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Abstract

Modular process nets are a graphical and formal notation for the representation of technical and
business process models containing concurrent activities. Originally this class of Petri nets was
developed for the modeling, analysis, simulation and control of workflows and computer-based
process control systems, but it is also suitable for use in all other areas where a formal but
comprehensible description of complex processes is needed.

After a description of the basic aims and design decisions for modular process nets, the report
gives a brief introduction to low-level Petri nets including different types of transition rules and
aspects of the descriptive and prescriptive use of process models.

The main and most innovative points which are explained in more detail are the introduction of
a hierarchical module concept for nets and the definition of elementary process nets. The
module concept is part of a more general (“object-based”) approach to Petri nets allowing
several types of abstraction, whereas the main points of elementary process nets are
synchronous and asynchronous communication between separately interpreted net instances
via events and token passing.

Modular process nets are low-level Petri nets equipped with these module and communication
concepts and optionally enhanced by the use of a task concept, a method known from the areas
of computer-supported cooperative work (CSCW) and workflow management.

Because the report is aimed at a systematic and easy-to-understand introduction to modular
process nets, it provides a precise explanation of this net class which is kept as informal as
possible and enhanced by some typical application examples.





5

Contents

1 Introduction ........................................................................................7

2 Aims and design decisions .................................................................9

3 Petri nets ...........................................................................................11

3.1 Transition rules .....................................................................................................12
3.1.1 Enabling of transitions ..........................................................................................12
3.1.2 Firing of enabled transitions .................................................................................13
3.2 Descriptive and prescriptive models .....................................................................13

4 Module concept.................................................................................15

4.1 Introduction and summary ....................................................................................15
4.2 Decomposition and composition of nets...............................................................17
4.3 Coarsening nets and refining module transitions..................................................19
4.3.1 Coarsening transition-bounded partial nets...........................................................19
4.3.2 Refining module transitions ..................................................................................21

5 Elementary process nets ..................................................................25

5.1 Node types.............................................................................................................25
5.2 Transitions: Firing rules and event communication..............................................28
5.3 Places: Local states, merging and asynchronous communication ........................29

6 Modular process nets .......................................................................31

6.1 Task modules ........................................................................................................31
6.2 Process modules....................................................................................................35

7 Examples ...........................................................................................37

7.1 Workflow model: Prepare offer ............................................................................37
7.2 Processes in a software architecture: Negotiation for quality of service ..............41

8 Concluding remarks.........................................................................45

References .........................................................................................47

Index ..................................................................................................49



6



Introduction

7

1 Introduction

As one can observe by consideration of many new and expanding areas of information systems
research and application (e.g. Business Process Re-engineering, Process Innovation, Workflow
Management, Enterprise Integration, Concurrent Engineering, Computer Supported
Collaborative Work, etc.), model-based “process thinking” is becoming a more and more usual
approach to understanding and changing the processes going on in the real world.

On the other hand, “process thinking” in a more abstract sense has been usual throughout the
history of computer science in its various domains. Unfortunately, the means of description used
vary strongly from domain to domain and are usually not communicable - in a reasonable time
- to persons outside of a certain community. But with the penetration of computer supported
communication and cooperation into more and more areas of human life, a growing circle of
computer users will need to understand such formal notations (e.g. complex workflows in
workflow management systems, negotiation processes for the quality of service in
communication networks etc.).

Bearing in mind that the processes to be described are inherently distributed in space and time,
the use of Petri net models is probably the best choice for a simple but precise means of
communication about these processes. In addition to the static graphical representation of the
possible control flow, the so-called “token game” allows the visualization of its dynamics.

In recent years, a great variety of classes of net models has been developed and used. In order
to enhance the expressivity of net models, there has been a noticeable tendency towards using
more and more complex classes of nets with several kinds of tokens, arc and node inscriptions
and other extensions instead of the originally “simple” classes of Petri nets. Such a development
is seemingly unavoidable for coping with the complexity of models. But with the increasing
complexity of the means of description, one of the most important advantages of the net
approach, namely easy communicability for humans, is lost. So the price of the high-level net
representation of complex models is usually its (near) non-communicability to those with no
experience of Petri nets.

Fortunately, there is one way of obtaining comprehensible compact representations of complex
models: modularization and abstraction from the internal structure of modules. These methods
have much in common with “zooming in and out” of images, which is familiar to most people
from a number of ubiquitous technical facilities (e.g. graphical user interfaces, photo cameras,
video-recorders).

Two further problems for most of the existing classes of net models (including the high-level
nets mentioned above) are the impossibility of describing changing behavior and the
communication of “active”1 nets with one another and with their environment.

Modular process nets have been designed to meet these challenges. Based on a general object-
based approach for Petri nets, they provide a hierarchical module concept as well as constructs
for communication between net instances and their environment and for the creation and

1. i.e. executed by an interpreter or “enacted”, as often said in the workflow community. In the
following, the term “interpreted nets” will be used.
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destruction of net instances. Although originally developed for human-machine interaction,
their use is not restricted to this area. In fact, they allow modeling of any technical processes,
especially where aspects of concurrency and distribution have to be included in the model.

Another essential application of the proposed module concept is the natural, local introduction
of “time” into Petri nets which leads to a more natural representation of distributed systems
using nets and serves as a basis for an integrated qualitative and quantitative analysis of these
systems [WiHe95]. Here, the key ideas are the composition of modules from so-called conflict
clusters and a quantitative abstraction of the behavior of the modules by so-called DDP
(Defective Discrete Phase) distributions [Wika90], [Ciar95]. Though these points are not
discussed in this paper in detail, it is important to mention these applications in order to
emphasize the generality of the proposed module concept.

The aim of this report is a systematic and easy-to-understand introduction to modular process
nets. Emphasis has therefore been placed on providing a precise explanation which is as
informal as possible, hopefully not resulting in unnecessary redundancy.

After a brief description of the basic aims and of the design decisions derived from them
(Section 2) the usual definitions and some specifics of low-level Petri nets are summarized
(Section 3). The module concept for nets is introduced in Section 4. In Section 5, the definition
of elementary process nets is given. These two concepts make possible the definition of modular
process nets in Section 6 which is closely connected with the concept of tasks as it is usually
applied in the CSCW and workflow communities. Section 7 presents some simple but typical
examples of modular process nets taken from the areas of workflow modeling and software
architecture procedure description in order to illustrate the modular process net approach.
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2 Aims and design decisions

In addition to the requirement of compatibility with existing Petri net classes,process nets were
designed with the following basic objectives in mind. This class of net models should

(1) be simple, easy-to-learn and comprehensible,

(2) allow compact representation of complex processes,

(3) allow automated computer interpretation1, for enactment of the specified processes,

(4) allow the distribution of its interpretation over different processors, to enable spatially
distributed (e.g. work) processes,

(5) be flexible, to allow for changes in the net structure during interpretation,

(6) enable integration with organization models,

(7) be safe with respect to their execution on one or several processors.

These aims gave rise to the following design decisions, which are numbered in the same order
as the basic objectives:

(1) Elementary low-level Petri nets are used as the underlying net class, i.e. the tokens are
identical and there can be a maximum of one token on each place.

(2) In order to be able to representpartial nets of given nets independently of the surrounding
net parts, the concept ofnet modules andmodule transitions is introduced. Two concepts
are available for their use: one flat concept (decomposition into andcomposition ofnet
modules) and one hierarchical (coarsening to and refinement ofmodule transitions).
Module transitions on a given hierarchical level can be used to represent net modules of a
lower level.

(3) Generally, theimmediate firing rule is assumed to be applied, stating that a transitionmust
fire as soon as it is enabled2. Themay firing rule (stating that an enabled transitionmay
fire, but need not do so) can be simulated by using so-calledsensor transitions which are
a special kind ofevent transitions(cf. point (4)).

(4) For the communication between different nets, which may even be executed on different
processors, two types of mechanisms are introduced:message-based communication
(based oninterface places shared by different nets) andevent-based communication
(based onevent transitions in different nets which know the same type ofevents).
Interface places enable asynchronous communication between nets. Tokens which are
placed on an interface place of a net are also available at all places bearing the same name,
even in nets which are interpreted separately.
Events can be triggered bytrigger transitions as well as by other software processes.

1. i.e. execution on a interpreter

2. A transition is enabled when all its preplaces are marked.
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Sensor transitions fire when and only when they are enabled and an event assigned to
them occurs1. In addition to these types of event transition there areset-alarm transitions
and clear-alarm transitions which signal events at a certain time and delete them
beforehand, respectively andPN-start transitions andPN-end transitions, which are
responsible for generating and removing net instances.

(5) In view of the aim of achieving flexibility, in particular for the implementation and
execution ofworkflow models, the concept oftasksincluding thecall concepthas been
introduced in the form ofactivities, which may be considered as elementary “task”
module transitions.Activities are a special kind of module transitions whose refinements
communicate with other parts of a process model via events. In a workflow management
system based on process nets, tasks form the interface for the user’s interaction with the
interpreted nets.

(6) The essential link for the connection of organization models and process models is
provided byroles which define the responsibilities and authorizations ofpersonsor
groups of personswith respect to the completion of tasks. Roles or persons can be
assigned to the tasks and activities as parameters.

(7) Process nets are designed to be safe, i.e. with a maximum of one token on each of their
places. Refinement, fusion and calling of safe process nets should result in further safe
process nets.2 Furthermore, a restrictedlivenessproperty should apply: for every process
net started, a PN-end transition (cf. Section 5.1) must become enabled at some point.

The class ofmodular process nets(cf. Section 6) is constructed out of the basic class of
elementary process nets (cf. Section 5) using themodule conceptof process nets (Section 4).
The main reason for this division into two separate classes is the intention to interpret the nets
using interpreters for elementary process nets, but to use modular process nets for
communication with the user. For the latter, tasks are captured by the module transitions called
activities (cf. point (5)) which are refined on the level of elementary process nets to special net
modules.

The syntax of elementary process nets corresponds to that of ordinary Petri nets which have
been extended by introducing additional types of transitions (cf. Section 5.1). For modular
process nets which are to be used for workflow management purposes in the form of process
modules (cf. Section 6.2), some syntactical restrictions are required. On the level of modular net
representation, this leads to conflict-free nets.

As in any class of Petri nets, thesemantics of process nets is locally defined by transition rules
(Section 3.1). Thepragmatics, i.e. the purpose and means of using a process net model, depends
on the intention of the user. Process nets can be used as both prescriptive and descriptive models.
This distinction is discussed in Section 3.2.

1. The may firing rule, which is standard in net theory (a enabled transition can fire but does not have
to), can thus also be simulated by sensor transitions.

2. This property requires further research which may make it necessary to restrict the net class with
respect to the possibilities for these operations.
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3 Petri nets

Nets are bipartite directed graphs, i.e. directed graphs where each node is assigned to one of two
types and where adjacent nodes are always of different types. For visualization, one of the types
is generally represented by round symbols and the other by rectangular ones (including bars).
In the following the round symbols will be referred to asplaces and the rectangular ones as
transitions, these being the most usual notations.

Fig. 1: Example net with places a, b, c, d and transition t

Nets serve as a basis for various classes of models (“net classes”) with which the behavior of
distributed systems can be represented graphically and with formal rigor.

A net can be used, for example, to model the control flow in a distributed system. Here, two
types of branches and confluences of the control flow can be explicitly modeled: start and
completion of parallel threads of control (corresponding to the logical “and” and associated to
branching out of and into transitions) on the one hand, and start and completion of alternative
control paths (corresponding to the logical exclusive “or” and associated to branching out of and
into places) on the other.

A Petri net is a net with the following information assigned to its nodes:

• The places can be marked withtokens (represented graphically as black dots) to denote
variable local states.

• The transitions are assigned atransition rule which locally defines the changes in the
markings of the places adjacent to them.

The terms (global) state or marking of a netare used to refer to the numbers of tokens on the
places of the net at a given point in time. The termlocal marking is used for a given transition
to refer to the current marking of the places attached to this transition by incoming or outgoing
arrows.

t

d

c

b

a
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By assigning a transition rule1, the system modeled by the net is assigned a non-deterministic
behavior whose characteristics (e.g. the set of reachable global states, freedom from deadlocks,
invariants2) can be derived from analysis of the net structure together with its initial marking
and the transition rules.

A visualized simulation allows the behavior of the described processes to be understood and
predicted. Computerinterpretation of Petri nets (also calledexecution or enactment) can be
used to control real processes associated with the interpreted nets.

3.1 Transition rules

The assignment of atransition rule to the transitions results in the assignment ofbehavior3 to a
net. Generally, it states that any enabled transition can fire.

Firing of a transition means that tokens are removed from each of its preplaces (i.e. those places
from which arrows point to the transition) and tokens are put on each of its postplaces (i.e. those
places into which arrows point from the transition). Under the conditions being considered here
(i.e. neither predicates nor multiplicities are assigned to the arrows) exactly one token is
removed from each preplace and exactly one token is put on each postplace.

Theenabling ruleof a transition determines the conditions under which a transitionis enabled
to fire (an equivalent term is: when it hasconcession).

3.1.1 Enabling of transitions

Regarding the first aspect of a transition rule (enabling), a distinction is made between the
normal and thesafe enabling rule. In the case of thenormal enabling rule a transition is enabled
for a given local marking when and only when all of its preplaces are marked. In the case of the
safe enabling ruleit is also required that all of a transition’s postplaces are not marked.

A net is said to besafe if the structure of the net guarantees that when using the normal enabling
rule there will never be more than one token on any place. Safe nets thus show the same behavior
under both enabling rules.

For process nets it is required that every instance (i.e. every interpreted process net) is safe.
Thus, the interpreters can use the normal enabling rule but the nets will behave as if the safe
enabling rule has been applied.

1. which is usually set identical for all transitions of a Petri net

2. see, e.g.[Reis85] or [Star90]

3. Note that the behavior of a net is defined in fact locally (by the behavior of transitions) but usually
naturally extends to a global one (by the connectedness of the net).
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3.1.2 Firing of enabled transitions

If a transition is enabled, itmay fire at some time or must fire immediately. The distinction
between these two cases is reflected in the distinction between two kinds of firing rules, themay
firing rule and theimmediate firing rule.Note that in the case of the may firing rule, an enabled
transition may lose its enabling to other enabled transitions which “steal” tokens from the
preplace in question when they fire. Thus, the global behavior of a net with the may firing rule
is generally “richer” than the behavior of a net with the same structure, but which uses the
immediate firing rule. Let us consider these two rules in more detail.

May firing rule:

Any enabled transition may fire but it does not have to do so.

Assuming this to be the case, one can find out all the global states which the net can ever reach.
The graph which is characterized by all the reachable global states of a Petri net (as its nodes)
and the corresponding state transitions (as arrows) is called thereachability graph of this net
and the analysis of the net’s behavioral properties based on this graph is calledreachability
analysis.

Immediate firing rule:

Any transition must fire as soon as it becomes enabled.

The application of this firing rule implies that maximal sets of enabled transitions have to be
fired. Therefore, it is necessary to know the global marking at any point in time in order to find
these sets. Another consequence of the firing of maximal sets of transitions is that certain
markings reachable under the may firing rule are no longer reachable. For this reason it is not
possible to simply transfer the results of the reachability analysis for a net with the may firing
rule to a net with the same structure whose transitions fire according to the immediate firing rule.

3.2 Descriptive and prescriptive models

The relation between anet model (a particular kind of behavior model) and the modeled real
system can vary. On the one hand, the behavior model can be a description of the observed or
assumed behavior of a real system. We refer to such models asdescriptive ones. On the other
hand, a behavior model can be considered as a specification or program for the future behavior
of a real system. In this case we refer to the model asprescriptive.

In the case of net models, there is a close connection between these two kinds of behavior model
and the two types of firing rule described in Section 3.1.:
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Themay firing rule corresponds to the descriptive pragmatics of net models, because it reflects
the local way of proceeding both with regard to obtaining a net model of reality from
observations and for reasoning about thepossible behavior of a distributed system described by
a net. The decisions concerning the “resolution” of conflicts between transitions, i.e. the
selection of one transition to be fired out of a set of transitions with concession, do not have to
be explicitly stated. Instead, all the possibilities are non-deterministically included in the model.
In addition to being well suited for interpersonal communication (communication about and
understanding of all possible processes), these conditions are also appropriate for computer-
based behavior analysis (finding deadlocks and unsafe situations). However, simulations should
be carried out manually (by playing the token game) or with computer support. In the general
case (i.e. where conflicts between transitions are possible) they can not be fully automated - in
view of the conflicts to be solved by ‘hand’.

The may firing rule isnot suitable for the automatedinterpretation of Petri nets for process
control, because it neither guarantees progress in an operational model, nor does it prescribe
how to proceed in conflict situations. In such cases, theimmediate firing ruleshould be used and
the resolution of conflicts should be ensured by suitable mechanisms. Thus, the progress of an
interpreted net is ensured (in cases where the net is live in each reachable marking) as well as
the unique choice of a set of transitions (enabled and not in conflict with one another) to be fired
in every reached marking.
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4 Module concept

4.1 Introduction and summary

One of the aims of the introduction of modules into Petri nets is to be able to represent large or
complex nets in a more manageable form. This can be done by separation into and by
abstraction from the detailed structure ofpartial nets1. Obviously, partial nets should be able to
be further separated, shown individually and joined together. Moreover, we wish to represent
partial nets asmodules (in the sense of software engineering) in order to gain fundamental
advantages in process technology similar to those brought to the software life cycle by the use
of software modules. These advantages include re-usability of modules, simplified testing and
separation of areas of responsibility.

The main feature of the concept of thenet module which most distinguishes it from that of an
“ordinary” partial net is the explicit definition ofinterfaces which define the possibilities of
interaction of a net module with its environment.Abstraction from the module’s internal
structure andrefinementof module “frames” by enriching them with structural and/or
behavioral information are two further important aspects of a well applicable module concept
for nets.

Given the assumptions as described above - i.e. modules are defined or generated by partial nets
- there are at least three possibilities for defining interfaces so that the composition of net
modules can be done in a well-defined way:

(1) The interfaces are defined byfusion nodes which are part of both modules. Composition
of modules is done by fusion of corresponding fusion nodes, i.e. of those with identical
names. Decomposing a net into partial nets leads to redundant fusion nodes, i.e. to fusion
nodes with the same name in different partial nets (see Section 4.2)

(2) The interfaces are defined byarcs connecting nodes of different modules. Because nets
are bipartite graphs, these interfaces will be heterogeneous in the sense that the type of
every output node will be different to that of the corresponding input node.2

1. A partial net is defined as such a part of a net which is characterized by a subset of nodes of the
original net and which contains all the arrows between these nodes in the original net.

2. For nets where the normal enabling rule is applied (see Section 3.1.1), a consistent heterogeneous
interface concept has been developed in the context of object nets. In this concept, the output nodes
are transitions and the input ones are places ([Wika90], [HeWi95])
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(3) The interfaces are composed of
- sets of (input and output)port transitions which are part of the modules and which are
referred to in the following asinput ports andoutput ports, and
- sets ofinterface places (“buffers”) each of which is connected with an output port of one
module and with an input port of another one.
In contrast to option (1), both interface places and the arcs connecting them with the input
and output ports of modules are pure interface elements not belonging to any of the
modules like the interface arcs in option (2). Note that in contrast to option (2), the inter-
faces here are “homogeneous”.

In the module concept proposed in the following, a combination of the options (1) and (3) will
be used, i.e. we assume the modules to be transition-bordered subnets where the transitions of
a module connected with places outside a module are considered as itsports.

The use of net modules as a special kind of transition-like nodes allows a natural notion of
refinement and abstraction in nets: Given a net module symbol, it can be refined to a partial net
which expands the original net structure. On the other hand, the module symbol can be used as
an abstract representation of a given partial net. If the module symbol also contains symbols for
port transitions of the abstracted net, the arcs connecting these port symbols with the
surrounding interface places have the same semantics as in the refined expansion of the net, i.e.
every set of arcs connected with one port symbol implies an “and” relation for the places
connected with these arcs (see Fig. 9 in Section 4.3.2.).

The interface places used for the composition of modules can be interpreted as ordinary places
of a new class of nets. In this net class (“Modular Process Nets”, see Section 6), in addition to
“ordinary” places and transitions, the new node type “module transition” can be used (as the
representation of transition-bordered partial nets, see Section 4.3). For a unique unfolding of
nets containing module transitions with separately given refinements it is necessary to represent
these refinements together with the interface places. To make clear that these interface places
are redundant, they are highlighted on the refinement level asfusion places (see also Section 5).

For ease of use and for modules where interfaces have not yet been defined - e.g. for top-down
design of systems - we also allow a semantically “weaker” representation of net modules, called
representation without interfaces(see for example Fig. 8 in Section 4.3.2). Here it is only
known that the represented partial net is transition-bounded. The arcs connecting such module
transition symbols have a restricted semantics compared with those of nets without module
symbols.

Semantically stronger abstractions have been developed in the concepts ofMarkovian object
nets (see for example [Wika90], [WiHe95]) and of“logical” object nets ([Whit93]). These
concepts allow semantic abstractions of partial nets and net modules by formalisms beyond the
scope of Petri nets (Markovian processes and DDP distributions [Ciar95] on one hand and
temporal logics on the other) and will not be considered in more detail in this report. It is only
important to note that both concepts are based on a concept of modules similar to that described
here.

In the following sections, the module concept for process nets will be introduced in more detail.
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4.2 Decomposition and composition of nets

Let us assume that for a net adecomposition is given, i.e. the set of its nodes is decomposed into
disjoint subsets. This permits a complex net to be represented by showing separate net modules
which can, in this case, be considered as “sections” or “views” of the net, according to the
abstraction principle ofinformation neglection known from software engineering. In order to be
able to reconnect the net modules defined by a decomposition, unique interfaces are necessary.
These interfaces are represented byports and fusion places while partial nets become net
modules. For a given partial net of a net, the fusion places are those places in the partial net
which are connected with transitions outside the partial net and those places outside the partial
net which are connected with transitions inside the partial net1. The ports of the net module
corresponding to the partial net are those and only those transitions which are connected with
fusion places, where the output ports are the predecessors of fusion places and the input ports
are their successors. In order to be able to achieve a unique composition of the net modules of
a given decomposition, all the fusion places connected with the net modules are included in the
representations of each of them, i.e. redundantly (cf. the example in Fig. 2).

Fig. 2: Decomposition of a net into net modules

1. This definition is compatible with that of Baumgarten [Baum90] in which the (relative) boundary of
a partial net with regard to an overall net is taken to be the set of those nodes which are connected
by arrows with the remaining net. The absolute boundary of a net consists of those nodes of a net
which have either no predecessor or no successor. The term is also compatible with the fusion places
used in Section 4.3.2 for refining module transitions by transition-bounded nets.
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The composition of several separate partial nets which have fusion places with the same names
into one new composite net is carried out by replacing all the fusion places bearing the same
name in all the various partial nets with one new place of that name which is no longer shaded.

In Fig. 3, which shows the (re)composition of the decomposition shown in Fig. 2, the transitions
t and u are the output ports of the one module and v is the input port of the other, while c and d
represent the common fusion places.

Fig. 3: Composition of net modules

The operations restrictionand embedding introduced by [Baum90] can be considered as special
cases of the decomposition (information abstraction) and composition (information enrichment)
operations with regard to a specific partial net. Restriction means to decompose a net into an
“inner” and an “outer” (surrounding) net and embedding means to compose a new net out of a
given net and its surrounding. The difference between the two pairs of concepts is that in the
case of restriction and embedding each of the nets is given a special “role” (to be an “inner” or
“outer” net), whereas with decomposition and composition all the nets involved are considered
to be equal.
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4.3 Coarsening nets and refining module
transitions

In contrast to the decomposition and composition of nets and (partial) nets as described in the
previous section, we now assume that net modules can be encapsulated and that abstractions can
be made from the contents of a module, which corresponds to the abstraction principle of
information hiding in software engineering. An abstract module representation, which is
referred to as amodule transition, is used to abstract from the internal structure of a module but
also to give interface information which characterizes the behavior of the module with respect
to its environment. This is achieved by defining sets of input and output ports. For module
transitions created by the decomposition of a net into net modules, these ports must be
connected to the fusion places in the same way as the transitions of the modules from which
they were derived by decomposition.

The two procedures - coarsening and refining - which can be realized using this module concept
are described below. Applied to system design, these two methods correspond to the “bottom
up” and the “top down” approaches, respectively.

4.3.1 Coarsening transition-bounded partial nets

Assume a transition-bounded partial net is to be coarsened into a module transition. Those
places in the surrounding net which are connected to transitions of the partial net are marked as
fusion places. These transitions are referred to as port transitions or, for short,ports of the
subunit. Where arrows run from a fusion place to a port, that port is calledinput port, for arrows
from a port to a fusion place the port is calledoutput port. Ports which are both input and output
ports are not permitted.

The net is now decomposed into two levels: In the “upper” coarse grain level the chosen partial
net is replaced by amodule transition symbol.All arrows from the fusion places to the input
ports and from the output ports to the fusion places are connected to the module transition (cf.
Section 4.3.1.1 and Section 4.3.1.2.). The “lower” refinement level consists of the chosen partial
net with the marked fusion places.

In order to make possible both the visualization of module interfaces in accordance with the
module concept and the comprehensible representation of nets with module transitions, two
representation modes for module transitions are offered:with interfaces andwithout interfaces.

4.3.1.1 Module transition representation with interfaces

Here, the ports are part of the module symbol. Their number therefore depends on the structure
of the partial net to be represented. Input ports are symbolized by unshaded boxes, output ports
by black boxes. Whether a pair of incoming or outgoing arrows are in an “and” or an “or”
relation to one another can be decided given the net on the coarse grain level. If two arrows
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belong to the same port, then tokens are fired through both of them together into (in the case of
an input port1) or out of (in the case of an output port) the module transition. This corresponds
to an “and” relation between the arrows. If the arrows belong to different ports, then no
statement can be made about the possibility of simultaneous firing. This corresponds to the
“weak” (not exclusive) “or” relation.

Fig. 4: Representation with interfaces of a module transition with one input and two output ports

If all outgoing (incoming) arrows are in an exclusive-or (=“exor”) relation, i.e. if all output ports
have a common preplace or all input ports have a common postplace, this can be denoted by
including a switch symbol in the module symbol. This constitutes a further refinement in the
representation of module transition interfaces compared to that of ports.

Thus, for example, the symbol shown in Fig. 5 means that the two output ports have a common
preplace and the symbol shown in Fig. 6 means that the two input ports have a common
postplace.

Fig. 5: Representation with interfaces of a module transition with two alternative output ports

Fig. 6: Representation with interfaces of a module transition with two alternative input ports

1. In cases where several arrows go into one port, this may involve waiting for synchronization.
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4.3.1.2 Module transition representation without interfaces

In this representation mode the ports are omitted from the transition symbol. This may be for
reasons of easier comprehension, for instance if there are too many ports on a module transition,
or because the number and/or type of connections of the ports with the surrounding nodes has
not yet been determined. Graphically, the representations without interfaces of module
transitions consists of double-bounded transition symbols.1

Fig. 7: Module transition representation without interfaces

One advantage of representation with interfaces of module transitions over representation
without interfaces is that since the ports are included, all the arrows which are connected to the
fusion places are also shown. This means that all the fusion places are always “complete” on the
coarse grain level (including all incoming and outgoing arcs) so that they require no special
attention on this level. As an example, consider the arrow from place “a” to transition “y” in
Fig. 8 and Fig. 9 in Section 4.3.2: Whereas this arrow is not visible in the module transition
representation without interfaces (Fig. 8), it is well represented in the module transition
representation with interfaces (Fig. 9).

4.3.2 Refining module transitions

The module transitions presented in Section 4.3.1 make it possible to define nets which are not
yet completely specified. Such an approach is typical for top down design, assuming that
module transitions may be further refined.

For such a refinement, all places which are connected to a module transition on the coarse grain
level are represented on the refinement level below as fusion places. This representation makes
clear both the redundancy of representing this place - it appears on the refinement level a second
time - and the fact that not all the incoming and outgoing arrows of these places are present on
the refinement level2. If the module transition is represented with interfaces, then the ports on
the refinement level are identified with the transitions connected to the fusion places.

1. Although this is very similar to the usual Petri net transition symbol, in the case of representation
without interfaces the groups of incoming or outgoing arrows are neither in an “and” relation (as
is the case with transitions) nor in an “or” relation (as is the case with places). Groups of arrows
which are connected to one fusion place on one side and to several ports on the other are therefore
also represented by exactly one arrow.

2. In the case of representation without interfaces a different type of incompleteness on the top level is
possible, see the arrow from place a to transition y in Fig. 8.
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Fig. 8: Representation without interfaces of module transition refinement1

1. The representation of the refinement corresponds to the representation principle of the MoPEd tool
[HaWi95]: The arrows between fusion places and port transitions are dashed in order to reflect the
impossibility of editing these graphical objects on the refinement level.
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Fig. 9: Representation with interfaces of module transition refinement

4.3.2.1 Context conditions for refinement

By specifying the surrounding net of a module transition, and if necessary its input and output
ports, context conditions are defined for the net to be refined, thus restricting the structure of this
net.
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If there is a representation without interfaces of a module transition, then the numbers of
preplaces and postplaces of the refining net can be derived from net representation on the coarse
level. However, this does not determine the numbers of arrows coming into and going out of the
refining net. All that is known is that the number of these arrows is greater than or equal to the
number of preplaces or postplaces, respectively.

If there is a representation with interfaces of a module transition, then the numbers of input and
output ports can also be derived, as well as the specification of all arrows connecting the ports
to the surrounding places.

If a representation with interfaces contains “exor switches”, then even more information is
available, as this implies the existence of a common preplace and/or a common postplace for all
output and/or input ports.

4.3.2.2 Marking module transitions

So far, module transitions have been examined from a structural point of view. If the marking
of a flat net is to be included even in its hierarchical representation with module transitions, then
it must also be possible to visualize the marking of a partial net represented by a module
transition. It is therefore useful to agree on a graphical convention (e.g. raising the outline or
coloring the surface of the symbol) denoting the case that at least one of the transitions of the
represented net has concession.
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5 Elementary process nets

As required by the basic objectives (3) and (4) in Section 2, the class of process nets to be
designed should allow automated computer interpretation with the possibility of distribution on
several, interconnected processes which are interpreted by various processors at different
locations.

Because these requirements are independent of the aims leading to the module concept (see
Section 2, point (2)) and because the aim is to interpret onlyunfolded (i.e. non-hierarchic) nets,
the class of process nets satisfying requirements (3) and (4) but not requirement (2) will be
defined in this section aselementary process nets separately from the more general class of
modular process nets which will be introduced in Section 6.

The syntactic extensions of elementary process nets as compared to (elementary) Petri nets
consist in the availability of new node types(as subtypes of places and transitions) which can
be used in particular for communication between interpreted nets and their environment. This
“environment” may consist of other interpreted nets, software processes or even users.

More precisely, the structure of an elementary process net is a net (cf. Section 3) in which each
place is assigned to one of three types and each transition to one of seven types. These node
types are introduced in Section 5.1 below. The semantics of elementary process nets follows
from the meaning of the node types explained in Sections 5.2 and 5.3.

5.1 Node types

Each place in an elementary process net is assigned to exactly one of the following node types:

- (ordinary) place

- fusion place

- channel.

Fusion places (see also Section 4) and channels are also referred to asshared places. Fusion
places are used to improve the graphical representation of large nets. Channels are used to
support communication between nets via token passing.

Each of an elementary process net’s transitions is of one and only one of the following types:

- (ordinary) transition

- trigger transition

- sensor transition

- set-alarm transition

- clear-alarm transition

- PN-trigger transition
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- PN-start transition

- PN-end transition

The last seven of the transition types deal with the handling of events and are also referred to as
event transitions. Events are globally visible and recognizable occurrences which can be both
generated and registered by both a process net and its surrounding net. They permit synchronous
communication between a running process net and its surrounding net as well as between
various process nets running simultaneously.

According to Petri net conventions, places and transitions are represented using circles and
boxes or bars. For ordinary transitions, the graphical representation of a transition as a square
box can be used to make clear that this transition represents anaction, i.e. it may seemingly
“contain a token” for a non-specified amount of “time” in contrast to transitions which are
represented as bars and which stand for “timeless” changes. Fusion places are shown as circles
with a bar, channels as shaded circles and event transitions as boxes with special arrow symbols.
Unlike the names of ordinary places and transitions, it is obligatory to state the names of fusion
places and channels as well as the names of events, since these characterize process net
interfaces.

As a new kind of inscription into transitions, angle-like symbols have been introduced for the
representation of events connected with transitions in the following way: An angle whose apex
touches the “output side” of a transition1 denotes the triggering of an event. If the legs of the
angle touch the “input side” of a transition2, this transition “waits for” and recognizes events
and is calledsensor. If the transition symbol contains a second angle pointing in the same
direction, this indicates the generation of a net instance. The two resulting cases - “apex-
touching” and “leg-touching” - correspond to trigger and sensor transitions and are called PN-
trigger and PN-start transitions respectively (cf. Section 5.2). If a trigger transition has a second
angle pointing in opposite direction - i.e. a rhombus inscribed in a square - this indicates the
deletion of the process net to which this transition belongs.

An overview of the node types used in elementary process nets including their graphical
representation is given in Fig. 10.

1. As a recommendation for the graphical representation of process nets, all outgoing arcs of a
transition should be connected to only one side - the ”output side” - of a transition, which is the
lower one where top-down is the main flow direction or the right one where left-to-right is the main
flow direction.

2. Analogously, the input side - the upper or right side of the square - should be connected with all
incoming arcs.
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Fig. 10: Node types for elementary process nets
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5.2 Transitions: Firing rules and event
communication

Due to the necessity of an automated simulation of elementary process nets, theimmediate
firing rule is used for all types of all transitions, i.e. any transition must fire as soon as it is
enabled. Note that if transitions representactions - this can be made clear by using the box
symbol instead of the bar one (see Section 5.1) - tokens may appear on the postplaces of such
transitions only after a (unspecified) delay.
The event concept of process nets leads to several modifications of this basic rule for the
different types of transition. The main aim of this concept is to enable synchronous
communication between a running process net and its environment, where the communication
between different running nets is a special case. A detailed description of these modifications is
given in the following:

(1) At the moment when atrigger transition fires, a globally visible event of the type
EventName is generated.
This can influence the progress of interpretation in the surrounding software, including
other interpreted process nets with a sensor transition where EventName occurs in Event-
NameList (cf. (2)).

(2) A sensor transitionfires when and only when it is enabled and an event associated with it
occurs. If it doesn’t have concession, there is no effect.1 By definition an event is
associated with a sensor transition if its EventName appears in the sensor transition’s
EventNameList.

(3) A set-alarm transition triggers an event of the type EventName which occurs after a delay
specified by the transition.

(4) A clear-alarm transition prevents the signaling of a delayed event of the type EventName
(cf. (3)). If the clear-alarm transition only fires after the event has occurred or if no suitable
event has yet been initiated by a set-alarm transition, then the transition fires like an
ordinary transition and events have no effect.

(5) The firing of aPN-trigger transition triggers an event of the type NetName leading to the
generation of a new net instance of the type NetName (see point (6)).

(6) The occurrence of an event of the type NetName which is associated with aPN-start
transitiongenerates a new instance of the net to which it belongs and causes the firing of
this transition. Since process nets are always generated only by events, every executable
process net must contain at least one PN-start transition.

(7) The firing of aPN-end transition terminates the net instance in which this transition is
situated. At the same time an event of the type EventName is triggered whose name
informs its environment which transition’s firing caused the net to terminate. (This is
important in cases where there are several end transitions.)

In modular process nets, the event concept is also used for resolving conflicts (cf. Section 6).

1.  Since an event can occur at any time, sensor transitions can be used to simulate the may firing rule.
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5.3 Places: Local states, merging and
asynchronous communication

As is generally the case in Petri nets,places serve to represent local states of the system being
modeled. If a place is marked, this signifies the current validity of the condition given by the
name of the place1. (This applies to all the possible types of places in process nets, i.e. ordinary
places, fusion places and channels.)

The common feature ofshared places (i.e. the fusion places and channels) consists in their
potential incompleteness regarding the numbers of incoming and outgoing arrows. The sum of
a shared place’s incoming and outgoing arrows is equal to the union of the numbers of incoming
and outgoing arrows for all the shared places bearing the same name. For increased clarity of a
graphical representation, the (“logical”) place in question can be considered as a fusion of all
shared places bearing the same name.

The difference between fusion places and channels consists in the following:fusion places can
be used for simple representation of complex nets, these nets must all run on a common
interpreter (processor).Channels, on the other hand, can be used to represent interfaces between
various, separately interpreted process nets. Unlike event transitions, channels support
asynchronous communication, i.e. if a token is placed on a channel, it is not necessarily
immediately visible to the transitions at the outgoing arrows. On the other hand, thistype of
communication is safe, since tokens - unlike events in the case of transitions without concession
- cannot get lost. The disadvantage of this “safe communication” consists in the possibility that
the resulting linkednetswill be unsafe2. If there are several process nets with a shared channel,
it is possible that the channel of a receiving net receives tokens from sending nets without the
following transition having fired between the arrivals of tokens and thus the net may become
unsafe or even unbounded.

1. Note that this is true for safe nets, i.e. for nets where at most one token can reside on any given place.
In the case of “ordinary” Petri nets where several (black) tokens are allowed to be on one place, this
can be interpreted as multiple validity of a single condition or as a number of indistinguishable
objects. In the case of high-level nets, there may be several colored tokens or different objects on one
place.

2. Note the striking difference between safe communication and safe nets: The former concerns the non-
loss of (“transmitted”) tokens whereas the latter concerns the limitation of the number of tokens on
a place.
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6 Modular process nets

Based on the concepts explained in the previous sections, the complete class of modular process
nets will be introduced below. As a shorthand notation, this class of models can be defined as

modular process nets = elementary process nets + module concept

In view of their main application area - the modeling and management of workflow processes -
modular process nets have been enhanced by the concepts of task modulesandprocess modules.
Note that modular process nets can be - and have been - applied without these concepts. But in
view of their canonicity, of the existing tools and of the ease of their use they will be presented
here in more detail. The use of these concepts for the modeling and enaction of workflow
processes and for the specification of the interaction of software modules will be illustrated by
the examples given in Section 7.

6.1 Task modules

In the context of advanced workflow management concepts,tasks form the frames in which the
various kinds of cooperative human activity are embedded. A task is set to an individual or to a
group for processing. Here, therole of the person to whom a task is set must be compatible with
the role which is an attribute of the considered task.1

In the WAM workflow management system [Adam95] which modular process nets were
originally developed for, tasks are set either directly by an authorized person (including the
performer him/herself) or by a running process net. In the latter case, the task is associated to a
task module (see below) of the process net.

Theprocessing of a task can either be either done “by hand” (including delegation to another
person) or supported by starting one or more process nets. Once started, a task cannot be
declared as complete until the interpretation of all nets started within the task has been
completed. Note that the call concept is recursive, i.e. process nets can be nested to any depth
through the use of calls.

Task modules are special net modules which serve for the representation of tasks as components
of process nets. They are characterized by the numbers and types of their ports: A task module
has just one input port which is a trigger transition and a finite number of output ports which are
sensor transitions. Moreover, it is required that the events associated with the event transitions
must all be different. The semantics of all these ports is the following: At the moment when a
task is activated - i.e. when the input port transition fires - the input trigger transition generates
an event which signals to the corresponding actor2 that s/he is being set this task. Having

1. The role of a person is the authorization allowing him/her to process a certain number of tasks.
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completed the task - which can be specified by a complex refinement of the task module - the
actor has to generate an event which corresponds to one of the events associated with the sensor
output transitions of the task module.

An elementary task moduleis a task module characterized by a certain type of refinement and
given the nameactivity. The refinement of an activity always consists of a trigger transition
which forms the only input port, a finite set of sensor transitions which form the output ports
and a single place which is connected by an incoming arc to the trigger transition and by one
outgoing arc to each of the sensor transitions (cf. Fig. 11).

Fig. 11: Refinement of an example activity TaskA.1

Given an enacted process net, the event assigned to the trigger transition (here: TaskA.0) triggers
the setting of the corresponding task to an actor whose role must be compatible with the role
associated to the task. Conversely, the working environment of the person working on the task
ensures that precisely one of the events which can trigger one of the sensor transitions (here:
TaskA.1 or TaskA.2) is selected by this person, generally after a non-zero time interval within
which the place of the net module is marked.

If the place is marked, then the activity is referred to asactive, otherwise it ispassive. The type
of an activity is determined by the number of output ports and is therefore equal to a natural
number. Activities of type 1 are calledordinary activities, those of types 2,3,... are called
decision activities.

The refinement of an activity as shown in Fig. 11 using the example of a type 2 activity will not
be shown on the level of process net visualization for user interaction. Instead, the symbols
shown in Fig. 12 and Fig. 13 are used according to this special type of module refinement. In
addition, ordinary activities can be characterized by graphical symbols referring to a certain
application class of the task in question (e.g. “individual processing of a document” or “video
conference”). In the case of decision activities, the drawn-in switch symbol can be treated as
such a symbol (“decision activity”).

2. This actor may be a person or a piece of software.

1. In correspondence to the naming conventions given below, this activity is of type 2.

TaskA.0

TaskA.1

TaskA.2

TaskA
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In the same way as the single input port is omitted, the output port of ordinary activities is not
represented either. In the case of decision activities, the output ports are shown in addition to the
drawn-in switch symbol (which makes clear the “either/or” relation between the ports) in order
to visualize the “and” relationships between the arrows connected with one port.

Fig. 12: Type 1 activity (ordinary activity)

Fig. 13: Type 2 activity (decision activity with two alternatives)

Naming conventions

To enable compact but precise process descriptions which are as complete as possible, the
names associated with the nodes of modular process nets are intended to play a useful role for
the semantics of these nets. We do not require the following naming conventions to be part of
the modular process net syntax, but they will be used in the examples in Section 7. Moreover,
most of these conventions have proved very useful in experimental implementations and in the
use of modular process nets.

First, consider the names oftask modules. Here, both for elementary task modules (activities)
as well as for complex task modules we allow (and recommend where possible) the syntax rule

TaskName:= Activity (Actor)

with the refinement

Actor:= Role | Person

The meaning of this rule is that the activityActivity which has to be done in order to perform
the task is assigned to a concrete personPerson or to a person with the roleRole.

For an ordinary transition representing anaction to be performed by a hardware or software
device (but not by a person), a similar naming convention as for task modules can be applied, i.e.

TransitionName:= Action (Device)

TaskName

[Symbol]

TaskName
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Remember that it is recommended to use square boxes for elementary actions to be performed
by hardware or software units and rectangular boxes for activities (elementary tasks) which are
set to persons (with the fixed refinement as given in Fig. 11). Both notions can be used together
in one process net as seen in the example “session management” below.

For a decision activityit is useful thatTaskName is the question to be answered when
processing the task (e.g. “Repair completed?”). The names of the postplaces of a decision
activity should contain the possible answers to this question (e.g. “yes” and “no”). If there is just
one postplace for a port, the name of the corresponding postplace should beidentical to this
answer. Thus, the corresponding syntax rule is

PlaceName:= “answer to the questionTaskName”

In the general case, the names for places should represent names ofconditions which may be
true or false: If a condition is true at a certain moment in time, the place is marked, whereas it
is not marked in the opposite case. Usually the condition states the availability of a certain piece
or type of information. This information is “consumed” by firing of its posttransition1. As stated
above, the conditions corresponding to postplaces of decision activities should contain the
answers to the questions associated with the decision activities.

A usual case for the application of process nets is the representation of combined control and
data flow in one net. In addition to the notification of the progress status of the control flow of
a process, places may also represent

- data which is required for an action or for an activity and which will be consumed by them
(this interpretation applies to the preplaces of a transition) and

- data produced by an action or an activity (this interpretation applies to the postplaces of a
transition).

Note that every place of a process net arises in both roles - as preplace of a transition and also
as one of the postplaces of a transition.

Marking of actions and activities

In the development and use of graphical tools for process nets it has proved useful to enable a
graphical monitor indicating the current state of an enacted workflow to provide not only the
current marking of a process net - i.e. the local states and data waiting to be processed - but also
the currently active actions and activities and, moreover, information about completed
processing. The latter information consists of the set of all actions and activities which have
been active in the past and the conditions which have been true including the data whose
processing has been completed. This “tracing information” can be - and has been - made
available to the user by coloring the symbols representing the nodes of an enacted process net.

1. Due to the syntactical restrictions on process nets there can only be one posttransition
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6.2 Process modules

Process modules are re-usable modular process nets which can be started (“enacted”) as
administrative procedures1 from within tasks by using their name and providing their
parameters. Their use is supported by a process net library.

Unlike the elementary process nets defined in Section 5, process modules can also contain task
modules in addition to transitions, as can be seen from the definition of modular process nets.
On the other hand, the net structure of a process module - i.e. the underlying net - must conform
to the five restrictions listed and explained below.

(1) A process module contains one and only one PN-start transition.

Explanation:
By triggering a PN-start event, the environment of a process net interpreter generates a
new instance of the corresponding process net and at the same time its PN-start transition
is fired by the interpreter. Because the case of several PN-start transitions - corresponding
necessarily to the same PN-start event - in one net could be simulated by one PN-start
transition with several output arcs, this case will be excluded for clarity of representation.
On the other hand, without PN-start transitions in a net, the generation of new net
instances would be impossible.
There is a certain similarity between sensor transitions and PN-start transitions: In both
cases the net progress depends on the occurrence of external events. But, in contrast to
PN-start transitions, the firing of sensor transitions is not connected with the generation
of new net instances.

(2) A process module must contain at least one PN-end transition.

Explanation:
The firing of this transition causes the net instance to terminate and triggers the event
associated with this transition in the surrounding net. In the case of several PN-end
transitions, the information about the PN-end transition actually firing can be used to
obtain information about the history of the finished process.

(3) No transition of a process net may be concurrently enabled with a PN-end transition.

Explanation:
This restriction is required to avoid ambiguities concerning the last activities taking place
in a process net. Note that this consistency condition has to be verified by net analysis
before storing the net in a process net library.

1. In German: “Verfahren”
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(4) No two transitions of a process module (including the activities) have a common preplace.

Explanation:
This restriction ensures that no conflicts can occur on the coarse grain level of a process
module. Note that on the refined level of a process net conflicts between the sensor
transitions (corresponding to one task module on the coarser grain level) are possible. (cf.
Fig. 11).

(5) The elementary process net resulting from the refinement of activities in a process net
should always be safe, i.e. there is never more than one token on any of the places when
using the normal enabling rules.

Explanation:
This property ensures that process modules describe “reasonable” behavior. In particular,
the state of a process described by a process module is uniquely characterized by the set
of valid conditions, i.e. by the set of marked places. Analysis techniques developed in the
literature (e.g. [Star90]) and implemented in corresponding tools (e.g. [Star94]) can be
used to obtain the safety property for a given net.

An elementary process moduleis defined as a process module which does not contain any
complex task module, i.e. each of its task modules is an activity. The advantage of this notion is
completeness of description: Not only the refinement to an elementary process net is unique -
due to the uniqueness of the refinement of an activity - but also the status information, since any
activity has one and only one place, implying only two possible markings of the subnet.

For better comprehension let us finally illustrate the relationships between the notions
introduced in the previous chapters in the following diagram:

Fig. 14: Relationships between the introduced concepts

Petri nets with fusion places

net modules elementary process nets

task modules

modular process nets

process modules

channels, events
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7 Examples

This chapter presents some simple but typical examples of process nets taken from the areas of
workflow modeling and software architecture procedure description.

The example in Section 7.1 is a typical part of a business process arising in enterprises which
have to prepare offers at the request of clients. Moreover, this process is designed to be enacted
by a workflow management system, so that the model has to be understood as a prescriptive one.

The other example, outlined in Section 7.2, describes that part of the negotiation process for
quality of service (QoS) which is realized by a software architecture called CMA currently
being developed by the network group of the International Computer Science Institute at
Berkeley. This model is intended as descriptive and aims at a better understanding and possible
correction of processes to be programmed and at validation and verification of this software.

The examples were edited using the graphical tool MoPEd (ModularProcess netEditor) which
in turn generates a data structure which can be used as a basis for computer-based interpretation,
storage and transformation of modular process nets.

7.1 Workflow model: Prepare offer

The process modules shown in Fig. 15 (“PrepareOffer”) and Fig. 16 (“AppointmentMaking”)
are enactable parts of typical business processes where the refinements of the task modules
(activities) are assumed to be known from Fig. 11 to Fig. 13.

The aim of the process to be controlled by the process module “PrepareOffer” (see Fig. 15) is
the preparation of an offer for an external client by a group of specialists. The process is initiated
and supervised by a person with the role “group leader” (for short GrL) and carried out in
parallel by at least two specialists M1 and M2 (“members of staff”) who process the business
and technical parts of this task more or less independently. A typical part of the technical
processing is an optional meeting to be held with other specialists. Therefore, the decision
whether to hold the meeting or not is modeled as a particular activity of the technician M2.
Having received the results from M1 and M2, the group leader completes the offer, thereby
completing the process prescribed by the process module “PrepareOffer”. Note that this process
module was started by the group leader for better structuring and control of his own work, but
several tasks are delegated to his colleagues M1 and M2 to whom he is entitled to set tasks. As
can easily be seen, the process module contains “and” branches and confluences of the control
flow1 as well as “or” branches and confluences2.

1. The “and” branch begins after the task “Delegate partial tasks (GrL)” and rejoins with the task
“Complete offer (GrL)”. The start of this last activity usually involves waiting for synchronization
of both threads of control

2. These are connected with the decision tasks “Technical meeting necessary?” and “Find date for
meeting” (“or” branches) and the place “partial result technical” (“or” confluence)
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Fig. 15: Process module “PrepareOffer”

Find date for meeting (M2)

meeting impossible

Technical meeting necessary? (M2)

Process business part (M1)

date found

Hold meeting (M2)

meeting not necessarymeeting necessary

Complete offer (GrL)

Process technical part (M2)

partial result business

partial task technical

offer completed

partial result technical

Delegate partial tasks (GrL)

PrepareOffer completed

partial task business

folder prepared

PrepareOffer



Examples

39

The process module “AppointmentMaking” (see Fig. 16) can be used as technical support for
M1´s task “Find date for meeting” in the process module “PrepareOffer” in Fig. 15. It can be
started by M1 if s/he finds it useful to do so, but can also - with a slight modification of the
process module “PrepareOffer” - be started automatically by this process module. Note that no
roles or persons are assigned to its tasks because it is assumed that all tasks are set to the starter
of the process module.

After the completion of the first task by M1, i.e. after sending the date proposals to all parties
who are to participate in the meeting, the process net resides in a state where the conditions
“waiting for deadline” and “wait” are true. Remember that the delay-free set-alarm transition
initiates an event of the type EventName with a specified delay after its own firing. During this
time, responses can arrive at the channel “new response to date proposal” and be included in the
database by the activity “Include new responses”, resulting every time in the marking of the
place “new responses included” which is followed immediately by the setting of the task
corresponding to the decision activity “All parties responded?”. This activity is performed each
time a new set of responses has been included and may eventually result in the condition “all
parties responded”.

If this condition is reached before the occurrence of the event “deadline” (and thus before the
firing of the corresponding sensor transition), this event will be cancelled by the clear-alarm
transition and therefore, the place “waiting for deadline” will remain marked until the end of the
interpretation of the net. The next activity will be the decision “Do ideal dates exist?” which
checks for the existence of a “perfect set of dates”, i.e. such sets of dates where all invited parties
are able to participate. If such a set exists, one of the dates will be chosen by the activity “Choose
date” and the last activity of the net ensures that all parties are informed.

If, in contrast, the event “deadline” occurs before all parties have responded, the corresponding
sensor transition will fire and consume the tokens from the places “wait” and “waiting for
deadline”. Thus, even in the case that all parties responded - but after the occurrence of the
deadline event - the clear-alarm transition will not fire and a token will remain on the place “all
parties responded” until the end of the interpretation of the net.1 Then, the task “Evaluate
incomplete set of responses” will be set.

After this activity or if there was no date suitable for everybody (as a result of the decision
activity “Do ideal dates exist?”), the process module will enter (and pass) the condition
“imperfect set of dates”. This condition is followed by the setting of the task “Set date or cancel
meeting” which in turn is followed by the activity ensuring the notification of all parties.

1. If not all parties responded, a token will remain on the place “incomplete set of responses” until the
end of the net’s interpretation.
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Fig. 16: (“AppointmentMaking”)
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7.2 Processes in a software architecture:
Negotiation for quality of service

A topical area of research of the network group of the International Computer Science Institute
at Berkeley is the development of methods and software architectures which enable (partly
statistical) guaranties for the quality of service (QoS) provided by broadband end-to-end
communication services on the host level. To this end, a so-called CMA (Cooperative
Multimedia Application) architecture is being developed as part of a host’s software
architecture.

An important part of the functionality of this architecture is the negotiation process for the
quality of service. This process is realized by interaction of the sub-components of the host’s
major component Session Manger called user interface, QoS mapper, service manager, resource
monitor/controller and connection manager.

Usual graphical representations in the design of software architectures reflect only the basic
functionality and the (names of) services provided by the software components, but not the
complex processes which are realized by their interaction (see Fig. 17).

Fig. 17: CMA software architecture

Modular process nets are well suited for a detailed and formally correct graphical representation
of such processes. They can simultaneously serve for easier understanding, documentation,
verification and validation of the corresponding software design and implementation. A further
(potential) use is the design of a user interface.

In our following (hopefully) self-explanatory example given by Figures 18 to 20, modular
process nets are used for descriptive modeling - there is no intention to enact the specified
processes. But, in contrast to the workflow example, the refinement possibilities of modular
process nets are extensively used. Note that most of the transitions areactions1, i.e. they take
time to be completed and they can be imagined to be “marked”. But, in contrast to activities, for
actions no predefined refinement is given.

1. The only exceptions are the user activities “Specify session requirements” and “Decide on
acceptance of negotiated QoS”
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Fig. 18: MPN model “Session management”
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”

Fig. 19: Refinement of “Contact other hosts (connection manager)”
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”

Fig. 20: Refinement of “Negotiate actual parameters (session manager)”

allocated resources QoS cannot be deliveredactual QoS parameters

host and network QoS requirements media service parameters

Decide on acceptance of negotiated QoS (user)

QoS parameters in user terms

Translate resources to offerable QoS parameters (QoS mapper)

yes no

Inform service manager (user interface)

negotiated network resourcesnegotiated host resources

Inform service manager (user interface)

Negotiate host and network resources (resource controller)



Concluding remarks

45

8 Concluding remarks

This report provides an introduction to a new class of Petri net models which is particularly well
suited as a graphical and formal notation for business process and software process models.

The main and most innovative points of this class of models are its hierarchical module concept,
the constructs for synchronous and asynchronous communication between interpreted nets and
their environment and the use of these concepts as a basis for a canonical framework for flexible
workflow modeling and enactment.

The module concept is part of a more general (“object-based”) approach to Petri nets which not
only allows a compact representation of complex processes but also provides solutions for
problems in the application and use of Petri nets which result from the application of different
firing rules and the introduction of time into nets.

In principle, the definition of constructs for synchronous and asynchronous communication can
be done independently of the module concept for every class of Petri nets. The necessary
underlying concepts for these constructs are those of events (memoryless “flashes”) and of
token passing (comparable to messages).

One very useful application of the module and event concepts is the construction of a net-based
task concept which has been successfully applied to the design and use of a workflow
management system but which is also expected to be applicable in other areas of computer-
supported cooperative work (CSCW).

One of the main aims of the proposed class of models is that it should be simple, easily learnable
and comprehensible in order to be used as a widespread but formally precise means of
communication. For this reason in particular, only “black” tokens (instead of the often used
class-based or individual tokens) are allowed in our modular process nets.

The other design objectives - to allow compact representation of complex processes, automated
computer interpretation, distributed and safe interpretation and enactment, changes of the net
structure during interpretation1 and integration with organization models - have been achieved
by minimal syntactic extensions of elementary low-level Petri nets.

Within the context of the WAM2 project at the Fraunhofer ISST Berlin [Adam95], a set of
several software components has been developed or enhanced which allow prototypical use of
modular process nets for the modeling and enactment of flexible workflow processes. In
addition to the graphical editor MoPEd - used for the construction of all process nets shown in
this report - these are a process net interpreter and a process net monitor which have been
integrated in a CORBA-based workflow management environment. Using a formal translation,
the process net models can be analyzed using the Petri net analyzer INA [Star94].

As shown in the second example of this report, modular process nets are well suited for use
outside workflow modeling and management. It is expected that applications in many other
areas will follow. The main aim of this report is to encourage and promote such further use.

1. This can be realized using the task concept and embedding of process modules.

2. Wide Area Multimedia group interaction
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