. The system can be
divided into three major parts with the generation and curation of dictionaries being the
first. In this step, names and synonyms of biological entities, from different database
resources are assembled into a dictionary. Each name and synonym is considered as
a token, or association of more than one token. Tokens are defined as small bits of
strings, for example, ‘matrix metalloproteinase 9‘ can be split into three tokens ‘matrix‘,
‘metalloproteinase‘ and ‘9‘ and the problem of biological entity recognition is solved at
the token level. The set of all the identified tokens are separated into token classes.
The token classes are based on varying degrees of significance that tokens have during
occurrence detection. The curation of the dictionaries was also done at this stage. The
main idea behind dictionary creation is the strict removal of synonyms that are unspecific
and creation of a comprehensive dictionary. This stage also involves the preprocessing
of the synonyms. Acronyms and subtype specifiers (example: a- indicating alpha) are
expanded and insertion of space is permitted between words and digits (example MMP9
and MMP 9). Certain rules are also employed in this stage, which would account for the
case sensitivity and detection of previously unidentified synonyms.

Dictionary generation step involves rule based classification of synonyms as well. As the
first step in this process, Porter stemmer was used to count occurrences of all stemmed
words in all abstracts in the MEDLINE database. Based on certain criterion all the words
were combined into three different groups. The most frequently occurring synonyms are
classified as “unspecific synonyms“. This classification is based on the principle that
“frequently occurring terms are less likely to be used as protein names“. The synonyms
which are identified through regular expression in the previous step are also grouped in
this class. The synonyms in this class are used for the disambiguation of other matches.
The synonyms in the class “unspecified synonyms“ are used as synonyms when certain

11http://www.cytoscape.org last accessed 23 September 2009
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context specific words like protein, gene and transcripts are used along with them. The
second class is the “case-sensitive synonyms“ where the entries in the class could be
differentiated from another dictionary entry only if the case of the synonym is considered.
The third class of synonyms constituted all the other entities which could be identified
during an approximate case insensitive manner.

The second step in the process is the search procedure. The biological entities in the
texts are identified by a text wide search and processing one token at a time and a
set of possible solutions (candidate solutions) are considered for each biological entity.
The search algorithm employs two different scoring schemes; a boundary score and an
acceptance score for matching a biological entity with a candidate solution. Boundary
score calculates the number of mismatched tokens in a candidate solution and acceptance
score is a linear combination of match and mismatch terms that are token specific.
Match and mismatch terms are described as the percentage of matched tokens in a given
class and the number of additionally found tokens during a candidate extension. When
appropriate weighting is given, the acceptance score is powerful enough to identify the
different variations of a synonym and ignore false substring matches. Different search
methods are employed for synonyms in different synonym class. An exact search method
allowing no deletion, insertion or permutation is applied for synonyms of the “unspecific
class“. In case of synonyms consisting of more than two tokens, an approximate search
method that permits deletion, permutation and insertion of tokens is employed. The
synonym class determines if the search has to be done in a case sensitive manner or case
insensitive manner. This step includes identification of previously undefined abbreviations
as well.

Match filtering is the final step, in which unspecific synonyms and overlapping matches
are filtered out. During the search process, if only one synonym is found as match for
certain text position, the synonym is accepted as a hit. But, it can also happen that a
set of synonyms are found as a hit for a certain position in the text. In such cases the
synonym match with a higher acceptance score is considered as a match. This matching
procedure would also accept the synonyms of the class “unspecific synonyms“ as a match,
it the synonyms are accompanied by terms having a high acceptance score. In case of
synonyms which can be mapped to more than one gene name, the synonym is mapped
to the gene/protein entry for which additional synonyms are found in the same abstract.
The match filtering stage includes an organism filtering stage as well, which would filter
the abstracts based on organism name (Hanisch et al., 2005). A complete workflow of
entity recognition process by ProMiner is given in Figure 7.4
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Figure 7.4: ProMiner workflow

ProMiner participated in the BioCreAtIvE challenges and the results of the BioCre-
AtIvE challenges are give in Table 7.1. ProMiner also participated in the BioCreAtIvE
II challenge, where the task was to link Entrez Gene identifiers to gene mentions in
the abstract. The system was adopted for the challenge using human gene dictionaries
and incorporating an initial step in which spelling variants were automatically added to
the dictionaries and external dictionaries were used for the removal of non-gene names.
The ambiguous gene mentions in the abstracts were identified by using the dictionary,
an abbreviation dictionary or depending on the frequency occurrence of words in the
text Morgan et al. (2008). The detection of ambiguous gene names was done inorder
to improve the precision of the system. The dictionary generated through automatic
addition of spelling variants were filtered through regular expressions or using a biomedi-
cal terminology dictionary created based on different OBO ontologies for disease, tissue,
organisms and protein family names, generated manually. Additionally, an acronym
dictionary containing gene specific short forms and non gene specific long forms were used
for dictionary disambiguation in this compilation step. The results of the BioCreAtIvE
II is given in Figure 7.5

Table 7.1: ProMiner performance adopted from Karopka et al. (2006)

Organism Precision Recall F-score
Mouse 0.77 0.81 0.79
Yeast 0.97 0.84 0.90
Fly 0.83 0.80 0.82
Fly

Accept matches of synonyms
associated to up to 3 different

Entrez Gene entries 0.74 0.83 0.79
Human 0.86 0.81 0.84
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Figure 7.5: ProMiner results of BioCreAtIvE II challenge adopted from Fluck et al. (2007).
Legend: Test Run -Test corpus run; D1, D3 - Disambiguation thresholds; O+,
O- Organism selection; DictOrig - BioCreAtIvE training corpus, DictSub -
genes gold standard.

7.1.12 SCAIView

“Building on existing named entity recognition technology and ontologies, SCAIView
exploits literature mining to enable both hypothesis generation and biological discovery“
(Gattermayer, 2007). SCAIView (see Figure 7.6) is an advanced semantic based search
engine which was materialized as a part of the European Union funded @neurIST12

project. SCAIView is developed as an integrated knowledge environment system
(Hofmann-Apitius et al., 2008) which is designed for the identification of the genes that
correlate with the disease aneurysm (characterized by balloon like bulging of the blood
vessel) by the semantic analysis of PubMed abstracts.

Figure 7.6: SCAIView homepage

The @neurIST project has four main end user application suites namely @neuLink,
@neuFuse, @neuRisk and @neuEndo. SCAIView was initially developed as a part of
@neuLink, an application suite that links genetics to disease via Knowledge Discovery
and the data mining tasks that can be accomplished through @neuLink include (Friedrich
et al., 2008a) :

12http://www.aneurist.org last accessed 13 September 2009
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� Finding candidate genes and gene variants that are related to the disease (this part
of @neuLink is known as SCAIView),

� Finding disease associated proteins through visualization and analysis of protein-
protein interaction networks.

� Analysis of gene expression data and result integration.

� Data mining the @neuIST database for generic risk factors.

Text mining methods are used to find candidate genes and their variants in text data.
Taking the necessary text mining time into consideration, the process is distributed over
the grid service used by the @neurIST project, several computer clusters and project
partners. The unstructured text mainly used is PubMed abstracts and the system allows
semantic search for PubMed abstracts. The results are stored in a layer, which forms the
base for “Find Candidate gens and variations“ service of the @neuLink service. Besides
text mining data, the layer also used data from SRS13, dbSNP, Entrez Gene, UniProt
and DrugBank14. The final result presented to the end user after the integration of all
the results (see Figure 7.7).

Figure 7.7: SCAIView entity view

The second step involves visualization and analysis of candidate proteins and interaction
partners that can be responsible for the disease. The candidate genes are obtained from the
“Find Candidate gens and variations“ and possible interaction partners and interactions
are retrieved from the PIANA15 (Aragues et al., 2006) database, which is a collection of

13http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-page+srsq2+-noSession last accessed 13 September 2009
14http://www.drugbank.ca last accessed 13 September 2009
15http://sbi.imim.es/piana/ last accessed 13 September 2009, the PIANA system has been updated to

BIANA.
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data from some of the publicly available databases like IntAct16, MINT17, and BIND18.
The interaction networks obtained can be accessed through data access service and
analyzed using network analysis tool Cytoscape (Shannon et al., 2003). In @neuLink,
Microarray gene expression data is used to confirm the knowledge discovery results that
are obtained through text mining. A service oriented microarray workflow is used to
integrate microarray results to @neuLink, the workflow is based on Bioconductor tools
and can access data from Array Express19 and Gene Expression Omnibus20 (GEO) along
with other Minimum Information About Microarray Experiments (MIAME) compliant
datasets.

The data mining module of @neuLink is used to mine the @neurIST patient database.
The module uses standard tool provided by Bioconductor and R. Besides mining the
database the module is also aimed at finding association between the disease and non
genetic factors that are available in the @neurIST database. Figure 7.8 shows SCAIView
workflow.

Figure 7.8: SCAIView work flow adopted from Friedrich et al. (2008a)

An additional feature of SCAIView is its aneurysm ontology and ontology based
searching. In the @neuLink interface, the ontology has three main functions to serve: As
a terminology for the project, Supporting semantic analysis through relations between
entities Support data integration. The ontology merges different scientific disciplines
and views on aneurysms and subarachnoid hemorrhage. The relevant term and concepts
in the aneurysm ontology are compiled from clinical databases, literature, knowledge
from domain experts, UMLS (Unified Medical Language system) Meta thesaurus and
public domain databases for molecular biology and adapts several existing ontologies
available. The aneurysm ontology is modeled as a “functional ontology“, which can enable

16http://www.ebi.ac.uk/intact/main.xhtml last accessed 13 September 2009
17http://mint.bio.uniroma2.it/mint/Welcome.do last accessed 13 September 2009
18http://bond.unleashedinformatics.com last accessed 13 September 2009, BIND is now BOND

(Biomolecular Object Network Database)
19http://www.ebi.ac.uk/microarray-as/ae last accessed 13 September 2009
20http://www.ncbi.nlm.nih.gov/geo last accessed 13 September 2009
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communication and corporation between different layers in @neuLink. The aneurysm
ontology is implemented in a dictionary based approach that describes the relevant terms
describing the disease intercranial aneurysm and associated concepts. ProMiner was used
as to identify all the terms in ontology in the given corpus. An advantage of converting
the ontology into a dictionary format is that for ontology- terms that are identified in
text, the database reference to the term could be given (UMLS, GO etc). In SCAIView
the ontology is displayed in an XML (eXtended Markup Language) tree based format
with hierarchical classification of the terms. SCAIView provides a relative ranking of the
entities based on relative entropy score (Friedrich et al., 2008b). The ranking system
based on relative entropy score,(Kullback/ Leibler divergence) (Kullback and Leibler,
1951), where the entire reference corpora used in SCAIView is compared against a subset
corpora obtained through a search in SCAIView and the entities are ranked accordingly.
Further addition to SCAVIew is a full text version of SCAIView, the full text version
has the advantage on the information content.

7.2 Methodology

The methodology section describes the main methods used in thesis for data retrieval,
generation and manipulation. The subsections in this section are:

� Generation and curation of species specific gene and protein name and microRNA
dictionaries.

� Mapping of external database information to ProMiner results.

� MicroRNA target analysis and mapping of computationally determined microRNA
results to dictionaries.

� Terminology analysis of Cattle preimplantation period.

� Indexing

� Corpus annotation and performance evaluation

7.2.1 Generation and curation of species specific gene and protein
name and microRNA dictionaries.

The very first step in the adaptation of SCAIView was the generation of gene and protein
name dictionaries, specifically for cattle and pig. A set of dictionaries had to be created
for each organism. The first one termed as the “curated dictionary“ was generated using
the gene and protein data that is available for each of the organism. For the generation
of these dictionaries, the primary steps are data assembly and data generation, which
are explained here. The data for the generation of curated dictionary were assembled
from the UniProt database. The second dictionary, termed as “generated dictionary“
was created by mapping cattle and pig genes to their orthologues in human and mouse
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genome, considering them as model organisms. The reason for creating an orthologue
dictionary using human and mouse gene data is the quality of gene annotation in human
and mouse genome and the sequence similarity of these genome to cattle and pig genome
(refer to Figure 7.9).

Figure 7.9: Genome similarity among organisms Elsik et al. (2009)

Own work

For generating curated dictionaries for cattle and pig, UniProt data for both of the
organisms were used. Further, additional spelling variants and synonyms for each of
the entries was added during a later stage, this data also included data from the Entrez
Gene for all those UniProt entries that could be mapped to Entrez Gene entries. The
cattle dictionary has approximately 13,800 entries and pig dictionary has 7,100 entries.
Different strategies were used for the orthologue mapping of cattle and pig genome. Since
cattle genome sequencing is complete and a well annotated list of cattle genes is available
from public databases, orthologue mapping service of the Ensembl database was used for
this purpose. Ensembl integrates the Biomart21 system for data querying. The system
allows large scale querying and allows the user to export the data into different file
formats. For retrieving the orthologue mapping, the latest version of Ensembl database
at that time was selected from the pull down menu, and the selection resulted in another
pull down menu with the genome builds of all the organisms that were present in the
database. From this list, Bos taurus genome was selected and the list was limited to all
the genes with corresponding Entrez Gene identifiers. This page also includes an option
for multispecies comparisons. From the list, orthologue human genes were selected. The
next step was the selection of attributes that needed to be retrieved. For cattle and
human genes, Ensembl gene id was selected as the attribute as orthologue retrieval in
Ensembl Biomart allows the genes only to be mapped to Ensembl identifiers and not to
any other database identifiers. In this way a tab separated table with cattle Ensembl
gene identifiers and human Ensembl gene identifiers was retrieved. The same process
was repeated for cattle mouse orthologs and the final result was obtained by merging the
cattle-human orthologues and cattle-mouse orthologues. For all the genes with cattle

21http://www.biomart.org last accessed 13 September 2009
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and mouse orthologues cattle-human orthologue data and cattle-mouse orthologue data
were merged to cattle-human-mouse orthologue data. Orthologue data for approximately
17,500 cattle genes were retrieved in this way. Since pig genome data was not available in
Ensembl database or in most of the major public domain databases at that time, other
orthologue specific databases were searched for human and murine orthologues for pig.
The searched databases include EGO22, OrthoMCL23 (Roos et al., 2006), InParanoid24,
orthologue mapping in MGI database25 (Blake et al., 2003b). Only MGI database
provided orthologue mapping of pig genes to human and mouse counterparts, but the
output result was too few, roughly around 600 pig genes were mapped to human and
murine orthologs. So an alternate approach was used to map pig genome to human and
mouse orthologues. An orthologue detection algorithm, OrthoMCL (refer to Section
7.1.6) was used to identify model organism orthologs for pig. The data supplied to the
algorithm included around approximately 21,000 human genes, 9,000 mouse genes and
7,000 pig genes in the form of three different protein FASTA files and default parameters
in the algorithm were used. The run produced two different files; the first one included
the clustering output given by OrthoMCL and the second one included pair wise BLAST
result for all the proteins in all the three files in BLAST tabular BLAST result format
(m8 format (refer to Figure 7.11)). A post processing step was needed for the result from
the OrthoMCL clustering results, as some of the cluster groups had a large number of
genes in them (upto ∼50 genes in some cluster group). The post processing step was done
in different steps, using perl scripts. As a first post processing step, the gene identifiers
of all the pig genes were extracted from the OrthoMCL clustering result using a parser.
By keeping the clustering result from OrthoMCL as a seed point, all the BLAST scores
where the pig genes were used as the source sequence and human and mouse genes as the
target sequences were extracted from the second OrthoMCL output file (BLAST result).
All the BLAST results for individual pig genes were clustered into one, keeping the
original format of the BLAST results. After the clustering, each of the clustered groups
was treated as 2 dimensional matrices and matrix sorting was performed on individual
matrices based on sequence identity of the source and target proteins of the BLAST
result. Based on the sequence identity of the source and target sequences and all the
pairs with less than 35% of the sequence similarity were filtered out, based on twilight
zone of protein sequence similarity (Rost, 1999).

22http://compbio.dfci.harvard.edu/tgi/ego last accessed 13 September 2009
23http://www.orthomcl.org/cgi-bin/OrthoMclWeb.cgi last accessed 13 September 2009
24http://inparanoid.sbc.su.se/cgi-bin/index.cgi last accessed 13 September 2009
25http://www.informatics.jax.org last accessed 13 September 2009
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Figure 7.10: Workflow used for identifying human and mouse orthologs for pigs

Figure 7.11: m8 format description using an example

The later steps in the processing steps include further filtering of the obtained results.
After the filtering of results based on the sequence similarity, the matrix was further
sorted based on the bit score of the BLAST result. The top scoring bit score after the
scoring was selected as a standard and all the results with BLAST scores and sequence
identities that fell within a certain limit of the standard BLAST score and sequence
identity were considered as orthologs for the particular pig gene. The resulting human
and mouse genes were mapped to the source pig gene, and data from Entrez Gene and
Uniprot database were used to create the orthologue pig dictionary.

Curation of Dictionaries

The second step in creating protein and gene name dictionaries was the formatting
of the assembled/generated data to the ProMiner dictionary format and submitting
those dictionaries for a ProMiner run on abstracts (complete MEDLINE abstracts or
a subset specified by the user). Here, the dictionary curation steps done for cattle and
pig dictionaries are described. For using the generated dictionaries in ProMiner for
named entity recognition, the entries in dictionaries need to be in a special format. The
dictionaries were converted into ProMiner format by using perl scripting (ProMiner
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dictionary format example: 768107@ENTREZGENE|Regucalcin:Regucalcin|Senescence
marker protein 30|Senescence marker protein30|SMP-30|SMP30|SMP 30). The idea
behind the format is normalization, where all the gene names representing the same
gene are mapped to a unique identifier (here to a unique database identifier from Entrez
Gene or UniProt). Along with mapping to external database identifier, ProMiner creates
its own internal identifiers so that a gene/protein entry and associated synonyms are
mapped not only to a unique database identifier but also to a unique internal identifier.
The created internal identifiers are used for mapping purposes at a later stage in the
process. The format- converted gene and protein name dictionaries are subjected to a
run on ProMiner on approximately 470,000 MEDLINE abstracts (the total number of
abstracts in MEDLINE relating to cattle and pig). ProMiner accepts text in two kinds
of input formats, either as free text in files or as list of PMID identifiers for MEDLINE
abstracts (as .ids file). When a list of PMID identifiers are given, ProMiner retrieves
the abstracts using PMID from its internal database, and in this thesis since the results
needed to be indexed using Lucene for SCAIView integration, a SCAI custom built
PubMed abstract format, lucmed was used. In lucmed format the heading sections of the
abstracts are avoided and PMID is used as the unique identifier, added to the main body
of the abstract. For generation and curation purposes of cattle and pig gene/protein name
dictionaries, a list of the above mentioned MEDLINE abstracts were given. ProMiner
provides a visualization interface for analyzing the run results. The interface shows the
found entities, synonyms of the found entities, total number of occurrences of the entity
and the abstracts in which the entity was found. The visualization interface was used to
manually identify false positives in the later curation stages (see Figure 7.12).

Figure 7.12: ProMiner visualization interface used for curation

The initial run was done as a test run to identify all the possible false positives
that could be included in the raw dictionary. Some examples of the false positives are:
gene/protein names that are used in context of more than one gene name, acronyms
of gene names, which have more than one expansion, certain organism names that are
included as a part of the gene name, or included to denote the organism in which the gene
was identified at first and some commonly occurring words that are used as gene/protein
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name. An example is the word “CAT“, which in some abstracts, is used to denote the
animal cat, in some other abstracts used for the gene CAT (Entrez Gene ID: 531682)
and in other abstracts used for the bacterial enzyme Chloramphenicol acetyltransferase
(CAT). Similar is the case with acronyms, the acronym IVD is used as a gene name IVD
(isovaleryl Conezyme A dehdrogenase, Entrez Gene ID: 510440), also as an acronym for
in vitro derived (IVD) as well as for intervertebral disc (IVD). But in this problem of
acronym disambiguation can be solved thorough Latent Semantic Indexing (LSI) (Oster,
2008). Some of the other noises in the gene/protein name dictionary include cDNA
information of the transcript from which the gene is annotated and some gene name
variants for isoforms which rarely occur in the text. These false positives and noises had
to be filtered from the dictionary. ProMiner allows the user to remove the synonyms or
false positive terms based on the context. For instance, ambiguous names which occur as
synonyms for a number of gene/protein name. Some words create ambiguity only within
the limit of their own identifiers; these words were removed on that specific context.
Take the case of acronyms with more than one expansion, in case of these acronyms,
the ambiguity is only within the limit of a range of gene/protein name for the acronym.
In some conditions, the entire synonyms and the identifier were removed as a result of
redundant occurrences. These redundant occurrences were especially noticeable in case
of TrEMBL data. In certain instances it was noted that certain spelling variants of the
gene/protein name and some synonyms were only found in texts and not in databases.
To illustrate, for the gene insulin-like growth factor 1 the normal acronyms found in
databases are IGF-1 and IGF-I, but in texts it can be seen that “IGF1“ is also used as a
synonym for the gene (PMID 18586434). ProMiner has an allocated file in which the
entries are either the false positives that needs to be removed or the synonyms that need
to be added to an identifier. The identifier, followed by ‘:‘ and ‘-‘ or ‘+‘ is used in front
of the term to be removed or added depending on the situation. There exists certain case
sensitive gene and protein names, which can be categorized as gene/protein names when
the synonym is represented entirely in capital letters or a mix of capital and small letters
(STAR and StAR :- steroidogenic acute regulatory protein Entrez GeneID: 782522) and
the meaning of these terms completely changes when used only in small letter. These
words were treated in a special manner in the dictionary curation. ProMiner has two
dedicated files which would consider the entries without word permutations, insertion of
spaces or change of cases. Curation was done as an iterative process and was the most
important step in this section.

ProMiner entity visualization was used to visualize the entites identified by cattle and
pig dictionaries. The falsely identified entities (some words that are not gene/protien
mentions, but marked by the system as a gene/protien entity) and entities that were
not identified (false negatives) were manuall identified and were used as inputs for the
compilation and curation run. All the ambiguous synonyms and acronyms that were
to be removed from the system along with the synonyms that were to be added to
respective identifiers were given as inputs for in the file. The generated gene/protein
name dictionary was then compiled with ProMiner using the mentioned files as inputs.
The compilation step accounted for the removal of ambiguous terms and addition of
synonyms supplied to the system. The dictionary compilation step also created two other
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files namely the .map file, which was later used as a starting point for external database
mapping and a .single file which was gave a list of all the single word synonyms where
no permutation of the synonyms were allowed as specified by the user. In this project,
the entire ProMiner dictionary curation and compliation steps were used. A generalized
workflow of the curation step is given in Figure 7.13.

Figure 7.13: Curation process workflow

The compiled dictionary was then given as the input gene/protein name dictionary for
a ProMiner run on the same 470,000 abstracts. The output of a ProMiner run is a .prt
file which stores the metadata on the searched abstracts. A PRT file is a tab separated
file with the columns representing the information of the entities extracted from the
abstracts (see Table 7.2). A prt file contains a total of 37 tabs. The first column in the
abstract gives the PMID of the abstracts which were used for the search run, followed
by the internal identifier of the found gene/protein name, the next three columns gives
the identified term in three different formats: the normalized term; the term to which
the synonym is mapped and the spelling variant identified in the abstract, spans of the
term (word count from beginning of the term to end of the term in a document) in the
abstracts and other details. The .prt files obtained were indexed with SCAIView indexing
process, specifying the PMIDs of the abstracts in a separate .ids file for restricting the
indexing process to those abstracts thus making the indexing specific for cattle and pig
genes. The indexing process was a major step in the adaptation of SCAIView, since the
specified index is the major gene protein name data source for SCAIView.
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Table 7.2: Some of the important columns in a PRT file, using examples from cattle
dictionary

Columns: column 1 column 2 column 3 column 7 column 8 column
10

Designations: Document
id
(PMID)

ProMiner In-
ternal identifier
for entity

normalized
entity

entity oc-
currence
in docu-
ment

span be-
ginning

span end

Examples:

19634707 BTC 005874 tnfalpha TNFalpha 16 24
19524660 BTC 005259 eNOS eNOS 1086 1090
19633431 BTC 005415 cdc2 Cdc2 196 200
19633132 BTC 003644 gfra1 GFRA1 874 879

MicroRNA dictionaries

For generating microRNA dictionaries microRNA data file in EMBL format26 from
microRNA database (miRBase) was retrieved and parsed using a perl script written for
the purpose. The file contained microRNAs data for all the organisms with microRNAs
sequences in the miRBase database. But for the purpose then microRNA data for cattle,
human, mouse and pig were parsed. The data in the retrieved file followed microRNAs
naming conventions. But it was found that in certain text documents authors often
introduce spelling variants for microRNAs names. For example, for the human microRNA
miR-21 (hsa-miR-21) terms like MicroRNA-21 (found in PMID 196892430), microRNA
21(found in PMID 19547998) miRNA-21 (found in PMID 19450585) were found in
abstracts. So appropriate changes were made in the perl parser script to include all the
mentioned terms while generating the dictionary. MicroRNA dictionaries were created
for cattle, human, mouse and pig. The created microRNAs dictionaries were used as base
dictionaries for ProMiner run on the entire Veterinary corpus. Since the nomenclature
and mentioning of microRNAs are unambiguous no curation step was done for microRNA
dictionaries. Finally, all the PRT files created from ProMiner run on were used as data
sources for the indexing process with SCAIView.

7.2.2 Corpus annotation and performance evaluation

For performance evaluation of the two sets of dictionaries, two sets of corpus were
annotated using Knowtator plugin in Protégé. The annotated set of corpora was
considered as the ‘golden standard‘ to which the performance of the dictionaries were
compared.For result analysis two sets of corpus were generated, Frst corpus covering
a wide range of abstracts from cattle and pig genomics and second corpus, covering a
specifc range of cattle and pig abstracts concerning preimplantation and meat quality.

26http://www.ebi.ac.uk/embl/Documentation/User manual/usrman.html last accessed 2 November
2009
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General corpus generation

For the creating a general test corpus, cattle and pig PMIDs were retrieved from PubMed
using keyword search. For cattle corpus generation, the query “cattle AND genome“
retrieved a list of 10347 PMIDs. From this list, 200 PMIDs for the test corpus were
retrieved. The first 100 PMIDs were at random, in sets of 10-15 PMIDs from the first
5000 PMIDs and the second 100 PMIDs were retrieved from the last 5000 PMIDs in
the same way. To generate a test corpus for pig dictionaries, the query term used was
“pig AND genome“ and the query retrieved a list of 7147 PMIDs. From the list 200
PMIDs were retrived in th same way a cattle corpus PMID list. Using these PMID lists,
abstracts were retrived from the internal database in lucmed format.

Specifc corpus

For specifc corpus, a list of pmids relating to cattle preimplantaion and pig meat quality
were generated using PubMed keyword search. The search strategies were specifc (for
example“cattle AND preimplantation“ and “pig AND meat quality OR carcass quality
genetics“) The initial PMID lists for the two corpora prepared for annotation as a part of
this thesis contained about ∼400 PMIDs each and 200 PMIDs were selected from each of
the corpora at random. Since the corpus was biased towards these fields, the documents
contained more number of gene protein entities when compared to the general corpus.

The gene and protein entities found in all the abstracts were annotated using Protégé
and Knowtator. For annotation, the guideline selected was that “no hormone names and
no gene family name were to be annotated“. The annotated gene and protein entities
in each of the abstracts along with the corresponding PMIDs and the word span (word
count starting from the beginning of the gene/protein entry to the end of the same entry)
were retrieved from .pins file in the Knowtator annotation directory using perl scripting.
The same extracted PMID lists were given as the base text source for ProMiner test
run. For all the cattle dictionaries the PMID list of 200 abstracts were used and for
pig dictionaries, 200 pig PMID list was used. The gene and protein entry, word span
and corresponding PMID were retrieved from the corresponding PRT files and gene and
protein entities along with the word spans identified in each abstract by ProMiner was
compared with gene protein entities and the word span of each entry in each of the
abstract.

7.2.3 Mapping external database information to ProMiner results

An important step in the adaptation procedure is the generation of database mapping
and entity description files. The database mapping file contains database identifiers
from external databases that are mapped to the corresponding gene/protein entry and
ProMiner internal identifier. The database mapping file was created using the .map file
generated during the compilation step as a base point, thus creating an enriched mapping
file. The original file (.map file from ProMiner run) contained an internal ProMiner
identifier, which was mapped to the given external database identifier and a synonym (an
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example for an entry in ProMiner .map file BTC 000404:A1L595@SWISSPROT|KRT17
(see Figure 7.14)).

Figure 7.14: ProMiner .map file entry

As a part of this thesis, for generating .map files for cattle, pig and microRNA dictio-
naries external database mapping information were retrieved from databases and using
perl scripts written for this purpose, the external database information was mapped onto
the internal identifier (see Figure 7.15) for information enrichment of the found entities
with external database information in SCAIView.

BTC 000404:A1L595@SWISSPROT|281889@ENTREZGENE|0005737
@GO|0005882@GO|0005198@GO| ENSBTAG00000006806@ENSEMBL| KRT17
an example for .map file entry with external database mapping.

A short description file was also created based on ProMiner generated .map file. The de-
scription file contains short description or officially recognized gene/protein name mapped
to the internal identifier for the entity. The description file was used in SCAIView to
give a brief description of the found entities. For curated dictionaries, the external
database mappings and gene protein descriptions were retrieved from UniProt database,
and Swissprot/Uniprot Interpro mappings were retrieved through Biomart service in-
tegrated to Ensembl database. Using perl scripting the retrieved external database
mappings was mapped to ProMiner internal identifiers to create .map file. In the case
of generated dictionary for cattle, the database mappings to Uniprot, Interpro, Gene
Ontology annotations and Ensembl database were retrieved through Biomart integrated
to Ensembl database and KEGG pathway mapping was retrieved from KEGG database.
For SNP mapping, the xml files in which rs numbers were allocated to the respective
Entrez Gene identifiers in each chromosome were retrieved from dbSNP ftp service and
was parsed to get rs number to Entrez Gene mapping with a perl script written for the
purpose. For pig generated dictionaries database mappings from Entrez Gene, Uniprot
and KEGG was used along with functional gene annotation from Gene Ontology, since
most other information on pig genes and proteins were not available at the time. For ex-
ternal database mapping of microRNAs dictionaries, the same methods used for external
database mapping of gene/protein name dictionaries were used. The microRNAs were
mapped to miRBase, currently existing microRNAs database and additional information
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including the species in which the microRNA is present, the chromosome allocation of
microRNAs, start and stop locations in the chromosomes and orientation of microRNA
in the chromosome were added to the mapping file.

A mapping file created this way is used for external database information integration
and result filtering. For example, for the gene KRT17 the GO identifiers found are
0005737, 0005882 and 0005198. SCAIView allows further search using these found results
(search using results). On clicking the result filter icon in the entity page, the selected
results are filtered. If the result filtering is done with the go id 0005737 in SCAIView,
the filter search area shows the search query as “0005737@GO“. When such a search is
made, all the entities corresponding to the search term are selected and rest are filtered
out.

Figure 7.15: Workflow used for creating .map files for SCIAView, illustrated with an
example

7.2.4 MicroRNA target analysis and mapping of computationally
determined microRNA targets to SCAIView results

Since microrna dictionaries were created, the target analysis of these microRNAs and
integration the obtained result to the SCAIView results were done for this thesis. For
microRNA target analysis, miRanda algorithm was used (refer to Section 7.1.7). The
microRNAs target sequences were retrieved from miRBase database and target 3’ UTR
sequences of the target organism genes were retrieved from Ensembl database in FASTA
format. The two files were used as input files in miRanda algorithm. The output files
containing the results given by the algorithm was further parsed to make a refined list
of microRNAs targets. The parsing process was done using perl script. MicroRNA
target analysis and integration of target Entrez Gene identifiers to microRNA dictionary
mapping file was done to make querying for microRNAs and its targets to an automated
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way. The current microRNAs target searches in texts involve searching with relevant
keywords and manual scanning for microRNAs gene targets in texts. MicroRNA targets
for pig microRNA in pig genome, cattle microRNA in cattle genome and human and
mouse microRNA in cattle and pig genome were computationally determined using
the algorithm. The reason for analysing cattle and pig gene targets for human and
mouse microRNAs is that like orthologue genes, microRNAs also tend to be evolutionary
conserved in their function and sequence, they follow similar nomenclature and scientists
have explored the possibility of using orthologue microRNAs in different organisms
through experimental validation. The 3’ UTR sequences were initially mapped to their
respective Ensembl gene identifiers, since the data was retrieved from Ensembl in FASTA
format and header sections of the FASTA file was the corresponding Ensembl identifier.
So for all the final hits identified, the corresponding Entrez gene identifiers were retrieved
through Ensembl Biomart service. Similarly, the header sections of the microRNAs
FASTA file had microRNA names, so these microRNA names were mapped to miRBase
identifiers. Ensembl gene identifier to Entrez gene mapping, microRNA name to miRBase
identifier mapping and a modified ProMiner .map file for microRNA were used as inputs
for a perl script (written for this particular purpose), that used all the data to generate a
final mapping file for microRNA dictionaries and was used for microRNA data enrichment
in SCAIView.

The microRNA targets were mapped to the corresponding microRNAs to enable
search using results. For example, from the microRNA bta-miR-2443, a user could easily
navigate to one of the possible targets for the microRNA and can extract the external
database information and functional gene annotations for the target gene.

7.2.5 Terminology analysis of cattle preimplantation period

Terminology analysis and integration of the terminology to SCAIView was done to
facilitate a terminology based search. For this thesis, terminology analysis of cattle preim-
plantation period was done with the help of the researchers from the institute of animal
science. The terms coined by the researchers were classified under four different headings.
The terminology was designed to include all the major embryo structures, structural
components and developmental processes that a preimplantation embryo undergoes, as
well as all the major artificial embryo manipulation techniques and procedures that are
used in preimplantation embryo manipulation. The terminology hierarchy was arranged
into four major sections, ‘Embryo stages‘, ‘Embryo development‘, ‘Sources‘ and ‘Proce-
dures‘. The first section in the terminology hierarchy was ‘Embryo stages‘, in this stage
included terms describing different stages and morphological structures of an embryo
during the preimplantation development. Embryo stages branch was subdivided into two
sections ‘Oocyte‘ and ‘Embryo‘. Although oocyte does not directly come under cattle
preimplantation period, oocyte was included because of the major role that oocyte plays
in preimplantation embryo development. Three subsections, ‘cleavage stages‘, ‘Morula‘
and ‘Blastocyst‘ were included in ‘Embryo‘ section. These subsections are different stages
of preimplantation embryo development and each of them plays a key role in embryo
development. The inner divisions and final nodes of these subsections include all the
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major structures and structural components that form an embryo at the mentioned
stage. The second major section was ‘Embryo Development‘, which includes all the
developmental processes that an embryo undergoes during preimplantation stage. This
section had two major subdivisions, ‘Morphological development‘ and ‘Non morphological
development‘. The first subdivision incorporated all the preimplantation embryo devel-
opmental process which changed the morphology of the embryo, like cleavage division
and embryo compaction. The second subdivision covered all the embryo developmental
procedures that do not change the morphology of the embryo but plays a major role in
preimplantation development, like embryo genome activation. It was found that some
of the structure entities that need to be defined in the ‘Embryo section‘ were already
defined in ‘Human developmental anatomy timed version27‘ ontology in the OBO foundry.
So, all the ‘Embryo structure‘ relevant found in ‘Human developmental anatomy timed
version‘ ontology were added to the terminology (for example: polar trophectoderm
(id: EHDA:111) and mural trophectoderm (id: EHDA:59), different classification of
trophectoderms ). Similarly some of the entities in GO biological process ontology was
found to be relevant to ‘Embryo development‘ section of the terminology and were added
to the respective terminology section (for example inner cell mass cell differentiation
(GO:0001826) and inner cell mass cellular morphogenesis (GO:0001828)). The remaining
two sections were aimed at the embryo manipulation techniques and procedures that were
used. The section ‘Sources‘ defined source of an embryo like its environment (in-vitro
or in-vivo) and the cloning process used in the embryo generation. The last section,
‘Procedures‘ accounts for the artificial techniques and natural procedures that are found
in association with the embryo environment and cloning processes. For example, ‘embryo
transfer‘ is an entry in ‘Procedures‘ that could be used in association with ‘in vitro‘ in
‘Environment‘ hierarchy as ‘in vitro embryo transfer‘.

The terminology so generated was converted into ProMiner dictionary format with a
local internal identifier as a unique identifier instead of an external database identifier.
The different spelling variations and acronyms of the terms in terminology are added
to the dictionary and a ProMiner run was done on the previously mentioned, ∼470,000
abstracts that were used for ProMiner run of the gene protien dictionaries. The resulting
prt file was also indexed with SCAIView to create an indexed of the terms. An XML file
was generated (see Figure 7.16) following the hierarchies explained and with all the terms
in the terminology dictionary. The XML file was integrated into SCAIView to allow
terminology based search. The terminology was developed independently, not based on
Mesh or UMLS terms since the cattle preimplantation domain was too specific, and the
terms included in Mesh or UMLS are representing a broader concept.

Similar to result based search, ontology or terminolgy based search filters the entities
and documents depending on the occurrence of entities along with the ontology or
documents containing the term. An example query and the based results are explained
in Section 8.3.

27 http://www.obofoundry.org/cgi-bin/detail.cgi?id=human-dev-anat-staged last accessed 29 September
2009
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Figure 7.16: Terminology in XML format

7.2.6 Indexing

Indexing is done to improve data retrieval operations in a database table. SCAIView
indexing was done by using the above mentioned PMIDs of the abstracts as source list
for abstracts (texts) and the PRT files from ProMiner were used as source list for list
of terms to be indexed. The indexing process was done with PRT files from gene and
protein dictionaries generated for cattle and pig, microRNA dictionaries of cattle, human,
mouse and pig, terminology dictionary, Gene Ontology descriptions and SNP descriptions
that were created as a part of an earlier SCAIView project as a part of @neurIST project.
For the final indexing procedure, the list of PubMed identifiers were given from the
veterinary corpus28. So, instead of using the previously mentioned 470,000 abstracts for
the indexing process, the process was done on approximately 1,599,000 abstracts, the
total number of abstracts in the veterinary corpus.

A complete, generalized workflow adopted during this thesis is given in Figure 7.17.

28http://www.nlm.nih.gov/services/veterinarymed details.html last accessed 10 November 2009
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Figure 7.17: Generalized workflow for generation and integration of dictionaries into
SCAIView
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8 Results and discussion

This chapter describes the the final results obtained and further discussions on the results.
The needed files such as the dictionaries, external database mapping files, description
files and database indexes were generated as mentioned in the methodology section and
were integrated into the SCAIView system, and test runs were made to test the system.
Figure 8.1 shows the animal version home page and Figure 8.2 shows the entity result
page.

Figure 8.1: Animal SCAIView homepage
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Figure 8.2: Animal SCAIView entity view

The performances of the gene and protein dictionaries were assessed, the interaction
network given by SCAIView is analysed and Miranda algorithm is used to predict
possible cattle microRNAs that target preimplantation genes. The results of these
various performance analysis are explained in this section.

8.1 Performance analysis

The performance analysis of the system was done by calculating precision, recall and F
score as explained in Section 3.5. The results are given below:
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Table 8.1: Annotated corpora and number of extracted entities

Corpora Number of ab-
stracts

Number of ab-
stracts annotated
gene and protein
entities

Extracted entities

Cattle general cor-
pus

200 46 413

Cattle specific cor-
pus

200 179 1846

Pig general corpus 200 64 326
Pig specific corpus 200 184 1626

Table 8.2: Annotated corpora and number spelling variants and unique entities

Corpora Entities extracted Spelling variants,case
sensitive entities

unique Entities

Cattle general cor-
pus

413 157 124

Cattle specific cor-
pus

1,812 588 -

Pig general corpus 326 159 129
Pig specific corpus 1,626 545 -

The performance analysis was done on three sets of dictionaries:
Curated dictionaries: Cattle and pig gene/protein dictionaries created from Uniprot
data of the organisms
Generated dictionaries: Dictionaries created from orthologue mapping of cattle and
pig genes to human and mouse counterparts.
Combined dictionaries: For each organism the curated and generated dictionaries
were combined into a single dictionary to analyze the performance.
In addition, the prt files obtained from the ProMiner run for curated and generated
dictionaries of each organism were combined and the performance of the combined results
were also assessed.

All the three sets of dictionaries were given as seed dictionaries in ProMiner as explained
in section 7.1.11 and the the list of PubMed identifiers, which were used for annotation
were given as base document for entity tagging. The generated PRT files were retrieved
and analyzed, in addition, the ProMiner PRT files obtained from individual dictionaries,
(curated and generated dictionaries) were combined and the result was also analyzed.

Since two separate dictionaries were created for a single organism, the overlap between
the two dictionaries was identified. For this purpose, the number of test abstracts in
which gene and protein mentions were found by both the dictionaries was identified.
Similarly, the number of test abstracts in which gene protein mentions uniquely identified
by each of the dictionaries was also identified. The results were analysed for both corpora,
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the general corpus with documents covering a large domain and the specific corpus, the
corpus that is biased towards cattle preimplantation genomis and pig meat quality and
genetics.

Table 8.3: Dictionaries and entities found in ProMiner run for general corpus

Corpora Dictionary Number of ab-
stracts with en-
tities found

Extracted en-
tities

Cattle general corpus
specific dictio-
nary

56 355

orthologue dic-
tionary

55 395

combined dic-
tionary

44 197

Cattle specific corpus
specific dictio-
nary

166 1585

orthologue dic-
tionary

173 1592

combined dic-
tionary

123 805

Pig general corpus
specific dictio-
nary

50 187

orthologue dic-
tionary

41 176

combined dic-
tionary

39 113

Pig specific corpus
specific dictio-
nary

141 1130

orthologue dic-
tionary

155 1379

combined dic-
tionary

113 720

The prt files returned after the test run were also analyzed to find the number of
abstracts in which entities are identified uniquely by each dictionary, and the number of
abstracts in which entities were identified by both dictionaries in common. The results
are given in the table below:
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Table 8.4: Table showing overlapping and unique abstracts

Organism Copora Dictionary Number of
abstracts
with entities
found

Common for
both dictio-
naries

Unique
for each
dictionary

Cattle
general corpus specific dic-

tionary
56 44 12

Orthologue
dictionary

55 44 11

specific corpus specific dic-
tionary

166 158 8

Orthologue
dictionary

173 158 15

Pig
general corpus specific dic-

tionary
50 29 21

Orthologue
dictionary

41 29 12

specific corpus specific dic-
tionary

141 117 24

Orthologue
dictionary

155 117 38

From the extracted annotations and prt files from ProMiner, number of true positives,
false positives and false negatives were calculated using a perl script and the results are
given below:
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Table 8.5: Performance analysis: True positive, false positive and false negative values
for dictionaries on general and test corpora

Organism Corpora Dictionary True positive False positive False nega-
tive

Cattle general corpus

specific dictionary 244 111 169
orthologue dictio-
nary

264 131 149

dictionaries
merged

110 87 303

results combined 308 170 105

Cattle specific corpus

specific dictionary 1,376 207 436
orthologue dictio-
nary

1379 211 433

dictionaries
merged

627 166 1,185

results combined 1,583 298 229

Pig general corpus

specific dictionary 143 44 183
orthologue dictio-
nary

130 46 196

dictionaries
merged

62 51 264

results combined 175 76 151

Pig specific corpus

specific dictionary 985 142 641
orthologue dictio-
nary

1,201 178 425

dictionaries
merged

586 123 1,040

results combined 1,320 233 306

From the extracted entities precision, recall and F score were calculated for all the
three sets of dictionaries and the result obtained by merging the dictionaries. The table
given below shows the results (rounded to two digits):
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Table 8.6: Performance analysis Precision, Recall and F 1 score for dictionaries on general
and test corpora

Organism and Cor-
pora

Dictionary Precision Recall F-Score

Cattle general corpus

specific dic-
tionary

0.69 0.59 0.64

orthologue
dictionary

0.67 0.64 0.65

dictionaries
merged

0.56 0.27 0.36

results com-
bined

0.64 0.74 0.69

Cattle specific corpus

specific dic-
tionary

0.87 0.76 0.81

orthologue
dictionary

0.87 0.76 0.81

dictionaries
merged

0.79 0.35 0.48

results com-
bined

0.84 0.87 0.86

Pig general corpus

specific dic-
tionary

0.76 0.44 0.56

orthologue
dictionary

0.74 0.40 0.52

dictionaries
merged

0.59 0.19 0.28

results com-
bined

0.76 0.44 0.56

Pig specific corpus

specific dic-
tionary

0.87 0.61 0.72

orthologue
dictionary

0.87 0.74 0.80

dictionaries
merged

0.83 0.36 0.50

results com-
bined

0.85 0.81 0.83

The prt files were obtained were also analyzed for the spelling variants and unique
genes identified. The analysis was done by comparing the prt file results to the parsed
annotation data and the results are shown in Table 8.10.
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Table 8.7: Performance analysis: Dictionaries and number of spelling variants and unique
entities found for each corpora

Organism Corpus Dictionary Spelling and case
variants found

Unique entities

Cattle

general corpus

specific dictionary 120 102
orthologue dictio-
nary

128 107

results combined 166
combined dictio-
nary

79 69

specific corpus

specific dictionary 403 274
orthologue dictio-
nary

397 275

combined dictio-
nary

231 177

results combined 482

Pig

general corpus

specific dictionary 83 70
orthologue dictio-
nary

74 57

combined dictio-
nary

57 46

results combined 115

Specific corpus

specific dictionary 284 209
orthologue dictio-
nary

345 219

combined dictio-
nary

183 146

results combined 388

The reason for the low performance of the combined dictionaries were that ‘the
ambiguity filter functionality‘ in ProMiner was activated during the runs, which filtered
out multiple occurrences of synonyms. So the performance of the dictionaries were
analysed after deactivating the ambiguity filter functionality.
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Table 8.8: Performance analysis: True positive, false positive and false negative values
for dictionaries on general and test corpora with ambiguity filter removed

Organism and Cor-
pora

Dictionary True positive False positive False nega-
tive

Cattle general corpus

specific dictionary 274 183 139
orthologue dictio-
nary

272 209 141

dictionaries
merged

304 208 109

results combined 312 289 101

Cattle specific corpus

specific dictionary 1,403 285 409
orthologue dictio-
nary

1415 408 397

dictionaries
merged

1,575 534 237

Pig general corpus

specific dictionary 191 70 135
orthologue dictio-
nary

147 78 179

dictionaries
merged

200 116 126

Pig specific corpus

specific dictionary 1,198 222 428
orthologuedictionary 1,222 192 404
dictionaries
merged

1,333 255 293

Since a difference was found in the number of true positives, false positives and false
negatives especially in case of combined dictionaries, precision recall and F-score of the
dictionaries were analyzed.
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Table 8.9: Performance analysis: Precision, Recall and F 1 score for dictionaries on general
and test corpora with ambiguity filter removed

Organism and cor-
pora

Dictionary Precision Recall F 1 Score

Cattle general corpus

specific dictionary 0.52 0.76 0.62
orthologue dictio-
nary

0.57 0.66 0.61

dictionaries
merged

0.51 0.74 0.60

results combined 0.51 0.76 0.62

Cattle specific corpus

specific dictionary 0.83 0.77 0.80
orthologue dictio-
nary

0.77 0.78 0.77

dictionaries
merged

0.74 0.86 0.80

results combined 0.75 0.87 0.80

Pig general corpus

specific dictionary 0.73 0.59 0.65
orthologue dictio-
nary

0.65 0.45 0.53

dictionaries
merged

0.63 0.61 0.62

results combined 0.63 0.61 0.62

Pig specific corpus

specific dictionary 0.84 0.74 0.79
orthologue dictio-
nary

0.86 0.75 0.80

dictionaries
merged

0.84 0.82 0.83

results combined 0.83 0.83 0.83

The statistics from the indexing procedures were also analysed to find the number of
entities identified by the dictionaries and the number of documents in which entities were
found. The statistics were analyzed for all the gene/protein dictionaries and miRNA
dictionaries along with cattle preimplantation terminology dictionary. The statistics are
shown in the table below:
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Table 8.10: Indexing statistics

Organism dictionary Corpora
size

Number
of entities
found

Relative
entity count
(entities per
document)

Number of
documents
with entities
found

Unique enti-
ties found

Cattle

specific dictio-
nary

1,599,024 964,909 3.87 249,596 5,665

orthologue dic-
tionary

1,599,024 1,088,870 4.13 263,850 7,858

preimplantation
terminology

1,599,024 361,827 2.0 179,663 35

miRNA dictio-
nary

1,599,024 456 4.19 109 93

Pig
specific dictio-
nary

1,599,024 820,811 3.8 215,007 2,808

orthologue dic-
tionary

1,599,024 799,758 3.9 205,044 3266

miRNA dictio-
nary

1,599,024 247 3.3 76 37

Human miRNA dictio-
nary

1,599,024 445 4.3 102 87

Mouse miRNA dictio-
nary

1,599,024 449 4.4 101 89

8.2 Analysis of interaction networks

SCAIView provides two kinds of protein-protein interaction networks: from documents
using co-occurrence of proteins and from BIANA, from which experimentally confirmed
protein-protein interaction networks for candidate entities can be retrieved. The co-
occurrence network is analyzed here and experimental interaction data exported from
SCAIView are visualized. The co-occurrence data was retrieved on abstract basis, not
on sentence basis. For the analysis of cattle preimplantation network, protein protein
interaction network obtained from SCAIView through co-occurrence was exported and
visualized in Cytoscape (see Figure 8.3). The networks obtained by using cattle specific
dictionary and cattle orthologue dictionary were compared to find the difference and it
was noticed that the networks were identical except for a few gene/protein entries. Some
of the entries from the cattle specific dictionary include: SLC38A4, LRRCC1, cytokeratin
19, HBEGF, LGALS3, IGFBP3, CDX2, MKRN3 and some from the orthologue dictionary
include: PTGFR, EGF, MBD3, DICER1, Hsp70, IFNT1, BMP15.
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8.2.1 Protein networks from co-occurrence

Figure 8.3: Cattle preimplantation interactions from SCAIView (co-occurrence data)

The interactions obtained from SCIAView needed to be confirmed by using the experi-
mental data. But due to the lack of enough experimental data from cattle, experimental
data from human and mouse were also considered. The gene/protein names obtained
from SCAIView data were already normalized to Entrez gene and Uniprot entries, so
these gene names were used as seed proteins and genes to extract interaction data from
String database. The interactions that were found both in the SCAIView network and
network obtained from String database were confirmed as positive interactions and others
were considered as false interactions. Around 300 gene/protein names were given as seed
gene/protein entries in String database and the resulting interactions data for cattle,
human and mouse were retrieved from the database. From the analysis it was found that
only a small fraction of the interactions from SCAIView interaction network was actually
confirmed (see Figure 8.4).
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Figure 8.4: Confirmed interactions

Similar to cattle network preimplantation network analysis, gene/protein interaction
network for pig meat quality were also analyzed, but meat quality cannot be constrained to
a particular stage in growth and development like preimplantation period, so gene/protein
interaction network for major gene effects having a direct influence on meat quality were
analyzed. The major gene effects are the sex chromosome effect, stress gene effect and
napole effect. The SCAIView network obtained for sex chromosome effect and napole
effect for both pig specific and orthologue dictionary were negligible (with only 2 to 4
interaction partners), so both of the networks were discarded and interaction network
for stress gene effect (from search query “pig AND napole effect“) (see Figure 8.5) was
taken into consideration. As a first step the stress gene effect network obtained from pig
specific dictionary and pig orthologue dictionary were compared and found that there is
a noticeable difference in the interaction network given by two dictionaries. There was
a lack of any experimental data for validating pig interaction network. The approach
of combining human and mouse protein interaction data and analyzing the result also
produced negligible result. So validation results for pig interaction networks are avoided
as there is far less experimental data on porcine protein interaction networks.
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Figure 8.5: Pig stress gene effect SCAIView interactions

8.2.2 Protein networks from BIANA

The experimentally confirmed protein network data from SCAIView, obtained from
BIANA in XGMML format1 were retrieved and visualized in Cytoscape (see Figure 8.6).
For the analysis, the search query “cattle“ was used to retrieve a large list of gene/protien
entities in SCAIView and three gene entries were selected from a list of gene entries,
which were having experimental data in BIANA databases. The seed genes selected were
VIM (Vimentin), GFAP (glial fibrillary acidic protein) and HSPA8 (heat shock 70kDa
protein 8).

1http://www.cs.rpi.edu/∼puninj/XGMML last accessed 8 November 2009
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Figure 8.6: Experimentally confirmed protein interactions from BIANA

Vimentin (Entrez Gene id:280955) is an intermediate filament family protein, which
exist as a dynamic structure. The functions of the protein include maintainig cell flexibility
and cell integrity. The interactions of the vimentin were experimentally discovered for
human and mouse genome and it was found that vimentin interacts with glial fibrillary
acidic protein (GFAP, Entrez Gene id:281189), another intermediate filament family
protein (Intact id: EBI-755266) (Rual et al., 2005). From the confirmed interactions,
vimentin was also found to interact with HSPA8 (Entrez Gene id:281831), a protein
that is involved in the thermotolerance process and stabilizes intermediate filaments
through direct or indirect binding (Lee and Lai, 1995). For the interaction between
GFAP and HSPA8, although Biomyn database shows an interaction2, further proofs for
the interaction were not available from the IntAct database link provided. Similar is the
case with interactions between ATP5A1 and VIM and VIM and ATP5B.

2http://www.biomyn.de/index.php?mid=P11142&ispc=UniProtKB last accessed 12 November 2009
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8.3 Analysis of preimplantation terminology

For the analysis of the cattle preimplantation terminology, a test search was performed
in SCAIView without using the preimplantation terminology and the same query was
repeated after selecting and using the preimplantation terminology, to include the
terminology as well in the search. First of all, a simple search was made with the query
“cattle preimplantation“ in SCAIView without using the preimplantation terminology.
For the search, it was found that a total of 55 documents were retrieved and 108 gene
entities were identified by SCAIView. The same search was repeated after selecting
the preimplantation terminology and it was seen that the number of documents were
reduced to 49 and the number of gene entities dropped down to 98. For further analysis
the relative entropy and document count of the first 15 hits from the search using
preimplantation terminology was compared with that of the a search without using
preimplantation terminology.

Table 8.11: Positions of gene entities in search with using preimplantation terminology
compared to that of search without using preimplantation terminology

Gene Position in Position in
search with terminology search without terminology

IFNT 1 1
SLC2A1 2 3
POU5F1 3 2
HSPA1A 4 4

GJA1 5 5
IGF1 6 6
Grb10 7 7
LIF 8 8

IGF2R 9 10
ACTB 10 15
XIST 11 15
BAX 12 23
TNK1 13 24
STAU2 14 25
PSMB3 15 26

Since the found entities were sorted according to the relative entropy score in SCAIView,
the change in the top ranking hits were due to the change in relative entropy score (refer
to Section 7.1.12). A graph was plotted with the relative entropy score of the above hits
(see Figure 8.7). On comparison it was found that except for two gene entities, all the
others showed a higher relative entropy score.
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Figure 8.7: Chart comparing relative entropies of gene entities from search with preim-
plantation terminology and with preimplantation terminology

A further analysis was done to find the specific terminologies entities that were found
along with cattle genes. For this purposes, a SCAIView search was made for cattle
preimplantation terminology with the search query “boscurated:@“, which is the name of
the cattle specific gene dictionary prt file used in indexing process. The search was made
for cattle preimplantation terminology, but only using cattle genes. It was seen that
the term ECNT, (embryonic cell nuclear transfer) was the most specific preimplantation
terminology associated with cattle specific dictionary (see Figure 8.8).

Figure 8.8: Figure showing the search strategy and the specific preimplantation terms
associted with cattle specific dictionary.
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8.4 Prediction of cattle miRNAs targeting
preimplantation genes

This section describes cattle microRNAs that are found to target cattle preimplantation
genes through computational prediction. This analysis was done in order to predict
cattle microRNAs that target major cattle preimplantation genes. Miranda algorithm
was used to find candidate microRNAs that target cattle preimplantation gene. Miranda
algorithm and the methodology followed are explained in the previous chapter. The
result file from the Miranda run on cattle 3’ UTR sequences is used here. The output
file is parsed and cattle miRNA and targeting genes are extracted from the file and the
top scoring microRNAs that are found to target cattle preimplantation genes are given
in the result table. The table do not contain all the microRNAs that are found to target
cattle preimplantation genes, but contains some of the top scoring microRNAs that are
found to target some of the cattle preimplantation genes.
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Table 8.12: Predicted cattle preimplantation microRNAs

Gene Ensembl Gene id Number of pre-
dicted microRNAs

Top scoring microRNAs

beta-catenin ENSBTAG00000016420 4 bta-miR-2349, bta-miR-340
bta-miR-409 , bta-miR-664

CX43 ENSBTAG00000001835 47 bta-miR-2328, bta-miR-148a
bta-miR-30e-5p, bta-miR-2305

bta-miR-2466-3p
FGF-2 ENSBTAG00000005691 42 bta-miR-34a, bta-miR-224

bta-miR-484, bta-miR-449a
bta-miR-449b

GLUT-1 ENSBTAG00000018647 38 bta-miR-2338, bta-miR-2376
bta-miR-2377, bta-miR-2338

bta-miR-2306
IGF-1 ENSBTAG00000011082 13 bta-miR-138, bta-miR-329b

bta-miR-370, bta-miR-658
bta-miR-138

IGF2R ENSBTAG00000002402 19 bta-miR-615, bta-miR-2388
bta-miR-2467, bta-miR-2433

bta-miR-197
IGFBP3 ENSBTAG00000014541 31 bta-miR-2334, bta-miR-486

bta-miR-2322, bta-miR-2373
bta-miR-320

IGFBP5 ENSBTAG00000007062 26 bta-miR-2428, bta-miR-2305
bta-miR-2412, bta-miR-2309

bta-miR-2392
LIF ENSBTAG00000007424 81 bta-miR-2466-3p, bta-miR-504

bta-miR-2343
bta-miR-2441, bta-miR-2447

NGF ENSBTAG00000007446 3 bta-miR-2454, bta-miR-423-5p
bta-miR-296

OCT4 ENSBTAG00000021111 30 bta-miR-412, bta-miR-145
bta-miR-2394, bta-miR-2326

bta-miR-346
PAFr ENSBTAG00000027051 46 bta-miR-342, bta-miR-2349

bta-miR-2426, bta-miR-423-5p
bta-miR-2428

PDGFA ENSBTAG00000014541 31 bta-miR-2334, bta-miR-486
bta-miR-2322, bta-miR-2373

bta-miR-320
TNFA ENSBTAG00000025471 12 bta-miR-2324, bta-miR-1584

bta-miR-2418, bta-miR-2382
bta-miR-2363

TGFB ENSBTAG00000005359 1 bta-miR-677

During the analysis it was also noticed that almost all of the microRNAs that are found
to target preimplantation genes target the gene IGF-II, suggesting a global expression
of the gene. For the second part of the analysis cattle preimplantation genes and the
targeting microRNA results were combined together and a perl script was used to cluster
the results of each microRNAs together. This step was done to predict the target
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specificity of the identified microRNAs on preimplantation genes. During the analysis it
was found that certain microRNAs have specific targeting nature. During the analysis
certain gene clusters were identified were a single microRNA was targeting a number of
preimplantation genes.

Table 8.13: Micrornas and preimplantation gene targets

Microrna Preimplantation gene targets found Target gene Ensemble id Gene name
bta-miR-2334 4 ENSBTAG00000014541 PDGFA

ENSBTAG00000005691 FGF2
ENSBTAG00000013066 IGF-II
ENSBTAG00000021111 OCT4

bta-miR-2373 4 ENSBTAG00000014541 PDGFA
ENSBTAG00000007424 bLIF
ENSBTAG00000013066 IGF-II
ENSBTAG00000021111 OCT4

bta-miR-615 5 ENSBTAG00000013066 IGF-II
ENSBTAG00000027051 PAFr
ENSBTAG00000002402 IGF2R
ENSBTAG00000007424 bLIF
ENSBTAG00000011082 IGF-1

bta-miR-2295 5 ENSBTAG00000007062 IGFBP5
ENSBTAG00000013066 IGF-II
ENSBTAG00000001835 Cx43
ENSBTAG00000018647 SLC2A11
ENSBTAG00000021111 OCT4

bta-miR-2443 5 ENSBTAG00000013066 IGF-II
ENSBTAG00000002402 IGF2R
ENSBTAG00000001835 Cx43
ENSBTAG00000018647 SLC2A11
ENSBTAG00000007062 IGFBP5

bta-miR-2324 5 ENSBTAG00000025471 TNFA
ENSBTAG00000013066 IGF-II
ENSBTAG00000007062 IGFBP5
ENSBTAG00000007424 bLIF
ENSBTAG00000018647 SLC2A11

bta-miR-2382 6 ENSBTAG00000025471 TNFA
ENSBTAG00000007424 bLIF
ENSBTAG00000014541 PDGFA
ENSBTAG00000013066 IGF-II
ENSBTAG00000018647 SLC2A11
ENSBTAG00000001835 Cx43

bta-miR-1343 5 ENSBTAG00000013066 IGF-II
ENSBTAG00000027051 PAFr
ENSBTAG00000013066 IGF-II
ENSBTAG00000007424 bLIF
ENSBTAG00000018647 SLC2A11
ENSBTAG00000002402 IGF2R
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The prediction process gave a list of genes that are targeted by each cluster and it
was found that the clusters target similar genes. So the sequence of mature miRNA
sequences were analysed, but it was found that these microRNAs do not share sequence
similarity. A characteristic feature of animal microRNAs is that they are approximately
complementary to their targets (Ambros, 2004), which also leads to the hypothesis that
microRNAs targeting the same gene need not be absolutely identical.Further experimental
data is needed to validate these microRNAs and their targets.

8.5 microRNA targets from Text mining

The data from target prediction of cattle microRNA was used in augmenting microRNA
information. SACIView can be used to search for a microRNA and its possible target.
For example, the search query “cattle“ for cattle microRNAs in SCAIView retrieves 6
microRNAs with target mapped. The microRNAs and their target Entez Gene ids are
given in the Table 8.14.

Table 8.14: Micrornas and preimplantation gene targets

Cattle microRNA Possible targets
bta-mir-181a 100125264
bta-mir-338 280968
bta-mir-10a 505436
bta-mir-30c 616179

505853
538100

bta-mir-26b 50583
618648
505757

bta-mir-222 535099
541294

100137795

From microRNA data, the user can linkout to the possible gene target and can extract
the information relating to the targets.

8.6 Discussion

The results of performance and network analysis and predicted cattle preimplantation
microRNAs are discussed in this section.

8.6.1 Performance analysis

From the result section it was clear that organism specific dictionary and orthologue
dictionary had a high degree of overlap because of the sequence similarity between the
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target and model organisms. It was clearly noticeable in case of cattle dictionaries, where
there was a high degree of overlap than pig dictionaries (refer to Figure 8.9 and Figure
8.10). The reason for this high degree of overlap in cattle dictionaries than that of pig
dictionaries can be related to the status of the cattle and pig genome sequencing project,
where cattle sequencing projects are ahead of pig genome sequencing projects.

Figure 8.9: Overlap in cattle test abstracts Figure 8.10: Overlap in pig test abstracts

The large overlap in the number of test abstracts in which gene/protein mentions were
identified by both the dictionaries indicate the similarity of gene/protein annotations in
the target organisms (cattle, pig), and the model organisms (human and mouse). The
abstracts in which gene/protein mentions were identified only by the organism specific
dictionary can contain gene/protein entries specific to the organism or gene protein
annotations different from the model organisms (for example, the gene CCNB1 could be
mentioned as bCCNB1 to denote bovine CCNB1). Uniprot and Entrez Gene entries
of cattle genes and proteins showed that cattle and pig genome annotations followed
human gene annotation schema and representation formats, where the gene names are
represented in capital letters. Prostaglandin D2 synthase entry for cattle, human and
mouse can be used to illustrate this fact (Entrez Gene ids: 19215 [ Mus musculus ],
286858 [ Bos taurus ], 5730 [ Homo sapiens ]) , where it can be seen that for both cattle
and pig entries, the gene name is represented entirely in capital letters where as in case
of mouse only the first letter of the gene name is in capital letter and the rest is in small
letters. On comparing the cattle and human Entrez Gene entry of the gene, it could be
noted that the most of the synonyms for the gene (for example like PGD2, PGDS and
PGDS2) which are represented as ‘ Other Aliases ‘ for human gene are missing in the
cattle entry and an Entrez Gene search with query ‘PGD2 AND bos taurus‘ returned no
result. Several instances can be pointed out, where the synonyms of a gene/protein entry,
which are not represented in public database gene/protein entries are used in scientific
texts. The usefulness of orthologue dictionaries can be pointed out here. For example,
the abstract “ Discovery of eight novel divergent homologs expressed in cattle placenta “
(PMID 16554549) mentions about homologs identified in cattle placenta including PRP11.
Entrez Gene search for ‘PRP11‘ in cattle gave the gene SF3A3 (Entrez Gene id 523250) as
the result, for which PRP 11 is a synonym, but not represented in the Entrez Gene entry.
Uniprot search for cattle ‘PRP11‘, gave no result, which makes the representation of the
gene in the abstract ambiguous to the user. So, a dictionary made using cattle gene and
protein information would not identify PRP11 as a gene/protein entry. But, Homologene3

links from the Entrez Gene id 523250 shows that human SF3A2 gene (Entrez Gene id

3http://www.ncbi.nlm.nih.gov/homologene last accessed 21 October 2009
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8175) as an orthologue of the cattle gene, and the synonym ‘PRP11‘ is represented as a
synonym for the human SF3A2 gene. In cattle orthologue dictionary, human SF3A2 gene
was mapped as an orthologue entry to cattle SF3A2 gene and synonyms from human
SF3A2 gene were used as synonyms for cattle SF3A2 gene during the generation of cattle
orthologue dictionary. So PRP11 gene mention would be identified by cattle orthologue
dictionary as a synonym for cattle SF3A2 gene. The absence of such gene annotations in
cattle gene entries can be a reason why certain gene/protein mentions in test abstracts
were identified only by cattle and pig orthologue dictionaries.

Figure 8.11: Cattle true positive false positive and false negative chart

Figure 8.12: Pig true positive false positive and false negative chart

The comparison of true positives and false negatives of organism specific dictionary
with that of organism orthologue dictionary reveals the quality and extent of gene/protein
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annotations in test organisms cattle and pig. For cattle dictionaries (refer to Figure 8.11)
it can be seen that the difference between true positives identified by cattle orthologue
dictionary and cattle specific dictionary is only small, which could suggest the quality
and extent of cattle genome annotation. For pig dictionaries (refer to Figure 8.12) it can
be seen that there is a large difference in the true positives identified by pig orthologue
dictionary and pig specific dictionary. The graphs also shows low true positive values,
when organism specific and orthologue dictionaries were combined. The reason for low
true positive values for merged dictionaries is ambiguity filter in ProMiner, which in
its default setting removes all the synonyms with multiple occurrences in the same
dictionary. For the test run, the ambiguity filter was in its default setting and removed
all the synonyms with multiple occurrences. So, the true positive values from the merged
dictionaries indicate synonyms in both organism specific or orthologue dictionary which
does not occur in the other dictionary and found in the test abstracts and these synonyms
can include organism specific synonyms from organism specific (curated) dictionary and
synonyms found only in abstracts and gene/protein entries of model organism and not in
target organism gene/protein entries in databases. Another reason can be the difference
in manual curation steps, where a spelling variant of a specific gene/protein entry was
added in a dictionary and missed in the other. For pig dictionaries, the performance
scores are low and this can be as a result of less number of pig gene protein entities in
the dictionaries. The number of curated gene protein entries in public database during
the generation of dictionaries is the major factor behind the performance scores.

Figure 8.13: Cattle precision, recall and F-score chart
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Figure 8.14: Pig precision, recall and F-score chart

The similarity in precision, recall and F scores of cattle dictionaries are as a result
of similar true positive, false positive and false negatives values for the dictionaries in
the test abstract (refer to Figure 8.13 and Figure 8.14). For the merged results (PRT
files from ProMiner run of organism specific and orthologue dictionaries merged) it can
be seen that the precision of the system was reduced by a small value and there was
increase on the recall of the system. Since the prt files of both dictionaries were merged,
the increase in recall is a result of extended coverage of the system, where the relevant
synonyms from the test abstract that are absent in the organism specific dictionary
are identified organism orthologue dictionary and those missed by organism orthologue
dictionary are identified by organism specific dictionary.
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Figure 8.15: Comparison of cattle dictionary performance scores
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Figure 8.16: Comparison of pig dictionary performance scores

From the graph it can be seen that there is a decrease in the performance score results
after the removal of ambiguity filter (see Figure 8.15 and Figure 8.16). This decrease
in precision, recall and F-score is as a result of the higher number of false positives
identified by the system, despite the increase in the number of true positives identified
(see Table 8.9). The increase in the number of true positives identified is also reflected in
the increase in the number of spelling variants and case sensitive entities identified by
the system with each of the dictionaries. This is especially noticeable in case of merged
dictionaries, for which the performance scores and number of entities identified were
low with the ambiguity filter and a large increase in the performance scores with the
ambiguity filter removed.

8.6.2 Interaction networks

From the networks obtained from SCAIView it can be seen that the SCAIView network
proposed more interaction partners than that were found in the experimental data. This
can be as a result of text mining and co-occurrence approaches used by the system to
obtain networks from texts. This can be illustrated by analyzing interaction partners
of cattle preimplantation interaction network suggested by String database using co-
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occurrence and text mining techniques. It was found that the database also gave an
interaction network similar to SCAIView interaction network (see Figure 8.17), while the
confirmed experimental network showed lesser interaction partners (see Figure 8.18). So
the additional interaction partners given were considered as false positives.

Figure 8.17: Cattle confirmed protein protein interactions

Figure 8.18: Cattle interactions using text mining data from STRING database
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The figures show the interactions that are confirmed experimentally and interactions
obtained by text mining from String database. The figures show the large variation in the
interaction partners found by text mining methods and that are experimentally confirmed.
It was found that most of the cattle preimplantation abstracts mention two or more
genes in an abstract describing the importance of those in the preimplantation process
or the difference in expression of the two genes. So, since the genes were mentioned
together, the system considered them as interaction partners following co-occurrence of
protein interaction partners.

Experimentally confirmed interaction networks from BIANA contains only about 200
relevant cattle protein data. From protein-protein interaction databases it can be seen
that there are far less number of confirmed protein-protein interactions for cattle when
compared to humans or mouse. The lesser number of protein-protein interactions for
cattle is also reflected in BIANA database, since the database contains interaction data
from general protein-protein interaction databases. From the experimental data it can
be noted that for cattle proteins, the experimental data from human and mouse genomes
are also included since protein interaction network data exclusively from cattle domain is
limited.

8.6.3 Preimplantation terminology

When a test search “cattle preimplantaion“ was done without using preimplantation
terminology and then using preimplantation terminology, it was seen that there was a
change in the relative entropy score of gene entities in both of the searches and some
gene entities with low ranks in the normal search was ranked high in the search with
preimplantation terminology search, due to their difference in the relative entropy score.
Since the relative entropy score the found entities in SCAIView are based on the number
of entities found and their relative count in the subset corpora selected for the search,
for the search with preimplantation terminology, these gene entities were found together
with the preimplantation terminology terms and hence had a higher entropy score than
the search without preimplantation terminology.

8.6.4 Cattle miRNA targets

Although a list of microRNAs that target a given list of genes can be predicted using
mature miRNA sequence, 3’ UTR sequences of genes and a prediction algorithm, it
cannot be confirmed that the predicted miRNAs are expressed in cattle preimplantation
embryo cells. Through prediction a brief list of candidate microRNAs that target a
list of genes could be obtained, which can be used as an initial seed points to start an
experimental procedure to determine the miRNAs for the gene. During the analysis
it was also found that majority of the identified microRNAs and their targets were
not found in MicroCosm Targets4. The imprecise complementarity of microRNAs to

4http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5 last accessed Monday, 26 October
2009
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their targets indicate that a single microRNA can target more than one gene, and till
now microRNA target prediction systems are based on sequence complementarity and
thermodynamics of binding (MIRANDA algorithm) and the reasons for the difference in
targets predicted can be due to the difference in miRNA and target sequences selected for
analysis, the thermodynamic and statistical factors that were used in algorithm run and
the different threshold levels used in cut-off values. The results were agreeing in case of
some of microRNAs and their targets and later on it was found that the agreeing results
were derived from microRNAs with that had close orthologous groups in mammals (for
example, mir-504 with entries found in cattle, human, mouse and rat, let-7b in majority
of the mammals).
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9 Conclusion

9.1 Summary

This work can be summarized as follows: In the first part researches and research directions
in cattle, pig and microRNA genomics were introduced along with the challenges faced. In
the follow up second part knowledge discovery and text mining methods were described,
mentioning the importance of ontological and semantic search in present day biological
text mining. The third part deals with problem definition and text mining needs of
animal scientists along with description of background survey on existing databases and
bioinformatics applications used in cattle and pig genomics field. The next part deals with
the materials and methods, describing the databases and tools used and methodology
adopted for generating dictionaries and external database mapping and terminology
analysis of the cattle preimplantation period. This part also describes methodology
adopted for the mapping of microRNA to their targets. The final part described the
results obtained, the performance scores obtained for the dictionaries and some of the
analysis done.

The final goals met by this thesis are: generation of cattle, pig and microRNA specific
dictionaries and mapping of external database information into SCAIView results for
knowledge enrichment, terminology analysis of the cattle preimplantation period, mapping
of microRNA target genes to microRNA mappings and integration into SCAIView results,
performance analysis of cattle and pig gene dictionaries and analysis of protein interaction
networks from SCAIView. This animal science version of SCAIView is intended as a first
prototype to demonstrate the possibilities of text mining to the animal scientists, that is
entirely dedicated for the used in animal science field.

9.2 Future Prospects

The animal science version of SCAIView will be deployed as a public access version in
December 2009 and publications on the basis of the results obtained as a part of this
work are planned. In future additions of animal SCAIView, SNP data from experimental
results, to mine SNPs and mutation mentions (following the present version of human
SCAIView) following data from various micro array databases and ANEXdb database
data sets. Another useful addition would be full text version of animal SCAIView, since
it was clear that not all gene/protein entities in a full text are mentioned in abstracts and
the information content of full text documents are much higher than that of PubMed
abstracts, and this is also applicable for microRNAs since it was found that some of the
abstracts describes the sequencing project for microRNAs and real microRNA entities are
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found only in full text. Relation mining in full texts for microRNAs and possible targets
or source gene can also be integrated, since it was noticed that in text were microRNAs
are mentioned, normally the microRNA source gene or the targets are mentioned, which
could be given as a microRNA target or microRNA source relation, based on various
classification algorithms. Similar relationship can be applied to Quantitative Trait Loci
(QTLs) in text and marker positions. Apart from named entity recognition techniques,
various other approaches in bioinformatics could also be adopted into livestock genomics.
One of the candidate fields could be computational systems biology, for simulation of
systems such as gene regulatory networks and signal transduction to understand the
complex interactions patterns involved in domains such as preimplantation genomics.
Since most of the work done in farm animal genomics field is focused on expression analysis
of a set of genes, systems biology approaches could be integrated analyze expression levels
of different genes in various cellular and culture environments and the resulting data can
be integrated into SCAIView, and can be finally used to explore the regulatory network
that a candidate gene is involved in, in a particular cell line or during certain stages of
growth. A similar approach can be also used for microRNAs by the analysis of microRNA
expressions and target gene expressions and integrating the data into gene regulatory
networks, depending on the availability of experimental data. Various machine learning
approaches could also be adopted into livestock genomics. Using various text mining
methods, it could be also possible to extract experimental gene evidenced from texts and
augment the present knowledge. By combining such entity -entity relation extraction with
experimental data various hypothesis could be formed (based on ABC complementarity),
which could further be used as a seed hypothesis for a research direction.
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