

Experience in model-driven UI-development
using a MDA-compliant framework

Authors:
Sebastian Adam
Christian Bunse
Patrick Kolling

Submitted for Publication to
Models/UML 2006

IESE-Report No. 030.06/E
Version 1.0
February 21, 2006

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Fraunhofer-Platz 1
67663 Kaiserslautern

Copyright © Fraunhofer IESE 2006 v

Abstract

The success of a company depends directly on its ability to quickly adapt to
changing market requirements. One means for reaching this goal is reuse tech-
nology. Reuse, known since the beginning of computer science (e.g., reuse of
command sequences), has been raised to the level of components. Compo-
nent-based development promises fast development of software systems by as-
sembling pre-fabricated building blocks or components. Although, this is a step
into the right direction, the biggest remaining problem is that a system should
be compatible with as many commonly used implementation and middleware
technologies as possible, particular those that are either de facto or de jure
standards. This is the goal of the Model Driven Architecture (MDA) approach,
which is based on the concept that the essential structure and behavior of a
system should be captured in an abstract way so that it can be mapped flexibly
to different implementation technologies. When applying the MDA approach
to the development of user interfaces, systems can be easily ported or deployed
to different platforms. Good examples are web-based applications which can
be used on mobile phones, PDAs, portable computers, etc. without the need
for developing different interface implementations. This paper presents an ex-
perience report concerning the application of an integrated modeling approach
for reusable user interfaces, and shows how modeling and MDA can be effi-
ciently used in practice.

Keywords: Model-based software development, model-driven development, user inter-
faces, human-computer interfaces, Unified Modeling Language (UML), genera-
tive programming, empirical evaluation, industrial experience

Copyright © Fraunhofer IESE 2006 vii

Table of Contents

1 Introduction 1

2 Bridging MDA and MD-UID 3

3 Related Work 4

4 The IMRU-Approach 5
4.1 Overview 5
4.2 IMRU Abstraction & Development Levels 6
4.3 Context, Use Cases, and Domain Data 6
4.4 Logical Views & Abstract Dialogs 7
4.5 Modal-dependent UI-structure 7
4.6 Physical views & Concrete Dialogs 7
4.7 Implementation 8

5 Practical validation 9
5.1 Case Study 9
5.2 Empirical Validation 10

6 Conclusion & Future Work 14

References 15

Introduction

Copyright © Fraunhofer IESE 2006 1

1 Introduction

Component-based (CB) and object-oriented (OO) development of high quality
systems has become a key issue for many industrial organizations. Typically
cited promises include higher reuse opportunities, increased development
speed, improved software quality through lower failure rates, and lower costs
associated with failure diagnosis and repair [Atk01, Szy02]. Because of these
promises, OO and CB approaches have become the approach of choice for
many development projects. As a side-effect, the need for having a technology
independent model of a system and ‘automatic’ transformations to different
platforms and implementation technologies was born. This is the goal of the
OMG’s Model Driven Architecture (MDA) approach [OMG03]. The major goal
of the MDA approach is to separate the design of a system from architecture
and realization technologies. Using the MDA approach, system functionality is
defined as a platform-independent model (aka PIM) and then translated to one
or more platform-specific models (aka PSMs). To accomplish this goal, the MDA
defines an architecture that provides a set of guidelines for structuring specifi-
cations expressed as models. The translations between the PIM and PSMs are
normally performed using automated tools [Wik06].

The MDA approach is a step into the right direction; however, the user inter-
face (UI), an important, expensive, and often-changed ingredient of modern
software systems, seems to be neglected frequently. This is quite strange since
the model-driven and generative development of user interfaces (MD-UID) is as
old as UIs themselves [Mol04]. In detail, quite some effort has been spent in the
development of approaches for UIs that promise to provide the same benefits
as MDA but for the development of user interfaces [Lim04]. Unfortunately,
none of them is widely accepted in software organizations, or even integrated
in model driven software processes [Mol04]. Visual (ad-hoc) programming using
WYSIWYG-tools is still the state-of-practice. According to [Mol04] the most
prominent reasons are:

• Scalability: Most MD-UID approaches origin from research in the area of
“Human-Computer Interaction” (HCI) and have not been successfully trans-
ferred to industrial software development practice yet. One reason is that
these approaches are only loosely coupled to the overall development proc-
ess.

• Lack of Standards: There exists no standard notation for UI modeling. Nearly
every approach proposes its own notation, whereby none of these are used
in industrial software practice.

Introduction

Copyright © Fraunhofer IESE 2006 2

• Lack of integration with business logic: Since modeling of UIs uses tools and
notations different to those applied to the “rest” of the system, it is nearly
impossible to generate business logic and UI in an integrated way.

• Lack of commercial tool support: Most existing MD-UID tools are unreliable
prototypes. However, practical acceptance crucially depends on the exis-
tence of reliable tools. Thus, this problem is directly related to the “lack of
standards”.

In this paper we present experience made in the industrial application of a
novel framework for the integrated modeling of reusable user interfaces, also
known as IMRU [Ada05]. In the context of IMRU the term “Integrated model-
ing” specifies that the UI and business logic modeling are integrated with each
other, using the same modeling language and tool environment. Regarding HCI
and its underlying “usability philosophy”, the UI is perceived as an integral part
of a software system and not as a less important add-on. The term “reusable”
denotes that the high-abstraction models of the UI are reused for generation of
completely different characteristics, following the MDA paradigm. In this paper,
“characteristic” is defined as a specific UI with a particular look&feel for a par-
ticular device, implemented in a particular programming language. In general,
the goal of IMRU is to provide a systematic but usable approach for generative
UI development, which promises the following benefits:

• Increased quality due to the systematic integration and support of UI devel-
opment in the overall development process. This is further supported by the
use of “formalized” usability knowledge in transformation patterns.

• Increased productivity due to the reuse of models and model-
transformations.

• High practical acceptance due to the use of “standard” notations and tools.

The remainder of this paper is structured as follows: Section two describes the
foundations of model-driven UI-development and demonstrates how modeling
steps can be mapped to the corresponding MDA levels. Section three presents
related work, and section four the basic ideas of the IMRU approach. Finally,
section five describes the practical application and validation of the IMRU ap-
proach, while section six presents a short summary and provides some conclu-
sions.

Bridging MDA and MD-UID

Copyright © Fraunhofer IESE 2006 3

2 Bridging MDA and MD-UID

In the context of model-driven software development, following the MDA
paradigm, a system is specified/characterized independently from its realization
in the form of computation independent models (CIM). Based on the systems
CIM, its functionality is defined by means of a platform-independent model
(PIM), using an appropriate specification language and then translated to one
or more platform-specific models (PSMs) for the actual implementation. To ac-
complish this goal, the MDA defines an architecture that provides a set of
guidelines for structuring specifications expressed as models. The translation
between a PIM and its PSMs is normally performed using automated tools
[Wik06].

Interestingly, recent MD-UID approaches too distinguish four levels of abstrac-
tion: tasks & concepts models, abstract user interface models, concrete user in-
terface models and the final user interface model [Van05]. Task & concepts
models describe the environment, especially the tasks which should be sup-
ported by the software system. Abstract user interface models specify the logi-
cal structure of the UI in terms of workspaces which group related data and
functions. Concrete user interface models define the layout of an UI for a par-
ticular device, but are still independent of the implementation. The final user in-
terface is then the concrete implementation of an UI in a specific programming
language.

When comparing both abstraction hierarchies, direct relationships between lev-
els are obvious [Van05] (see Figure 1). Therefore, it can be assumed that MDA
and MD-UID can be closely integrated.

Figure 1. Relationship between MDA- and MD-UID abstraction levels

 CIM

PIM

PSM

Code

Task & Concept

Abstract UI

Concrete UI

Final UI

Related Work

Copyright © Fraunhofer IESE 2006 4

3 Related Work

User-interface modeling for software systems has been in the focus of research
for quite some time (see [Pin00] and [Lim04] for a comprehensive overview).
The corresponding approaches can be classified based on their usage of differ-
ent (input) models, their levels of abstraction, and their platform independence.
A good example is the approach presented in [Lim04] that distinguishes differ-
ent levels of abstraction which can be directly mapped to MDA levels. In addi-
tion to the definition of meta-models for each abstraction level, the approach
provides a transformation-syntax based on graph grammars and hereby sup-
ports a high degree of automation. However, the approach uses a non-
standard modeling and transformation language (USIXML). In addition, com-
prehensive tool support does not exist. Therefore, a broad acceptance in prac-
tice can not be assumed and the possibility to integrate this approach in a (typi-
cal) UML-based software development method is quite low.

Other approaches such as [Pat01] or [Bla04] propose to apply UML in MD-UID
in order to increase practical acceptance. However, none of these approaches is
able to generate UIs out of UML models in a generic manner using the full
range of abstraction levels. Typically, windows of the final UI are directly gener-
ated from UML classes by mapping each attribute on a form field [Bal95]. An-
other approach is to use UML state charts to generate controller-components in
MVC-compliant UIs. Unfortunately, these approaches either neglect the “look
& feel” aspect or provide only fixed transformation patterns. One reason might
be that UML does not provide a means for manually designing the presenta-
tional aspects of an UI. Some tools (e.g., [Neu04]) try to overcome this weak-
ness by combining UML models for controller components and WYSIWYG-
definitions. However, the latter is not abstract and only defines the “look &
feel” for a particular device.

In summary, existing UML-based approaches are too restrictive for a generic
model driven UI development and do not provide the required methodical ma-
turity. On the other hand, recent MD-UID approaches which don’t use UML are
not supported by reliable tools or standardized notations and thus are hard to
apply in practice.

The IMRU-Approach

Copyright © Fraunhofer IESE 2006 5

4 The IMRU-Approach

4.1 Overview

The challenge in MD-UID is to provide a systematic approach based on standard
languages and tools which can easily be applied in software industry. The basic
idea is to bridge the gap between model-driven application-logic- and user-
interface development by adopting the UML for MD-UID, and by integrating
MD-UID concepts with corresponding MDA abstraction levels (see also section
2). The IMRU (“integrated modeling of reusable user interfaces”) approach
[Ada05] provides a framework for MD-UID which in addition addresses the sys-
tematical reuse of existing models and transformation patterns.

In detail, the integration of UI modeling in the overall software development
process (e.g., into the Unified Process [Kru03]) is primary achieved defining spe-
cific activities, artifacts and quality measures that are embedded into the soft-
ware design phase. Starting from conceptual models and task descriptions, an
abstract user interface model is designed. This model is further refined to a
more specific user interface model which specifies the widgets needed to visu-
alize it on a given modality. The next development step is the creation of a con-
crete user interface which describes the layout on a chosen device. The last step
is finally the implementation in a given technology. In section 4.2 these devel-
opment steps and the related models are described in more detail.

The link between UI- and system models is realized by using UML as far as pos-
sible as a common language. In cases, where UML is not suitable (e.g. defini-
tion of the graphical layout) specific languages for that purpose such as XHTML
[W3C02] can be integrated, using UML’s in-build extension mechanisms.

The reuse of UI artifacts and models in IMRU is supported in two different
ways. On the one hand, models which describe all possible interactions and
logical coherences independently of any modality, look & feel or technology
can be (re)used without changes to the semi-automatic generation of several
UIs within the same system. On the other hand, transformation patterns can be
reused across several projects. Good design decisions, usability knowledge and
sophisticated layouts can hereby easily and efficiently be applied.

However, in general, IMRU only provides a framework for MB-UID in a MDA-
compliant way. An adaptation to particular meta-models and transformation
patterns is beyond this general approach.

The IMRU-Approach

Copyright © Fraunhofer IESE 2006 6

4.2 IMRU Abstraction & Development Levels

As depicted by Figure 2, IMRU separates five levels of abstraction based on the
MDA abstraction hierarchy. These are connected by transformation activities,
either with a high degree of automation (solid lines) or manual transformations
(dashed lines). In addition there are external influences (dotted lines) such as
the impact of the system context on the selection of appropriate transformation
rules.

Figure 2. Levels of abstraction in IMRU

IMRU allows the generation of multiple UI characteristics based on three di-
mensions: modality1, look & feel (depending on user preferences, application
type, and device), and implementation technology, which all have an impact on
the transformations between levels. In order to preserve the ease of use, major
design decisions are hidden from developers by encapsulating them in reusable,
context-specific transformation patterns.

The only models which have to be created manually are the logical views and
abstract dialogs, based on the information described in the use case and do-
main data models. The reason for this manual step is that such transformations
are hard to formalize with an acceptable level of quality [Pin00]. Following the
general idea of software product lines [Atk01] these models contain the com-
monalities of all possible UIs of a system.

4.3 Context, Use Cases, and Domain Data

IMRU assumes three artifacts to be existent before UI development can start. In
detail, these are use cases for task descriptions, textual descriptions of the ap-
plication environment, and class diagrams for the domain data specification.

1 Modality describes the kind of interaction provided by an user interface (e.g., visual vs. speech-based UIs).

 UseCases

Logical views & abstract dialogs

Modal-dependent UI-structure

Physical views & concrete dialogs

Implementation (according to MVC)

Context DomainData

PIM

PIM/PSM

Code

CIM

PIM/PSM

The IMRU-Approach

Copyright © Fraunhofer IESE 2006 7

These artifacts correspond to the task-, context- and domain- models suggested
in other HCI approaches (e.g., see [Lim04]).

4.4 Logical Views & Abstract Dialogs

Logical views group all necessary data and operations a user needs to perform a
given activity. For each interaction step in a use case, a (dialog) state is specified
in a UML state transition diagram while a related UML class describes all corre-
sponding data and operations for this state. Depending on the underlying
meta-model, the access privileges for each user role as well as error handling
can be specified.

The specification of logical views and abstract dialogs is completely independ-
ent of the modality, look & feel, and the implementation technology. Thus,
they represent some form of PIM, and can therefore be generically (re)used for
all UIs of a system.

4.5 Modal-dependent UI-structure

The transformation of logical views to a modal-dependent UI-structure is
known as “structural design”. The UI-structure describes the architecture of the
user interface in terms of common widgets, valid for all devices of this modality.
The corresponding models are platform-specific regarding modality, but plat-
form-independent regarding technical decisions. Major parts of the UI-structure
can be automatically generated, whereby only structural attributes like field
names/sizes should be manually adapted.

4.6 Physical views & Concrete Dialogs

To communicate with users (e.g. concerning usability) the real appearance of
the UI (called physical view) is needed as soon as possible during development.
The IMRU approach allows generating models of the physical view almost
automatically from the “modal-dependent UI-structure”. The only problem be-
ing, that UML does not support the definition of display aspects. Many ap-
proaches try to solve this problem by introducing proprietary notations [Lim04].
However, the use of standards is a prerequisite to increase technology accep-
tance in practice. Therefore, the use of standard notations is required, especially
for the definition of physical views. In IMRU declarative language such as
XHTML are used to describe the visual aspects.

The IMRU-Approach

Copyright © Fraunhofer IESE 2006 8

4.7 Implementation

The “implementation” activity addresses the transformation to the “implemen-
tation” abstraction level. The UI-structure and concrete dialog models are
automatically transformed to model- and controller-code-components of a
MVC-organized [Wik06b] user interface. Also the physical views can be auto-
matically enriched with necessary constructs for the accordant implementation
language.

Figure 3 gives examples for all above-mentioned model types.

Logical views (groupings)

Dialogs

Modal-dependent UI-structure

Physical view

Figure 3: Example IMRU models

Practical validation

Copyright © Fraunhofer IESE 2006 9

5 Practical validation

The validation of the IMRU approach was performed in two steps. First, a case
study was performed in order to check if the IMRU concepts can actually be
applied as intended. Second, an empirical study was conducted in order to vali-
date if the promised benefits (increased development speed and practical ac-
ceptance) are achieved.

5.1 Case Study

The goal of the case study was twofold: First, to perform a kind of a feasibility
study; and second, to prepare the empirical study. In the context of this study
exemplary UML-profiles (meta-models) for logical views, abstract and concrete
dialogs, as well as for the modal-dependent UI-structure (for graphical UIs)
were developed. In addition, transformation patterns for all levels of abstrac-
tion, taking usability guidelines into account, were defined. At the lowest levels
the focus was on web- and WAP-based UIs, using Jakarta Struts as underlying
technology.

Figure 4. Usage of models, meta-models, transformation patterns and tools

Furthermore, a tool chain was established using standard tools for model-driven
software development (e.g. Poseidon UML [Gen06]). The transformation pat-
terns were then realized by using XSLT [W3C99].

T1 T3 T2

Use
Cases &
Domain
Data

Logical
views &
abstract
dialogs

Modal-
depen-
dent UI-
structure

Physical
views &
concrete
dialogs

Imple-
mentati-
on

UML-Editor

XSLT-Transformer

UI-Editor IDE

Meta-
Model Meta-

Model

Meta-
Model
(GUI)

Meta-
Model
(Web-on-
PC)

Meta-
Model
(Web-on-
PC)

Meta-
Model
(Jakarta
Struts)

Meta-
Model
(Jakarta
Struts)

T1 T2 T3

Practical validation

Copyright © Fraunhofer IESE 2006 10

Figure 4 provides an overview on the case study environment. This framework
was used by some students to develop several exemplary UIs of different sizes
for web-based systems. In detail, existing use cases were analyzed and then
transformed into corresponding logical views and abstract dialogs by means of
an UML editor. These models were then automatically transformed to a modal-
dependent UI-structure for graphical UIs. In a third step, several transformation
patterns for obtaining the physical views and the related concrete dialogs were
applied. In detail, one WAP-based and two web-based UIs, each with a differ-
ent look & feel, were created, followed by some manual refinements using a
WYSIWYG-editor. Finally the models were transformed to an executable UI, us-
ing Java and JSP (Jakarta Struts). The code was then transferred to an IDE,
compiled and executed. Finally, the UI was validated against its use case de-
scriptions. The results of the case-study can be summarized as follows:

• All relevant aspects of UIs can be described in standardized notations ac-
cording to a given meta-model on different levels of abstraction.

• Relevant concepts of MD-UID approaches can be mapped to common soft-
ware tool chains.

• Usable and appealing UIs can be automatically generated from UML-models
using well known and standardized technologies, such as XSLT.

• Product line concepts are transferable to user interfaces. Commonalities of
all system UIs can be defined in abstract models whereby specific character-
istics can be generated by applying transformation patterns.

• All transformation steps are largely automatable (up to 100%). This is mainly
due to the fact that UIs do not contain complex logic and are typically con-
structed from a predefined set of possible components.

In summary, it can be concluded that the IMRU approach can be applied in
practice. However, the results of the case study were gathered from a subjec-
tive point. In order to obtain objective results an empirical study was performed
which is described in the next section.

5.2 Empirical Validation

In general, empirical studies in software engineering are used to evaluate
whether a “new” technique is superior to other techniques concerning a spe-
cific problem or property. This section examines the problem of systematic,
user-interface development using UML. The benefits of the IMRU approach are
defined by a couple of research hypotheses.

Practical validation

Copyright © Fraunhofer IESE 2006 11

Hypotheses

It is expected that the application of IMRU will reduce development time, im-
prove the efficiency of a project, and increase the MD-UID method’s perceived
applicability. Thus, the experiments hypotheses can be stated as:

• The creation of abstract UML models for UIs, as well as their refinement and
transformation into an executable form needs less effort than straight
WYSIWYG-programming.

• MD-UID based on IMRU is regarded as “practically suitable” (subjective
view).

Material

The experimental material used in this study to test the hypothesis was a small
cinema reservation system with a web- and a WAP based user interface. The
system provided functions to search for movies, choose seats, and to order
tickets, including payment transactions.

Subjects

The experimental subjects used in this study were six professional developers of
T-Systems International, located in Saarbrücken, Germany. All of them already
had professional experience in using UML and in developing graphical user in-
terfaces, either by using WYSIWYG-editors, or by manual programming.

Tasks

For the given system document the experimental task was to develop a web-
and a WAP-based user interface based on the Jakarta Struts Framework. There-
fore subjects had to develop the UIs using the model-driven approach on the
one hand and to manually program the UIs on the other hand.

Design

To avoid learning effects, the experiment was performed as a crossed test (see
Table 1). In the first round, one half of the participants developed the web-
based UI using a WYSIWYG-tool, while the other half used the IMRU approach
with its tool chain. In the second round, the same UI was developed using the
other technique.

Concerning the development of the WAP-based UI, the task was performed in
a less formal way than the development of the web-based UI. Instead of redes-
igning the UI from scratch, the existing abstract models were used to generate
the WAP-based UI. Thus, only the reuse- and transformation effort was meas-
ured and compared with the effort for the WYSIWYG design.

Practical validation

Copyright © Fraunhofer IESE 2006 12

Subject 1. Task 2. Task

1 WYSIWYG IMRU

2 IMRU WYSIWYG

3 IMRU WYSIWYG

4 IMRU WYSIWYG

5 WYSIWYG IMRU

6 WYSIWYG IMRU

Table 1: Test design

Measured data

Data was collected for all subjects over the two experimental runs. Therefore,
six data points were available for each round. Since the experimental design
was completely within-subjects, repeated measures analysis can be performed.
The first step of the analysis procedure is to check the normality of the data.
Because the collected data (see Table 2) were substantially non-normal an ap-
propriate test to use was the non-parametric t-test.

Subject 1 2 3 4 5 6

IMRU [min] 180 245 215 150 115 210

WYSIWYG [min] 325 280 295 290 225 270

Saving [min] 145 35 80 140 110 60

Saving [%] 45 13 27 48 49 22

Table 2: Raw Data (Web-based UI)

Analysis

Based on the raw data shown in Table 2 a statistical analysis has been per-
formed. Results show that the effort for developing a UI with IMRU is, in aver-
age, 34% less than the effort for manual programming using a WYSIWYG tool
(see Table 3).

Average saved effort [min] / [%] 95 / 34

Standard deviation s [min] / [%] 44,3 / 15,3

t-test variable t0 5,26 > 4,03 = t0.005,5

Table 3: Descriptive statistics and t-test result

For the creation of both UIs averagely 56% of effort could be saved by using
IMRU (the development for the web-based UI took only about 15 minutes),
whereby the significance is below the α−level of 0.01. The hypotheses that a

Practical validation

Copyright © Fraunhofer IESE 2006 13

model-driven UI-development using IMRU needs less effort than a manual
WYSIWYG-programming can thus be accepted.

Also interestingly, nearly 75% of the whole IMRU effort was used for platform-
independent modeling. This supports the assumption that IMRU enables a high
degree of reuse. Especially development projects with several UIs can realize
significant effort savings.

In addition to the quantitative results, qualitative results were collected by
means of asking subjects to fill a debriefing questionnaire. In summary, the re-
sults show that the IMRU approach can be applied in industrial software prac-
tice. In detail, subjects said that the learning effort for IMRU is “normal” and
that the proposed development steps are “intuitive and easy to apply”. Fur-
thermore, subjects estimated that IMRU will result in a higher efficiency in sys-
tem development using different technologies, less faults, and a better quality.
Finally, the separation of different model types and abstraction levels was seen
as a “helpful support for the division of work between graphical layout, logical
design and implementation”. In this regard, subjects mentioned that they ex-
pect a relief of technology- and layout knowledge in MD-UID. In summary, the
analysis of the debriefing questionnaire showed that IMRU is perceived as “a
helpful, efficient and practically suitable method”. This allows the second hy-
pothesis to be accepted.

In summary, the hypotheses, that model-driven UI-development using IMRU is
more efficient than manual programming using WYSIWYG and that IMRU is
considered “practically suitable” are confirmed by the performed experiment.

Threats to validity

Threats to construct and external validity are: The low number of participants,
the low complexity of the experimental tasks, and the focus on data-oriented
software systems using tables and forms as UI elements. Thus, the results can
only be considered as an trend but not as a valid general conclusion, which re-
quires additional experiments [Gre90]. Therefore, a replication package is avail-
able from the authors.

Conclusion & Future Work

Copyright © Fraunhofer IESE 2006 14

6 Conclusion & Future Work

The recent advent of the MDA has created a special focus on the model-driven
development of software systems. Unfortunately, this focus has not fully been
extended to the user interface. The IMRU approach provides a framework for
the development of user interfaces in a MDA-compliant and generic way, based
on standard notations and tools. Its practical applicability has been validated in
form of a case study and an empirical study.

The case study has shown that it is possible to merge/use model-driven devel-
opment and MDA principles for the development of user interfaces with stan-
dard notations and tools. The results affirm the assumption that IMRU is a step
into the right direction. In addition, the empirical study has shown that IMRU
significantly increases the acceptance of MD-UID in practice, and that IMRU’s
efficiency is significantly better than the efficiency of “traditional” WYSIWYG-
programming. Thus, it can be expected MD-UID using technologies and tools
such as suggested by IMRU will become state-of-the-practice.

However, to reach industrial acceptance future work is needed for completing
the IMRU approach. This includes the completion/definition of meta-models for
each abstraction levels, transformation patterns for all well-established plat-
forms and UI elements, sophisticated tool support (e.g., a plugin for case tools
such as Rational Rose or IDEs such as Eclipse), and further evaluations by means
of industrial case-studies.

References

Copyright © Fraunhofer IESE 2006 15

References

[Ada05] Adam, S.: Derivation of an approach for the integrated modeling of
reusable user interfaces (in german: “Entwicklung eines Ansatzes
zur integrierten Modellierung wiederverwendbarer Benutzerschnitt-
stellen”). TU Kaiserslautern, 2005

[Atk01] Atkinson, C., Bayer, J., Bunse, C., et al. Component-based Product
Line Engineering with UML. Addison Wesley, 2001.

[Bal95] Balzer, H.: From OOA to GUI – The JANUS-System. In: Proceedings
of the Fifth Conference in Human-Computer Interaction
INTERACT’95. 1995

[Bla04] Blankenhorn, K.: A UML Profile for GUI Layout. In: Lecture Notes in
Computer Science, LNCS 3263, Springer-Verlag, Berlin Heidelberg,
2004

[Gen06] Gentleware: Poseidon UML.
http://gentleware.com/downloadcenter.0.html, 2006

[Gre90] Green, S., Kouchakdjian, A., Basili, V., Weidow, D.: The Cleanroom
Case Study in the SEL. TR SEL-90-002, NASA-SEL, 1990

[Kru03] Kruchten, P., Rational Unified Process: An Introduction. Addison-
Wesley, 2003

[Lim04] Limbourg, Q.: Multi-Path Development of User Interfaces. Disserta-
tion. Université catholique de Louvain, 2004

[Mol04] Molina, P.: A Review to Model-Based User Interface Development
Technolgy. In: Proceedings of the first Workshop on Making
Model-Based User Interfaces Practical, Island of Madeira, 2004

[Neu04] Neuhaus, W.: Modellgetriebene Softwareentwicklung – Alles UML,
oder? In: ObjektSpektrum 1/2004. Sigs-Datacom, Troisdorf, 2004

[OMG03] Object Management Group: MDA Guide Version 1.0.1,
http://www.omg.org/mda/, 2003

[OMG05] Object Management Group: Unified Modeling Language, Version
2.0, http://www.uml.org, 2005

References

Copyright © Fraunhofer IESE 2006 16

[Pat01] Paterno, F.: Towards a UML for Interactive Systems. In: Engineering
for Human-Computer Interaction, LNCS 2254, pp. 7-18. Springer,
2001

[Pin00] Pinheiro, P.: User Interface Declarative Models and Development
Environments; A Survey. In: DSV-IS 2000, LNCS 1946, pp. 207-226.
Springer, 2000

[Szy02] Szyperski, C., Gruntz, D., Murer, S., Component Software. Beyond
Object-Oriented Programming, Addison-Wesley, 2002

[Van05] Vanderdonckt, J.: A MDA-Compliant Environment for Developing
User Interfaces of Information Systems. In: CAiSE 2005, LNCS
3520, Springer, 2005

[W3C99] W3C: XSL Transformations (XSLT) http://www.w3.org/TR/xslt, 1999

[W3C99b] W3C: Cascadian Style Sheets. http://www.w3.org/Style/CSS/, 1999

[W3C02] W3C: XHTML 1.0 The Extensible HyperText Markup Language,
http://www.w3.org/TR/xhtml1/, 2002

[Wik06] Wikipedia: Model Driven Architecture.
http://de.wikipedia.org/wiki/Model_Driven_Architecture#Werkzeug
e, 2006

[Wik06b] Wikipedia: Model View Controller.
http://de.wikipedia.org/wiki/MVC, 2006

Document Information

Copyright 2006, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Title: Experience in model-driven
UI-development using a
MDA-compliant framework

Date: February 21, 2006
Report: IESE-030.06/E
Status: Final
Distribution: Public

