

PhD Theses in Experimental Software Engineering
Volume 40

Editor-in-Chief: Prof. Dr. Dieter Rombach

Editorial Board: Prof. Dr. Frank Bomarius
Prof. Dr. Peter Liggesmeyer
Prof. Dr. Dieter Rombach

Contact:
Fraunhofer-Institut für Experimentelles Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern
Telefon +49 631 6800 - 0
Fax +49 631 6800 - 1199
E-Mail info@iese.fraunhofer.de
www.iese.fraunhofer.de

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliografic data is available in the Internet at <http://dnb.d-nb.de>.
ISBN: 978-3-8396-0445-8

D 386

Zugl.: Kaiserslautern, Univ., Diss., 2012

Printing and Bindery:
Mediendienstleistungen des
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Printed on acid-free and chlorine-free bleached paper.

© by FraunhoFer Verlag, 2012
Fraunhofer Information-Centre for Regional Planning and Building Construction IRB
P.O. Box 80 04 69, D-70504 Stuttgart
Nobelstrasse 12, D-70569 Stuttgart
Phone +49 (0) 711 970-2500
Fax +49 (0) 711 970-2508
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

All rights reserved; no part of this publication may be translated, reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photo copying, recording or
otherwise, without the written permission of the publisher.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. The quotation of those designations in whatever way does not imply the conclusion that
the use of those designations is legal without the consent of the owner
of the trademark.

A Systematic Integration
of Inspection and Testing Processes

for Focusing Testing Activities

Vom Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation
von

Dipl.-Inform. Frank Elberzhager

Fraunhofer Institut für Experimentelles Software Engineering
(Fraunhofer IESE)

Kaiserslautern

Berichterstatter: Prof. Dr. Dr. h.c. H. Dieter Rombach
 Prof. Dr. Jürgen Münch
 Prof. Dr. Andreas Zeller

Dekan: Prof. Dr. Arnd Poetzsch-Heffter
Tag der wissenschaftlichen Aussprache: 15. Juni 2012

D 386

“It is the struggle itself that is most important.
We must strive to be more than we are.

It does not matter that we will not reach our ultimate goal.
The effort itself yields its own reward.”

Gene Roddenberry

 v

Acknowledgments

Many different people have accompanied and supported me in realizing
this thesis.

In the first place, I would like to thank my first supervisor, Prof. Dr. Dr.
h.c. H. Dieter Rombach, director of the Fraunhofer Institute for
Experimental Software Engineering (IESE) and chair of the Department of
Computer Science at the University of Kaiserslautern, Germany. I would
like to thank him for his support, the fruitful discussions, and his
feedback.

Second, I would like to thank my second supervisor, Prof. Dr. Jürgen
Münch, chair at the Department of Computer Science at the University
of Helsinki, Finland, and former division head at Fraunhofer IESE. He
supported me in finding the right direction, respectively the scope, for
this thesis. Furthermore, I could reflect the topic during many discussions
with him. In addition, he taught me to stick to the point, and to
concentrate on clear and sound presentation and writing. He heavily
supported me during a lot of publications. Finally, though I know that he
is very busy, he always had time for me when I needed support and
motivated me. I would not have completed this thesis without his
support.

Third, I would like to thank Prof. Dr. Andreas Zeller, Software
Engineering chair at Saarland University, who accepted being my third
supervisor at short notice.

At Fraunhofer IESE, many people supported me in many different ways. I
would like to thank them all for their help and their continuous support.
In particular, I would like to thank my colleagues from the quality
assurance departments who discussed the topic with me or supported
me during evaluations. I would especially like to thank Thomas Bauer,
who started with me in the former Testing and Inspections department
about six years ago, who motivated me, and who became a real friend
during this time. I would like to thank Alla Rosbach, who supported me
during literature surveys and in many inspection projects, and with
whom I could always discuss the topic. Furthermore, I would like to
thank Sonnhild Namingha for reviewing this thesis and correcting my
English.

I am also grateful to the students who supported me, especially Vi Tran,
who conducted an extensive literature survey and discussed the state of

 vi

the art with me, and Stephan Kremer, who supported me in tool
development.

Last but not least, I would like to thank my parents and my wife Irene.
My parents gave me the opportunity to study computer science and
supported me on that way. Irene, you believed in me, motivated me, and
reminded me that there is a life beyond computer science. Thank you
very much.

vii

Abstract

Quality assurance effort is often a major cost factor during software
development. Especially testing effort can consume more than 50
percent of the overall development effort. Furthermore, it is often
unclear how efficient existing quality assurance techniques are and what
the potential for savings might be.

Currently, companies often conduct different quality assurance activities,
such as inspections and testing, in order to find as many defects as
possible before software products are delivered. However, most often
such techniques are applied in isolation and do not exploit synergy
effects from systematically combining them, such as reduced effort or
higher defect detection rates. Moreover, the relations between different
static and dynamic quality assurance techniques are widely unclear. In
addition, testing activities often have a broad scope and are rarely
applied in a focused manner, which results in high costs.

This thesis presents the In2Test approach, which systematically combines
inspection and testing processes for focusing testing activities. The main
ideas of this integrated approach are (a) to use early inspection results to
prioritize testing on parts of a product or on defect types that are
expected to be most defect-prone, (b) to consider product metrics and
historical data in order to further improve the test focus, (c) to guide the
prioritization of system parts and defect types by using rules that are
based on explicitly defined assumptions about the relationships between
inspection results and remaining defects.

The approach was validated in two case studies: The validation was
aimed at (a) showing that In2Test allows for effort reduction during test
execution while keeping a comparable level of detected defects during
testing, i.e., In2Test allows for improved efficiency compared to non-
integrated approaches; (b) revealing underlying assumptions for the
prioritization of system parts and defect types for testing based on
inspection results; and (c) showing that In2Test is mature for use in
industrial applications.

The validation (a) showed an effort reduction in the case studies of
between 6% and 34% at a comparable level of detected defects
depending on the concrete assumptions and selection rules applied,
leading to an efficiency improvement of between 7% and 52%; (b)
revealed a set of initial selection rules and assumptions with promising
results; (c) showed the applicability of the approach.

Table of Contents

 ix

Table of Contents

1 Introduction ..1
1.1 Overview .. 1
1.2 Motivation ... 1
1.3 Research Scope .. 4
1.4 Problem Statements ... 7
1.5 Goals and Hypotheses .. 8
1.6 Background on Software Quality Assurance 11

1.6.1 The Relevance of Quality Assurance11
1.6.2 Software Inspections ..13
1.6.3 Software Testing ..20
1.6.4 Basic Terminology ..26

1.7 Research Contributions .. 28
1.8 Thesis Structure .. 29

2 State of the Practice ...33
2.1 Overview .. 33
2.2 Software Inspections in Industry ... 33
2.3 Software Testing in Industry ... 38
2.4 Problems and Requirements ... 43

2.4.1 Problems ..43
2.4.2 Requirements ...45

2.5 Summary ... 47

3 State of the Art ...49
3.1 Overview .. 49
3.2 Combination of Static and Dynamic Quality Assurance 49

3.2.1 Classification ..49
3.2.2 Publication Years ...55
3.2.3 Evaluations ..55
3.2.4 Objectives ..57
3.2.5 Summary and Conclusions ...59

3.3 Non-Combined Approaches ... 60
3.3.1 Classification ..61
3.3.2 Publication Years ...65
3.3.3 Evaluations ..66
3.3.4 Summary and Conclusion ..67

3.4 Comparison ... 68
3.5 Summary ... 70

4 The In2Test Approach ...71
4.1 Overview .. 71
4.2 Solution Idea .. 71

Table of Contents

 x

4.3 Process ... 74
4.3.1 One-Stage Approach ... 75
4.3.2 Two-Stage Approach ... 78

4.4 Relevance of Assumptions and Context Factors 82
4.4.1 Identification of Context-specific Assumptions 83
4.4.2 Structured Description of Relationships 86
4.4.3 Guidelines for the Systematic Evaluation of Context-

specific Assumptions .. 88
4.4.4 Context-specific Relationships between Inspection

and Test Defects .. 95
4.4.5 Application Procedure .. 99

4.5 Prototype Tool Support .. 101
4.6 Limitations ... 103
4.7 Summary ... 106

5 Empirical Validation ... 107
5.1 Overview .. 107
5.2 Evaluation Procedure.. 107

5.2.1 GQM Plan and Hypotheses .. 108
5.2.2 Validation Strategy .. 113

5.3 Case Study 1: DETECT .. 114
5.3.1 Context of the Study ... 114
5.3.2 Design of the Study ... 115
5.3.3 Execution of the Study ... 116
5.3.4 Results of the Study and Lessons Learned 120
5.3.5 Limitations of the Study ... 124

5.4 Case Study 2: JSeq ... 125
5.4.1 Context of the Study ... 125
5.4.2 Design of the Study ... 126
5.4.3 Execution of the Study ... 128
5.4.4 Results of the Study and Lessons Learned 136
5.4.5 Limitations of the Study ... 147
5.4.6 Trend Analysis of Assumptions and Selection Rules 148

5.5 Summary ... 153

6 Conclusion and Future Work ... 157
6.1 Summary and Conclusion .. 157
6.2 Open Questions and Future Work .. 159

References .. 163

Appendix A Checklists used during Evaluation 185
A.1 DETECT Evaluation: Checklists .. 185
A.2 JSeq Evaluation: Checklists ... 186

Appendix B Experimental Designs ... 189
B.1 Design 1 .. 189
B.2 Design 2 .. 191

Table of Contents

 xi

Appendix C Questionnaire ... 193

Appendix D Initial Industrial Evaluation Results 196

List of Figures

 xiii

List of Figures

Figure 1 Improvement scenarios. ... 5
Figure 2 Research approach. .. 6
Figure 3 Problems, goals, and hypotheses, and their

relationships... 10
Figure 4 Inspection techniques with respect to different levels of

formality. ... 15
Figure 5 Generic component test process as determined by the

Software Component Testing Standard. 24
Figure 6 TMap testing process showing steps on the left and

tasks on the right. .. 24
Figure 7 Logical schema of software testing levels according to

Bertolino and Marchetti (Bertolino and Marchetti,
2004). .. 39

Figure 8 Classification of combined static and dynamic QA
techniques. .. 50

Figure 9 Number of articles published per year. 55
Figure 10 Number of articles that provide evidence, respectively

no evidence. .. 56
Figure 11 Numbers of evaluated and non-evaluated approaches

per year. .. 57
Figure 12 Numbers of articles with respect to quality assurance

process objectives. ... 58
Figure 13 Numbers of articles with respect to defect types

addressed by the combined approaches. 59
Figure 14 Classification of non-combined approaches that aim at

improving efficiency. .. 62
Figure 15 Distribution of articles in the category Automation. 63
Figure 16 Distribution of articles in the category Prediction. 64
Figure 17 Distribution of articles in the category Test Input

Reduction. ... 64
Figure 18 Number of articles published per year. 65
Figure 19 Evaluation scope and type of evaluation. 66
Figure 20 Overview of the integrated approach. 76
Figure 21 Conceptual overview of steps and two examples of the

prioritization of code classes. ... 76
Figure 22 Integrated two-stage inspection and testing approach

for focusing testing activities. ... 79

List of Figures

 xiv

Figure 23 Conceptual overview of the steps for conducting the
combined prioritization and two examples. 80

Figure 24 Concepts of empirical software and systems engineering
according to Endres and Rombach (Endres and
Rombach, 2003). ... 84

Figure 25 Concepts for empirical software engineering. 85
Figure 26 An exemplary assumption. ... 87
Figure 27 A set of different selection rules. .. 87
Figure 28 Structural model of relationships. ... 88
Figure 29 Maintenance of evidence. .. 90
Figure 30 Four quality categories (using strong evaluation rules). 92
Figure 31 Exemplary analysis of selection rules for one quality

assurance run. ... 93
Figure 32 Retrospective procedure for assumptions. 100
Figure 33 Pro-active procedure for assumptions. 101
Figure 34 DETECT tool: In2Test analysis module showing

inspection data. ... 102
Figure 35 DETECT tool: In2Test analysis module showing different

rules applied for focusing. .. 103
Figure 36 GQM plan, comprising measurement goals, questions,

and metrics for hypothesis H1. ... 111
Figure 37 GQM plan, comprising measurement goals, questions,

and metrics for hypothesis H2. ... 112
Figure 38 Combined prioritization of code classes and defect types

based on applied selection rules. .. 135
Figure 39 Quality categories of 118 selection rules over two QA

runs. .. 152

List of Tables

 xv

List of Tables

Table 1 Some empirical results regarding inspection
effectiveness from different industrial contexts. 34

Table 2 Some results regarding inspection efficiency from
different industrial contexts. ... 34

Table 3 Mapping of requirements and problems. 46
Table 4 Number of articles per category. .. 61
Table 5 Distribution of articles by year and category. 65
Table 6 Detailed evaluation overview of non-combined

approaches. ... 67
Table 7 Assessing approaches with respect to determined

requirements.. 69
Table 8 Composition of the In²Test approach. 73
Table 9 Exemplary trend analysis of selection rules. 94
Table 10 Overview of supported inspection steps, roles, and

activities of the DETECT tool. ... 102
Table 11 Assessment of requirements with respect to the In2Test

approach. .. 104
Table 12 Research hypotheses and case studies. 113
Table 13 Experience of inspectors and assigned checklists (o=low,

+=middle, ++=high). .. 115
Table 14 Defect content and defect density of each inspected

code class. ... 117
Table 15 ODC-classified defects from inspection. 117
Table 16 Test results from system testing. .. 119
Table 17 Effort savings when focusing on certain functionality

during test execution. .. 122
Table 18 ODC-classified defects from inspection and system

testing. .. 123
Table 19 Comparison of different quality assurance processes. 124
Table 20 Inspection defect profile – Defect content. 128
Table 21 Inspection defect profile – ODC-classified defects. 129
Table 22 Inspection defect profile – defect content, defect

density, and severity classes. .. 131
Table 23 Inspection defect profile – sorted list of ODC-classified

defects. .. 132
Table 24 Inspection metrics of 1st and 2nd run of the case study. 133
Table 25 Assumption metrics and their corresponding values. 134

List of Tables

 xvi

Table 26 Number of defects found (defect content) by inspection
and testing per code class. ... 137

Table 27 Defect types found by inspection and testing, and
prioritized defect types for selection rule of stage 2. 137

Table 28 Number of defects found (defect content) by inspection
and testing per code class. ... 138

Table 29 Effort of the non-integrated test and different effort
reductions of the prioritized test. 139

Table 30 Calculation of efficiency values. ... 140
Table 31 Evaluation results of assumption S1-A1. 141
Table 32 Evaluation results of assumption S1-A2 with respect to

class length. ... 141
Table 33 Evaluation results of assumption S1-A2 with respect to

mean method length. .. 142
Table 34 Evaluation results of assumption S1-A3. 144
Table 35 Control assumption C1 using product metrics 145
Table 36 Control assumption C2 using product metrics 145
Table 37 Evaluation results with respect to defect types. 146
Table 38 Comparison of different quality assurance processes. 147
Table 39 Number of selection rules that were compared in the

trend analysis. .. 150
Table 40 Quality categories with respect to prioritization of code

classes. .. 151
Table 41 Summary of the results of the performed case studies. 154

Introduction

 1

1 Introduction

1.1 Overview

The objective of this chapter is to provide a brief overview of the topic of
quality assurance with respect to the problems to be addressed by this
thesis. Section 1.2 starts with the general motivation and emphasizes, on
the one hand, the need for quality assurance during software
development in order to avoid negative consequences, and, on the other
hand, the costs of today’s quality assurance. Section 1.3 sketches the
research scope and the research approach applied in this thesis. Section
1.4 presents the problem statements. Section 1.5 summarizes the goals
and hypotheses of this thesis, and shows the relationships between the
problems, the goals, and the hypotheses. Section 1.6 gives an overview
of the relevance of quality assurance, summarizes software inspections
and software testing, and defines some basic terminology. Section 1.7
mentions the research contributions. Finally, Section 1.8 presents the
structure of this thesis.

1.2 Motivation

Software and software-intensive systems are part of everyone’s life and
can be found all around us. Moreover, the size and complexity of such
systems are continuously growing. Charette (Charette, 2005), for
instance, stated that a typical cellphone in 2005 contained about 2
million lines of code; he expected such phones may contain ten times as
many nowadays. Another example are today’s top-of-the-range cars
with an estimated 100 million lines of code. Consequently, developing
high-quality software is becoming ever more challenging and more
expensive.

Jackson et al. (Jackson et al., 2007) stated that due to “the growth in
complexity and invasiveness of software systems, the risk of a major
catastrophe in which software failure plays a part is increasing.” Boehm
and Basili (Boehm and Basili, 2001) mentioned that between 40 and 50
percent of all delivered software contain non-trivial defects. Hayes
(Hayes, 2002) reported from a survey asking 800 business-technology
managers about experiences with software defects that 97% of the
respondents reported problems due to software defects in the past year,
“and nine out of 10 reported higher costs, lost revenue, or both as a
result.” Humphrey (Humphrey, 2008) confirmed that “today’s large-
scale systems typically have many defects”.

Introduction

 2

It is an undeniable fact that software and software-intensive systems
often contain defects when delivered that may lead to dramatic
consequences. For example, a study conducted by the National Institute
of Standards and Technology in 2002 showed that software defects cost
the U.S. economy about 59.5 billion dollars per year. Furthermore, about
37 percent of these costs could be avoided if quality assurance activities
were to be improved (Tassey, 2002). Jones (Jones, 2006) mentioned that
one reason for projects that exceed schedules, costs, and time is
insufficient quality assurance. Besides economic consequences, a loss of
reputation for a company and danger for human beings are further
consequences that can result from defect-prone software. Jackson et al.
(Jackson et al., 2007) mentioned a lot of accidents and near-accidents
from different domains (e.g., aviation, medical devices, infrastructure,
defense) caused by software or where defect-prone software was
involved. Another source that has been listing software defects and their
consequences continuously since 1985 is the Risks Digest (Risks Digest,
2012).

Based on the stated observations, one goal is often to find as many
defects as possible in a cost-effective manner before a software product
is delivered, which includes considering context factors such as available
resources, time, or costs. Consequently, adequate quality assurance
activities should be selected and applied in order to reduce the number
of defects and thus reduce the impact of failures caused by undiscovered
defects within a software product.

A tremendous number of different analytical quality assurance
approaches, methods, and techniques have been developed, evaluated,
and adapted during the past decades, such as various inspection and
testing techniques (Aurum et al., 2002; Burnstein, 2002; Wiegers, 2002;
Juristo et al., 2004, 2006; Liggesmeyer, 2009). However, while, on the
one hand, costs can dramatically increase if certain defects (especially
critical ones) are not found, conducting quality assurance, on the other
hand, can also be a major cost driver during software development. This
is especially true for testing activities.

Myers (Myers, 1979) already stated that testing can consume
approximately 50% of the development time and more than 50% of the
overall development costs. Beizer (Beizer, 1990) mentioned that such
costs range between 30% and 90%, depending on the concrete
method used. Jones (Jones, 1991) estimated the costs for testing
activities as being 30 to 40% of the development costs. Moreover, Jones
showed that the relative effort for analytical quality assurance increases
when the overall development effort of a project increases, i.e., small
projects need only about 16% effort for quality assurance and about
70% effort for coding, compared to big projects where the quality
assurance effort is about 37% and coding effort is only 12%. Harrold
(Harrold, 2000) confirmed effort and cost figures for testing of up to

Introduction

 3

50% of the total development effort, respectively costs. Hailpern and
Santhanam (Hailpern and Santhanam, 2002) stated that the costs for
quality assurance activities in typical development organizations range
from 50 to 75% of the overall development costs. Juristo et al. (Juristo et
al, 2006) stated that testing can exceed half of the overall effort of a
project budget. Finally, Liggesmeyer (Liggesmeyer, 2009) concluded that
quality assurance activities often consume most of the overall
development effort, which Pressman (Pressman, 2009) again calculates
as up to 50% of the total development effort. Thus, quality assurance
effort, and especially testing effort, has remained high during the past
decades.

In order to achieve the desired time, cost, and quality goals, the
development approach, including the quality assurance activities, has to
be optimized. One reason for insufficient testing, which is one of the
essential quality assurance activities today, are inappropriate testing
strategies (Kasurinen et al., 2009). Furthermore, Bertolino and Marchetti
(Bertolino and Marchetti, 2004) mentioned that test practice currently is
performed in a trial-and-error fashion, i.e., systematic and cost-effective
strategies are often missing.

Boehm and Basili (Boehm and Basili, 2001) stated that “current software
projects spend about 40 to 50 percent of their effort on avoidable
rework”. One reason for this is that defects have to be corrected that
could have been found and corrected during quality assurance activities
before distribution. Consequently, mechanisms that support focusing
quality assurance activities on defect-prone parts and thus, for example,
prioritize parts of a system that are expected to be defect-prone, may
decrease rework effort. Humphrey (Humphrey, 2008) stated that due to
the growing complexity of today’s software and software systems, it is
impossible to test all parts and all ways in which such systems can be
used. Focusing quality assurance activities is also substantiated by the
empirically valid observation of a Pareto distribution for defects that can
frequently be observed. For example, Boehm and Basili (Boehm and
Basili, 2001) stated that 80% of defects occur in about 20% of the
modules, i.e., defects are often not distributed equally.

In conclusion, defects are an inevitable fact of today’s software and
software systems that software development has to cope with in order
to avoid negative consequences such as economic losses, decreased
reputation, or risk for human beings. Thus, “software quality is an issue
that should concern everyone” (Humphrey, 2008). A variety of different
quality assurance activities can address this challenge. However, the
costs, respectively the effort for conducting quality assurance activities,
are often too high and can consume more than 50% of the total
development effort. Some reasons for inadequately high costs are
inappropriate quality assurance strategies, high rework effort, and
insufficient focusing of quality assurance activities. One important

Introduction

 4

strategy for addressing these shortcomings is the systematic optimization
and integration of quality assurance, which is addressed in this thesis.

1.3 Research Scope

The research scope of this thesis can be summarized according to the
following criteria:

 Domain of software and software systems development: The
results presented here are developed in the area of software
engineering. Approaches from other domains such as
mechanical productions or chemical industry are not considered,
which applies especially for quality assurance processes from
these domains, which are not considered. No specific software
development process is required to apply the developed
approach. However, it is assumed that certain artifacts (e.g.,
requirements, design, or code) are developed that have to run
through certain quality assurance activities until the final
software or software system is developed. Furthermore,
empirical evidence from the software engineering domain is
used to control quality assurance activities.

 Constructive and analytical quality assurance: Two directions can
be distinguished when performing quality assurance, namely
constructive and analytical quality assurance. While constructive
quality assurance focuses on preventing defects during the
development of a system, analytical quality assurance focuses on
finding defects in certain artifacts and in the overall system. This
thesis focuses on analytical quality assurance.

 Quality assurance activities and techniques: The approach builds
explicitly on the application, respectively combination, of two
quality assurance activities: software inspections and software
testing. However, no specific inspection technique and no
specific testing technique is required. Regarding software
inspections, various techniques can be applied, e.g., formal
inspections, reviews, or peer deskchecks. Regarding software
testing, different techniques (e.g., equivalence partitioning,
random testing) and different test levels (e.g., unit test, system
test) can be addressed. The main reason for not requiring any
particular inspection and testing technique is that the approach
should be applicable in different environments independent of
any concrete quality assurance technique. Indeed, a prerequisite
for applying the approach is that a suitable number of defects
are found by the applied quality assurance techniques. However,
during the evaluations, a Fagan-like inspection process with
focused checklist was applied. During unit testing, equivalence

Introduction

 5

partitioning together with boundary-value analysis was done.
For system testing, test cases were derived from tool
requirements.

In order to evaluate the performance of quality assurance activities,
effectiveness and efficiency are often considered. Effectiveness is the
number of defects found; efficiency is the number of defects found per
time unit. Three improvement scenarios, respectively goals, are
conceivable, which are shown in Figure 1. Consider the initial situation at
the top where the effectiveness and the needed effort (time) are shown
together with concrete exemplary values and the calculated efficiency.
The first improvement scenario aims at an improved effort value and
depicts a fixed effectiveness value, i.e., the same number of defects is
found in less time. The second scenario illustrates a fixed effort value but
a higher number of defects found, i.e., more defects are found in the
same time. The third improvement scenario is an improvement of the
number of defects found and less time consumed. This thesis,
respectively the presented integrated approach, mainly focuses on the
first improvement scenario. All three scenarios show an improvement in
efficiency, with the third scenario showing the highest value.

Figure 1 Improvement scenarios.

An overview of the research approach that was pursued in this thesis is
shown in Figure 2.

Introduction

 6

Figure 2 Research approach.

 State-of-the-practice analysis: A literature survey was performed
with respect to current inspection and testing practices. The
focus was put on approaches and techniques applied in practice
and on the experiences made with them. Furthermore, problems
were identified, and requirements that have to be fulfilled by a
new approach in order to overcome the mentioned problems
were derived.

 State-of-the-art analysis: First, background information
regarding software inspections and software testing was
gathered through a state-of-the-art survey, as these two quality
assurance activities are used in the developed approach.
Furthermore, two systematic mapping studies were performed
in order to (i) identify existing approaches that already combine
static and dynamic quality assurance techniques, and (ii) find
further approaches (i.e., non-combined ones) that are able to

Introduction

 7

improve testing efficiency. Based on these results, the previously
derived requirements were used to assess the found
approaches, and research deficits were identified.

 Approach development: Based on the identified problems,
requirements, and research deficits, the integrated inspection
and testing approach In2Test was developed, which combines
inspection and testing activities in order to improve testing
efficiency. Besides a general process, different levels of
granularity are implemented, resulting in a one- and a two-
staged approach. An initial set of assumptions describing the
relationships between inspections and testing and supporting
the In2Test approach were stated. Methods for deriving,
evaluating, and applying such assumptions are provided. Finally,
prototype tool support was developed.

 Evaluation: The In2Test approach was evaluated during two case
studies which were conducted at Fraunhofer IESE with respect
to quality assurance activities regarding the development of two
tools.

1.4 Problem Statements

In general, practitioners are well aware of the need to perform quality
assurance during software and software system development. However,
as already sketched in the motivation, two main problems exist that are
addressed within this thesis.

Problem 1: Testing activities often do not use results and insights from
early defect detection activities, especially inspection techniques, in order
to focus testing: Inspection and testing are two of the most common
quality assurance activities performed today during software
development. However, if both quality assurance techniques are applied,
inspection and testing are usually performed in sequence, without any
exchange of data between them to exploit synergy effects.
Consequently, testing activities are often not focused based on early
defect data. This leads to so-called local inefficiencies, i.e., test-specific
effort is wasted. Existing approaches for reducing testing effort are
widely based on the use of metrics, risk, or historical data in order to
predict fault-prone parts of a product (and thus, to test only these parts)
or determine test exit criteria (and thus, to know better when to stop
testing). However, they do not make systematic use of the results from
inspections, i.e., quantitative defect data from the current software
under development is usually not used to control testing processes.
Some approaches consider the combination of inspection and testing
techniques in a pragmatic and unsystematic manner (Kinochita, 2010) in
order to be more effective or to predict the expected number of defects

Introduction

 8

for testing based on inspection results (Harding, 1998). However,
although inspection and testing techniques are sometimes integrated in
an informal way in industry, a systematic approach is missing, which
would integrate them in order to exploit synergies and to allow
controlling testing activities based on inspection defect data. This also
means that test strategies are usually not defined or adapted
systematically based on early available defect data of a current software
development cycle.

Problem 2: Quality assurance activities, especially testing activities,
require too much effort. As already stated in the motivation (Section
1.2), quality assurance activities often consume much effort, resulting in
high costs. Especially testing may require more than 50 percent of the
overall development effort (Harrold, 2000; Hailpern and Santhanam,
2002; Pressman, 2009). Reasons for this include, for example,
unsystematic test processes, inappropriate test strategies, or failing to
use synergy effects from the systematic combination of different quality
assurance activities. Furthermore, the growing size and complexity of
software and software systems make it hard to decide which parts of
software should be tested with what intensity. Often, no or only poor
focusing of testing is conducted, which also leads to high costs for
testing, but also for overall quality assurance. As defects are an inevitable
fact of today’s software and software systems, omitting quality
assurance activities often is no option during development in order to
save effort. Instead, new strategies and approaches are necessary to
reduce quality assurance and testing effort. One important strategy here
is an approach for the systematic optimization and integration of quality
assurance. However, inspection and testing are usually conducted
independent of each other, i.e., they are sometimes applied in sequence
in order to find additional defects (Franz and Shih, 1994; Berling and
Thelin, 2003) or, based on empirical evidence, a combination is
suggested (Runeson et al., 2006), but they do not collaborate in an
optimal manner. Bertolino (Bertolino, 2007) concludes that there exist
“many fruitful relations between software testing and other research
areas”, and that many of them were overlooked in the past, which
includes the integration of inspection and testing in order to reduce
testing effort and, consequently, overall quality assurance effort.

1.5 Goals and Hypotheses

The In2Test approach combines (i.e., integrates) inspection and testing
activities in order to focus testing activities. By using inspection defect
data and so-called assumptions, a mechanism is provided that allows for
prioritizing parts of a system under test that are expected to be defect-
prone, or defect types that are expected to appear during testing. The
main goals of the In2Test approach are stated as follows:

Introduction

 9

 G1 (Effort): Provide an integrated approach that reduces the
effort for conducting quality assurance in general, and for
testing activities in particular. An integrated approach should be
able to reduce the time, respectively effort, needed for
conducting testing activities compared to a non-integrated
approach, which may also lead to a reduction of the overall
quality assurance effort. Effort reduction should be achieved by
a mechanism for focusing testing activities, i.e., prioritizing and
selecting parts of a system, respectively defect types, that
appear to be relevant for testing activities.

 G2 (Effectiveness): Provide an integrated approach that is able to
find a comparable number of defects compared to non-
integrated approaches. An integrated approach should be able
to detect a comparable number of defects when conducting
testing activities compared to a non-integrated approach. Two
possibilities for focusing testing activities are aimed at. On the
one hand, defects can be detected in certain parts of a system
under test (i.e., not all parts are focused on for testing). On the
other hand, defects of certain defects types can be detected
(i.e., not all defect types are focused on for testing).

 G3 (Evidence): Provide a methodology that allows focusing
testing activities based on empirical evidence with the integrated
approach. The integrated approach is applied in order to focus
testing activities. In order to be able to prioritize parts of a
system or defect types, relationships between inspection and
testing have to be known. If such relationships are unknown,
assumptions need to be defined that allow focusing testing
based on inspection results. Such assumptions should be
evaluated with respect to their validity in the given context.

 G4 (Applicability): Provide an integrated approach that is
applicable in industrial contexts. An integrated approach should
be easy to understand and apply in an industrial context, i.e., a
light-weight approach is preferred that does not need complete
process changes for development or quality assurance activities
in a given context. Furthermore, the results of the integrated
approach should make sense.

The combination of goals one and two aims at an improved efficiency,
while goals three and four aim at showing the feasibility and applicability
of the approach. In order to be able to evaluate the goals stated above,
the following hypotheses are defined:

 H1: The effort for applying the integrated inspection and testing
approach is at least 20% less compared to applying non-

Introduction

 10

integrated inspection and testing processes, with the level of
quality of the product under test that can be achieved being at
least equal. The In2Test approach will reduce the effort for
conducting inspection and testing activities, with the focus
being on reducing testing effort by 20%, respectively improving
efficiency, and inspection effort remaining constant. Several
parts for the evaluation are covered in H1, i.e., efficiency
improvement, effectiveness numbers, respectively their
improvement, and gaining evidence of the validity of the
underlying basis for focusing testing activities. Therefore, a
refinement of H1 into several sub-hypotheses can be found in
Chapter 5.

 H2: The integrated inspection and testing approach is
applicable. The In2Test approach will be applicable. This
comprises easy understandability, easy applicability, high
usefulness, and easy adaptability.

Figure 3 shows the relationships between problems, goals, and
hypotheses. Problem one affects all four goals, because all these goals
express objectives regarding an integrated approach that uses inspection
results. Problem two affects one goal that explicitly aims at reducing
effort. Finally, goals one to three are covered in hypothesis one, whereas
goal four is covered in hypothesis two.

Figure 3 Problems, goals, and hypotheses, and their relationships.

Introduction

 11

1.6 Background on Software Quality Assurance

This section provides background information on software quality
assurance and how it is related to software development. The main
quality assurance activities and techniques (i.e., software inspections and
testing) focused on in this thesis are emphasized and their importance is
clarified. Furthermore, the basic terminology of the terms used most
often is stated in order to provide a common understanding.

1.6.1 The Relevance of Quality Assurance

Ever since software and software systems have been developed, quality
assurance has been a part of development processes. Different
development methodologies originated during the past four decades, for
example, the waterfall model (Royce, 1970), the first V-model (Boehm,
1979), or agile models such as extreme programming (Beck, 2000).
Depending on the respective development methodology, quality
assurance activities are adapted accordingly. Some decades ago,
software development paradigms such as “software cannot fail” existed.
Such early assumptions were reasonable since software neither ages nor
wears out, but they were eventually rejected. One prominent example
that built upon that assumption and led to serious consequences was
the Therac-25 accident (Leveson and Turner, 1993). However, today, it is
well known and widely accepted that quality assurance is a crucial part
during software development.

Regarding quality assurance activities, constructive and analytic activities
can be distinguished. The former strive to provide systematic techniques
and methods that prevent the introduction of defects, for example, by
providing patterns, design principles, or coding guidelines. The latter
primarily aim at detecting and removing existing defects. Analytic quality
assurance activities are also called verification and validation activities,
which is defined by the IEEE Standard Glossary of Software Engineering
Terminology as “the process of determining whether the requirements
for a system or component are complete and correct, the products of
each development phase fulfill the requirements or conditions imposed
by the previous phase, and the final system or component complies with
specified requirements“ (IEEE Standard 610.12, 1990). However, the
terms “verification” and “validation” are not used consistently in the
existing literature and in practice, for example, verification and validation
are sometimes considered only as testing activities. Another common
understanding is that verification comprises every quality assurance
activity before acceptance testing.

Consequently, the terms static quality assurance and dynamic quality
assurance are preferred in this thesis. Static quality assurance techniques
(e.g., inspections, reviews, walkthroughs, or static analyses such as

Introduction

 12

program slicing) do not need executable models or executable code, but
rather examine artifacts such as requirements documents, design
models, or code without running them. In contrast, dynamic quality
assurance techniques (e.g., equivalence partitioning, boundary value
analysis, control-flow based testing techniques, or dynamic analyses such
as program profiling) need executable program parts. Finally, formal
quality assurance (which is not in the focus of this thesis) is a third group
of analytic quality assurance, which consists of techniques such as formal
proofs or symbolic execution.

Today, a large number of well-established static and dynamic quality
assurance techniques exist, such as various inspection and testing
techniques (Gilb and Graham, 1993; Wiegers, 2002; Burnstein, 2002). In
the past, a lot of research has been performed to develop and improve a
variety of static and dynamic quality assurance techniques. Juristo et al.
(Juristo et al., 2004) examined 25 years of empirical studies with respect
to a large number of different testing techniques, classified them, and
summarized the main findings. They conclude that the current testing
knowledge is very limited. With respect to software inspections, Aurum
et al. (Aurum et al., 2002) examined software inspection processes
published during the 25 years since inspection as a quality assurance
technique was first published by Fagan in 1976 (Fagan, 1976). They
identified different inspection processes and support for the inspection,
such as reading techniques, tools, and support for deciding whether or
not to perform a re-inspection. In conclusion, Aurum et al. (Aurum et al.,
2002) stated that the identified studies contribute to the evolution of
software inspections, but many research questions remain open.
Another examination of software inspection research, covering the
period between 1991 and 2005, was performed by Kollanus and
Koskinen (Kollanus and Koskinen, 2007). They classified the identified
articles into a technical view (e.g., reading techniques, effectiveness
factors), a management view (e.g., inspection impact on development
process), and other topics (e.g., defect estimation, inspection tools). The
two authors concluded that much research has been performed with
respect to software inspections, but that empirical knowledge remained
low.

One fundamental observation with respect to research on inspection and
testing techniques, which are two of the best-established static,
respectively dynamic, quality assurance techniques, is that most often,
this research is done to improve inspections or testing. In contrast, some
studies compare different inspection and testing techniques (Basili and
Selby, 1987; Runeson et al., 2006), which often resulted in the
conclusion to apply them in combination (Laitenberger, 1998; Endres
and Rombach, 2003). Other studies calculated the effectiveness values
when applying them in combination to demonstrate the benefit of a
joint application (Myers, 1978; Wood et al., 1997; Gack, 2010).

Introduction

 13

However, except for suggestions to apply both, no concrete process or
additional advice is usually provided.

Combining different static and dynamic quality assurance techniques,
such as inspections and testing, is a promising way to improve quality
assurance and to cope with problems such as high quality assurance
costs. Endres and Rombach (Endres and Rombach, 2003) stated that “a
combination of different V&V methods outperforms any single method
alone”. The main rationale for this is that different methods have
different strengths and therefore, a combination of quality assurance
techniques leads to better results than applying only a single technique.
However, most often, inspection and testing are applied in sequence
without exploiting additional synergy effects.

The connections between inspection and testing activities seem
intuitively clear and obvious, but in practice this is often lost or obscured.
The result is poorly prioritized and often redundant quality assurance
effort. It is perfectly possible that a strategy combining inspections and
testing could have been used in practice already, because the underlying
reasoning is grounded on well-known software engineering practices.
However, even in this case, it is questionable whether existing
approaches rely on explicit, well-grounded and evaluated approaches
instead of common sense and unsystematic procedures.

1.6.2 Software Inspections

Next, basic ideas and concepts regarding software inspections will be
presented. This comprises the inspection process and a set of variations,
inspection reading support, and other research directions. With this, an
overview regarding software inspection is given in order to allow the
reader to understand the inspection concepts used in this thesis.

A software inspection is a static quality assurance method; it was first
published by Michael Fagan in 1976 (Fagan, 1976). The IEEE Standard
1028-1997 (IEEE Standard 1028, 1997) defines an inspection as “a visual
examination of a software product to detect and identify software
anomalies, including errors and deviations from standards and
specifications.” The IEEE Standard 610.12-1990 (IEEE Standard 610.12,
1990) defines an inspection as “a static analysis technique that relies on
visual examination of development products to detect errors, violations
of development standards, and other problems.” Three main
characteristics of an inspection can be derived from that: First, the main
goal of an inspection is to find defects in a software artifact. Second,
different kinds of development artifacts, such as requirements, design, or
code documents, can be checked during an inspection. Third, an
inspection is done by manually checking an artifact and thus, no
execution of, for instance, code is necessary to perform an inspection.

Introduction

 14

Inspection Process

Fagan proposes an inspection process consisting of six main steps in
order to perform defect detection (Fagan, 1976, 1986):

 Planning: Organizing the entire inspection process, including
selecting participants, determining meeting times and places,
and preparing the material.

 Overview: Giving an overview of the artifact to be inspected.

 Preparation: Each inspector has to get familiar with the artifact.

 Inspection: A group session of all inspectors in order to find
defects in the corresponding artifact.

 Rework: The author has to correct all found and documented
defects.

 Follow-up: Checking the corrected artifact for newly introduced
defects during the rework step.

Based on the process defined by Fagan, different process changes and
adaptations to the inspection process have been proposed. Parnas and
Weiss (Parnas and Weiss, 1985) proposed active design reviews. The
main difference is that several brief inspection cycles should be
performed instead of one large inspection in order not to overload the
participating inspectors and to improve the effectiveness of inspections.
A two-person review was defined by Bisant and Lyle (Bisant and Lyle,
1989), where an inspector and an author perform the inspection.
Furthermore, Martin and Tsai (Martin and Tsai, 1990) proposed N-fold
inspections, where n independent teams conduct the inspection of an
artifact. Different evaluations conducted by the authors of the approach
showed valuable results.

Several aspects of the inspection processes already shown were used by
Knight and Myers (Knight and Myers, 1993) to define phased
inspections. Moreover, inspections without a meeting (Votta, 1993;
Votta et al., 1995; Johnson and Tjahjono, 1998) or the inspection
process given by Gilb (Gilb and Graham, 1993) are further defined and
evaluated inspection processes. A summary of these inspection processes
was given by Aurum et al. (Aurum et al., 2002).

Laitenberger and DeBaud (Laitenberger and DeBaud, 2000) defined five
dimensions of software inspections (technical, managerial,
organizational, assessment, tool). With respect to the technical
dimension, they propose a process consisting of six inspection steps,

Introduction

 15

namely planning, overview, defect detection, defect collection, defect
correction, and follow-up. One main difference to the Fagan process is
that a recommendation for individual defect detection is given rather
than for a group session to find defects due to improved effectiveness.
However, looking for defects in a team meeting could result in additional
defects being found. Besides the process, the technical dimension covers
different inspection roles (e.g., organizer, inspector, moderator, author).
While the Fagan inspection mainly focuses on code, Laitenberger and
DeBaud mentioned different products that can be inspected, such as
requirements, design, code, or test cases.

Wiegers (Wiegers, 2002) proposed a classification of inspection
processes with respect to the level of formality. The spectrum ranges
from least formal processes to most formal processes. Figure 4 shows
the inspection processes that are distinguished. The least formal
technique is an ad-hoc review in which basically a person discusses with
another person if a concrete problem occurs or advice is needed. In a
peer deskcheck, some material (e.g., code) is sent to another person,
who should read it and comment appropriately. Following a passaround
instead, the material to be inspected is sent to more than one person.
During a walkthrough, the author of a document presents the complete
document or certain parts of it to some people, and discusses the
content, the solutions, and the defects. A team review is similar to an
inspection process, but less formal, e.g. reading support is not
mandatory and metrics do not need to be documented. Finally, an
inspection is the most formal process, similar to Fagan inspections.
Wiegers mentions five steps: planning, preparation, meeting, correction,
and verification of results.

most
formal

Inspection Team review Walkthrough
Peer deskcheck,

passaround
Ad-hoc review

least
formal

Figure 4 Inspection techniques with respect to different levels of formality.

In conclusion, many different inspection processes have been developed
during the past 35 years, ranging from very formal processes to ad-hoc
processes. Denger (Denger, 2009) summarized 21 static quality
assurance techniques, classifying them as inspection-like, walkthrough-
like, and desk-checking-like inspection processes. The terms used, such
as inspections, reviews, or walkthroughs, are sometimes used as
synonyms and difficult to distinguish in practice, which is also mentioned
by Aurum et al. (Aurum et al., 2002). One solution is to define a generic
inspection process from which different inspection processes can be

Introduction

 16

derived based on the context and needs (Denger and Elberzhager,
2007). Another procedure is to carefully select one existing inspection
process that is most suitable in a given environment, and adapt it to the
extent necessary.

In the following, the term inspection is used as a top-level term covering
the mentioned inspection techniques (reviews, walkthroughs, etc.). The
technique Wiegers (Wiegers, 2002) classified as inspection is called a
formal inspection in order to avoid misunderstandings.

A lot of empirical evidence exists with respect to inspections. Kollanus
and Koskinen (Kollanus and Koskinen, 2007) mention that “there are
many empirical studies on the effects of inspections”. Basili and Boehm
(Boehm and Basili, 2001) summarized different studies and claimed that
the average effectiveness (i.e., the number of defects found by an
inspection) is around 60%. Some issues that have an influence on
effectiveness are the size and complexity of a system, the experience of
the inspectors, and the type of the applied inspection process.
Laitenberger and DeBaud (Laitenberger and DeBaud, 2000) report that
based on available quantitative evidence, inspections have a “significant
positive effect on the quality of the developed product and that
inspections are more cost-effective than other defect detection
activities”. In addition, performing inspections can reduce maintenance
effort (Fagan, 1986).

Most of the mentioned individual inspection techniques have been
evaluated by their founders or by different research groups (e.g., N-fold
inspections, which were originated and first evaluated by Martin and Tsai
(Martin and Tsai, 1990), and further evaluated by Tripp et al. (Tripp et
al., 1996) and Kantorowitz et al. (Kantorowitz et al, 1997)).

Consequently, software inspections can be seen as a well-evaluated and
mature quality assurance technique. Beside empirical evidence on the
effectiveness and efficiency of software inspections, additional
improvement characteristics exist. For instance, Wiegers (Wiegers, 2002)
stated that different kinds of knowledge are gained and improved
during an inspection, for example, knowledge about the product to be
checked or about defect types. Laitenberger and DeBaud (Laitenberger
and DeBaud, 2000) also talked about learning effects, which have an
impact on the quality of the corresponding product or productivity.
Doolan (Doolan, 1992) mentioned social aspects such as improved team
building and improved communication. Finally, if certain inspection data
is measured, projects will become more stable and predictable in terms
of number of defects to be expected and effort required.

Introduction

 17

Inspection Reading Support

Besides research regarding the inspection process itself, another
inspection research area is reading support, which is used by inspectors
during the preparation phase as support for individual defect detection.
Some kind of reading support can also be used to guide defect detection
in a meeting (e.g., a checklist) Aurum et al. (Aurum et al., 2002)
distinguish between ad-hoc reading, checklist-based reading, stepwise
abstraction, defect-based reading, and perspective-based reading.
Kollanus and Koskinen (Kollanus and Koskinen, 2007) also mention
usage-based reading, abstraction-driven reading, and task-driven
inspections. Furthermore, focused checklists and guided checklists exist,
as well as traceability-based reading.

When using ad-hoc reading during the preparation step, an inspector
does not get any reading support. In this case, the inspector performs
defect detection based solely on his knowledge and experience.

Besides a general checklist used by each inspector (Laitenberger et al.,
2000), focused checklists (Denger et al., 2004) and guided checklists
(Elberzhager et al., 2009) have been developed in order to present
different perspectives from which an artifact can be checked,
respectively defect classes can be looked for in an inspection. The main
advantage of focused and guided checklists is the higher defect
coverage within the artifact to be checked and the lower overlap of
defects found by the inspectors, i.e., inspectors mainly find different
defects, resulting in higher effectiveness. One main problem with
checklists is that the checklist questions are often too general, as stated
by Brykczynski (Brykczynski, 1999).

Scenarios are another class of reading techniques that comprise, for
example, defect-based reading, perspective-based reading, and usage-
based reading. The idea is that an inspector should work actively with a
document instead of only reading checklist questions in a passive
manner. For this, an inspector gets, for example, a description of his
perspective (perspective-based reading (Basili et al., 1996; Laitenberger
and DeBaud, 1997; Laitenberger et al., 2000)) or a certain defect class
(defect-based reading (Porter and Votta, 1998)), which sets the focus.
Next, concrete instructions have to be followed and questions have to be
answered. For example, imagine an inspector taking the tester
perspective. One instruction might be, “Derive a number of test cases
from the corresponding document”, and a possible question is, “Is all
information necessary for deriving test cases stated?” Following
traceability-based reading, consistency is checked among other quality
aspects within or between different artifacts (Travassos et al, 1999).
Thelin et al. (Thelin et al., 2001, 2003, 2004) proposed usage-based
reading, in which use cases are manually executed and mainly functional

Introduction

 18

defects should be found. Abstraction-driven reading, which was
presented by Dunsmore et al. (Dunsmore et al., 2001, 2002, 2003), is
used to understand code parts and to identify defects when extracting
relevant information and abstracting them in objective-oriented
environments. Finally, Kelly and Shepard (Kelly and Shepard, 2004)
further developed abstraction-driven reading into task-driven inspections
by adding three tasks (i.e., steps) an inspector has to perform, namely
creating a data dictionary, extracting detailed logic, and deriving cross
references.

In conclusion, different kinds of reading support were developed during
the past 30 years in order to support inspectors when looking for
defects. The most common reading techniques are ad-hoc reading,
checklist-based reading, and scenario-based reading. Laitenberger and
DeBaud (Laitenberger and DeBaud, 2000) mentioned that more than 25
articles advocate checklists. Brykczynski (Brykczynski, 1999) summarized
more than one hundred different checklists addressing various document
types and programming languages. At least six different scenario-based
reading techniques were developed. Moreover, many experiments were
performed in order to compare different reading techniques with, most
of them comparing checklist-based reading, perspective-based reading,
and ad-hoc reading (for an overview, see, for example, (Laitenberger and
DeBaud, 2000; Elberzhager, 2005; Kollanus and Koskinen, 2007;
Denger, 2009)). It could be shown that each reading technique can be
superior to the others, depending on the concrete context and influence
factors. Consequently, it is unclear which one is the most effective or
efficient reading technique, respectively if there is even a single best one.
However, based on the empirical knowledge on reading techniques, it
can be concluded that they support inspectors in a beneficial way, and
that a concrete selection has to be decided depending on the concrete
context. Finally, Laitenberger and DeBaud (Laitenberger and DeBaud,
2000) stated that “ad-hoc reading and checklist-based reading are
probably the most popular reading techniques used today”.

Further Research Directions

Beside the inspection process and reading support, approaches for
estimating the number of remaining defects have been developed. Such
numbers can be used to decide if a re-inspection should be performed or
not. One prediction approach, which uses inspection data to predict the
defect content, is the capture-recapture method (Eick et al., 1992; Wiel
and Votta, 1993; Wohlin et al., 1995; Briand et al., 1997; Miller, 1999;
Petersson et al., 2004). The number of remaining defects can be
predicted with statistical methods in a software artifact (including code).
The detection profile method (Briand et al., 1998) is an alternative
prediction approach using a linear regression method. Another
prediction approach are subjective estimations, which were investigated
by El Emam et al. (El Emam et al., 2000) and Biffl (Biffl, 2000), among

Introduction

 19

others. Studies performed by them resulted in better predictions
compared to objective prediction approaches. Furthermore, curve-fitting
methods were developed (Wohlin and Runeson, 1998) or combined with
the capture-recapture methods (Briand et al., 1998).

Another aspect when it comes to improving software inspections is the
use of tools. Laitenberger and DeBaud (Laitenberger and DeBaud, 2000)
compared ten different inspection tools and classified them with respect
to multiple criteria such as planning support, defect detection support,
automated defect detection, defect collection support, defect correction
support, and process measurement support. The authors concluded that
the use of inspection tools is limited to particular development steps and
may only slightly support the inspection. Hedberg (Hedberg, 2004)
classified existing tools with respect to four generations, namely early
tools, distributed tools, asynchronous tools, and web-based tools. The
author concluded that a variety of different inspection tools have been
developed, but “no tool has been widely adopted for practical use or
contains all the important features that have proved feasible”. The
inspection repository presents a list of open-source and commercial
inspection tools (Inspection repository, 2011).

Summary

A lot of research has been performed regarding software inspections
after inspections were first invented and published by Fagan in 1976.
The main research directions have been different inspection techniques
and reading techniques, which have been defined, analyzed, compared,
and evaluated. Software inspections can be treated as a well-known and
highly mature software quality assurance technique.

However, Kollanus and Koskinen (Kollanus and Koskinen, 2007)
concluded that although much research has been performed with
respect to software inspections, empirical knowledge remains low.
Laitenberger and DeBaud (Laitenberger and DeBaud, 2000) mentioned
several research questions, all of which focus on specific inspection
aspects, such as identification of the most cost-effective inspection
variant, determination of stop criteria for inspections, or tool support.
None of these questions addresses inspections in a broader sense, for
example, integrating inspections with other quality assurance techniques
in order to improve the overall effectiveness or efficiency. Aurum et al.
(Aurum et al., 2002) also asked several questions to be answered by
future research, such as of them asking about the relationship between
software inspections and testing. Furthermore, they asked “What is the
best way to ensure that the techniques complement each other in the
most positive way?”. One contribution to answering this question is
made by this thesis, which presents an integrated inspection and testing
approach.

Introduction

 20

1.6.3 Software Testing

Next, basic ideas and concepts regarding software testing will be
presented. This comprises test levels, test techniques, test processes, and
further research directions. With this, an overview regarding software
testing is given in order to allow the reader to understand the testing
concepts used in this thesis.

Software testing is a dynamic quality assurance activity. The IEEE
Standard 610.12-1990 (IEEE Standard 610, 1990) defines testing as (1)
“the process of operating a system or component under specified
conditions, observing or recording the results, and making an evaluation
of some aspect of the system or component” and (2) “the process of
analyzing a software item to detect the differences between existing and
required conditions (that is, bugs) and to evaluate the features of the
software items”. Consequently, one main goal of testing is to find
defects in software (e.g., programs, executables) or software systems.

While the presence of defects can be shown with testing (and thus, the
quality of the corresponding product can be evaluated), the absence of
defects cannot be shown by testing (Dijkstra, 1972). Boehm and Basili
(Boehm and Basili, 2001) state that between 40 and 50 percent of
software programs contain nontrivial defects. Insufficient testing can
result in serious consequences, for example, with respect to costs.
Jackson et al. (Jackson et al., 2007) mention many examples of
disruptions and accidents from several domains (e.g., aviation, medical
devices, infrastructure, defense, voting) due to software defects and
describe the consequences in terms of costs, decreased confidence, and
even human casualties. Therefore, testing has to be optimized in order
to enable products of high quality, i.e., products that contain as few
defects as possible before distribution.

One of the first books focusing on testing topics was written by Myers
(Myers, 1979), who introduced some fundamental concepts such as
black- and white-box testing or a distinction of certain testing levels
(e.g., module testing, system testing, acceptance testing). Furthermore,
the author stated certain principles, such as not to test a program that is
written by oneself, or using valid and invalid input data for testing. In
addition, Myers explicitly separated debugging activities from testing
activities.

An enormous number of publications (e.g., books, articles in journals
and magazines, conference articles) regarding various aspects of
software testing has been published, such as test documentation, test
procedures, test design, test plans, test phases, or test cases.
Consequently, only some basic concepts will be sketched in the
following, especially test levels, test methods, test processes, and some
other aspects.

Introduction

 21

Test Levels

In order to conduct testing activities, executable program parts or the
entire executable software product are needed. A common distinction of
the levels at which testing can be performed is the following (Burnstein,
2002):

 Unit test

 Integration test

 System test

 Acceptance test

Unit or module test comprises testing functions, procedures, classes, and
methods. Here, a unit is the smallest possible testable software
component. In order to test the interaction of units, an integration test is
performed. Different strategies for integrating units exist, for instance,
top-down, bottom-up, or big-bang approach. A system test is performed
to check the system behavior against its requirements, which includes
functional and non-functional requirements. Finally, an acceptance test is
done to check the complete system from the perspective of the
customer.

Two additional kinds of test levels can be distinguished:

 Alpha test

 Beta test

An alpha test means testing the software in the test environment of the
customer, respectively that of a number of customers. A beta test
comprises testing or running of the software by one or more customers
under real-world conditions.

Test Techniques

Several classifications exist for sorting the multitude of different testing
techniques. A common high-level view is a distinction into black-box and
white-box testing techniques, respectively test design techniques. White-
box techniques use the structure of the program code, i.e., a tester
knows concrete implementation details. The structure is often
represented by a flowgraph. Black-box techniques do not use the
structure of the code (i.e., internal information), but only use external
information (e.g., requirements). Gray-box techniques are a third
category that is sometimes used to describe methods such as test-first,

Introduction

 22

where developers write tests for their own code (i.e., they know the
internals and thus, this can be seen as a white-box technique), but they
write the test cases before the code is developed (i.e., the internals are
not known when the test is written, which leads to a black-box
technique).

Some concrete testing techniques and their classification are presented
next. Burnstein (Burnstein, 2002) distinguishes the following testing
techniques regarding black-box and white-box techniques:

 Black-box:

o Equivalence class partitioning, boundary-value analysis,
state-transition testing, cause and effect graphing, and
error guessing.

 White-box:

o Statement testing, branch testing, path testing, data-
flow testing, mutation testing, and loop testing.

In addition, the author mentions techniques for testing non-functional
properties of a system, such as performance testing, stress testing,
configuration testing, security testing, and recovery testing.

Liggesmeyer (Liggesmeyer, 2009) states that a distinction into black-box
techniques and white-box techniques is too coarse-grained based on the
current state of the art. Therefore, the author suggests a classification of
testing techniques into the following categories (the number in brackets
show how many concrete testing techniques are mentioned for each
category):

 Structure-oriented (control-flow oriented (10), data-flow
oriented (9))

 Function-oriented (6)

 Diversifying (3)

 Test of certain areas (3)

 Others (e.g., error guessing, boundary value analysis) (4)

The Standard for Software Component Testing (British Standard, 1998)
distinguishes between 13 different testing techniques, such as
equivalence partitioning, boundary value analysis, branch testing,
modified condition decision testing, or random testing. No classification

Introduction

 23

is presented. Instead, a description and how to design test cases is given
for each technique.

Juristo et al. (Juristo et al., 2004) performed a comprehensive analysis of
existing knowledge and empirical evidence on existing testing
techniques. The authors classified existing testing techniques into
random (3), functional (2), control flow (5), data flow (8), mutation (3),
regression (5), and improvement (2). For each category, the results of
performed experiments were summarized and conclusions were drawn.
Furthermore, analyses of experience with comparisons between different
testing techniques were conducted. Their main conclusion is that “more
experimentation is needed and much more replication has to be
conducted before general results can be stated”. However, a lot of
useful advice and recommendations for practitioners and research areas
for researchers can be found in this work.

In conclusion, a lot of different testing techniques have been developed
and classified in different ways. One of the most common classifications,
even though a coarse-grained one, is the distinction into black-box and
white-box testing techniques. Furthermore, although a lot of empirical
evidence exists, Juristo et al. (Juristo et al., 2004) concluded that the
knowledge about testing techniques is very limited.

Test Process

A great number of different test processes exists, as a test process has to
be adapted to a concrete context in order to be most suitable. However,
even if test processes differ in some details, certain general steps exist.

The Standard for Software Component Testing (British Standard, 1998)
proposes a generic component test process consisting of five steps. Test
planning should comprise a specification that describes how a test
strategy is enforced. A set of test cases should be defined using a
determined test design technique. Afterwards, the test cases should be
executed in the test execution step. The context and the results of the
test cases should be documented in the test recording step. Finally, the
test results have to be analyzed and checked to see if specified
completion criteria are fulfilled. Certain loops exist, indicating that some
steps may be repeated. Figure 5 presents an overview of the generic test
process.

Introduction

 24

Test recording

Test execution

Test planning

Test specification

Checking for test
completion

Begin

End

Figure 5 Generic component test process as determined by the Software Component Testing
 Standard.

Spillner and Linz (Spillner and Linz, 2003) generalized the generic
component test process into a fundamental test process, which consists
of the same steps. The quasi-standard TMap (TMap, 2011) mentions
four phases, respectively steps, that are embedded by a fifth one. Figure
6 shows an overview and some concrete tasks for each step.

Figure 6 TMap testing process showing steps on the left and tasks on the right.

Different development methodologies have been created, such as the
waterfall model (Royce, 1970), the general V-model (Boehm, 1979), the
Rational Unified Process (Jacobson et al., 1999), or extreme

Introduction

 25

programming (Beck, 2000). Depending on the concrete development
process, the test process has to be adapted accordingly. For example, in
a waterfall model, testing is only performed once at the end of the
development lifecycle. For agile development processes such as extreme
programming, testing is conduced at a much higher frequency instead.

Further Research Directions

A lot of additional aspects can be considered important regarding
testing. Standards such as the ISO/IEC 15504 (ISO/IEC 15504 Standard,
2006), describe among other aspects, how to perform testing with
respect to existing state-of-the-art procedures. The standard can be used
to assess testing activities in concrete environments, with the focus being
made on documentation of testing processes, systematic derivation of
test cases, and systematic performance of testing processes. The quasi-
standard Test Process Improvement (TPI) (Koomen and Pol, 1999) covers
20 key areas (e.g., test strategy, test specification techniques, test
environment, defect management) grouped into the four categories life
cycle, techniques, infrastructure and tools, and organization. TPI can be
used to evaluate and improve several testing aspects.

With respect to test documentation, the IEEE Standard 829-1998 (IEEE
Standard 829, 1998) provides certain guidelines. From high-level test
plans via detailed test case specifications to test logs and summaries, a
lot of advice is presented on how to document information that arises
during the testing process.

Furthermore, testing tools support testing activities. Certain goals can be
achieved with tools, such as executing time-consuming activities (e.g.,
regression testing), creating test logs, improving testing efficiency, or
conducting certain measurement activities. One classification of tools is
given by Liggesmeyer (Liggesmeyer, 2009) who distinguishes four
different classes of test tools:

 dynamic test tools (e.g., structure-oriented test tools, function-
oriented test tools, regression test tools)

 static analysis tools (e.g., slicing tools, measurement tools)

 formal verification tools (e.g., symbolic model checking)

 modeling and analyzing tools (e.g., FMECA (Failure Mode,
Effects and Criticality Analysis) tools, fault tree tools)

Introduction

 26

Summary

Several testing aspects have been covered by researchers and
practitioners, which is reflected by the huge number of existing
publications. The concrete testing process is often dependent on the
concrete environment and thus, adaptation is necessary. With respect to
empirical knowledge regarding testing, Juristo et al. (Juristo et al., 2004)
stated that the knowledge about testing techniques is very limited.
Consequently, additional experiments and case studies with respect to
certain testing aspects are needed to allow drawing clear conclusions.
Moreover, immanent objectives, such as improved efficiency and
effectiveness, imply challenges for future research activities, especially
with respect to different environments where testing approaches have to
be adapted.

1.6.4 Basic Terminology

In order to achieve a common understanding of some basic terms used
in this thesis, definitions are provided next.

 Quality assurance activities (short: quality assurance (QA)): The
IEEE Standard Glossary of Software Engineering Terminology
defines quality assurance as “(1) A planned and systematic
pattern of all actions necessary to provide adequate confidence
that an item or product conforms to established technical
requirements. (2) A set of activities designed to evaluate the
process by which products are developed or manufactured”
(IEEE Standard 610.12, 1990). Consequently, quality assurance
can be conducted in order to ensure the quality of either
products or processes. Here, the term quality assurance activity
is considered as a top-level term that covers approaches,
methods, techniques, or tools.

o This thesis focuses on the quality of software and
software products.

A refinement into constructive quality assurance (i.e., quality
assurance activities that aim at preventing the introduction of
defects by using, for example, patterns and guidelines) and
analytical quality assurance (i.e., quality assurance activities that
aim at detecting and removing defects) can be made.

o This thesis focuses on analytical quality assurance
activities (i.e., when the term quality assurance is used
in this thesis, analytical quality assurance is implicitly
meant).

Introduction

 27

A distinction into static and dynamic quality assurance can also
be made. Static quality assurance activities (e.g., inspections) do
not need executable models or executable code, but rather
examine artifacts such as requirements documents, design
models, or code without running them. In contrast, dynamic
quality assurance activities (e.g., testing) need executable
program parts or software products.

o This thesis focuses on both static and dynamic quality
assurance.

 Failure: The IEEE Standard Glossary of Software Engineering
Terminology defines a failure as “the inability of a system or
component to perform its required functions within specified
performance requirements” (IEEE Standard 610.12, 1990). A
failure is a kind of misbehavior of software or a software
product that is visible to a user. Especially during testing
activities, failures are observed (instead of faults).

 Fault: The IEEE Standard Glossary of Software Engineering
Terminology defines a fault as “an incorrect step, process, or
data definition in a computer program” (IEEE Standard 610.12,
1990). A fault is the underlying cause for a failure, i.e., a fault is
the de facto reason that software or software systems fail.

 Defect: A defect is treated in this thesis as a top-level term
comprising faults and failures. While different quality assurance
activities tend to rather identify faults or failures, this can be
generalized when using a more abstract term such as defect in
order to be able to compare and evaluate them.

 Effectiveness: The effectiveness of a quality assurance activity is
defined as the number of existing defects found, respectively
the percentage of defects found with respect to the number of
existing defects (Runeson et al., 2006).

o This thesis uses the first definition.

 Efficiency: The efficiency of a quality assurance activity is defined
as the number of defects found divided by the time required to
detect them (Runeson et al., 2006).

 Defect content: Defect content is defined as the number of
defects found by one or more quality assurance activities.

Introduction

 28

 Defect density: Defect density is defined as the number of
defects found by one or more quality assurance activities divided
by a size value (e.g., lines of code).

 Inspection (inspection activity): An inspection is a static quality
assurance activity. The term is used as a top-level term
comprising different concrete inspection techniques, respectively
processes.

 Inspection technique (inspection process): An inspection
technique, respectively process, is a concrete static quality
assurance activity, such as a formal inspection, team review,
walkthrough, or deskcheck, that comprises different inspection
steps (Wiegers, 2002).

 Inspection reading support (short: reading support or reading
technique): During defect detection in an inspection, inspectors
can be supported by reading support, such as checklists.

 Testing (testing activity): Testing is a dynamic quality assurance
activity. The term is used as a top-level term comprising different
test processes, respectively test process steps.

 Test process: A test process consists of certain steps, such as test
planning, test execution, or test result analysis.

o The main focus in this thesis is on test execution, i.e.,
defect detection; a minor focus is placed on test
specification.

 Test technique (synonym: test design technique): In order to
derive and execute test cases in a systematic manner, different
test techniques can be applied, such as equivalence partitioning,
boundary-value analysis, or control-flow based testing.

 Test level: A testing activity can be performed during different
development stages, such as at the unit, integration, or system
level.

1.7 Research Contributions

The main research contributions (RC) of this thesis can be summarized as
follows:

 RC1 (State-of-the-practice analysis): The thesis provides an
analysis of current inspection and testing practices. An overview

Introduction

 29

of two major problems that were identified is given, and
requirements for an integrated approach are derived.

 RC 2 (State-of-the-art analysis): The thesis provides a general
overview of existing inspection and testing research
contributions. Furthermore, two systematic mapping studies
have been conducted. First, an analysis of approaches that
combine static and dynamic analysis was performed
(Elberzhager et al., 2012a). Second, a mapping study of further
approaches that are able to improve testing efficiency was done
(Elberzhager et al., 2012b). Finally, a mapping of the
requirements to existing approaches concluded this analysis.

 RC 3 (Development of the In2Test approach): An integrated
inspection and testing approach was developed that uses
inspection defect data to focus testing activities. A one-stage
approach (i.e., focusing on either defect-prone parts or defect
types) and a two-stage approach (i.e., focusing on defect-prone
parts and defect types) are provided. Further product metrics
and historical data could be combined with the inspection
results in order to improve focusing (Elberzhager and Eschbach,
2010; Elberzhager et al., 2010c, 2011d, 2012; Elberzhager and
Muench, 2011). Parts of the approach have been implemented
as a prototype by the DETECT tool (Elberzhager et al., 2010a).

 RC 4 (Definition of assumptions): In order to perform focused
testing activities, context-specific knowledge about the
relationships between inspections and testing have to be
considered. As this is often not available, assumptions have to
be stated. This thesis provides a model for the structure of such
assumptions, guidelines on how such assumptions can be
derived, evaluated, and applied, and a number of exemplary
assumptions for applying the In2Test approach (Elberzhager et
al., 2011a, 2011c).

 RC 5 (Evaluation): Two case studies were performed to evaluate
the In2Test approach. These two case studies were performed
applying the integrated approach during the development of
two tools (Elberzhager et al., 2010c, 2011c, 2011d, 2012;
Elberzhager and Muench, 2011).

1.8 Thesis Structure

The first chapter provided an introduction to this thesis. After starting
with a motivation of quality assurance in the area of software
engineering, the research scope was defined. Furthermore, problems
were identified, followed by goals to be achieved and hypotheses to be

Introduction

 30

checked. Moreover, background information on quality assurance and
basic terminology was presented. Finally, the main research contributions
were summarized. The remainder of this thesis is structured as follows:

 Chapter 2: State of the Practice. Chapter 2 provides an overview
of current inspection and testing activities followed in practice.
Concretely, current approaches, techniques, and methods are
presented and results from studies are summarized.
Furthermore, problems with respect to two quality assurance
activities are mentioned. Finally, a set of requirements that a
new approach has to fulfill is defined.

 Chapter 3: State of the Art. Chapter 3 provides an overview of
existing approaches that combine static and dynamic quality
assurance activities, indicating that there exists no approach that
combines inspection and testing techniques in a systematic
manner. In addition, an overview of non-combined approaches
that improve testing efficiency is given. The chapter concludes
with a comparison of requirements fulfillment of the existing
approaches in order to identify current gaps in the existing state
of the art.

 Chapter 4: The In2Test Approach. Chapter 4 presents the basic
ideas of the integrated inspection and testing approach. A one-
stage and a two-stage approach are presented. In addition, a
conceptual model for systematically describing assumptions as
well as exemplary assumptions describing the relationships
between inspection defects and testing defects are given,
together with guidelines for systematic derivation and
evaluation. In addition, concepts of the approach implemented
in the DETECT tool are shown. Finally, limitations of the
approach are mentioned.

 Chapter 5: Empirical Evaluation. Chapter 5 presents the results
of the empirical evaluations of the In2Test approach. First, the
validation strategy is defined and a refinement of the
hypotheses is done. Afterwards, two case studies are described,
including the context, the design, the execution, the analysis,
and limitations of the studies.

 Chapter 6: Conclusions and Future Work. Chapter 6 presents a
summary of the thesis and provides an outlook on future work
with respect to several aspects, such as different improvements
of the approach or further evaluations.

 Appendix A: Checklists. Appendix A lists the inspection
checklists that were used during the evaluations.

Introduction

 31

 Appendix B: Experiment Design. Appendix B presents different
designs for future evaluations. Two experiment designs are
described that can be used to compare groups using the
integrated approach with groups not using the approach.

 Appendix C: Questionnaire. Appendix C shows a questionnaire
that can be used by practitioners to evaluate the approach. It is
based on a standardized model, which has been adapted
accordingly.

 Appendix D: Initial Industrial Evaluation Results. Appendix D
presents some initial insights and results from an industrial
context where the approach was applied.

State of the Practice

 33

2 State of the Practice

2.1 Overview

The goal of this chapter is to present an overview of the state of the
practice regarding software inspections and software testing, and to
show that these two quality assurance techniques are most often applied
in an isolated manner, without exploiting any synergy effects. Section
2.2 describes how software inspections are currently performed in
industry. Section 2.3 gives an overview of testing in industry. Section 2.4
describes two major problems based on the described state of the
practice, and derives a set of requirements to overcome these problems.
Finally, Section 2.5 summarizes this chapter.

2.2 Software Inspections in Industry

This section presents an overview of how software inspections are
applied in the field. A set of empirical results is described that show the
performance of software inspections applied in different environments.
Based on these observations, software inspections are an effective and
efficient static quality assurance activity, which is, when applied, mostly
applied in isolation.

The first publication about software inspections by Michael Fagan in
1976 (Fagan, 1976) introduced this kind of static quality assurance and
showed initial empirical results from a development project, i.e., results
from an industrial context. Since then, software inspections have
become a mature and established static quality assurance technique
during the past 35 years. The reasons for this include its high
applicability in different contexts, its high efficiency and effectiveness, or
cost reduction as proven in many empirical studies (summarized, for
example, by Laitenberger and DeBaud (Laitenberger and DeBaud, 2000)
or Elberzhager (Elberzhager, 2005)).

Ten years after Fagan’s first publication, he published results from a
project at IBM (Fagan, 1986). A defect detection rate of 93% was
achieved by performing inspections over the lifecycle of the product. In
general, common defect detection rates (i.e., effectiveness values) for
software inspections are between 50% and 70%. Table 1 summarizes
some empirical results from different industrial contexts and their
effectiveness values.

State of the Practice

 34

Table 1 Some empirical results regarding inspection effectiveness from different industrial contexts.

No. Environment Artifact Results Reference
1 Aetna Life and Casualty Design / code 82% effectiveness (Fagan, 1976)
2 IBM Respond Code 93% effectiveness (Fagan, 1986)

3
Standard Bank of South
Afrika, American Express Code ~50% effectiveness (Fagan, 1986)

4 ICL Design 58% effectiveness (Kitchenham et al., 1986)
5 Project >700k LoC Design / code 54% / 64% effectiveness (Collofello and Woodfield, 1989)
6 Bull HN Code ~70% effectiveness (Weller, 1992)
7 AT&T Bell Laboratories Code > 70% effectivteness (Barnard and Price, 1992)

8
Shell Research’s Seismic
Software Support Group Requirements 50% effectiveness (Doolan, 1992)

9 IBM Rochester Labs

Code / pseudocode /
module and interface
specification 60% / 80% effectiveness (Gilb and Graham, 1993)

10 HP Code 60-70% effectiveness (Grady and van Slack, 1994)
11 Cardiac Pacemaker n/a 70-90% effectiveness (McGibbon, 1996)

12

Lockheed Martin’s space
shuttle onboard software
project n/a 85-90% effectiveness (Lee, 1997)

13 Robert Bosch GmbH Code 18-27% effectiveness (Laitenberger and DeBaud, 1997)

14 Allianz Life Assurance
Requirements /
Design

72-100% / 25-58%
effectiveness (Briand et al., 1998b)

15 Bosch Telecom GmbH Code 55-78% effectiveness (Laitenberger et al., 2001)

16
Ericsson Microwave
Systems AB Requirements 0.5 - 2.5 defects / page (Berling and Runeson, 2003)

17
Ericsson Microwave
Systems AB Requirements

0.9 - 1.0 defects /
requirement (Berling and Thelin, 2004)

Table 2 Some results regarding inspection efficiency from different industrial contexts.

No. Environment Results Reference

1 IBM Santa Teresa Lab
Cost ratio inspection defects: testing defects
1:20 (Remus, 1984)

2 Jet Propulsion Laboratory
Cost ratio inspection defects: testing defects
1:10 to 1:34 (Kelly at al., 1992)

3 IBM Rochester Lab
Cost ratio inspection defects: testing defects
1:13 (Kan, 1995)

4
Small warehouse inventory
system

1h per defect found with design inspection,
1.2h per defect found with code inspection (Ackerman et al., 1989)

5 Major government system

0.58h per defect found with design
inspection, 0.67h per defect found with code
inspection (Ackerman et al., 1989)

6
Banking computer service
firm

2.2h to eliminate defect by code inspection,
4.5h to eliminate defect by testing (Ackerman et al., 1989)

7 n/a
1.43h to find a defect by inspection, 6h to
find a failure with testing (Weller, 1993)

8 IBM
1h to find a defect by code inspection, 6h to
find a defect with testing (Franz and Shih, 1994)

9
Ericsson Microwave
Systems AB

1.2 - 2 defects per hour with requirements
inspections (Berling and Runeson, 2003)

10
Ericsson Microwave
Systems AB

0.9 - 1.8 defects per hour with requirements
inspections (Berling and Thelin, 2004)

A number of empirical results also exist with respect to the efficiency of
software inspections in industrial contexts. Different kinds of efficiency
values are presented. For example, a comparison of costs regarding
defects found by inspections and testing shows that inspections are
often superior to testing. Furthermore, the time needed to find a defect
using inspections is calculated. Table 2 summarizes some empirical
results from different industrial contexts and their efficiency values.

State of the Practice

 35

Besides effectiveness and efficiency benefits, additional advantages are
experienced when performing inspections. Laitenberger and DeBaud
(Laitenberger and DeBaud, 2000) mention learning effects, which are
worthwhile for educating team members. Gilb and Graham (Gilb and
Graham, 1993) summarized different experience data, for example,
highly reduced maintenance costs in a banking environment due to
rigorous inspections, software projects finished earlier, or reduced
testing costs. After inspections were introduced at Allianz Life Insurance,
ten percent of testing costs could be saved (Briand et al, 1998b). Results
from a software project onboard a space shuttle showed that the ratio
between design or code defects found by inspections and such defects
found after delivery was 1:92 (Paulk, 1995). Another study revealed that
requirements defects found during a requirements inspection can be up
to 68 to 110 times less expensive than if found by a customer (Grady,
1999). Results from a telecommunication company showed that, on
average, $200 are necessary to find and correct a defect with
inspections, compared to $4,200 to correct a defect that is found by a
customer (Wiegers, 2002). Experiences from IBM and Toshiba showed
ratios for critical defects found during inspection and in the field of
1:117, respectively 1:137 (Shull et al., 2002). The authors concluded that
“finding and fixing a severe software problem after delivery is often 100
times more expensive than finding and fixing it during the requirements
and design phase.” Furthermore, they state that “finding and fixing non-
severe software defects after delivery is about twice as expensive as
finding these defects pre-delivery”. Though the concrete cost ratios
depend on the specific context and the given numbers are not
necessarily true for all environments, they show the potential of software
inspections and the benefit of early defect detection.

Based on several observations and on empirical evidence, Laitenberger
and DeBaud (Laitenberger and DeBaud, 2000) state that “inspections
have had significant positive impact on the quality of the developed
software and that inspections are more cost-effective (i.e., efficient) than
other defect detection techniques”.

Finally, some standards even require performing static quality assurance
activities at certain quality gates if standard-compliant software products
are to be developed (e.g., ISO/IEC Standard 62304, 2006).

Regarding concrete inspection processes that are applied in practice,
these differ in their degree of formality, i.e., both very formal and very
informal inspection processes exist. This is reasonable due to a variety of
different context and project characteristics, such as available number of
people, skills and experience of people, development processes, project
size, or maturity of quality assurance processes. Furthermore, a lot of
different inspection terms exist, such as formal inspections, (peer)
reviews, static testing, or walkthroughs, which are all treated differently.
This means that, based on the exact wording used for an inspection

State of the Practice

 36

process, it is unclear how it is performed concretely and what the degree
of formality is.

Besides some companies that perform inspections in a very formal
manner, most companies, especially small- and medium-sized ones,
follow a more informal and unsystematic inspection process. Rombach et
al. (Rombach et al., 2008) performed an analysis of the application of
different static quality assurance techniques in industrial contexts and
summarized the following experiences. Based on a large online survey to
which 226 people from various domains, company of different sizes, and
several countries responded (Ciolkowski et al., 2003), one main
conclusion was that many companies perform software inspections
unsystematically. In detail, this meant that certain inspection steps or
even the entire inspection were optional. Furthermore, about 40 percent
of the respondents perform requirements and design inspections, and
another 30 percent do code inspections. Consequently, 60 respectively
70 percent do not perform any kind of inspection (neither formal nor
informal) during specific development phases. Moreover, only 40 percent
perform individual defect detection. Of those, checklists are used most
often, followed by experienced-based reading (i.e., ad-hoc reading using
no support). Finally, more than 50 percent of the companies either
collect no data or do not analyze the collected data in order to assess the
performance of the inspection process and to improve the inspection
and development process.

Another study was performed by Johnson, who concluded that the
adoption of inspections in industry remained rather low and that many
companies do not perform inspections or conduct them in an informal
way (Johnson, 1998). Some reasons from practitioners for not using
inspections are that they are perceived as being too difficult, too costly,
or ineffective.

A recent study about quality assurance in practice was conducted by
Spillner et al. (Spillner et al., 2011, 2012), who collected feedback from
about 1,600 German speaking respondents in the area of quality
assurance and project management. While static quality assurance
activities were only a minor topic of this study, three fourth of the
respondents mentioned that reviews are conducted in their projects.
However, they are usually applied in an informal manner (about 70%),
and it is unclear how effective or efficient they are in those contexts.

Harjumaa et al. (Harjumaa et al., 2005) analyzed factors that motivate
and discourage companies to perform inspections. The study was
performed with local companies, but the authors generalized the results
for small companies. The main motivator for performing inspections is to
reduce defects. Further advantages, such as knowledge sharing or
education, are less important. The main obstacles that were identified
are lack of time and resources. Overall, the authors stated that

State of the Practice

 37

companies agree on and are aware of the potential of software
inspections.

Jalote and Haragopal (Jalote and Haragopal, 1998) state that inspections
are not widely applied in industry despite considerable evidence. One
reason for the authors is the “not-applicable here” syndrome, i.e., the
problem that people from a concrete context do not believe that
inspections provide certain benefits in their context. The authors provide
a solution for overcoming the mentioned problem by performing a small
study in the own context, where an inspection was conducted and some
data was gathered in order to demonstrate the advantages of an
inspection. Results from an experiment demonstrated how an
organization changed with respect to conducting inspections in their
context.

Garousi and Varma (Garousi and Varma, 2010) performed a replicated
study of software testing practices in Alberta, Canada, focusing mainly
on testing aspects. However, one question addressed defect detection
methods performed in an organization in general. In 2004, about 45%
performed informal inspections and about 18% did formal inspections.
This changed slightly in 2009, namely from about 45% to 38% for
informal inspections, and from about 18% to 28% for formal
inspections. However, the overall number of companies performing
inspection did not change much during these five years.

In conclusion, a lot of success stories exist that demonstrate the value of
software inspections in industry. They mainly comprise overall improved
defect detection rates, reduced costs, and higher quality of a product.
For example, Grady and van Slack (Grady and van Slack, 1994) report on
cost savings by HP of about $21 million due to inspections. Fagan
(Fagan, 2001) reported cost savings of a customer of $45 million due to
coding defects alone, found by inspections four years after inspections
were introduced. One main benefit of a software inspection is that it can
be applied early in the development process, for example to inspect
requirements or design documents, and consequently, to find defects
early. Defects that are introduced early (e.g., during requirements), but
are found late (e.g., during system test or after the product is delivered)
may lead to high costs for correcting them, especially if they are critical
defects. Furthermore, besides defect detection, additional advantages of
inspections exist, such as learning and communication effects.

However, despite existing evidence from various industrial environments,
inspections are not widely distributed, or are often not applied in a
systematic manner. Jones (Jones, 2004) mentioned that unsuccessful
projects typically omit inspections. Consequently, certain advantages
provided by inspections are not exploited. Data gathered from
inspections are often not used to control subsequent quality assurance
activities, such as different testing activities. Due to increased challenges

State of the Practice

 38

in software development in recent years, such as higher cost pressure, a
demand for higher quality, increased complexity, or certain standards
that require conducting static quality assurance, inspection techniques
will probably be applied more often and more systematically in the
future and may play a crucial role in overall quality assurance strategies.

2.3 Software Testing in Industry

This section gives an overview of how software testing is applied in the
field. Software testing is widely conducted in various environments. A lot
of empirical studies have shown their benefits, but also the need for
more efficient test processes.

Software testing is one of the main quality assurance activities in modern
software development. Koomen and Pol (Koomen and Pol, 1999) stated
that “testing is a must” and an essential prerequisite for developing
software and building software systems. Juristo et al. (Juristo et al.,
2006) noted that “the importance placed on testing will increase”. One
reason is that software plays a role in everyone’s life (knowingly or
unknowingly). Consequently, tolerance for defect-prone software will
decrease and quality assurance techniques, such as testing, will have to
ensure high quality.

Bertolino and Marchetti (Bertolino and Marchetti, 2004) published an
essay on software testing that summarizes various testing aspects and
addresses several challenges test practitioners face. Depending on the
respective software development process, among which the “V-model”
is one of the most popular ones, different test phases are distinguished.
The most common ones are unit, integration, system, and acceptance
testing. The authors consider regression testing as a parallel testing
activity that is performed whenever changes to the system or parts of
the system are made in order to check whether these changes did not
introduce new defects. Figure 7 gives an overview. Regarding test case
selection strategies, the authors distinguished between black-box and
white-box methods and summarized several concrete techniques. Black-
box techniques are much more dominant in practice than white-box
techniques. Furthermore, use-case based testing, functional testing,
equivalence partitioning, and boundary-value analysis are some of the
most often applied black-box techniques (see, for example, Spillner et
al., 2012). Further aspects, such as test execution, test documentation,
test management, and test measures, are sketched.

Liggesmeyer (Liggesmeyer, 2009) states that dynamic quality assurance
techniques (i.e., testing techniques) are widely applied during software
development in industry. According to the results from a survey (Spillner
and Liggesmeyer, 1994) focusing on testing phases conducted in
practice, module testing is applied most often (about 72%), followed by

State of the Practice

 39

integration and system testing (both about 58%). A recent study by
Spillner et al. (Spillner et al., 2011, 2012) showed that system testing
gained more attention, while the focus on unit testing decreased.

Unit Test Integration Test System Test Acceptance Test

Regression Test

Figure 7 Logical schema of software testing levels according to Bertolino and Marchetti (Bertolino
 and Marchetti, 2004).

In recent years, new development paradigms have emerged that
overcome a) rigorous and cumbersome development processes and b)
rich and formal documentation during development. This results, for
instance, in agile development processes. Consequently, test processes
have been adapted accordingly, resulting in, e.g., test-driven
development. Janzen and Saiedian (Janzen and Saiedian, 2005) describe
concrete concepts and provide results from empirical evaluations in
industry and academia contexts. Some studies showed a positive effect
on quality and productivity effects when following a test-driven
approach, while other studies showed no effect or even negative effects.

Another study regarding testing in an agile environment describes test
planning, design and execution, and defect management with respect to
a large-scale project (Talby et al., 2006). The authors could show positive
overall results with agile testing methods and were able to perform full
regression testing at each iteration despite the huge project. However,
the authors state that much more empirical evidence is necessary from
different environments and encourage others to perform investigations
of long-term agile projects, in particular. Pettichord (Pettichord, 2004)
mentions several testing challenges in agile environments, such as
testing incomplete code, test stopping criteria, or regression testing in
short cycles, and provides some hints on how to address these problems.

Different surveys regarding testing in different industrial environments
have focused on various testing aspects. For example, Geras et al. (Geras
et al., 2004) conducted a survey of software testing practices in Alberta,
Canada. Almost 60 participants took part in this study, which focused on
test levels, test techniques, test measures, and test management. Unit
and system tests are the test levels that are most often addressed
(between 75% and 90%), followed by acceptance, installation, and
regression tests. Test automation was low for each level (maximum:
about 32% for unit testing, about 21% for system testing). Most often,
testers derive test cases based on their experiences and skills, followed
by using requirements for test-case derivation. Boundary value or
equivalence partitioning are only followed rarely (almost 30%,

State of the Practice

 40

respectively 5%). Typically, organizations have more developers than
testers. Regarding measures, use case points, McCabe complexity, or
lines of code are the most frequently used ones, with between 23% and
37% of the companies using such measures. The authors concluded that
immature testing processes (e.g., low number of test levels, lack of
testing training) increase the risk of slipped defects found only after
delivery.

Garousi and Varma (Garousi and Varma, 2010) replicated the study by
Geras et al. (Geras et al., 2004) to analyze what changed and what did
not change in the given environment. Their main findings were: almost
all companies performed unit tests and system tests with a slight
increase since the first study; automation of unit, integration and system
tests increased; test case generation techniques did not change much,
except that fewer testers used risk and more testers used boundary value
analysis; when planning tests, metrics such as McCabe complexity and
lines of code were rarely used compared to the first study; instead, use
case points were used by more than 70% of the respondents. All in all,
the authors state that slight improvements could be noticed, but much
more improvement is necessary.

Another survey was conducted to investigate software testing practices
in Australia (Ng et al., 2004). Overall, 65 persons or companies
participated in the study. About 50%, respectively 70%, performed
acceptance and regression testing. Black-box testing techniques (e.g.,
boundary value analysis, random testing) were followed more often than
white-box testing techniques. Most of the organizations performed
formal tests in order to check that the requirements are met. However,
one third performed testing activities in an unsystematic manner. About
two thirds have automated some of their testing activities. Furthermore,
different standards were adopted by about 72% of the organizations. In
conclusion, the major problems the authors identified from that survey
were untrained testers, costs for introducing tools, and time available for
testing. Furthermore, based on their observation that about 75 percent
of the companies allocated less than 40% of their budget to testing, the
authors concluded that organizations “are not allocating realistic
budgets to testing”.

Runeson (Runeson, 2006) performed a study on unit testing practices
and summarized the results from 19 companies that participated in the
survey. The author investigated the understanding of unit testing
practices and identified strengths and weaknesses of unit testing
techniques. Some results were that white-box techniques are preferred,
automation is an important goal with respect to unit tests, developers
often perform unit tests, and functionality is checked most often with
unit tests. The identified challenges include testing graphical user
interface units, appropriate documentation, providing training for
testers, and the amount of time that should be used for unit testing.

State of the Practice

 41

Finally, a study conducted by Otte et al. (Otte et al., 2008) investigated
quality assurance methods with respect to open source development.
About 400 participants took part in the survey. Overall, testing
consumed about 39 percent of the development time and more than
half of the projects followed a structured testing approach.

Another observation from practice is that testers are often not trained
enough. Myers (Myers, 1979) already mentioned that “students
graduate and move into industry without substantial knowledge of how
to go about testing a program”, which is also substantiated by newer
studies such as those mentioned above. Burnstein (Burnstein, 2002), for
example, presents eleven principles that can support practitioners and
improve their testing knowledge. A positive trend regarding trained
developers and testers can be found, but is still improvable (Spillner et
al., 2012).

Everett and McLeod (Everett and McLeod, 2007) state that about 300
commercial test tools are available on the market that may support
testers during certain testing activities. Furthermore, the authors
distinguish between situations in which test tools are advantageous and
disadvantageous. Finally, the authors note that no holistic tool exists that
covers all relevant aspects within one tool.

One of the first books about software testing, written by Myers (Myers,
1979), indicated that testing consumes approximately 50% of the
development time and more than 50% of the overall development costs.
As new testing processes, methods, and tools were developed during
the next 30 years, one might have expected the effort for testing to
decrease. However, Juristo et al. (Juristo et al., 2006) state that “testing
can easily exceed half of a project’s total effort”, and several studies
substantiate this observation. For example, Geras et al. (Geras et al.,
2004) note that “software testing currently consumes up to 50% of the
total cost of software development for the average project”. Koomen
and Pol (Koomen and Pol, 1999) report that the range for software
testing effort is between 25% and 50% of the overall project budget.
Liggesmeyer (Liggesmeyer, 2009) concluded that quality assurance
activities often consume most of the overall development effort, which
Pressman (Pressman, 2009) calculated as up to 50% of the total
development effort. This means that testing is still a major cost driver in
modern software development.

Determining when to stop testing remains a major problem in industry.
Geras et al. (Geras et al., 2004), for example, list coverage criteria that
have to be fulfilled, or the passing of acceptance tests. Analyzing the
coverage of parts of the system regarding test cases can be used to
identify parts that have been tested slightly or not tested at all, and this
can lead to additional tests. However, the authors also found out that
many companies have only fixed time slots for testing, meaning that a

State of the Practice

 42

decision on when to stop testing is often not based on reliable
information. The number of companies that followed this principle
doubled in the following five years, as shown by Garousi and Varma
(Garousi and Varma, 2010). Ng et al. (Ng et al., 2004) state that many
practitioners stop testing when the budget is running out or when a
certain deadline is achieved. The authors mention metrics (e.g., defect
content metrics) as one means for attaining more control over this
problem. Finally, Spillner et al. (Spillner et al., 2012) also confirmed that
about 60% of the respondents of a recent study stop testing when a
delivery date is reached, and about 30% mentioned that they stop
testing when budget is consumed.

If not enough time is available to test all parts of a system, respectively if
it is too extensive to test the system completely, a decision has to be
made regarding which parts to focus on. Runeson (Runeson, 2006)
observed that coverage criteria and prioritization of test cases can
support making a test stopping decision. Risk-based approaches
(Karolak, 1996) can support the decision about which parts to test with
which intensity and about when testing is finished (e.g., when test cases
covering critical functionality pass). A set of different questions to be
answered in order to identify such parts is given by Hower (Hower,
2011). Another idea is to use historical data to identify parts that were
defect-prone in past releases. Metrics such as size are also used
sometimes to design certain test cases (Garousi and Varma, 2010) and to
focus testing activities (Ostrand and Weyuker, 2002).

In conclusion, testing is one of the main quality assurance activities
applied in modern software development. Bertolino (Bertolino, 2007)
states that “testing is an essential activity in software engineering” and
“testing is widely used in industry for quality assurance”. However, she
also states that “testing is still largely ad hoc, expensive, and
unpredictably effective”. Juristo et al. (Juristo et al., 2006) concluded
that the “state of software testing practices isn’t as advanced as
software development techniques overall. In fact, testing practices in
industry generally aren’t very sophisticated or effective.” While software
testing approaches have been further developed, such improvements are
not widely distributed in practice. Bertolino and Marchetti (Bertolino and
Marchetti, 2004) mention that “test practice inherently still remains a
trial-and-error methodology”. The authors further demand “to
transform testing from “trial-and-error” to a systematic, cost-effective
and predictable engineering discipline”.

A lot of different testing techniques have been proposed to support
testers. Harrold (Harrold, 2000) states that “testing has been widely used
as a way to help engineers develop high-quality systems. However,
pressure to produce higher-quality software at lower cost is increasing.
Existing techniques used in practice are not sufficient for this purpose.”
Consequently, existing techniques have to be adapted or new

State of the Practice

 43

techniques and approaches have to be developed to master such
challenges.

One reason for insufficient testing are bad test strategies. Kasurinen et
al. (Kasurinen et al., 2009) analyzed different problems in testing
practices. One aspect is testing strategy and planning; most of the
investigated companies scale down tests if necessary. Furthermore, the
authors concluded that most of the test problems could be overcome
with better test strategies. Ng et al. (Ng et al., 2004) also mention that
testing strategies will become more important. Moreover, Humphrey
(Humphrey, 2008) states that “the current testing-based quality strategy
has reached a dead-end” and that “quality improvements required are
vast, and such improvements cannot be achieved by merely building
ahead with the test-based methods of the past”. New testing strategies
are necessary.

It is a fact that defects exist in software. For instance, Hayes (Hayes,
2002) reports that 97% of 800 respondents of a survey had problems
with software defects in recent years, resulting in most cases in higher
costs or lost revenues. Boehm and Basili (Boehm and Basili, 2001) state
that 50 to 60 percent of software programs contain non-trivial defects.
Testing is one way to find defects. Bertolino (Bertolino, 2007) states that
“software testing is and will continue to be a fundamental activity of
software engineering; [however], we will need to make the process of
testing more effective, predictable and effortless”.

This thesis aims at providing a solution to more effectiveness and
efficiency during testing. Another goal is to support determining a test
strategy. A concrete solution, i.e., a new approach, is presented in
Chapter 4 which uses early defect data to help control testing processes.

2.4 Problems and Requirements

Next, two main problems derived from the state of the practice will be
described, together with their rationales. Afterwards, requirements that
an approach has to fulfill in order to address these problems will be
stated.

2.4.1 Problems

Based on the overview of the state of the practice regarding inspections
and testing presented above, two major problems have been identified,
which will be addressed by the approach presented in this thesis.

Problem 1: Testing activities often do not use results and insights from
early defect detection activities, especially inspection techniques. When
inspection and testing are used during quality assurance, they are usually

State of the Practice

 44

performed in sequence, without any exchange of data between them to
exploit synergy effects. Consequently, testing activities are often not
focused based on early defect data. This leads to so-called local
inefficiencies, i.e., test-specific effort is wasted. Existing approaches for
reducing testing effort are widely based on the use of metrics, risk, or
historical data to predict fault-prone parts of a product or determine test
exit criteria. However, they do not make systematic use of the results
from inspections, i.e., quantitative defect data from the software
currently under development is not used to control testing processes.
Some approaches consider the combination of inspection and testing
techniques in a pragmatic and unsystematic manner (Kinochita, 2010) in
order to be more effective or to predict the expected number of defects
for testing based on inspection results (Harding, 1998). However,
although inspection and testing techniques are sometimes integrated in
an informal way in industry, no systematic approach could be found that
integrates them in order to exploit synergies and allow controlling
testing activities based on inspection defect data. This also means that
test strategies are usually not defined or adapted systematically based on
early defect data of a current software development cycle.

Problem 2: Quality assurance activities, especially testing activities,
require too much effort. Effort for conducting software quality assurance
activities, especially testing, can consume more than 50% of the overall
development effort (Harrold, 2000; Hailpern and Santhanam, 2002;
Pressman, 2009). High-quality software is demanded by customers due
to the extensive distribution of software. Consequently, software
developing companies need to develop software that has high quality.
Due to things such as unsystematic test processes or inappropriate test
strategies, high costs are an increasing problem in modern software
development (Tassey, 2002; Kasurinen et al., 2009). Moreover, software
quality assurance techniques rarely consider synergy effects resulting
from their systematic combination and integration. This may lead to so-
called global inefficiencies, i.e., total quality assurance effort is wasted.
The integration of inspection and testing techniques promises different
synergy effects such as reduced testing effort. However, inspections and
testing are usually conducted independent of each other, i.e., they are
sometimes applied in sequence in order to find additional defects (Franz
and Shih, 1994; Berling and Thelin, 2003) or, based on empirical
evidence, a combination is suggested (Runeson et al., 2006), but they do
not collaborate in an optimal manner. Bertolino (Bertolino, 2007)
concluded that there exist “many fruitful relations between software
testing and other research areas”, and that many of them were
overlooked in the past. This includes the integration of inspection and
testing to reduce testing effort and, as a result, overall quality assurance
effort.

State of the Practice

 45

2.4.2 Requirements

In the following, a set of requirements is presented that are related to
the two problems stated above.

R1: The approach should provide a mechanism for predicting defect-
prone parts of a system to be tested. The approach is intended to allow
focusing testing activities on those parts of a system that are expected to
be defect-prone.

R2: The approach should provide a mechanism for predicting defect
types to be tested that appear during testing. The approach is intended
to allow focusing testing activities on certain defect types that are
expected to show up.

R3: The approach should use early defect data from software
inspections. In order to achieve R1 and R2, results (i.e., defect data) from
software inspections should be used. Relevant inspection data has to be
provided in a suitable manner. Furthermore, it has to be ensured that
inspection data gained from a concrete context is reliable, i.e., a
mechanism for checking inspection data has to be provided.

R4: The approach should be able to use historical defect data and other
metrics that allow for focusing testing. In order to improve the prediction
of parts of a system that are expected to be particularly defect-prone
and of defect types that are expected to appear during testing, the
approach should ensure that established concepts for predictions can be
used in addition and can be combined with inspection results.

R5: The approach should make use of empirical evidence for focusing
testing activities. Empirical evidence gained from a concrete context
should be used by the approach in order to address uncertainty with
predictions, adapt the predictions, and focus testing activities more
appropriately.

R6: The approach should provide a mechanism for storing experience for
later reuse. In order to make predictions in future quality assurance runs
based on previous knowledge, it must be possible to store experience
and gathered data. One established concept is called an experience base
(Basili et al., 1994); a similar solution should be provided.

R7: The approach should be applicable during different lifecycle stages.
According to existing software development models (e.g., V-model), and
typical software lifecycle stages (e.g., requirements level, design level,
code level, unit test level, integration test level, system test level), the
approach should be flexible regarding its application during different
lifecycle stages.

State of the Practice

 46

R8: The approach should be easily and efficiently integrated into existing
quality assurance activities, respectively processes. The goal is a light-
weight approach that can be applied in a new context with no or only
little adaptation of existing inspection and testing activities, respectively
inspection and testing processes. Though the approach might give
certain recommendations regarding concrete inspection and testing
techniques the approach would benefit from, no specific quality
assurance activities or processes should be required, as long as
inspection and testing defect data is collected. Consequently, better
process integration of inspection and testing activities is expected.

R9: The approach should support adaptation to different contexts. Due
to the fact that software inspections and testing are applied in a variety
of different contexts with various requirements and goals, the approach
should be easily adaptable to new environments.

Table 3 shows the relationships between the two stated problems and
the derived requirements.

Table 3 Mapping of requirements and problems.

Requirements P
1:

 In
sp

ec
tio

n
de

fe
ct

da

ta
 is

 u
su

al
ly

 n
ot

 u
se

d
in

 a
 s

ys
te

m
at

ic
 m

an
ne

r
to

 fo
cu

s
te

st
in

g
ac

tiv
iti

es

P
2:

 Q
ua

lit
y

as
su

ra
nc

e
ef

fo
rt

, a
nd

 e
sp

ec
ia

lly

te
st

in
g

ef
fo

rt
, i

s
to

o
hi

gh

R1: Prediction of defect-prone parts x x
R2: Prediction of defect types x x
R3: Make use of inspection results x
R4: Make use of historical defect data and

further metrics
x

R5: Make use of empirical evidence x
R6: Store experience for later reuse x
R7: Applicable during different lifecycle stages x
R8: Able to integrate with different inspection

and testing activities
x

R9: Adaptable to different environments x

With respect to the first problem – inspection defect data is usually not
used in a systematic manner to focus testing activities – the first two
requirements state how testing activities may be focused and thus, how
a new approach may provide a mechanism for supporting a focusing

State of the Practice

 47

activity for testing. In order to focus testing activities, a new approach
must ensure that inspection results (i.e., defect data) are used explicitly.
In addition, further concepts, such as historical defect data or further
metrics, may enhance the focusing. Empirical evidence should be
considered to improve the focusing. Experience gathered from R3-R5
should be stored in a database for later reuse.

With respect to the second problem – quality assurance effort, and
especially testing effort, is too high – the first two requirements
regarding a new approach address a way of to reduce effort. When
defect-prone parts and defect types are predicted, testing activities can
be focused better and thus, test effort may decrease, which may also
lead to an overall reduction in effort. Furthermore, requirements R7 to
R9 reveal that effort should be saved independent of lifecycle stages
(requirement seven), concrete inspection and testing activities
(requirement eight), and different environments (requirement nine). This
means that the new approach should be as flexible as possible and the
set of prerequisites should be as low as possible in order to be able to
gain effort reductions with respect to a variety of different context
factors.

2.5 Summary

This chapter presented an overview of the state of the practice regarding
software inspections and testing. Both quality assurance activities are
applied and established in industry, which was demonstrated in several
environments. However, synergies between inspections and testing are
often not exploited, i.e., those quality assurance activities are usually
performed in isolation. Though inspection results may sometimes be
used in practice in an informal way to control testing activities, no
established concepts, methods, or approaches exist. A systematic
approach that describes how a prioritization of testing activities based on
inspection results can be done is still missing, i.e., no systematic and
explicit approach could be found that describes how results from
inspections can be used in a systematic manner to focus testing
activities.

Two main problems were derived based on the state of the practice:

 Inspection defect data is often not used to focus testing
activities, which leads to local inefficiencies.

 Quality assurance effort, especially testing effort, is often too
high, which leads to global inefficiencies.

The connection between the static and dynamic quality assurance
activities, i.e., inspection and testing techniques, seems intuitively clear

State of the Practice

 48

and obvious, but in practice this is often lost or obscured. The result is
often poorly prioritized and redundant quality assurance effort.

Given that the state of the practice tends to assume that results from
inspections will somehow magically drive the prioritization of testing
activities, this thesis will make a contribution with respect to how this
could be done concretely.

Based on the two problems, nine requirements were derived for an
integrated approach. Two requirements deal with what should be
focused on, three requirements refer to the data that should be used,
one requirement explicitly demands storing experience, and three
requirements are related to flexibility.

State of the Art

 49

3 State of the Art

3.1 Overview

This chapter presents an overview of approaches that can improve
quality assurance. Two main types of approaches are distinguished in
this thesis:

 Approaches that combine static and dynamic quality assurance
in order to improve quality assurance.

 Other approaches that do not combine static and dynamic
quality assurance, but use alternative concepts to improve
quality assurance, especially efficiency.

Two systematic mapping studies (Petersen et al., 2008) were conducted
to identify relevant articles in a structured manner (Elberzhager et al.,
2012b, 2012a). The basic results of these studies are summarized in the
following in order to present the state of the art with respect to the
scope of this thesis.

3.2 Combination of Static and Dynamic Quality Assurance

The results presented below are based on a systematic mapping study
(Petersen et al., 2008), enhanced by some mechanisms from a systematic
literature review (Kitchenham and Charters, 2007), such as considering
quality criteria or using a protocol. The mapping study was conducted in
order to identify existing approaches that combine static and dynamic
quality assurance techniques (Elberzhager et al., 2012a). Based on the
results of the mapping study, a clear definition of the research
contributions could be derived.

On four electronic databases (Compendex, Inspec, ACM Digital Library,
and IEEE Xplore) a comprehensive search term was applied, resulting in
an initial set of 2498 articles and a total of 51 selected articles. Some
articles of relevance that were found independent of the systematic
mapping study are also mentioned in this section.

3.2.1 Classification

Different static and dynamic quality assurance techniques can be
combined either by compiling or by integrating them.

State of the Art

 50

In this regard, compilation means that different static and dynamic
quality assurance techniques are applied to achieve a common goal, but
in isolation, without using input from one analysis for the second one.
Three sub-categories were identified. The first sub-category comprises
the compilation of static and dynamic analyses, i.e., approaches explicitly
using static and dynamic analyses in a combined approach were put into
this sub-category. Approaches explicitly combining inspection (i.e., static
QA) and testing (i.e., dynamic QA) techniques in a compiled manner
comprise the second sub-category. Finally, other compilations of static
and dynamic QA techniques represent the third sub-category.

In contrast, integration means that the output of one quality assurance
technique is used as input for the second quality assurance technique.
Two sub-categories were distinguished: first, the integration of static and
dynamic analyses, and second, the integration of inspection and testing
techniques.

Furthermore, besides the combination of concrete quality assurance
techniques, approaches for selecting, combining, and evaluating
different static and dynamic QA techniques can be helpful for finding an
appropriate quality assurance mix in a given environment.

Figure 8 Classification of combined static and dynamic QA techniques.

Compilation

The first sub-category of compilation approaches comprises approaches
that apply both static and dynamic analyses to improve a certain quality
property, but without using results from each other. For example,
Aggarwal and Jalote (Aggarwal and Jalote, 2006) proposed an approach

State of the Art

 51

that combines a static and a dynamic analysis technique in a compiled
manner in order to detect certain vulnerabilities. Other examples for the
focus of such approaches are thread escape analysis (Chen et al., 2009),
atomicity analysis (Chen et al, 2009b), protocol analysis (Gopinathan and
Rajamani, 2008), or defects in general that should be found with such
combinations (Anderson, 2008; Zimmerman and Kiniry, 2009). All these
approaches are tool-supported, either by a combination of existing tools
or by proprietary tool prototypes.

With respect to the combination of inspection and testing techniques in
a compiled manner, many studies and experiments have been performed
to compare them and discuss the advantages and disadvantages of both
techniques. This is often substantiated by empirical studies and
experiments that investigate which technique is superior to the other.
However, in most cases the suggestion is made to combine inspection
and testing techniques. So et al. (So et al., 2002) compared six different
inspection and testing techniques, but usually, two or three techniques
are compared to each other (Roper et al., 1997; Conradi et al., 1999;
Andersson et al., 2003; Runeson and Andrews, 2003; Gupta and Jalote,
2007). For example, stepwise abstraction reading was compared to
functional testing (i.e., equivalence partitioning and boundary value
analysis) and structural testing (i.e., statement coverage) (Basili and
Selby, 1987; Kamsties and Lott, 1995; Wood et al., 1997; Juristo and
Vegas, 2003).

Furthermore, some empirical studies first performed inspections and
then one or more testing activities and compared the overall effect when
inspection and testing techniques are applied in sequence (Franz and
Shih, 1994; Laitenberger, 1998; Iturbe, 1999; Berling and Thelin, 2003).
Runeson et al. (Runeson et al., 2006) summarized the results of several
experiments and case studies regarding the comparison of inspection
and testing techniques. Moreover, Myers (Myers, 1978), Wood et al.
(Wood et al., 1997), Jones (Jones, 2008), and Gack (Gack, 2010) already
analyzed different combinations of inspection and testing techniques
and calculated their benefit. It could be shown that in terms of cost and
found defects, a mixed strategy often outperforms a strategy where only
one technique is applied. Wagner (Wagner, 2006) investigated economic
aspects of static and dynamic defect detection techniques and proposes
using the gathered knowledge for an overall quality assurance model.

In some of the studies, defect classifications were used to analyze which
kinds of defects can be found best by which quality assurance technique.
Different experiments show that inspections and testing activities are
able to find defects of the same defect types, meaning inspection and
testing complement each other (e.g., Chaar et al., 1993; Kamsties and
Lott, 1995; Laitenberger, 1998; Mantyla and Lassenius, 2009). In
contrast, Runeson and Andrews (Runeson and Andrews, 2003) and Basili
and Selby (Basili and Selby, 1987), for example, reported that inspection

State of the Art

 52

and testing find different kinds of defects and showed which kinds of
defects inspectors and testers find best.

Other combinations, which are also possible, are just briefly summarized
next. For instance, inspection and testing techniques are combined with
formal specifications, walkthroughs, or bug-finding tools (Wagner et al,
2005; Liu et al., 2009). Furthermore, comprehensive quality assurance
processes from industrial environments are described, which comprise
several inspection and testing techniques, requirements analysis, static
analyses, walkthroughs, simulations, and tools (Duke, 1989; Ward,
1993; Chang et al., 1997). Chen et al. (Chen et al., 2008b) describe a
view-based approach and combine this with inspection and testing
techniques.

Advantages: One main motivation for applying different static and
dynamic quality assurance techniques in sequence is to find more defects
compared to using only a single defect detection technique. This is
justified by the fact that different quality assurance techniques
complement each other (Gilb and Graham, 1993). Moreover, different
quality assurance techniques applied in several development stages are
able to improve the quality of intermediate artifacts as well as that of the
final product. More defects found before a product is delivered normally
results in less rework costs.

Disadvantages: Applying different static and dynamic quality assurance
techniques in sequence does not allow exploiting additional synergy
effects, such as higher efficiency or effectiveness. Although it is often
concluded that inspection and testing techniques should be combined,
they are most often applied in isolation (i.e., applied in a compiled
manner). The output of one technique is not used as input for another
quality assurance technique. Thus, no additional value is gained when
using different quality assurance techniques.

Integration

With respect to integration approaches, different static and dynamic
analyses are integrated in order to reduce disadvantages of using them
in a compiled manner. The integration of static and dynamic analyses
encompasses most approaches. With respect to the order of application
of static and dynamic analyses, most often static analysis is applied first,
followed by dynamic analysis. However, some approaches use
alternatives, for instance, using dynamic analysis first and static analysis
afterwards (Jalote et al., 2006), performing static and dynamic analyses
in an iterative way (Chen and MacDonald, 2008), or using dynamic
analysis first, followed by static analysis and another dynamic analysis
(Csallner et al., 2008). Static and dynamic analysis approaches grouped
in this category focus on several vulnerability analyses (Centonze et al.,
2007; Balzarotti et al., 2008; Godefroid et al., 2008; Kumar et al., 2009;

State of the Art

 53

Hanna et al., 2009; Avancini and Ceccato, 2010), concurrent program
analyses (Chen and MacDonald, 2008), defects in aspect-orientated
programs (Massicotte et al., 2006), or on defects in general (Lucca and
Penta, 2005; Csallner and Smaragdakis, 2005; Artho and Biere, 2005;
Jalote et al., 2006; Joshi et al., 2007; Godefroid et al., 2008; Csallner et
al. 2008; Chen et al., 2008a; Nori et al., 2009; Chebaro et al., 2010).
One approach additionally supports debugging (Zhang et al., 2009). A
lot of different tools and algorithms support these analyses.

Furthermore, approaches explicitly integrating inspections and testing
techniques offer another way to combine static and dynamic QA
techniques, for instance approaches using different scenario-based
reading techniques during the inspection to derive test cases that can be
used during testing (Chen et al., 2006; Winkler et al., 2005, 2010).
Furthermore, another approach calls for inspecting automatically
generated test code (Lanubile and Mallardo, 2007). Liu shows how
executing paths from testing can guide inspectors in checking the tested
paths as well as additional ones for defects (Liu, 2007). Finally, Harding
(Harding, 1998) describes from a practical point of view how to use
inspection data to forecast the number of remaining defects and how
many defects have to be found and removed in each testing phase; i.e.,
the inspection results have an influence on the test exit criteria. Other
defect prediction approaches that use inspection defect data are
capture-recapture models (Petersson et al., 2004), detection profile
methods (Briand et al., 1998), or subjective estimations (Emam et al.,
2000; Biffl, 2000). While such approaches are mainly used to decide
whether a re-inspection should be performed, a decision on how many
tests to perform is also conceivable. However, no information on how
such information can be used is currently available.

Advantages: The integration of static and dynamic quality assurance
techniques can lead to additional defects being found. Furthermore,
efficiency improvements are achievable. Moreover, a higher level of
maturity in the defect results is gained since potential defects identified
by one quality assurance technique are checked by the second one in
order to confirm the findings.

With respect to the integration of static and dynamic techniques,
focusing the dynamic technique by using output from the static one is
sometimes observed, resulting in improved efficiency and effectiveness.
Regarding the integration of inspection and testing techniques, test case
derivation is improved and the quality of intermediate artifacts is
enhanced.

Disadvantages: The integration of static and dynamic quality assurance
techniques is often supported by tools and algorithms that are very
specialized to a given context, domain, as well as other influencing
factors such as programming language or defect types to be addressed.

State of the Art

 54

Thus, it is usually not possible to apply them in different contexts
without high adaptation effort, or not possible at all. Furthermore, a lot
of the integrated approaches need tool support in order to be
applicable, which currently is only given by initial tool prototypes.

With respect to software inspections, one main goal of past inspection
research has been to improve the inspection itself rather than to
integrate inspection and testing techniques, except for some approaches
that use the inspection to support test case derivation or to predict
remaining defects. However, support for focusing testing activities based
on inspection results is still missing altogether.

Misc

Besides the combination of concrete quality assurance techniques,
approaches for selecting, combining, and evaluating different static and
dynamic QA techniques can be helpful for finding an appropriate quality
assurance mix in a given environment. For example, Strooper and
Wojcicki (Strooper and Wojcicki, 2007; Wojcicki and Strooper, 2007)
present an approach that supports the selection of different QA
techniques and suggest one possible combination based on various
experiences. Another approach presents a framework for the balanced
optimization of quality assurance strategies and proposes eleven steps to
define a quality assurance strategy (i.e., selection of a mix of quality
assurance techniques), to determine quality goals, to execute the defined
strategy, and to analyze and package the results (Klaes et al., 2009).
Moreover, Klaes et al. (Klaes et al., 2008a, 2008b, 2010a, 2010b)
propose an approach that supports different QA management tasks, and
various QA techniques (and even the combination of those) can be
improved, planned, or controlled.

Advantages: Approaches mentioned in this category provide support for
the selection and adaptation of static and dynamic quality assurance
techniques. Moreover, support for controlling the quality assurance
process is presented.

Disadvantages: In general, the approaches mentioned above focus on
selecting quality assurance techniques for application in sequence (i.e.,
compilation approaches). Synergies between static and dynamic quality
assurance techniques are neither systematically nor explicitly covered.
These approaches provide a high-level view and usually do not focus on
concrete quality assurance techniques that should be combined in a
compiled or integrated manner.

State of the Art

 55

3.2.2 Publication Years

Based on the systematic mapping study performed, the 51 identified
articles describing combined approaches were ordered with respect to
the year of publication. Though further approaches probably exist that
could be classified, Figure 9 presents a rough idea of the development
and publication of combined approaches during the last 25 years.

When analyzing the number of articles that were published in 5-year
intervals, only between one and six articles were found to have been
published in these timeframes until 2004. This shows that the focus
regarding a combination of static and dynamic QA techniques was
rather low during that time. However, between 2005 and 2009, 33
articles were published, which is twice as many as were published in the
20 years before. Consequently, this research topic has gained increased
attention during the past five years and seems to be a promising
research area for the future. The decrease in 2010 can be explained by
the point in time when the mapping study was performed and probably
does not reflect the real number of articles published both in and after
2010.

19
85

-1
98

6

19
89

19
90

-1
99

2

19
93

19
94

19
95

19
97

19
98

19
99

20
00

-2
00

1

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

19
87

19
88

19
96

Figure 9 Number of articles published per year.

3.2.3 Evaluations

Based on the systematic mapping study performed, the 51 identified
articles describing combined approaches were ordered with respect to
whether they do or do not present evidence or no evidence (Figure 10).

First, articles were grouped into one of the following two categories:
indirect combination or direct combination. Indirect combination means
that the approach supports the selection of different static and dynamic
quality assurance techniques or the article describes or analyzes different
static and dynamic quality assurance techniques. Based on this, the
suggestion is made to combine these techniques. For example, certain

State of the Art

 56

inspection and testing techniques are described and compared with each
other. Based on observations, such as inspection and testing techniques
showing differences in effectiveness, the conclusion is made that it is
most effective to combine them in a compiled manner. However, how
this should be done and what the concrete benefit (e.g., in terms of
effectiveness, efficiency, found defect types) of such a combination
might be is neither described nor evaluated explicitly. Therefore, besides
theoretical suggestions that more defects can be found when applying
different static and dynamic quality assurance techniques, no concrete
evaluation is done regarding the combined application or additional
synergy effects resulting from the combination.

Figure 10 Number of articles that provide evidence, respectively no evidence.

In contrast, direct combination means that the combination of a static
and a dynamic quality assurance technique is explicitly described. Two
possible kinds of articles grouped in this category exist. First, the
approach only explains how the combination could be done, either in a
compiled or an integrated manner. In this case, no evaluation is
presented. Second, beside the description of the combined approach, an
evaluation is presented, either in a quantitative or qualitative way. Three
different kinds of empirical studies were identified: experiments comprise
about 60% (14 articles), case studies about 30% (8 articles), and
experiences about 10% (2 articles).

Finally, Figure 11 shows the distribution of evaluated and non-evaluated
combined approaches over the past 25 years. Again, the numbers of
articles per year with respect to the combination categories “indirect”
and “direct” are shown. The first approaches found only gave some
indirect ideas for combinations or proposed a concrete combination
without giving any evidence. The first evaluations were given with
respect to a combination of different inspection and testing techniques
in 1997 and 1998. After 2004, the number of proposed approaches
increased and about half of the proposed combined approaches per year
were also evaluated.

State of the Art

 57

19
97

19
98

19
99

20
00

-2
00

1
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10

19
85

-1
98

6
19

89

19
90

-1
99

2
19

93
19

94
19

95
19

87
19

88
19

96

Figure 11 Numbers of evaluated and non-evaluated approaches per year.

3.2.4 Objectives

Based on the systematic mapping study performed, the 51 identified
articles describing combined approaches were analyzed with respect to
their objectives. However, only those articles were analyzed that were
categorized as “direct combination” (see Section 3.2.3). The main
reason is that the remaining ten articles, classified as “indirect
combination”, mainly focus on comparing inspection and testing
techniques, comparing inspection and testing techniques with tools,
comparing different tools, or supporting the selection and management
of different quality assurance techniques. However, no concrete
combined approaches are presented except for some initial suggestions.
The objectives of these suggestions remain rather generic, such as
general improvement of quality, or are not mentioned explicitly.
Therefore, those ten articles were excluded when it came to analyzing
the objectives of combined approaches.

Consequently, a total of 38 articles were taken into account. First,
objectives that target the quality of the corresponding quality assurance
process were considered. These objectives are either to improve the
quality assurance process by applying a combined approach or to
introduce a combined approach in a new environment. Figure 12
presents an overview of the identified categories and the number of
articles per category. With respect to improvement, which is the most
common objective, three different aspects were distinguished:
improvement of coverage (13 articles), of effectiveness (22 articles), and
of efficiency (11 articles). A lot of articles were classified into two or
three categories, depending on which objectives should be achieved and
which objectives were investigated with respect to the described
approaches. Coverage was seen in two ways; first, as a measure of the
proportion of a program being executed and tested by running a test
suite (e.g., statement or branch coverage), and second, as coverage of
requirements or use cases by executing test cases. Effectiveness is the
ratio of total number of identified defects and total number of existing

State of the Art

 58

defects in a quality assurance artifact. Finally, efficiency or cost
effectiveness refers to the number of defects found per period of time.
More than 80 percent of the corresponding approaches aim at achieving
improvement objectives. In general, different approaches were found
that describe how the improvements are achieved. For instance, by
combining complementary static and dynamic quality assurance
techniques, different kinds of defects are found and consequently,
effectiveness is improved. Another idea is that the output of a static
analysis directs the dynamic analysis to certain parts that can improve
effectiveness and efficiency. However, the inspection results are not used
to focus testing activities.

Eight more articles were classified as feasibility studies aimed at
investigating whether a combined approach is able to detect defects in
new environments, such as aspect-oriented software systems or web-
based applications. Some articles were classified into more than one
category (which explains the overall relative number of more than
100%)

Figure 12 Numbers of articles with respect to quality assurance process objectives.

A second kind of objective of combined approaches are the defect types
they address in order to achieve certain product quality objectives such
as reliability, security, or safety. 23 articles do not mention any particular
defect type, but the described approaches focus on finding defects in
general, i.e., their objective is to improve the general reliability of the
software product. 13 articles explicitly mention a concrete defect type
that the combined approach focuses on, with security defects being the
most common group. Finally, three more articles are classified as misc,
covering not the quality of the final product, but the quality of
intermediate artifacts such as design or test code. Figure 13 summarizes
the articles with respect to the product quality objectives.

State of the Art

 59

Figure 13 Numbers of articles with respect to defect types addressed by the combined approaches.

3.2.5 Summary and Conclusions

Based on the 51 articles identified in the systematic mapping study and
some additional articles found independently, it can be concluded that
compilation and integration are the two main approaches for the
combination of static and dynamic QA techniques. Both categories
comprise the combination of static and dynamic analyses and the
combination of inspection and testing techniques. In addition, a mix of
various static and dynamic QA techniques could also be identified for the
compilation group. Finally, some other articles, categorized as misc
approaches, were identified that could additionally support the
combination of static and dynamic QA techniques. About 65% of the
inspection and testing approaches are applied on the code level, and
almost all static and dynamic approaches are applied on the code level.

With respect to the publication year, a tremendous increase of published
articles started in 2005. More than 30 articles were published in the
years 2005 to 2009, which is about twice as many as in the 20 years
before 2005. Hence, the interest in this topic has received much more
attention in the last few years, especially with respect to the integration
of static and dynamic analyses. While some effort is put into the
integration of static and dynamic analyses, inspection and testing
techniques are currently mostly performed in an isolated manner.

Almost 50 percent of the 51 articles identified from the mapping study
present evidence regarding combined approaches. The remaining articles
describe just ideas on how a combination could be done or describe a
combined approach concretely without giving any evidence. To some

State of the Art

 60

extent, this can be explained by the fact that many combined
approaches have emerged in the past five years and thus, have not been
evaluated yet.

Two kinds of objectives could be extracted from the identified articles.
On the one hand, there are QA process quality objectives, where
improvement of effectiveness is the main goal to be achieved when
applying a combined approach, followed by coverage and efficiency
improvement. This could be achieved by using input from a static
analysis to focus the dynamic analysis or by deriving test cases for testing
during an inspection, for instance. However, inspection results are not
used to focus testing activities or to prioritize certain parts of the system
for testing. On the other hand, product quality objectives were
identified. More than 50% of the approaches do not focus on a certain
defect type and rather concentrate on improving reliability objectives.
Furthermore, around one third of the approaches focus on specific
defect types and thus, on specific product quality objectives. The
remaining three articles focus on intermediate product quality aspects.

A common fact with respect to the results of a systematic mapping study
or a systematic literature review is that it is affected by the researchers
conducting the review, by the databases selected, by the search term
selected, and by the timeframe chosen. Therefore, though these threats
to validity are mitigated by several means (e.g., two researchers decided
independently about whether to include and exclude articles, different
databases were used, a comprehensive search term was used, additional
articles were included), the articles found probably do not cover each
existing article in this research area. However, based on the mentioned
articles in this section, it can be concluded that the research area of
combined static and dynamic analyses is getting increasing interest,
whereas a focus on integrating inspection and testing techniques in a
systematic way is still missing and not documented in the existing
literature. Finally, the derived classification can be used to classify further
articles, or it can be adapted if new approaches are found.

3.3 Non-Combined Approaches

Similar to Section 3.2, the results presented next are based on a
systematic mapping study (Petersen et al., 2008), enhanced by some
mechanisms from a systematic literature review (Kitchenham and
Charters, 2007), such as considering quality criteria or using a protocol.
The main goal of the mapping study was to identify approaches that
improve test efficiency (Elberzhager et al., 2012b). Consequently, in this
section, further approaches are considered that are able to improve the
efficiency of testing. In this section, only approaches that do not
combine static and dynamic quality assurance are considered, i.e.,
approaches other than those mentioned in the previous section (and

State of the Art

 61

thus, articles found in the mapping study that either describe combined
approaches or test strategy ones) are omitted here. Based on the results
of this mapping study, it was decided to include valuable concepts that
are easy to consider in the approach presented in this thesis.

On four electronic databases (Compendex, Inspec, ACM Digital Library,
and IEEE Xplore) a comprehensive search term was applied, resulting in
an initial set of 4020 articles and a total of 144 selected articles, of
which 134 are considered to be relevant here.

3.3.1 Classification

Based on the systematic mapping study, three further kinds of non-
combined approaches could be identified that improve test efficiency:
test automation, prediction, and test input reduction.

Table 4 Number of articles per category.

Category # articles % articles
Test automation 71 53.0
Prediction 41 30.6
Test input reduction 22 16.4

Total: 134 100

Table 4 shows the number of articles found per category. It can be seen
that the category of Test Automation contains the highest number of
articles. Fifty-three percent of the articles were classified into this
category, which comprises tool- and algorithm-supported approaches
and tools that support different steps of a test process.

About 30% of the articles belong to the category Prediction. Such
approaches support estimating the remaining defect content based on
test defect data and consequently, allow determining when to stop
testing. In addition, approaches that estimate parts of a system that are
expected to be defect-prone were found. Such information can be used
to focus testing activities.

The category Test Input Reduction comprises about 16% of all articles,
and mainly includes approaches that select an optimal number of test
cases from an existing test suite, i.e., the number of test cases is
minimized while the number of defects found is maximized. In addition,
test sequence reduction approaches and comparison studies were found.

Figure 14 presents an overview of these categories and sub-categories.

State of the Art

 62

N
o

n
-c

o
m

b
in

ed
 a

p
p

ro
ac

h
es

Category

Test input reduction

Test automation

Prediction

Specification

Sub-category

Analysis

Execution

Defect content

Defect proneness

Test suite reduction

Defect classification

Test sequence reduction

Mutant reduction

Figure 14 Classification of non-combined approaches that aim at improving efficiency.

Test Automation

Automation is the category where most articles were found. This is not
surprising, as applying tools or automating certain steps in the test
process can result in effort improvements due to, for example, reduced
execution time of test cases, automated derivation of a set of test cases,
or automated analysis of test results. The 71 articles put into the
category automation were further classified with respect to the process
step where they can be applied. Four steps are distinguished: planning,
specification, execution, and analysis. Some approaches comprise
support for more than one test process step.

For planning, which includes, for example, defining a test plan, no
approaches could be found. 60 articles could be identified that support
the specification phase, i.e., the definition and generation of test cases,
test scenarios, test data, and test scripts. Different coverage criteria are
considered. Moreover, different test bases are presented for deriving test
cases, for instance, UML diagrams or textual descriptions.

With respect to the execution phase, 18 articles could be found that
support running test cases or conducting regression testing. Different
test levels were addressed, such as the unit, integration, or system level.
Finally, five papers could be classified with respect to the analysis phase.
Figure 15 gives an overview of the distribution of articles with respect to
the four process steps.

State of the Art

 63

Figure 15 Distribution of articles in the category Automation.

Prediction

The category Prediction includes 41 articles (see Figure 16). Two main
groups are distinguished: (1) prediction of the number of expected
defects (i.e., defect content), most often based on software reliability
growth models (SRGMs) in order to decide when to stop testing; (2)
prediction of defect-prone parts of a system in order to focus testing on
these parts. A large variety of concrete methods was found. In addition,
one article focused on predicting defect types.

In more detail, 13 articles discuss the prediction of software reliability
and the remaining number of expected defects. SRGMs attempt to
predict software reliability using test data, which is collected during test
execution. SRGMs try to correlate found defect data with known
mathematical functions such as an exponential function. In the case of
high correlations, the used function can be applied to predict future
reliability behavior of the software under development, i.e., the number
of remaining defects in the software can be predicted. This knowledge
can help make a decision as to when to stop testing, which might
improve the efficiency of testing activities. Various kinds of SRGMs exist,
each considering different context factors and assumptions, such as
experience of testers, immediate correction of defects, or unchanged
code basis during testing.

Another group in this category covers approaches that predict defect-
prone modules in order to focus testing activities on these parts,
meaning that test effort can be saved because parts are prioritized for
testing that are expected to be highly defect-prone. Twenty-six articles
were classified into this category. Most of the articles use metrics such as
size or complexity to predict defect-prone parts. Data from recently
developed releases before and after delivery were considered, as well as
historical data. Most often, the predictions are made on the code level;
however, some approaches focus on the system level. Besides the results
of the systematic mapping study, another overview of such approaches
is given by D’Ambros et al. (D’Ambros et al., 2010), and some examples

State of the Art

 64

can be found in Section 4.4.4.

Figure 16 Distribution of articles in the category Prediction.

Test Input Reduction

Twenty-two articles belong to the category Test Input Reduction, which
is sometimes also called test case or suite reduction, or test case
selection. Based on an existing set of test cases (e.g., for regression
testing), a reduced set of test cases should be chosen that finds the same
number of defects as the complete set of test cases. Consequently,
fewer test cases have to be executed, which results in reduced effort.
Usually, specific coverage criteria are considered to determine the set of
test cases. Furthermore, prioritization and ranking approaches are used
considering certain criteria. Another approach uses finite state machine
and reduction rules to reduce test sequences. Finally, one approach was
found that reduces mutants during mutation testing.

In addition, two of the test suite reduction articles compare different
regression test selection techniques. In these studies, the costs and
benefits of five regression test selection techniques are investigated,
which can support the selection of the most suitable one in a given
environment.

Figure 17 gives an overview of the distribution.

Figure 17 Distribution of articles in the category Test Input Reduction.

State of the Art

 65

3.3.2 Publication Years

The 134 articles were arranged with respect to their publication years.
Figure 18 shows an overview of the number of published articles per
year, starting from 1991. It can be observed that until 2004, little
attention was paid to non-combined approaches and methods that
focus on test optimization; starting from 2005, a lot more articles about
reducing testing effort were published. Therefore, it can be concluded
that in recent years, testing optimization has been gaining an increased
interest.

19
91

19
93

19
94

19
95

19
97

19
98

19
99

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

2

4

6

8

10

12

14

16

18

year

Number
of articles

19
92

19
96

20
00

20

22

24

26

Figure 18 Number of articles published per year.

Taking a more detailed look with respect to the number of articles
published per year and category, Table 5 presents an overview. Again,
test automation and test prediction were of interest very early, while test
input reduction received increased interest later. However, the same
trend can be observed that the number of published articles and
approaches increased during the past five years, which is also
substantiated if we consider 5-year intervals.

Table 5 Distribution of articles by year and category.

91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 Total
Test automation 1 1 1 1 2 2 1 1 4 3 8 7 5 11 18 5 71
Prediction 1 1 1 1 2 2 3 2 1 5 2 1 6 5 8 41
Test input reduction 1 2 1 1 1 2 3 1 3 7 22

Total 2 1 2 1 2 2 5 2 2 0 4 3 6 4 14 11 9 18 26 20 134
% 1006.0 8.2 23.1 62.7

State of the Art

 66

3.3.3 Evaluations

The 134 identified articles were analyzed with respect to the degree of
empirical evidence they present, i.e., whether the approaches are
evaluated or not, and how they are evaluated. 97 articles present
empirical evidence, and 37 articles do not present any evaluation results.

About half of the articles present information about the evaluation
context, which was either industrial or academic. Most often,
approaches were evaluated in an industrial environment. However, more
than half of the 97 articles did not present clear information about the
evaluation environment.

Furthermore, the evaluation method was extracted and four different
kinds were distinguished: experience (i.e., impressions, opinions or
subjective experiences with a certain approach), experiments, case
studies, and empirical studies in general. Experiments and case studies
were the two kinds that were found most often.

Figure 19 summarizes these findings.

Figure 19 Evaluation scope and type of evaluation.

Compared to the general overview regarding evaluations, Table 3
presents more detailed results with respect to each of the categories.
The first two columns describe the main category and the sub-
categories. The next two columns present details about the evaluation
context and the scope per category. For categorizing the research
method, we considered the wording from the articles found, which
might be designated incorrectly (Petersen et al, 2008). Furthermore, the
sum of articles counted for all sub-categories may be higher than for the
category itself because some articles are categorized into more than one
sub-category (e.g., see category Test Automation).

State of the Art

 67

Table 6 Detailed evaluation overview of non-combined approaches.

industrial academic ?

Test automation Preparation 24 6 4 26 8 15 10 3
Test automation Execution 6 3 3 6 2 4 5 1
Test automation Analysis 3 0 1 1 0 0 1 1
Automation 28 9 4 30 9 18 13 3
Prediction Defect content 3 4 3 4 3 8 0 0
Prediction Defect-proneness 3 23 0 0 2 4 14 3
Prediction Defect classification 0 0 0 1 1 0 0 0
Prediction 6 27 3 5 6 12 14 3
Test input reduction Test suite reduction 2 4 2 12 1 10 5 2
Test input reduction Test sequence reduction 0 0 0 1 0 0 1 0
Test input reduction Mutation reduction 1 0 0 0 0 0 0 0
Test input reduction 3 4 2 13 1 10 6 2

empiri-
cal study

Category Evaluation context Evaluation method

I II no
yes experi-

ence
experi-
ment

case
study

First of all, the category “test automation” containing the largest
number of articles shows poor evaluation results. Only nine approaches
were evaluated in an industrial setting, whereas 30 articles provide no
information. Based on a scoring scale for relevance provided by Ivarsson
and Gorschek (Ivarsson and Gorschek, 2011), the contribution can be
considered as rather low. The category Prediction shows the most
positive results, as 27 articles provide industrial evaluation results, most
of them case studies or experiments. Most of them focus on prediction
of defect proneness, i.e., on predicting areas where more defects are
expected. One main conclusion is that metrics could be used to focus
test efforts. However, no universal metric exists that fits best in all
contexts, i.e., the best metrics have to be identified in each new context.
Moreover, concrete data about particular effort savings are rarely
provided. The category Test Input Reduction is similar to the Test
Automation category, i.e., the context is often unclear and thus,
conclusions can hardly be generalized and a lot more sound evaluations
are necessary.

3.3.4 Summary and Conclusion

Based on a systematic mapping study, we extracted 134 articles that
focus on improving test efficiency. Three main categories were
identified: automation, prediction, and test input reduction. More than
50 percent of these articles propose Test Automation approaches.
Predictions are the category containing the second highest number of
articles. Prediction approaches, which, for example, determine when to
stop testing or which modules or classes are defect-prone, can support
better decisions regarding how much testing effort is required. The
category Test Input Reduction comprises about 16 percent of all articles
and includes mainly articles that present different test case selection and
prioritization techniques, as well as methods for optimizing and reducing
test suites.

For the performance of the systematic mapping study, the start year for
including articles was set to 1991. Until 2004, less attention was paid to
test optimization approaches and methods. Starting from 2005, more

State of the Art

 68

articles about reducing testing effort were published. Furthermore, it can
be concluded that in recent years, optimization of test efficiency received
an increased interest. Articles about test optimization were published in
numerous different journals, conferences, symposiums, and workshops.

About 70 percent of the approaches were evaluated, most often by
means of experiments or case studies. Industrial environments were
preferred to academic environments. However, more than half of the
papers did not specify the evaluation scope. Moreover, though a large
number of evaluations could be identified, their rigor and relevance
seems to be rather poor based on our initial analysis, and many more
sound evaluations are necessary to generalize the conclusions drawn.
Hardly any effort reduction data were found.

In summary, it can be stated that numerous non-combined approaches
exist that focus on improving test efficiency. Due to increasing time
pressure in modern software development, it is expected that the topic
will be of important interest in the next few years. Though not explicitly
shown here, Elberzhager et al. (Elberzhager et al., 2012b) only found
seven articles that consider early quality assurance activities (i.e., defect
detection) before testing in order to improve testing. In addition, three
more articles were found that describe test strategies.

A common issue with respect to the results of a systematic mapping
study or a systematic literature review is that it is affected by the
researchers conducting the review, by the databases selected, by the
search term selected, and by the timeframe chosen. Therefore, though
these threats to validity were mitigated by several means (e.g., two
researchers decided independently about whether to include and
exclude articles, different databases were used, a comprehensive search
term was used), the articles found probably do not cover each existing
article in this research area. However, the derived classification can be
used to classify further articles or it can be adapted if new approaches
are found.

3.4 Comparison

Sections 3.2 and 3.3 presented approaches that either combine static
and dynamic quality assurance approaches or do not combine them, but
are able to improve the efficiency of testing, among other goals. The
different kinds of approaches were summarized and an evaluation was
performed with respect to the strengths and weaknesses regarding
specific requirements (see Section 2.4). Table 7 presents an overview of
this evaluation.

State of the Art

 69

Table 7 Assessing approaches with respect to determined requirements.

R1: Prediction of defect-prone parts o - - - - + -
R2: Prediction of defect types - - - o - o -
R3: Make use of inspection results - - o o - - -
R4: Make use of historical defect data and

further metrics - - - - - + o
R5: Make use of empirical evidence - - - + - + o
R6: Store experience for later reuse / / / / + / /
R7: Applicable during different lifecycle stages o o + + o + o
R8: Able to integrate with different inspection

and testing activities o o + + o + -
R9: Adaptable to different environments - - + + - o o

Requirements

Non-
Combined

Approaches Combined

S
ta

tic
 &

 d
yn

am
ic

 Q
A

 (
in

te
gr

at
io

n)

S
ta

tic
 &

 d
yn

am
ic

 Q
A

 (
co

m
pi

la
tio

n)

In
sp

ec
tio

n
&

 t
es

tin
g

(in
te

gr
at

io
n)

In
sp

ec
tio

n
&

 te
st

in
g

(c
om

pi
la

tio
n)

T
es

t a
ut

om
at

io
n

P
re

di
ct

io
n

T
es

t i
np

ut
 r

ed
uc

tio
n

Obviously, none of the approaches fulfills all requirements. The
prediction of defect-prone parts or defect types is only covered strongly
by the prediction approaches. Most of the other approaches do not
provide any mechanism or give only very limited guidance. Inspection
results are rarely used, which is similar with respect to using historical
data or further metrics. This is only done in the prediction approaches
and, to some extent, in some other approaches. Empirical evidence is
used in some approaches, especially in the prediction area and in the
compilation of inspection and testing approaches.

Besides test automation approaches storing, for example, test cases for
performing regression tests and their results, most of the approaches do
not explicitly store experience. However, experience may be stored
independent of the concrete approach.

Many of the approaches can be applied during specific phases of the
development lifecycle and are adaptable to different contexts. However,
tools are often specific to a certain environment, which also holds for
static analyses. Integration with inspection and testing approaches is, of
course, possible with such static and dynamic techniques, but also

State of the Art

 70

conceivable with different approaches to improve overall quality
assurance.

As prediction approaches facilitate the fulfilment of many requirements,
this concept is partly integrated in the integrated approach presented in
this thesis. A new integrated inspection and testing approach will be
introduced in the next section, since it was demonstrated here that the
existing approaches do not fulfil all stated requirements. Inspection
defect data is usually not considered in the existing approaches for
improving succeeding testing activities, though it cannot be completely
excluded that such an approach is already being used in an ad-hoc
fashion in industry. However, a defined approach was not found based
on the literature review and mapping studies conducted.

3.5 Summary

This chapter analyzed two kinds of approaches that are able to improve
efficiency, among other improvement goals.

On the one hand, combined approaches were considered, i.e.,
approaches that combine static and dynamic quality assurance activities.
It could be shown that such approaches attained increased interest in
recent years. Besides a general combination of different static and
dynamic quality assurance techniques such as symbolic execution,
testing, and runtime analysis (Godefroid et al, 2008), theorem proving,
test case derivation and execution (Csallner and Smaragdakis, 2005), or
model checking and model-based testing (Chen et al., 2008a), a
combination of inspection and testing was often suggested by different
authors. However, in most cases, inspection and testing are applied in
sequence without deep integration to exploit additional synergy effects.
Furthermore, if inspection and testing are integrated, they support test
case derivation or prediction of remaining defect numbers based on the
inspection results, but no usage of inspection data for focusing testing
activities.

On the other hand, non-combined approaches were identified that are
also able to improve efficiency, but do not use input from static quality
assurance activities. These approaches are automation, test input
reduction, and prediction; they provide some valuable input for the
integrated inspection and testing approach presented in this thesis.

Based on the comparison of the identified combined and non-combined
approaches with respect to the stated requirements, it could be shown
that none of the approaches fulfills all relevant requirements, which
substantiates the need for an alternative approach.

The In2Test Approach

 71

4 The In2Test Approach

4.1 Overview

This chapter presents the integrated inspection and testing approach
In2Test and details the concept of assumptions. Section 4.2 gives an
overview of the solution ideas, emphasizes the contributions, and
reflects on the requirements with respect to the new approach. Section
4.3 describes the basic process of the approach, and shows different
ways in which the approach could be applied. Section 4.4 gives more
details on how the focusing is done. For this, the concept of assumptions
that cover the knowledge about relationships between inspections and
testing is described in detail, i.e., a model of assumptions is given, a way
to derive and evaluate them is presented, and exemplary assumptions
are shown. Section 4.5 describes initial tool support for the approach.
Section 4.6 discusses the limitations of the approach. Finally, section 4.7
summarizes this chapter.

4.2 Solution Idea

Table 7 in Section 3.4 showed all state-of-the-art approaches identified
and discussed in Chapter 3, and evaluated them with respect to the
requirements as stated in Section 2.4. As can be seen, the approaches
have different strengths and weaknesses, which is denoted by “+”, “o”,
and “-“. None of the approaches fulfills all requirements. Most of the
approaches do not predict defect-prone parts or defect types in order to
focus testing activities, with the exception of explicit prediction
approaches. Moreover, inspection data is rarely used, both for combined
and for non-combined approaches. Instead, some approaches use
alternative data, such as historical data or certain metrics. Most of the
approaches do not package their results explicitly. Finally, many
approaches are adaptable with respect to lifecycle phases and different
environments. A solution that fulfills all these requirements is necessary
in order to provide an integrated inspection and testing approach that is
able to focus testing activities. Thus, the following contributions are
made in this thesis:

1. Predicting defect-prone parts and defect types (R1, R2). Except
for explicit prediction approaches, combined and non-combined
approaches do not focus on predicting defect proneness or
defect types that are likely to appear. Thus, focusing quality
assurance activities such as testing is often not supported.
Assumptions are usually used in order to allow making

The In2Test Approach

 72

predictions, which can then be used to focus, e.g., testing
activities. This thesis provides a structured model for
assumptions, explains how to derive and evaluate them, and
provides a set of assumptions with respect to relationships
between inspection and testing. These assumptions are able to
predict defect-prone parts and defect types.

2. Using inspection results, historical data, and further metrics, and
using empirical evidence (R3, R4, R5). First, approaches that
combine inspection and testing generally use inspection results
to predict the number of remaining defects or to support test
case derivation. However, such inspection data is usually not
used systematically to make predictions (see R1 and R2). Thus,
this thesis provides an approach that makes explicit use of
inspection results that are available early (i.e., before testing is
conducted). Second, prediction and test input reduction
approaches often use historical data and certain metrics, such as
size or complexity. Consequently, the approach presented in this
thesis is also able to consider metrics and historical data, and to
integrate this kind of input with inspection results. Finally,
empirical evidence is necessary describing valid knowledge
about the relationships between the techniques and methods
that are applied. A lot of such evidence is known with respect to
compiled inspection and testing approaches, as well as for
prediction and test input reduction approaches. However, with
respect to the integration of inspection and testing, such
evidence is rare. Thus, this thesis provides some initial insights
from the evaluations conducted.

3. Storing experience for later reuse (R6): Most of the approaches
do not explicitly provide a mechanism that forces a user to store
knowledge and data gained in order to reuse and improve the
approach in subsequent applications. Thus, this thesis explicitly
considers a mechanism that allows storing and reusing gathered
experience and different kinds of data (e.g., defect data).

4. Adaptation to different lifecycle phases and environments, and
integration of different analytical quality assurance activities (R7,
R8, R9). First, many approaches support adaptation to different
lifecycle stages, i.e., approaches can often be applied at certain
levels, such as requirements, design, code, or different test
levels. The concrete applicability depends on the concrete
approach. Consequently, in order to provide the broadest
possible applicability of the integrated approach presented in
this thesis, different lifecycle stages should be supported.
Second, many approaches can be applied in combination with
different inspection and testing techniques in order to support

The In2Test Approach

 73

an overall quality assurance strategy. However, this is often
done in a compiled manner (i.e., applying one quality assurance
technique after the other without interchanging data between
them or exploiting further synergy effects). For the approach
presented in this thesis, no complete process changes are
required, and the integrated inspection and testing approach is
easy to apply with respect to different inspection and testing
activities, i.e., the approach is able to use inspection and testing
techniques already being applied. Third, some approaches,
especially inspection and testing approaches, can be easily
adapted to new environments. The integrated inspection and
testing approach, which uses established inspection and testing
techniques, is developed in a way that supports its application in
different contexts.

Table 8 Composition of the In²Test approach.

R1: Prediction of defect-prone parts Using assumptions for prediction
R2: Prediction of defect types Using assumptions for prediction
R3: Make use of inspection results Explicitly considered
R4: Make use of historical defect data and

further metrics
Using certain metrics and historical
data

R5: Make use of empirical evidence Using initial input for assumptions
R6: Store experience for later reuse Explicitly considered
R7: Applicable at different lifecycle stages Considering different lifcycle phases
R8: Able to integrate with different

inspection and testing activities
Considering light-weight approach
using established inspection and
testing activities

R9: Adapatable to different environments Considering different contexts

influenced by alternative approaches
explicitely new in the In²Test approach

T
es

t a
ut

om
a

tio
n

P
re

di
ct

io
n

Concepts that were slipped or
considered in the In²Test approachT

es
t i

np
ut

 r
e

du
ct

io
n

Requirements

Non-
Combined

Approaches Combined
S

ta
tic

 &
 d

yn
am

ic
 Q

A
 (

in
te

g
ra

tio
n)

S
ta

tic
 &

 d
yn

am
ic

 Q
A

 (
co

m
p

ila
tio

n
)

In
sp

e
ct

io
n

 &
 te

st
in

g
 (

in
te

gr
at

io
n

)

In
sp

e
ct

io
n

 &
 te

st
in

g
 (

co
m

p
ila

tio
n)

Table 8 shows which concepts were partly considered from established
approaches (indicated by light-gray boxes), which basically includes using
initial empirical knowledge to make predictions, and using metrics and
historical data. The In²Test approach is the first systematic approach that
explicitly integrates inspection and testing techniques. The approach uses
inspection defect data to focus testing activities, which can be further
supported by metrics and historical data. In order to be able to predict
defect-prone parts and defect types, a model for assumptions is defined.
Furthermore, experience and data are explicitly packaged. Flexibility and
adaptability to different environments are provided. Finally, an initial tool
prototype supports the In²Test approach.

The In2Test Approach

 74

4.3 Process

The main idea of the integrated inspection and testing approach In2Test
is to use defect information from the inspection (i.e., a defect profile
comprising quantitative defect data and defect type information) to
focus testing activities on specific parts of the system under test and on
specific defect types. On the one hand, the inspection defect profile can
be used to prioritize parts of the system under test that are expected to
be most defect-prone. On the other hand, the inspection defect profile
can be used to prioritize those defect types that are expected to show up
most often during testing activities. Consequently, testing activities are
focused on such prioritized parts or defect types. The In2Test approach
builds upon existing inspection and testing techniques.

In order to focus testing activities, it is necessary to describe the
relationship between defects found in the inspection and the remaining
defect distribution in the system under test. The same is true for defect
types. For that reason, assumptions are explicitly defined. An assumption
could be, for example, that code classes in which many defects are
found during the inspection are expected to contain additional defects,
which can then be found during testing activities, i.e., an accumulation,
respectively Pareto distribution, of defects is expected (of course, such an
assumption needs to be context-specific). In order to be able to rely on
defined assumptions, they should at least be grounded on explicitly
described hypotheses. Ideally, assumptions to be applied in a concrete
context are based on empirically validated hypotheses that are valid in
the given environment. If such evidence is not available, assumptions
have to be described explicitly and analyzed with respect to their
suitability for the specific context (e.g., a post-testing analysis could
show if an assumption was wrong), i.e., each assumption has to be
validated in the given environment in order to be able to decide if the
assumption leads to valuable prioritizations or not.

As a next step, the assumptions need to be quantified if they are not
already defined in measurable terms. This means that concrete metrics
need to be derived that make the assumptions measurable. For instance,
the number of defects detected in a code class could be measured as
defect content (i.e., absolute number of defects found) or defect density
(i.e., absolute number of defects found divided by lines of code).

In order to allow an assumption to be applied, it has to be
operationalized. Consequently, so-called selection rules are derived from
assumptions. One selection rule for the above-mentioned assumption
could be, for example, that those code classes should be selected for a
testing activity that contain more than eight major defects (i.e.,
measured as defect content) based on the inspection defect profile.
When prioritizing defect types for a testing activity, an exemplary

The In2Test Approach

 75

selection rule might be “Select those two defect types that are found
most often with the inspection.” In this case, it has to be ensured by the
defect classification that the defect types can be found by both
inspection and testing activities.

Based on such a prioritization, a precise focus on code classes only or on
code classes and defect types for those code classes can be determined.
Consequently, focused testing activities can be conducted. Overall, an
effort reduction is expected due to testing only those parts of a system
under test that are expected to be most defect-prone and checking only
those defect types that are expected to appear most often, instead of
testing all code classes and concentrating on all defect types.

In addition to the inspection defect profile, metrics and historical data,
which are established concepts, can support the prioritization, provided
they are combined with the inspection results to overcome the problems
arising if they are used in isolation, and can give additional valuable hints
for the prioritization. For instance, an assumption could be: “For code
classes with a high complexity value in combination with high defect
density based on inspection results, a high probability exists that further
defects will be found during testing within such code classes”. Metrics
could be defined and selection rules could be derived accordingly.

4.3.1 One-Stage Approach

In addition to the general description of the approach given above,
Figure 20 shows a concrete application for code inspection and testing.

First, the inspection (step 1) has to be performed. No specific inspection
technique, respectively process, is prescribed, and the approach is
flexible in such a way that different inspection processes can be used.
However, it has to be ensured by the inspection process used that a
suitable number of defects are found. The inspection defect profile
(containing quantitative defect data, for instance the number of
inspection defects found per class or per defect type) is obtained after
the inspection. In some cases, additional information is gathered, such as
metrics or historical data (e.g., defect data from different testing phases,
defects found after testing), which is stored in an experience database,
EDB for short. In order to be able to rely on the inspection data, the
inspection results have to be monitored (Barnard and Price, 1994; Aurum
et al., 2002). Thus, inspection quality monitoring (step 2) should be
performed in order to analyze and determine the quality of the
inspection results, which is done by comparing context-specific historical
data and certain inspection metrics, such as reading rate or number of
defects found per inspector. If no historical data is available, data from
the literature can be used initially.

The In2Test Approach

 76

Figure 20 Overview of the integrated approach.

Next, prioritization is done (step 3). Certain assumptions, respectively
selection rules, can be applied to prioritize parts of the code or defect
types. Figure 21 gives a conceptual overview of the prioritization steps
based on assumptions and selection rules (on the left); two simplified
examples are sketched on the right.

Figure 21 Conceptual overview of steps and two examples of the prioritization of code classes.

The exemplary assumption A1 claims that parts of the code where a
significant number of inspection defects are found indicate remaining
defects to be found by testing (i.e., an accumulation of defects,
respectively a Pareto distribution of defects, is assumed). It is particularly
based on the empirical observation that a high number of defects are

The In2Test Approach

 77

often contained within a small number of modules (Boehm and Basili,
2001). The number of defects can be expressed as defect content
(absolute number of defects) or defect density (absolute number of
defects divided by inspected lines of code). According to assumption A1,
code classes that have high defect content based on the inspection
results are selected for testing. The second selection rule chooses code
classes for testing that have high defect density based on the inspection
results. In both cases, it has to be clarified what “high defect content”
and “high defect density” means in a concrete environment, i.e., a
concrete metric and thresholds have to be defined. For instance, a
selection rule could be stated as follows: “Focus testing activities on
those parts of a system where an inspection has found more than 15
defects”. An alternative example that would also fulfill the assumption is
“Focus testing activities on code classes where an inspection has found
more than 8 major defects”. Selection rules to be chosen depend on the
available and analyzed data from the concrete context.

The exemplary assumption A2 claims that parts of the code where a
significant number of inspection defects are found and which are
complex indicate remaining defects to be found by testing. This
assumption uses the inspection defect profile and one complexity metric,
expressed as McCabe complexity. Consequently, two concrete selection
rules combine defect content with McCabe complexity on the one hand
and defect density with McCabe complexity on the other hand, resulting
in different code classes being selected. The selection rules may prioritize
different code classes to be tested, which depends on the concrete
context. A third example (not shown here) could be to focus only on
certain defect types based on the inspection defect profile, and to
prioritize them for testing.

Ideally, evidence has already been obtained in a concrete environment
regarding which selection rules lead to the best selection of code classes
(i.e., highest effort reduction at a comparable quality level). The
approach does not define fixed values as to what high defect content
means, for example. This is highly dependent on certain context factors
and thus, has to be defined in the environment at hand before the
approach is applied. Finally, established techniques for deriving concrete
test cases for the code classes can be used, such as equivalence
partitioning or boundary-value analysis.

The concrete selection rules chosen also depend on explicit context
factors. For example, consider the number of available inspectors and
time as two context factors. If only one inspector is available, who has to
inspect certain parts of a system within a limited period of time, fewer
parts can be inspected. Consequently, more effort should be spent on
testing activities. Another example: Consider the experience of the
inspectors as a context factor. If the inspectors’ experience is low, it is
expected that not many critical defects will be found. Consequently, the

The In2Test Approach

 78

inspected parts should be tested again. In contrast, if the inspectors’
experience is high, it is expected that most of the defects will be found
before testing, and the inspected parts can be skipped for testing (in this
example, it is assumed that both inspection and testing activities are able
to find the same defects). Again, it depends on the concrete
environment which selection rules are chosen.

The context that has an influence on the definition or selection of
selection rules, and the level of confidence (i.e., validity) of the selection
rules applied in the given context are summarized as the scope of
validity.

Based on the prioritization, testing of the selected code classes (step 4)
can be conducted. The test focus may also have an influence on the test
exit criteria (i.e., when to stop testing). Again, historical context-specific
data from the EDB can give valuable hints on when to stop testing. In
addition, established criteria such as branch coverage can be considered.
However, test exit criteria and their improvement are not in the scope of
this thesis.

Defect results from the current testing activities have to be analyzed
continuously in an ideal case. If more defects are found in the selected
parts, the assumptions appear to have been valid and the test activities
can continue focusing on the prioritized parts. If not, the assumptions
have to be adapted and another prioritization has to be performed (i.e.,
a re-direction of the test process is conducted). Furthermore, parts that
were not prioritized can be tested in order to check if they are defect-
free, which leads to stronger empirical evidence for the assumptions.

In case no continuous analysis is possible, at least a retrospective analysis
of the assumptions should be performed. If the assumptions were
correct, data gathered during inspections and testing should be
packaged in an experience database and used for future prioritizations.
Otherwise, an analysis of the assumptions and the context has to be
performed in order to identify reasons for the deviations.

4.3.2 Two-Stage Approach

Figure 22 presents the application of the two-stage approach for the
coding phase. The steps described for the one-stage approach remain
similar, with an adaptation of the prioritization step. From the beginning,
the process starts with a code inspection (step 1), leading to inspection
results that are used to derive the inspection defect profile. Such a defect
profile can contain, for example, the absolute number of defects found
per code class, the relative number of defects found per code class, or
the number of defects found per defect type. An implicit requirement

The In2Test Approach

 79

here is that a suitable number of defects has to be detected in order for
the defect profile to be meaningful.

Additional metrics can be gathered (e.g., size or complexity metrics of
code classes) or historical data (e.g., defect data from different testing
phases, defects found after testing) from an experience database (short:
EDB) can be considered. Next, step 2 consists of an inspection quality
monitoring where the inspection results are checked to ensure that they
can be relied on for the prioritization (Aurum et al., 2002). This can be
supported by historical, context-specific inspection data and metrics
derived from them (e.g., number of defects found per inspector, lines of
code inspected per inspector). If historical inspection data is not
available, recommendations from the literature can be used as an initial
basis (Barnard and Price, 1994).

Figure 22 Integrated two-stage inspection and testing approach for focusing testing activities.

In order to be able to focus testing activities, two-stage prioritization has
to be conducted, which represents step 3. For this, assumptions and
refined selection rules are used to prioritize certain parts of the code and
defect types. Figure 23 shows in detail how the prioritization is done and
gives exemplary assumptions, selection rules, and the result of the
combined prioritization.

Stage 1: First, prioritization of code classes is performed. Consider the
assumption that additional defects remain in those code classes in which

The In2Test Approach

 80

a significant number of inspection defects are found and thus, testing
activities should be focused on those code classes. This means that an
accumulation of defects (i.e., Pareto principle) is assumed, as stated, for
example, by Boehm and Basili (Boehm and Basili, 2001). However, to be
able to apply the assumption ‘accumulation of defects’, it has to be
operationalized by a definition of concrete metrics, i.e., assumption
variables have to be defined. For the above-mentioned assumption, two
examples of concrete metrics are defect content (i.e., absolute number
of defects found per code class) or defect density (i.e., absolute number
of defects found per code class divided by lines of code). Based on the
general assumption and the assumption variables, two concrete selection
rules can be derived. The application of the selection rules results in the
selection of different code classes, i.e., based on the inspection defect
profile, different code classes may be prioritized for testing activities.

Figure 23 Conceptual overview of the steps for conducting the combined prioritization and two
 examples.

Stage 2: Second, prioritization of defect types is performed. The steps
are the same as for stage 1. An exemplary assumption is that defect
types that appeared most often during the inspection are expected to
appear again in the testing activities (i.e., an accumulation of defects of
certain defect types is assumed). In order to be operational, a concrete
defect classification has to be selected that is able to cover defect types
found by both inspection and testing activities. One concrete selection
rule is instantiated, which, in this example, results in the selection of two
defect types based on the inspection defect profile.

The In2Test Approach

 81

Again, the context that has an influence on the definition or selection of
selection rules, and the level of confidence (i.e., validity) of the selection
rules applied in the given context are summarized as the scope of
validity.

Finally, the prioritization results of both stages are combined in order to
focus the testing activities on (i) certain code classes and (ii) on defect
types to look for within these code classes. For this, each selected set of
code classes from a selection rule of stage 1 is combined with each
selected set of defect types from a selection rule of stage 2. In the
example, the result is two combined prioritizations. Ideally, evidence is
already obtained on which selection rules lead to appropriate
prioritizations of code classes and defect types in a given context. In this
case, the most appropriate combined prioritization(s) can be chosen.
Otherwise, different selection rules have to be applied and the applied
combined prioritizations have to be analyzed in a post-testing analysis.
Finally, test cases have to be derived for the selected code classes (e.g.,
using established techniques such as equivalence partitioning)
respectively to cover selected defect types.

Step 4 comprises focused testing activities, which also include
determining when to stop testing, which may be influenced by the
prioritization. Finally, data from the code inspection and the testing
activities have to be stored in the EDB for future analysis.

Defect Classification

Several defect classifications have been developed, such as defect
classifications used in experiments for comparing inspection and testing
defects (Basili and Selby, 1987; Kamsties and Lott, 1995; Juristo and
Vegas, 2003) or defect classifications developed by industry companies,
such as ODC by IBM (ODC, 2002). With regard to the question of
whether inspections and testing are complementary QA activities, i.e.,
the question of whether they will find different kinds of defects or not,
the results from experiments and case studies are not consistent.
Laitenberger (Laitenberger, 1998) concluded that they do not
complement each other. Different experiments have shown that
inspections and testing activities are able to find defects of the same
defect types (e.g., Chaar et al., 1993; Kamsties and Lott, 1995; Mantyla
and Lassenius, 2009). In contrast, Runeson and Andrews (Runeson and
Andrews, 2003) showed that inspectors and testers find different kinds
of defects. Jalote and Harahopal (Jalote and Harahopal, 1998) showed
during an experiment that especially interface and logic defects can be
found by inspection and testing techniques, whereas maintainability and
portability problems are solely found by inspections.

Some defect types might only be found by either an inspection activity or
by a testing activity. Thus, a defect classification has to be chosen

The In2Test Approach

 82

carefully if defects from different QA activities are to be classified,
especially if testing activities should be focused on specific defect types
based on classified inspection results.

The approach assumes that both the inspection and the testing activities
can find the same defect types, which might be true for only some
defect types. However, future evaluations have to be performed in order
to offer more detailed prioritizations with respect to defect types.

4.4 Relevance of Assumptions and Context Factors

In order to conduct focused testing activities when applying the
integrated inspection and testing approach, knowledge regarding the
relationships between inspections and testing is required. Such
relationships are usually context-specific and not generally applicable.
Therefore, it is necessary to check whether reliable evidence regarding
such relationships exists in a given context (e.g., stored in an experience
base (Basili et al, 1994)). If such evidence does not exist, assumptions
need to be made regarding relationships between the processes to be
considered. An example assumption might be that the distribution of
defects found regarding certain defect types is similar for inspection and
testing for the same artifact. Therefore, it might be beneficial to use the
defect distribution from inspections for creating the test cases.
Assumptions that describe certain relationships can initially be taken
from the literature or from different contexts, but need to be analyzed
with respect to their validity in the given context. Evidence regarding
defined assumptions can be gathered in different ways (e.g., analytically,
empirically), and has to be continuously reevaluated and updated due to
the fact that context factors can change and thus, assumptions initially
defined and proven to be correct can become wrong.

However, the benefits achieved depend on knowledge regarding the
relationships between inspection and testing processes, especially
knowledge regarding the distribution of defects in inspections and
testing. If such knowledge is available, it can be used to balance
inspection and testing activities or to focus testing activities based on
inspection results. For instance, using the assumption stated before that
both quality assurance activities mainly find defects of the same defect
types, testing activities may be focused on those defect types that
inspection has primarily found before. Or consider the assumption of a
Pareto distribution for defects found; then testing activities may be
focused on those parts where inspection has found most of the defects
before.

Regarding the existing body of knowledge regarding relationships and
derived explanations, which has often led to theories, Jeffery and Scott
(Jeffery and Scott, 2002) presented two examples, i.e., ‘software cost

The In2Test Approach

 83

modeling and estimation’ and ‘software inspections’. While for the first
example, valid theories could be derived and demonstrated, this could
not be done for the second example. The authors state that there exists
“confusion in the empirical inspection literature”, which “is a result of
insufficient expression of theory, a consequent lack of models, and too
little attention in the experiments to the justification for the hypotheses
under test” (Jeffery and Scott, 2002). Moreover, Bertolino (Bertolino,
2007) states that for testing, no universal theory exists either. Sjoberg et
al. (Sjoberg et al., 2007) concluded that almost no software engineering
specific theories are reported in the literature.

From the viewpoint of the author, instead of finding a theory first, in
many cases it seems to be more promising to get context-specific
evidence first. Later on, a valid theory might be derived.

4.4.1 Identification of Context-specific Assumptions

The field of empirical software engineering presents various concepts
that guide the way from initial observations to evaluated theories (Shaw,
1990; Zelkowitz and Wallace, 1998; Perry et al., 2000; Jeffery and Scott,
2002; Endres and Rombach, 2003; Harwood, 2004; Sjoberg et al.,
2007). One main objective is to improve the understanding regarding
processes, products, and resources, and to build up solid knowledge in
order to be able to predict future situations and make them more
controllable.

There exist several models that describe how assumptions can be
identified and evaluated. Jeffery and Scott (Jeffery and Scott, 2002), for
instance, developed a model for scientific inquiry, starting by observing a
phenomenon in the real world, understanding it, and developing a
theory that explains the observed phenomenon. Such a theory has to be
validated and refined by means of theory testing, replication, theory
revision, and reevaluation. Jeffery and Scott use two concrete examples,
i.e., ‘software cost modeling and estimation’ and ‘software inspections’,
in order to demonstrate their procedure.

In contrast to the model by Jeffery and Scott, a more detailed model is
proposed by Endres and Rombach (Endres and Rombach, 2003). The
model starts with observations, which may be facts or impressions
regarding certain relationships in a given context. When an observation
reappears, one can take advantage of it. Repeatable observations are
often defined as so-called laws. The authors define a law as “a
statement of an order or relation of phenomena that, so far as is known,
is constant under certain conditions”. Exemplary laws in the field of
quality assurance mentioned by the authors are that a developer is
unable to test his own code or that about 80 percent of the defects
come from 20 percent of the modules. Laws are explicitly derived based

The In2Test Approach

 84

on repeatable observations and lessons learned from different contexts.
Because laws are based on strong empirical evidence, they can be seen
as generalized observations that explain how things happen,
independent of a concrete environment (though some situations may
exist where a law might be wrong). Furthermore, future observations
can be predicted based on laws.

A law can be explained by a theory: “A theory is a deliberate
simplification of factual relationships that attempts to explain how these
relationships work” (Baumwol and Blinder, 2001). Sjoberg et al. (Sjoberg
et al., 2007) state that “in mature sciences, building theories is the
principal method of acquiring and accumulating knowledge that may be
used in a wide range of setting”. Therefore, if a law is found, the next
step is to find explanations for the observations, which shifts the level of
understanding towards a theory. A theory itself can then be confirmed
by future observations (until it may be rejected due to new insights and
knowledge that falsifies the theory).

Figure 24 Concepts of empirical software and systems engineering according to Endres and Rombach
 (Endres and Rombach, 2003).

Figure 24 summarizes the concepts as stated by Endres and Rombach
(Endres and Rombach, 2003). In addition to laws, the authors introduced
two additional constructs in order to be able to describe relationships
that are currently not grounded on strong empirical evidence. A
hypothesis is a statement that is only tentatively accepted, for example
only in a certain context. Additional evidence is needed in order for a
hypothesis to become a law. A conjecture describes the lowest level in
this hierarchy and is a guess or belief only.

Endres and Rombach (Endres and Rombach, 2003) describe three
stringent criteria for accepting existing knowledge as a law: First, an
underlying hypothesis exists that has been validated; second, the explicit
kinds of studies used for the evaluations are determined (e.g., case

The In2Test Approach

 85

study, experiment); and third, replications of studies are conducted in
different environments. However, it is sometimes more difficult to
distinguish hypotheses and conjectures. Carver et al. (Carver et al., 2004)
or Bertolino (Bertolino, 2007), for instance, utilize the term assumptions
when referring to empirical studies.

Consequently, an adaptation of the model proposed by Endres and
Rombach (Endres and Rombach, 2003) was performed, and a distinction
into assumptions and evaluated assumptions (i.e., evidence) is made in
the following. An assumption describes context-specific relationships
that are observed or seem to be useful, but are not empirically
grounded. In contrast, evaluated assumptions are based on empirically
valid results that are accepted in the given context. In order to explain
the evaluated assumptions, the results can be used to derive a theory for
the given context.

Instead of starting with observations to derive assumptions, sometimes a
theory is stated first, which subsequently has to be confirmed or rejected
based on assumptions derived from the theory. Figure 25 summarizes
these concepts.

Figure 25 Concepts for empirical software engineering.

Context-specific relationships can be derived analytically or empirically.

1. Analytically: Based on a systematic analysis of a certain environment,
which includes considering process and product structures (e.g.,
development and quality assurance processes; experiences of developers,
inspectors, and testers; size and complexity of product to be developed),
assumptions regarding the relationships can be derived in a logical
manner. For example, consider that only parts of a system were
inspected due to an insufficient amount of time available for inspections;
consequently, testing should especially focus on those parts of the
systems that had not been inspected.

The In2Test Approach

 86

2. Empirically: Based on (i) empirical knowledge from different
environments and (ii) new experiences from a given context,
assumptions regarding relationships can be derived empirically. First,
accepted empirical knowledge from different contexts can be used and
adapted to a given context. Examples in the area of quality assurance
that are often found in the literature are that developers are unsuited to
test their own code or that most of the defects are found in a small
number of modules. Such empirically proven knowledge can be adapted
and a corresponding assumption has to be checked in the given context.
Second, when performing certain processes in a given context, new
observations may be made, resulting in new or refined assumptions. This
means that new empirical knowledge about certain relationships is
gained. For example, when classifying defects according to a certain
defect classification, new insights about which defect types are found by
different quality assurance activities can be obtained.

4.4.2 Structured Description of Relationships

This section presents a structure for describing relationships between
quality assurance processes. In addition, it describes how such
assumptions can be made operational. This is exemplarily shown by
transferring them into so-called selection rules that are used for
integrating inspections and testing.

In order to be able to understand various processes, and consequently to
improve them, knowledge regarding the relationships between such
processes is required. Such knowledge about relationships can be
considered as experience. In general, experiences are valid within a
certain scope. This scope can be characterized by the context (i.e., the
environment with all kinds of factors that might have an influence on
the experience) and the degree of validity of the experience (simplified,
this means how many times the experience has been gained or
confirmed). Jacobs et al. (Jacobs et al., 2007) give an extensive overview
of possible factors that characterize a context and that might have an
influence on quality assurance activities. Petersen and Wohlin present a
high-level overview of context factors (Petersen and Wohlin, 2009). In
order to emphasize that there are many different experience items, we
call one item an experience element (Feldmann et al., 1997).

In the area of inspection and testing, an exemplary assumption can be
seen in Figure 26 (context and significance are initially not considered
here).

The In2Test Approach

 87

Figure 26 An exemplary assumption.

This assumption has already been mentioned before and describes the
frequently observed Pareto distribution (Boehm and Basili, 2001) with
respect to inspection and test defects, i.e., the relationship between
inspections and testing is covered. Selection rules operationalize
assumptions so that they can be applied. Different concrete selection
rules that make the assumption operational are conceivable, for example
the first three seen in Figure 27.

Figure 27 A set of different selection rules.

With respect to the validity of assumptions and derived selection rules,
each one has to be evaluated in a new environment in order to identify
the most suitable ones in a given context.

A selection rule consists of an action that describes what to do, and a
precondition that describes what has to be true in order to perform the
action. For example, an action may be to focus a testing activity such as
unit testing on certain code classes. Furthermore, a precondition is made
of a logical expression (simple or concatenated) and corresponding
concrete thresholds, and uses inspection defect data (e.g., selection rules

The In2Test Approach

 88

1-3), and optionally metrics (e.g., selection rule 4) or historical data (e.g.,
selection rule 5) in addition. However, due to the fact that it is
sometimes difficult to determine thresholds at the beginning, a
precondition could remain vague at first (e.g., the general direction of
the precondition, like “low” or “high”, could be stated initially), and
could get refined when more knowledge is gathered during quality
assurance runs.

With respect to the validity of assumptions and derived selection rules,
each has to be evaluated in a new environment in order to identify the
most suitable ones in a given context, i.e., the scope of validity has to be
determined.

Figure 28 summarizes the concepts of how relationships can be
described in a structured manner.

Figure 28 Structural model of relationships.

4.4.3 Guidelines for the Systematic Evaluation of Context-specific Assumptions

Assumptions that are initially stated should be refined, i.e., they should
be evaluated by gaining new empirical evidence and by considering
further context factors.

In general, the result of the evaluation of an assumption can be positive
or negative. If the assumption was confirmed, all relevant context factors
and the results should be packaged and additional evaluations should be
performed in order to increase the significance of the evidence (i.e., the
empirical evidence regarding the assumption). If the assumption was not
confirmed, this might have different reasons; for example, the

The In2Test Approach

 89

assumption may be wrong in general or context factors were not
considered or behaved differently in the given context.

Besides an initial evaluation of assumptions in order to understand
certain relationships, continuous evaluations are necessary to improve
the observed phenomena in the best possible way and to enable further
adaptations, for example, due to subsequent context changes. For
example, consider the assumption that in a certain context where
software is further developed via releases, 75 percent of the defects are
detected by inspections and 25 percent are found by testing. This means
that, based on the inspection results, the number of remaining defects
for testing can be predicted. If the context factor ‘experience of
inspectors’ changes due to new team members who have less
experience in performing an inspection, the ratio between inspection
and test defects may change. Another change of a context factor might
be if a complete new software product is developed instead of new
releases of a mature product. This may also lead to a different ratio
between inspection and test defects.

A comprehensive evaluation of assumptions, both analytically and
empirically derived ones, may lead to a profound basis of empirical
evidence. Ultimately, this may result in new theories.

A more detailed view on how to evaluate relationships in a certain
context and how to maintain evidence is provided next.

Context Check

In order to achieve the highest possible effort reduction for a prioritized
testing activity at the best possible quality, the assumptions stated
should also be evaluated during inspection and testing activities. This is
especially relevant with respect to context factors that might change
during the development and quality assurance activities.

Consider the following example. The assumption is made that code
classes in which the inspectors have found a significant number of
defects contain more defects. Consequently, these code classes should
be prioritized for testing. One underlying context factor is the experience
of the inspectors. In the exemplary environment, the assumption is only
true when low-experienced inspectors conduct the inspection. Thus,
when a project manager or quality assurance engineer plans testing
activities, he has to consider the context factors. If, for example, only
inspectors with low experience are available, the assumption may be true
and he can prioritize code classes for testing in which the inspectors
have found defects. However, it may happen that suddenly inspectors
are available with high experience, and the assumption initially made in
this case is not true, because in past quality assurance runs, it appeared
that experienced inspectors found most of the problems in the inspected

The In2Test Approach

 90

code classes and testing did not reveal many new defects. Consequently,
if such a change of a context factor happens and if the project manager,
respectively quality assurance engineer, knows about the influence of a
context factor on the relationships, he is able to adapt the test strategy
with respect to the changed context factors.

Maintenance of Evidence

In order to be able to decide which assumptions and derived selection
rules are suitable in a given context for focusing testing activities based
on inspection results, a retrospective analysis is necessary. For conducting
such an analysis, data gathered during the quality assurance run have to
be considered. This comprises at least inspection defect data and test
defect data. For a detailed analysis, a representation of the number of
defects found per part has to be given, e.g., the number of defects
found per code class. Furthermore, if the defect type is considered in the
assumptions, the number of defects found per defect type is needed.
Finally, if additional metrics are used (e.g., size, complexity), these data
also have to be captured, e.g., size – measured in lines of code – per
code class.

Evidence

Selection rule
and assumption

(SR+A)1

Context C1

Significance S

New evidence

Selection rule
and assumption

(SR+A)1

Context C1

Significance S+1

Selection rule
and assumption

(SR+A)2

Context C1

Significance
1 or S*+1

Selection rule
and assumption

(SR+A)2

Context C2

Significance
1 or S*+1

Selection rule
and assumption

(SR+A)1

Context C1

Significance S

1. Selection rule and assumption
showed expected result

2. Selection rule and assumption
did not show expected result

3. Assumed context
was incorrect

New evidence

New evidence

Figure 29 Maintenance of evidence.

The In2Test Approach

 91

Figure 29 gives an overview of the three possibilities when selection rules
and assumptions are evaluated in order to maintain their evidence. An
exemplary model for packaging project experience (Heidrich et al., 2006)
is used to store a set of assumptions and selection rules, respectively
their performance in the completed quality assurance run. The focusing
of testing activities starts by choosing selection rules and assumptions
stored in a database before they are applied in a new project. The
selection rule and the assumption (SR+A)1 used are valid in a given
context C1 and have a certain significance gained from application in S
former projects. An analysis with respect to the gathered data can lead
to three different possibilities:

1. The selection rule and the corresponding assumption were
correct during the completed quality assurance run, i.e., the
focusing of testing activities based on the inspection results
was appropriate and led to the expected results (i.e., all
defects were found). In this case, significance is increased
by one.

2. The selection rule and the corresponding assumption were
incorrect during the completed quality assurance run, i.e.,
the focusing of testing activities based on the inspection
results was not appropriate and did not lead to the
expected results (i.e., defects were not found). In this case,
an alternative assumption and selection rule or another
selection rule of the used assumption has to replace the
original one used in the given context. Significance is set to
one (if applied the first time) or S*+1 (if applied successfully
S* times before).

3. The project context was different for the completed quality
assurance run, i.e., concrete values of certain context
factors were assumed (e.g., experience of inspectors is low),
but after following the processes, this turned out to be
wrong due to hidden or changed context (e.g., the
experience of the inspectors was actually high).
Consequently, the original selection rule and assumption
are kept as is, and a new selection rule and assumption are
used in the changed context with the two possibilities of
significance as shown in the second case.

Conclusions from such an analysis should be considered in subsequent
quality assurance runs.

In order to perform a maintenance analysis of assumptions, and
considering experiences gained from the analyses of the assumptions
and selection rules, the maintenance model seen in Figure 29 was
adapted. In order to be able to judge the quality of selection rules and to

The In2Test Approach

 92

decide which assumptions are most appropriate, a four-scale evaluation
scheme is introduced next to assess the selection rules. In this thesis, only
the first two cases of the model are considered (i.e., assumptions and
selection rules showed the expected results, respectively did not show
the expected results), and the third case is omitted (i.e., the assumed
context was incorrect). In addition, the focus is on system parts (and
defect types are not covered explicitly in the following).

A B C D E

Category: 1 (excellent) Category: 2 (good)

Category: 3 (bad)

Interpretation

Category: 4 (worst)

 Defect-prone
parts during

testingDefect-free
parts during

testing

Evaluation rule: All parts in which test defects are
found are prioritized, and parts in which no test

defects are found are not prioritized.

Evaluation rule: All parts in which test defects are
found are prioritized, but also parts in which no test

defects are found are prioritized.

Evaluation rule: Only some parts in which test defects
are found are prioritized (includes also the prioritization

of parts in which no test defects are found).

Evaluation rule: No part which is defect-prone is
prioritized.

A B C D E

A B C D E

A B C D E

Prioritization based on inspection results Prioritization based on inspection results

Prioritization based on inspection results

Interpretation Interpretation

Interpretation

Prioritization based on inspection results

1. Assumption and selection rule showed expected results

2. Assumption and selection rule did not show expected results

Figure 30 Four quality categories (using strong evaluation rules).

If an assumption and the derived selection rule showed the expected
results, two refined possibilities for their evaluation exist, i.e., a selection
rule can be classified into category one or two if all defects are found
with the prioritization (i.e., the selection rule is correct). The two
categories differ with regard to the selection of additional parts (e.g.,
code classes), which would result in lower efficiency. If an assumption
and the derived selection rule did not show the expected results, again
two possible evaluations exist. Categories three and four comprise

The In2Test Approach

 93

selection rules that select none or only some of the defect-prone parts
(e.g., code classes), which results in reduced overall effectiveness (i.e.,
the selection rule is incorrect, which means that not all or none of the
defects are found with the chosen selection rule). Figure 30 shows
examples of each of the four categories.

Even though the main goal of the integrated approach is to reduce the
effort for testing activities, no defects should remain uncovered (i.e.,
strong evaluation rule), respectively a certain threshold should not be
exceeded (i.e., weak evaluation rule) when applying a selection rule.
Thus, selection rules classified into one of the first two categories
represent selection rules of the highest quality. A selection rule that
prioritizes all system parts (e.g., code classes) would also have been
placed into category two. However, this case is excluded because no
effort reduction would be achievable. The third category contains
selection rules that overlook defect-prone parts, but select some defect-
prone parts. Thus, a combination or consideration of selection rules of
this category could improve the prioritization of defect-prone parts and,
consequently, should be further analyzed in future QA runs. Finally,
selection rules of category four do not lead to any appropriate
prioritization and thus are negligible.

Figure 31 Exemplary analysis of selection rules for one quality assurance run.

All selection rules have to be evaluated for a given quality assurance run.
Figure 31 shows a concrete example of the analysis with respect to code
classes. The stated assumption and derived selection rules are applied
with respect to the inspection defect data; the corresponding code
classes are selected and compared with the defect data found during

The In2Test Approach

 94

testing. Afterwards, a quality category can be determined for each
selection rule. Selection rules that are classified as excellent or good (i.e.,
1 or 2) were correct and should be considered in detail for future quality
assurance runs. Selection rules classified as bad (i.e., 3) should also be
considered, as some parts are prioritized correctly. However, a
combination with different selection rules might improve the
prioritization. Selection rules classified as worse (i.e., 4) do not provide
any appropriate prediction and are candidates for selection rules that do
not fit in the given context. However, more evidence has to be gained by
analyzing the selection rules during additional quality assurance runs.

The results of the selection rules can be aggregated in order to
determine whether the general assumption tends to be correct or
wrong. Furthermore, an analysis of assumptions and selection rules can
be performed on more than one level (e.g., code level, system level).

In order to perform a trend analysis, i.e., to analyze which assumptions
and selection rules are suited best across more than one quality
assurance run, selection rules have to be classified according to the
available data. Table 9 shows what this might look like.

Table 9 Exemplary trend analysis of selection rules.

QA run 1 QA run 2 QA run 3 … QA run n
Assumption 1
Selection rule 1.1 1 3 1 … …
Selection rule 1.2 4 3 3 … …
Selection rule 1.3 4 4 2 … …
Selection rule 1.4 1 1 2 … …

Assumption 2
Selection rule 2.1 1 2 2 … …
Selection rule 2.2 4 3 1 … …
Selection rule 2.3 4 4 4 … …
Selection rule 2.4 1 1 3 … …

For example, selection rules 1.1, 1.4, 2.1, and 2.4 show promising results
with some outliers (which should be analyzed in more detail; some
reasons might be that the evaluation rule was too strong or that
influence factors, respectively context factors, were not considered).
Selection rules 1.3 and 2.3 showed bad results. Selection rules 1.2 and
2.2 should be analyzed in more detail; the first one considered in the
second and third QA run some defect-prone parts and could be
combined with another selection rule; the second one showed
inconsistent results, which could be explained by certain context factors
that have changed (e.g., the experience of the inspectors) or were
hidden (i.e., not considered). However, independent of the concrete
quality categories, such a representation gives an appropriate overview
that can be used for trend analyses. This view could be enhanced by
using a color scheme (e.g., dark green for the best ones, red for the

The In2Test Approach

 95

worst selection rules) or aggregated (e.g., by using higher numbers for
good predictions and summing them up).

It is assumed that in larger industrial environments, selection rules will be
mostly rated into categories two and three, i.e., the extreme values that
a selection rule finds all defect-prone parts or does not find any defect-
prone part are rather untypical. Therefore, a combination (i.e., OR
concatenation) of such selection rules might result in better focusing.
However, in this case, one has to ensure that not all parts are tested
again, i.e., one has to omit the case that the different combined
selection rules select all parts again.

4.4.4 Context-specific Relationships between Inspection and Test Defects

Jeffery and Scott (Jeffery and Scott, 2002) state that a profound
underlying theory in the area of software inspections is missing. This lack
is even more critical when inspection and testing techniques are
combined to exploit certain synergy effects, such as reduced effort or
higher defect detection rates. Consequently, there is no way to avoid
making assumptions regarding relationships that have to be
systematically analyzed afterwards. However, there exist a number of
accepted evaluated assumptions or laws, as Endres and Rombach
(Endres and Rombach, 2003) call them, which can be used and adapted
to the area of combined quality assurance techniques. Due to unknown
or partially unknown relationships, an initial set of different assumptions
are listed below that may form a starting point for evaluating them and
that might lead to theories in the future. A distinction is made between
analytically and empirically derived assumptions, and explanations,
respectively empirical evidence, are presented to substantiate the given
assumptions. Each of these assumptions has to be evaluated in different
contexts in the future in order to show whether it is correct or wrong.
Besides assumptions that consider only inspection results, some
assumptions consider certain product metrics in addition.

Analytical Assumptions

Various assumptions can be derived analytically, i.e., they can be
determined logically. Some examples are presented below.

The In2Test Approach

 96

Sometimes, inspections of certain parts are skipped due to external
reasons that are not related to quality assurance (e.g., time constraints,
missing resources). This may lead to re-planning of quality assurance
activities. Consequently, a testing activity should be focused on the
remaining parts of the system to find additional defects.

Among others, Gilb and Graham (Gilb and Graham, 1993) already
mentioned that inspection and testing complement each other. This also
means that they are able to find different kinds of defects. For example,
Mantyla and Lassenius (Mantyla and Lassenius, 2009) report that code
inspections find evolvability defects (e.g., defects affecting
documentation or structure) that cannot be found by testing activities.
One reason is that those maintainability problems do not affect
functionality that is tested later. In contrast, problems that are only
found when the system is running, such as performance problems, can
be found better or only with testing. However, despite such defect types
that are easy to assign to one quality assurance technique, it is unclear
for many other defect types whether they can be found better with
inspections or with testing.

Furthermore, it is possible to consider context factors and inspection
process conformance explicitly in an assumption. The exemplary
assumption A3 takes the inspection process conformance, the number
of inspection defects found, and the experience of the inspectors into
account. It is assumed that during a properly performed inspection, a
certain number of defects will be found. If the inspectors are very
experienced, it is assumed that most of the defects have already been
found, and different parts can be prioritized for testing.

The In2Test Approach

 97

The exemplary assumption A4 also considers inspection process
conformance. In this case, it is explicitly checked whether the inspectors
have found a low number of inspection defects due to little available
time. In this case, it is assumed that at most minor defects are found,
and thus, testing should be focused on these parts again.

Empirical Assumptions

As mentioned above, little empirical evidence exists in the area of
combined inspection and testing techniques. Therefore, empirical
evidence from related areas is taken and adapted as a starting point.

A large number of different studies performed in various environments
have shown that an accumulation of defects, i.e., a Pareto distribution,
can be observed rather than an equal distribution of defects. One of the
first studies was conducted by Endres (Endres, 1975), who showed,
among other observations, that about 80 percent of the problems are
found in 20 percent of the modules. Further studies were conducted by
Myer (Myer, 1979) and Möller (Möller, 1985) and showed the same
results. Basili and Perricone (Basili and Perricone, 1984) documented that
about 60% of the defects stem from 35% of the modules. A later study
by Möller and Paulish (Möller and Paulish, 1993) described the
distribution of defects within three evolutionary versions of a software
product and confirmed the initial results, showing that about 55% to
70% of the defects were contained in 20% of the modules. Later
observations (Ohlsson et al., 1996; Fenton and Ohlsson, 2000; Ostrand
and Weyuker, 2002; Denaro and Pezze, 2002) resulted in the rule of
thumb that 80% of all defects can be found in 20% of the modules
(Boehm and Basili, 2001; Shull et al., 2002). Some recent studies have
confirmed these results (Anderson and Runeson, 2007; Turhan et al.,
2009; Hamill and Goseva-Popstojanova, 2009; Ostrand et al., 2010).

The In2Test Approach

 98

A size metric is often used to prioritize defect-prone parts and thus, to
focus a testing activity. Though this metric is often applied, a number of
studies has shown inconsistent results when size is applied as the sole
metric for predicting defect-prone modules. Emam et al. (Emam et al.,
2002) state that if models are built to predict fault-proneness, other
variables than just size should be used. A number of studies were
identified in which small code modules, respectively methods, tended to
be more defect-prone (Basili and Perricone, 1984; Möller and Paulish,
1993; Ostrand and Weyuker, 2002; Turhan et al., 2009). However, some
studies showed the opposite (Emam et al., 2002) or inconsistent results
(Fenton and Ohlsson, 2000; Anderson and Runeson, 2007). Thus, a
combination of assumption E1 (i.e., Pareto distribution of defects) and
size might lead (a) to a more detailed and fine-grained assumption and
(b) to a better prediction of defect-prone parts than using a size metric
alone.

Another metric frequently used to predict defect-prone parts and thus,
to prioritize those parts for testing activities is complexity. Munson and
Khoshgoftaar (Munson and Khoshgoftaar, 1992) state that “there is a
clear intuitive basis for believing that complex programs have more faults
in them than simple programs”. However, Schröter et al. (Schröter et al.,
2006) note that new metrics or combinations of existing metrics should
be used to study the relationship between complexity and the presence
of bugs. Thus, in order to improve the prioritization of code classes
expected to be most defect-prone, the inspection results can be
combined with a complexity metric, with a focus on code classes that
have high complexity. Nagappan et al. (Nagappan et al., 2006) as well as
Ohlsson and Alberg (Ohlsson and Alberg, 1996) proved a high
correlation between a high McCabe complexity value and the number of
defects. Basili et al. (Basili et al., 1996) showed the same relationship for
different object-oriented complexity metrics. However, there exist also
studies showing that the correlation between complexity metrics and
number of defects is rather low (Fenton and Ohlsson, 2000);
consequently, this assumption has to be evaluated thoroughly.

The In2Test Approach

 99

An accumulation of defects of certain defect types can also be observed
in several studies rather than an equal distribution of defect types,
independent of any concrete defect classification. Several defect
classifications used by Mantyla and Lassenius (Mantyla and Lassenius,
2009) to classify inspection defects show accumulations of some defect
types. Results from experiments comparing inspection and testing
defects that use a defect classification also show an unequal distribution
of defect types (Kamsties and Lott, 1995; Laitenberger, 1998). The same
observation is presented by Chaar et al. (Char et al., 1993), where ODC
is used. Finally, Ohlsson et al. (Ohlsson et al., 1996) state that the
majority of quality costs are often caused by very few defect types.
However, one has to be aware that this is not necessarily so for each
defect type.

Conclusion

In conclusion, various assumptions are possible when analyzing
relationships between inspection and testing techniques. Some of them
seem to be contradictory, such as assumptions A2 and E4; in this case,
future evaluations might show which direction is true in certain contexts.
The defined assumptions can serve as a starting point for such
evaluations.

4.4.5 Application Procedure

The concepts described above (i.e., identification of assumptions,
description of relationships, evaluation) can be summarized into a
concrete procedure that guides a quality engineer or a project manager
when using assumptions and refined selection rules during the
application of the In2Test approach.

First of all, two different cases have to be distinguished:

 Retrospective procedure: The inspection and testing activities are
applied in a non-integrated manner, and inspection and test
defect data are gathered. Afterwards, defined assumptions are
analyzed in order to find the most suitable ones. This procedure
is normally conducted when no information about the
relationships between inspection and testing is available in a
new context.

The In2Test Approach

 100

 Pro-active procedure: The In2Test approach is applied and
assumptions are followed during testing, i.e., focused testing is
actually performed. This procedure is normally conducted when
relationships between inspections and testing are known in a
certain context.

The general procedure comprises four basis steps: preparation,
execution, evaluation, and packaging.

Figure 32 shows the instantiated steps for the retrospective procedure.
The preparation, which is a creative step, can already start before
inspections are conducted, or be performed in parallel to the quality
assurance steps. The execution of the inspection and testing activities
leads to defect data, which are the input for the evaluation. The defined
assumptions and selection rules can be assessed (i.e., maintenance of
evidence can be done), and new ones can be defined, if necessary. If no
concrete thresholds are determined in the selection rules, this can be
done in a retrospective manner (e.g., if a selection rule calls for
prioritizing code classes with high defect content, “high” can be
determined after quality assurance activities are finished). In addition, it
is worthwhile searching for explanations regarding why certain
assumptions work well or do not work at all in the given environment,
i.e., the context has to be considered during the analysis. Finally, the
results should be packaged and used in subsequent quality assurance
runs.

Figure 32 Retrospective procedure for assumptions.

The second case, the pro-active procedure of the In2Test approach,
extends especially the execution step. After assumptions are determined
or selected and refined selection rules are derived that fit the context,
inspection data is considered as input for the prioritization. Based on

The In2Test Approach

 101

these data, the test is focused and conducted. A continuous analysis
(i.e., context check) can be applied in order to check the validity of the
applied selection rules, and adjustments can be made, if necessary.
During the evaluation steps, the results are checked again (i.e.,
maintenance of evidence is performed), and more relationships are
identified, respectively established ones are checked regarding their
validity. Afterwards, the results are packaged. Figure 33 summarizes
these steps.

Figure 33 Pro-active procedure for assumptions.

4.5 Prototype Tool Support

In the context of the development of the Dependability Focused
Inspection Tool (DETECT1) (Elberzhager et al., 2010a), a prototype
module was implemented that supports the focusing of defect-prone
parts and defect types for further quality assurance activities based on
inspection results.

DETECT is being developed using the software development
environment Eclipse. It facilitates a plug-in concept in order to allow
tailoring the tool to different environments with different inspection
processes. DETECT supports the inspection process, i.e., the tool assists
different inspection roles during certain inspection steps. All four
mandatory steps (planning, preparation, meeting, and correction) and

1 The initial name of the tool was DEFECT, which was changed later on

The In2Test Approach

 102

one optional step (follow-up) are currently supported. The corresponding
roles are assigned accordingly, i.e., each role only has access to certain
functionalities. Table 10 presents an overview of the support.

Table 10 Overview of supported inspection steps, roles, and activities of the DETECT tool.

Supported
inspection step

Supported
inspection role Supported activities

planning organizer
creation of checklist(s),
composition of inspection package(s)

preparation inspector defect detection including documentation
meeting scribe creation of final defect list
In 2 Test analysis QA engineer focusing of subsequent QA activities
correction author documentation of corrections
follow-up organizer evaluation of correction

Besides the general inspection support, the In2Test analysis module was
developed which supports a quality assurance engineer. This module is
able to analyze and illustrate inspection data gathered during defect
detection in the preparation step. For example, the number of found
defects per inspected code class, the defect density, or the number of
defects per defect type can be displayed, i.e., different kinds of defect
distributions can be analyzed. Figure 34 shows an example where the
number of issues (A), the number of defects (B), and the respective
defect density (C) for five different inspected artifacts are presented.

Figure 34 DETECT tool: In2Test analysis module showing inspection data.

Furthermore, the In2Test analysis module can be used to define rules and
thresholds in order to prioritize certain parts of the system, and
consequently, to support the focusing of subsequent quality assurance

A

B

C

The In2Test Approach

 103

activities, such as testing. Figure 35 shows a simplified example where
two rules and exemplary thresholds are defined with respect to defect
content and defect density. The tool performs an analysis with respect to
the gathered inspection data, and shows only those modules that fulfill
the requirements of the rules. In the given example, two artifacts fulfill
the selection rule “number of defects > 5” (A), and three fulfill the rule
“defect density > 0.01” (B). The displayed artifacts may be considered in
subsequent testing activities. Each rule can be changed or reset in order
to adapt the selection rules.

Figure 35 DETECT tool: In2Test analysis module showing different rules applied for focusing.

4.6 Limitations

With respect to the requirements stated in Section 2.4, the integrated
inspection and testing approach In2Test can be assessed as follows:

R1: Prediction of defect-prone parts. The approach is explicitly able to
predict parts of a system that are expected to be defect-prone and,
hence, to focus testing activities on those parts. The main inputs for the
prediction are inspection defect data and, optionally, additional metrics
or historical data. Assumptions are used to describe the relationships
between inspection and testing in order to allow a prediction based on
the input information.

R2: Prediction of defect types. The approach is explicitly able to predict
those defect types of which a significant number of defects are likely to
appear during testing activities. The main inputs for the prediction are
inspection defect data and, optionally, additional metrics or historical
data. Assumptions are used to describe the relationships between
inspection and testing in order to allow a prediction based on the input
information.

A

B

The In2Test Approach

 104

R3: Make use of inspection results. The approach uses as main input for
the prediction a defect profile, which comprises quantitative defect data
and defect type information from an inspection.

R4: Make use of historical defect data and further metrics. In order to be
able to improve the prediction, historical defect data and additional
metrics, such as size or complexity, may be used and combined with the
inspection results.

R5: Make use of empirical evidence. Knowledge about the relationships
between inspections and testing, respectively between inspection and
testing defects, is used to make the prediction and to continuously
improve the validity of the prediction. For this, context-specific and
context-independent empirical evidence can be used.

R6: Store experience for later reuse. Defect data and further experiences
can be stored in a database.

R7: Applicable during different lifecycle stages. Due to the fact that
inspections and testing can be applied to different lifecycle stages, this
also holds for the integrated approach, which makes use of these quality
assurance activities.

R8: Able to integrate with different inspection and testing activities. The
In2Test approach can be considered as a light-weight approach because
no existing inspection or testing technique has to be replaced with any
required inspection or testing technique. Instead, a defect profile can
easily be derived from already applied inspection techniques, and
existing testing activities can be focused based on these results.

R9: Adaptable to different environments. As inspections and testing can
be applied in different environments (e.g., embedded systems domain or
information systems domain), this also holds for the integrated
approach.

Table 11 Assessment of requirements with respect to the In2Test approach.

In2Test approach
R1: Prediction of defect-prone parts +
R2: Prediction of defect types +
R3: Make use of inspection results +
R4: Make use of historical defect data and further metrics +
R5: Make use of empirical evidence o
R6: Store experience for later reuse +
R7: Applicable during different lifecycle stages o
R8: Able to integrate with different inspection and testing activities o
R9: Adaptable to different environments +

Requirements

The In2Test Approach

 105

Table 11 summarizes the assessment results. As can be seen, not all
requirements are completely fulfilled, which leads to the following
limitations:

 R5: The approach uses a set of initial assumptions and derived
selection rules, of which some are valid, but others are not.
Consequently, though the approach is generally applicable, the
quality of the focusing depends on the concrete assumptions
made and selection rules chosen.

 R5: The approach does not provide a large set of empirical
evidence that can be re-used in the future when applying the
In2Test approach in different environments. In this thesis, related
empirical evidence about defect distributions was initially used.
However, as already mentioned before, theories about
inspections and testing that describe relationships between
them are very rare. Moreover, any assumptions stated have to
be re-evaluated in each new context in order to identify the
ones most suitable for predictions.

 R7: Though the approach does not have any specific limitation
regarding lifecycle stages, prediction becomes more difficult for
early lifecycle phases, such as requirements. One reason is that
requirements inspection results are often rather broad, which
may make it difficult to focus system testing activities. In
addition, considering inspection results from one development
level to focus testing on another development level (e.g., using
inspection results from a unit test for focusing system testing)
may result in additional challenges, which are currently not
incorporated explicitly in the approach.

 R8: Although the approach does not have any specific limitation
regarding necessary inspection and testing activities, one
prerequisite is a suitable number of inspection defects that is
needed in order to be able to perform a prediction. Certain
inspection techniques, especially more informal ones, tend to
find only few defects, respectively no explicit documentation of
defects is conducted, which makes it hard to apply the In2Test
approach.

Further limitations include:

 Although the In2Test approach considers test exit criteria, the
predictions are currently not used for deciding when to stop
testing. No overall confidence measure is defined yet, i.e., an
answer to the question of when to stop testing if the In2Test
approach is applied is not given yet. An answer to that question

The In2Test Approach

 106

depends on many factors, such as usage scenarios, criticality of
defects, or expected number of defects. Traditional coverage
criteria could be a starting point for deciding when to stop
testing. However, a comprehensive confidence measure has not
been defined yet.

 Although the In2Test approach explicitly predicts certain parts or
certain defect types for testing, no guidance is presented on
how to derive or select test cases for those parts or those defect
types.

 The In2Test approach is currently not embedded into an overall
quality assurance approach to balance specific quality assurance
activities.

4.7 Summary

The integrated inspection and testing approach In2Test was introduced in
this chapter. The main idea is that inspection defect data is used to focus
testing activities. This is supported by assumptions and derived selection
rules, which cover the knowledge about relationships between
inspections and testing. A differentiation was made between a one-
stage and a two-stage approach. The former only focuses testing on
either defect-prone parts or defect types, while the latter one focuses on
defect types within the defect-prone parts.

In addition, a structural model for describing relationships was offered. It
consists of assumptions and the scope of validity, and it refines the
selection rules. Furthermore, concepts for identifying and evaluating
assumptions were presented, and a set of initial assumptions was given.

Besides a detailed description of the approach and the assumptions, the
solution idea was presented, and limitations of the approach were
sketched.

Empirical Validation

 107

5 Empirical Validation

5.1 Overview

This chapter presents the evaluation of the In2Test approach. Section 5.2
describes the evaluation procedure. A GQM plan was developed in order
to ensure systematic validation. Certain measurement goals were refined
into research questions, which formed the basis for corresponding
hypotheses. The section closes with a summary of which hypotheses
were evaluated in which case study. Sections 5.3 and 5.4 describe the
results of the two case studies. In both case studies, a tool was
developed, whose quality was assured with inspections and testing. The
resulting defect data was used to evaluate the In2Test approach. Section
5.5 summarizes the main results of the empirical validation.

With respect to the main results of the case studies, the applicability of
the approach could be shown and the design of the validation could be
verified. One important prerequisite for applying the In2Test approach
and for focusing testing activities is appropriate testability. With respect
to effort reduction, a reduction of test execution effort of between 8%
and 23% could be shown in the first study, and a reduction of between
6% and 34% could be shown in the second study when the focus was
placed on certain parts of the system. Although focusing of defect types
was done, no concrete numbers regarding effort reduction were
obtained.

The same effectiveness was achieved with respect to the effort
reductions. The highest efficiency improvement was achieved in the
second study, with a total of 52%; the first study showed efficiency
improvements of between 9% and 29%. However, these results are only
valid for those assumptions and selection rules that selected all defect-
prone parts. Finally, in the second case study, assumptions and selection
rules were evaluated regarding their validity over two quality assurance
runs, i.e., it was analyzed which ones provided the best focusing results
in both QA runs. It could be shown that nine selection rules (out of 118)
showed the best possible prioritization of code parts, and all of these
selection rules took the inspection results into consideration.

5.2 Evaluation Procedure

A GQM plan (goal, questions, metrics (Basili et al., 1994b)) was used to
systematically derive measurement goals, research questions, and
corresponding metrics. Based on the GQM plan, hypotheses were

Empirical Validation

 108

derived for the validation of the approach. However, only a subset of the
derived hypotheses could be evaluated in this thesis.

Certain goals and the two main hypotheses were already defined in
Chapter 1. The two main hypotheses are:

H1: The effort for applying the integrated inspection and testing
approach is at least 20% less compared to applying non-integrated
inspection and testing processes, with the level of quality of the
product under test that can be achieved being at least equal.

H2: The integrated inspection and testing approach is applicable in
industrial contexts.

Measurement goals 0-4 are covered by the first hypothesis;
measurement goal 5 is covered by the second hypothesis.

5.2.1 GQM Plan and Hypotheses

In the following, the measurement goals, corresponding research
questions, and the derived hypotheses will be described.

MG0: Analyze the integrated approach in order to compare its suitability
with a non-integrated approach from the perspective of a quality
assurance engineer in the context of software development.

Measurement goal 0 covers the detailed measurement goals 1-4, as can
be seen in the following:

MG1: Analyze the integrated approach in order to compare its
consumed effort with a non-integrated approach from the perspective of
a quality assurance engineer in the context of software development.

The first goal was defined to evaluate whether the integrated inspection
and testing approach leads to effort reduction for testing and,
consequently, for the overall QA. For this, a comparison with a non-
integrated inspection and testing approach is necessary, which does not
use the inspection results as a means for focusing the test. This results in
two research questions (RQ):

RQ1.1: Does the proposed In2Test approach lead to effort reduction
for testing when focusing on parts of the system compared to a
non-integrated approach?

RQ1.2: Does the proposed In2Test approach lead to effort reduction
for testing when focusing on defect types compared to a non-
integrated approach?

Empirical Validation

 109

The corresponding hypotheses are stated as follows:

H1.1: The In2Test approach leads to an effort reduction of at least
20% for testing in one QA run when focusing on parts of the
system compared to a non-integrated approach.

H1.2: The In2Test approach leads to an effort reduction of at least
20% for testing in one QA run when focusing on defect types
compared to a non-integrated approach.

MG2: Analyze the integrated approach in order to compare its
effectiveness with a non-integrated approach from the perspective of a
quality assurance engineer in the context of software development.

The second goal was defined to evaluate the quality of the integrated
approach. This means first to evaluate how many defects are found with
the integrated approach compared to a non-integrated one. Second, to
evaluate if the integrated approach uses the inspection results in a way
that those defect types are selected of which most defects are found
during a later testing activity. Two research questions can be derived:

RQ1.3: Does the proposed In2Test approach find at least the same
number of defects during testing compared to a non-integrated
approach?

RQ1.4: Does the proposed In2Test approach find at least the same
number of defects of certain defect types during testing compared
to a non-integrated approach?

The two corresponding hypotheses are stated as follows:

H1.3: The In2Test approach finds at least the same number of
defects during testing in one QA run when focusing on parts of the
system compared to a non-integrated approach.

H1.4: The In2Test approach finds at least the same number of
defects of certain defect types during testing in one QA run when
focusing on defect types compared to a non-integrated approach.

MG3: Analyze the integrated approach in order to compare its efficiency
with a non-integrated approach from the perspective of a quality
assurance engineer in the context of software development.

In order to be able to evaluate whether the integrated approach finds at
least the same number of defects with reduced testing effort,
assumptions and selection rules were considered and had to be
evaluated with respect to their efficiency, i.e., the ratio of number of

Empirical Validation

 110

defects per time unit. Two additional research questions were defined on
which both MG1 and MG2 have an influence:

RQ1.5: Is the proposed In2Test approach more efficient compared to
a non-integrated approach during testing when focusing on certain
parts of the system under test, i.e., are at least the same number of
defects found with reduced effort?

RQ1.6: Is the proposed In2Test approach more efficient compared to
a non-integrated approach during testing when focusing on certain
defect types, i.e., are at least the same number of defects of certain
defects types re found with reduced effort?

Two hypotheses can be derived:

H1.5: The In2Test approach is at least 20% more efficient during
testing in one QA run when focusing on parts of the system under
test compared to a non-integrated approach.

H1.6: The In2Test approach is at least 20% more efficient during
testing in one QA run when focusing on defect types compared to a
non-integrated approach.

MG4: Analyze the integrated approach in order to evaluate the validity
of the underlying assumptions from the perspective of a quality
assurance engineer in the context of software development.

In order to be able to evaluate the validity of the assumptions used for
focusing certain parts of the system and certain defect types for testing
with the In2Test approach, defect results from an environment of more
than one QA run are necessary. The following research questions can be
derived:

RQ1.7: Which assumptions and derived selection rules lead to the
highest efficiency for the given context for more than one QA run
when applying the In2Test approach for focusing parts of the
system?

RQ1.8: Which assumptions and derived selection rules lead to the
highest efficiency for the given context for more than one QA run
when applying the In2Test approach for focusing defect types?

The following hypotheses are derived:

H1.7: A set of assumptions and derived selection rules can be found
that lead to the highest efficiency when applying the In2Test
approach in more than one QA run for focusing parts of the system.

Empirical Validation

 111

H1.8: A set of assumptions and derived selection rules can be found
that lead to the highest efficiency when applying the In2Test
approach in more than one QA run for focusing defect types.

A GQM plan of the measurement goals and questions stated above,
enriched by concrete metrics and covering hypothesis H1, can be found
in Figure 36.

Figure 36 GQM plan, comprising measurement goals, questions, and metrics for hypothesis H1.

MG5: Analyze the integrated approach in order to evaluate its
applicability in industrial contexts from the perspective of quality

Empirical Validation

 112

assurance engineers, inspectors, testers, and developers in the context of
software development.

The integrated In2Test should be applicable, which can be refined into
the following research questions:

RQ2.1: Do users see a benefit when using the proposed In2Test
approach compared to state-of-the-practice approaches?

RQ2.2: Do users easily understand the proposed In2Test approach?

RQ2.3: Are users able to apply the proposed In2Test approach?

RQ2.4: Do users perceive the prioritization of the proposed In2Test
approach as reasonable?

One hypothesis was derived from these questions:

H2.1: The proposed In2Test is considered applicable by experienced
practitioners.

A GQM plan of the measurement goal and derived questions stated
above, enriched by concrete metrics and covering hypothesis H2, can be
found in Figure 37.

Figure 37 GQM plan, comprising measurement goals, questions, and metrics for hypothesis H2.

Empirical Validation

 113

5.2.2 Validation Strategy

One main goal of the integrated inspection and testing approach In2Test
is to focus testing activities based on inspection results in order to save
effort. The approach is able to focus test activities on parts of a system
under test or on defect types. However, in order to rely on such
prioritizations, a number of quality assurance runs have to be conducted,
data have to be gathered, and assumptions have to be analyzed.
Therefore, one focus of the evaluation was the application of the In2Test
approach in one or two quality assurance runs in order to analyze the
general potential of the approach. Analyzing the validity of the
underlying assumptions is rather difficult because a large amount of
defect data gathered from several quality assurance runs in one or more
environments is necessary. This will be part of future work. Furthermore,
the approach considers test exit criteria, but their concrete influence has
not been investigated in detail yet. This also belongs to future work.
Finally, focusing on defect types with respect to an evaluation of effort
reduction is difficult because a set of test cases has to be defined for
such an analysis. However, the case studies presented in this thesis
mainly use existing test cases. Therefore, further evaluation of the
prioritization of defect types has to be done in the future.

Two empirical studies were conducted. In these studies, mainly
measurement goals one to three were addressed, i.e., the effort, the
effectiveness, and the efficiency of the In2Test approach were evaluated.
For this, two different tool developments were considered and
corresponding quality assurance activities were performed. Besides
addressing different hypotheses, the study design was also verified in the
first case study. In the second case study, two quality assurance runs
could be considered, which resulted in first insights regarding confidence
in the underlying assumptions used by the integrated approach in a
given environment. However, additional quality assurance runs would be
needed in order to improve the validity of the initial focusing results.

Table 12 Research hypotheses and case studies.

Hypothesis Case study I Case study II
H1.1: Effort (system parts) x x
H1.2: Effort (defect types) (x) (x)
H1.3: Effectiveness (system parts) x x
H1.4: Effectiveness (defect types) x x
H1.5: Efficiency (system parts) x x
H1.6: Efficiency (defect types) (x) (x)
H1.7: Validity of assumptions (system parts) x
H1.8: Validity of assumptions (defect types)
H2.1: Applicability in industrial contexts

Empirical Validation

 114

Table 12 shows an overview of which hypotheses were evaluated in
which study and which hypotheses belong to future work evaluations.
Besides the two case studies conducted, two different designs for future
experiments were determined (see Appendix B). The first design was
applied during a pilot study with students. The study design could be
verified, and the integrated approach helped the students during testing.
However, due to the low number of testers, new technologies used, and
time pressure, no concrete evaluation results were gained with respect
to the stated hypotheses. A questionnaire was defined to allow
analyzing the applicability of the approach in industrial contexts (see
Appendix C). Finally, first evaluation results from an ongoing evaluation
in an industrial context can be found in Appendix D.

5.3 Case Study 1: DETECT

5.3.1 Context of the Study

A Java tool called DETECT (dependability focused inspection tool)
(Elberzhager et al., 2010a) was used for evaluating the integrated
inspection and testing approach. The tool supports people who perform
an inspection. At the time of the study, it mainly supported individual
defect detection with the help of different kinds of reading support and
allowed defining new checklists for use during defect detection. The
different kinds of reading support include different tree structures
(security goal indicator trees, short: SGIT (Peine et al., 2008), goal-
indicator trees, short: GIT (Elberzhager et al., 2010b)), flow graphs (VID
(Shields, 2008)), and two kinds of checklists (guided checklists
(Elberzhager et al., 2009) and traditional checklists (Fagan, 1976;
Laitenberger and DeBaud, 2000)). The tool provides a three-part view for
the inspector: a tracking mode that documents each step on the left-
hand side; the artifact to be checked in the middle; and the
corresponding reading support (e.g., a checklist) on the right-hand side.

The tool was mainly developed by one developer. At the time of the
study, it consisted of about 57,000 lines of code (without blank lines and
comments), about 380 classes, and about 2,300 methods. The developer
identified the critical code parts that should be inspected and discussed
the selection of the code classes with the inspection team. In order to be
able to finish the inspection within existing time constraints, it was
decided to inspect only one kind of reading support, namely GITs
(Elberzhager et al., 2010b). Overall, six inspectors checked 12 code
classes, comprising about 7,300 lines of code. Each inspector checked
four code classes, consisting of about 2,500 lines of code.

Table 13 shows the experience, respectively the knowledge, of the six
inspectors regarding the inspection, the reading support to be checked,
and the code structures (i.e., programming knowledge). Three values

Empirical Validation

 115

(low, middle, high) are used for the classification. Finally, the checklist
that was assigned is presented. Most got one checklist, except for
inspector #4, who got two.

The testing activities were performed by the developer of the tool and
one additional tester. Neither was involved in the inspection.

Table 13 Experience of inspectors and assigned checklists (o=low, +=middle, ++=high).

No.
Inspection
knowledge

GIT
knowledge

Programming
knowledge Defect detection focus

1 + ++ ++ requirements
2 ++ ++ ++ requirements
3 + o ++ implementation
4 ++ + ++ implementation, reliability
5 ++ o o code documentation
6 ++ ++ + code documentation

5.3.2 Design of the Study

First, a code inspection using checklists was performed by six computer
scientists (step 1). Some checklist questions were taken from existing
checklists that fit the given context (Burnstein, 2002), and new checklists
questions were derived based on feedback from experienced developers
and quality assurance engineers (see Appendix A for the checklists used).
Overall, four different checklists were used, addressing requirements
fulfillment, implementation, reliability, and code documentation. Each
checklist consisted of three to eight questions and was assigned to those
inspectors who could answer the questions effectively. Using so-called
focused checklists that are adapted to the environment instead of using
standard checklists improves effectiveness and is consistent with
recommendations found in the literature (Gilb and Graham, 1993).
Finally, the checklists were mapped to the relevant code classes by the
developer of the tool so that each inspector checked four code classes.
One experienced quality assurance engineer aggregated the findings
from all inspectors. The developer analyzed each problem and decided
whether a real defect had been found that had to be corrected or
whether problems that were documented by an inspector were only due
to a misunderstanding and could be removed without correction.

The next step was the quality monitoring of the resulting inspection
defect profile (step 2). Reading rate, overall number of found defects,
and defect distribution were considered.

Step 3 comprised the prioritization, i.e., a prediction of defect-prone
parts and defect types had to be made. For this, four context-specific
assumptions were determined that were to be evaluated. The intention
was to generally analyze the relationships between inspection and test

Empirical Validation

 116

defects, which is why very basic assumptions were used that are easy to
apply.

Finally, selecting test cases and conducting focused testing activities
were the last steps (step 4). However, in order to be able to evaluate the
stated assumptions, the prioritized as well as the non-prioritized parts
were tested by two testers. This enabled a detailed analysis of the
assumptions regarding their appropriateness. First, a unit test of code
classes was started. Test cases were derived using equivalence
partitioning. Code classes that had been inspected and some additional
ones identified as being most critical or important were selected for
testing. However, it turned out that efficient unit testing was not
possible due to bad testability of the code classes. The code structure did
not suit the unit test approach (e.g., due to anonymous inner classes,
anonymous threads, private fields and methods). To neutralize the
problems of the code structure, mocking frameworks (i.e., a simulation
of the behavior of code classes) were used. However, these frameworks
turned out to be very complex for inexperienced testers.

Besides unit testing, a manual system test was conducted in order to
analyze whether prioritization is possible between different levels (i.e.,
using defect information from the code level to guide tests for the
system level). System tests were derived through typical walkthrough
scenarios that followed the main functionality offered by the tool.
Afterwards, the results from this testing activity were used as a baseline
and compared to the prioritization when the defined assumptions were
evaluated.

In the case study, the following variables were considered: The number
of found defects was measured as defect content (absolute number) and
defect density (number of defects per lines of code). For defect
classification, ODC was used (ODC, 2002). Effort was measured in
minutes; size was measured in lines of code (all lines of code were
counted, including blank lines and commentary lines). Efficiency was
calculated using the number of defects found per minute. Finally, three
severity classes were distinguished.

5.3.3 Execution of the Study

Conducting the Inspection (Step 1)

Before the inspection was performed, a team meeting was held where
the checklists were explained and an overview of the code to be
inspected was presented. Afterwards, each inspector checked the
assigned code classes with the assigned checklist and documented all
findings and the place of occurrence in a problem list. In addition, defect
type and defect severity were recorded. Each code class was checked by

Empirical Validation

 117

at least two inspectors. Overall, 1450 minutes were spent on individual
defect detection (ranging from 90 to 280 minutes consumed per
inspector).

One experienced quality assurance engineer compiled the defect
detection profile and the developer of the tool checked for each defect
whether it had to be corrected or not. Of 236 problems found by all
inspectors, 189 defects to be corrected remained. Table 14 shows the
defect content (absolute number of defects) and defect density (absolute
number of defects divided by lines of code) of the twelve inspected code
classes. Table 15 shows a sorted list of the ODC-classified defects. 54
defects (e.g., unclear or missing comments) could not be classified
according to any of the existing defect types.

Table 14 Defect content and defect density of each inspected code class.

Code class I II III IV V VI VII VIII IX X XI XII
Defect content 4 18 19 2 34 18 13 24 31 11 10 5
Defect density .009 .021 .020 .008 .061 .057 .038 .031 .045 .026 .031 .016

Table 15 ODC-classified defects from inspection.

ODC defect types Sub-total ODC defect types Sub-total Total
algorithm / method 53 relationship 1
checking 36 timing / serialization 0
function / class / object 32 interface / o-o messages 0
assignment / initialization 13 other 54

Sub-total 134 55 189

Monitoring the Inspection Results (Step 2)

Because this was the first systematic quality assurance run of the DETECT
tool, no historical data was available that could be used for monitoring
the inspection results. Therefore, data from the literature was
considered. The reading rate was about 630 lines of code per hour. The
number is rather high compared to reading rates recommended in the
literature (Barnard and Price, 1994), but consistent with experiences
from industry (Cohen, 2006). Some reasons for the high number are that
all lines of code were counted (including blank lines and comments) and
that the individual checklists guided the inspectors to certain parts,
whereas other parts were read faster. Finally, the overall number of
found defects seemed reasonable compared to the first study and the
distribution of minor, major, and crash defects was also similar to the
first study.

Empirical Validation

 118

Prioritization (Step 3)

In order to guide testing activities, a prediction of defect-prone parts and
defects of those defect types that are expected to appear during testing
was made, i.e., those parts and defect types were prioritized. Four
assumptions were stated, including instructions for the prioritization. A
short explanation of each assumption is given next. More details,
empirical evidence, and explanations can be found in Section 4.4 and in
(Elberzhager et al., 2010c, 2011a, 2011c).

It is reasonable from a logical point of view that parts that had not been
subjected to quality assurance yet would still contain defects. Therefore,
parts not yet inspected should be especially considered during testing.

In contrast, assumption 2 predicts defects in those parts of a system
where the inspection already has found defects. A lot of empirical
evidence exists that shows a Pareto distribution of defects, i.e., about 80
percent of the defects are often found in about 20 percent of the
modules (Boehm and Basili, 2001).

Inspection and testing complement each other, resulting in different
defects found by those two quality assurance activities (Gilb and
Graham, 1993). Therefore, it is reasonable to focus inspection and
testing activities on those defect types that can be found best by using
them.

Empirical Validation

 119

Ohlsson et al. (Ohlsson et al., 1996) states that the majority of quality
costs are often caused by very few defect types. Consequently, focusing
on certain defect types for testing based on inspections appears
reasonable.

A derivation of concrete selection rules is skipped here because the
assumptions are appropriate for an initial analysis in the given context.
However, selection rules can be derived easily using the corresponding
inspection defect profile.

Selecting Test Cases and Conducting the Testing Activities (Step 4)

To evaluate the integrated inspection and testing approach and the
stated assumptions, testing activities were performed without
considering the inspection defect profile for the prioritization (however,
the inspection defects were corrected before testing activities started).
40, respectively 42, similar test cases were applied during system test by
the two testers, covering the main functionality of the tool, i.e., different
kinds of reading support, the interaction of reading support and an
artifact to be inspected, the generation of a report of the findings, and
the creation of a checklist were tested. In addition, some explorative
testing was performed by the tester who did not develop the tool.

Table 16 Test results from system testing.

tester 1 tester 2 tester 1 tester 2 tester 1 tester 2
reading support: GIT 3 3 1 1 id1, id8* id1
reading support: SGIT 3 3 0 1 id9* id1
reading support: GC 3 3 0 0 id10*
reading support: VID 0 11 0 1 id11* id1
reading support: CL 1 1 0 0

interaction 15 8 5 2

id2, id3,
id4, id6,

id7, id12* id2, id3
report generation 1 1 1 0 id5, id13*
checklist creation 16 10 1 0 id4

Number of
test cases

Number of
defects found Defect ids

Tested functionality

Empirical Validation

 120

During the system test, seven additional defects regarding functionality
were found by the two testers. Running the defined test cases took
about 90, respectively 120 minutes. In addition, effort for explorative
testing, test documentation, debugging, and correction was consumed,
resulting in an overall test effort for both testers of about 14 hours. The
distribution of defects with respect to functionality can be found in Table
16 (id1 – id7). Tester 1 found one defect (defect id 1) when testing the
GIT reading support (which was inspected on the code level). However,
this defect is independent of the concrete reading support. Tester 2 also
found this defect when testing GITs, but also when testing SGITs or
VIDs. Furthermore, most of the defects occurred when testing the
interaction between reading support and the artifact view. Two more
defects were found when testing checklist creation and report
generation. In addition, tester 1 found six more usability problems that
were equally distributed (id8* – id13*), i.e., for almost each functionality
tested, one usability problem was found.

5.3.4 Results of the Study and Lessons Learned

H1.1 Effort (system parts): Overall, an effort reduction of between 8%
and 31% was achieved by the integrated inspection and testing
approach when focusing on system parts, i.e., testing certain
functionality. Only the test case execution time was considered. The
achievable effort reductions depend on different assumptions and
selection rules.

H1.2 Effort (defect types): No explicit effort reduction was measured
when testing was focused on defect types. However, the applied
assumptions only selected a subset of defect types, which might result in
effort reduction for testing.

H1.3 Effectiveness (system parts): An assumption and corresponding
selection rules were found that led to finding the same defects when
prioritizing only certain parts of the system for testing.

H1.4 Effectiveness (defect types): Using the inspection defect profile
from the code level in order to prioritize defect types for system testing is
rather difficult. An analysis showed that two defect types found during
inspection are also found during testing. However, it is unclear how to
use the defect type information from inspections for deriving system test
cases based on the defect classification used.

H1.5 Efficiency (system parts): Our first objective was to check
whether the inspection defect information could be used to predict
defect-proneness within code classes in order to focus unit testing
activities efficiently. Applying assumption 1, especially those code classes
would have been prioritized for testing that had not been inspected. In

Empirical Validation

 121

contrast, assumption 2 would have prioritized code classes in which
many defects had been found by the inspection. Different concrete
selection rules can be derived to operationalize the assumptions. For
instance, when applying assumption 2, defect content or defect density
could be used to express what ‘large number of defects’ means. Such an
instantiation could have led to a concrete prioritization of code classes V
and IX if a threshold had been defined to select code classes containing
more than 30 defects and efficiency could have been calculated. A lot of
different alternative selection rules are conceivable.

Unfortunately, the unit test activity could not be completed due to bad
testability of the code and no new defects were found. Therefore, H1.5
could not be answered with respect to the unit level. Instead, the system
test activity was used to analyze whether the code inspection results can
provide valuable predictions for focusing system testing in an efficient
manner. Assumptions 1 and 2 were applied accordingly. We were aware
that this prioritization would mean a different level of granularity,
because for system tests it is not possible to address certain code classes;
rather, they are used to address functionalities.

Five different kinds of reading support and three additional tool
functionalities were tested and revealed that most of the defects were
found in parts that had not been inspected. One functional defect was
found when applying the GIT reading support (which was also
inspected); however, this defect occurred independent of the concrete
reading support and was also found when testing with other kinds of
reading support. Therefore, assumption 1 led to an appropriate
prioritization, respectively prediction, of defect-proneness and would
help in guiding system testing activities with reduced effort. Considering
only the test execution effort, an effort reduction of between 8% and
31% depending on the concrete selection rules used is achievable,
which results in an efficiency improvement of between around 9% and
44%. Omitting the GIT test cases led to the lowest reduction of test
cases, while all functional defects were found. Omitting SGITs as well,
which is a very similar reading support, increased the saved effort and
thus, efficiency. In addition, when omitting test cases for checklists (i.e.,
reading support of low complexity), an effort reduction of up to 22%
could be achieved with all functional defects still being found, i.e.,
efficiency improved by about 30%. Finally, the highest effort
improvement with the same quality was shown by the fourth selection
rule (i.e., focus on similar, but different reading support and further
functionality). However, the absolute numbers for conducting the tests
are rather low and test derivation, documentation, and further activities
are not considered here due to imprecise numbers. Consequently, the
figures have to be treated with caution. The results can be found in
Table 17.

Empirical Validation

 122

Consequently, assumption 1 would be appropriate for focusing testing
activities efficiently, while assumption 2 (i.e., focusing on inspected
parts) would not be valuable in our context in this system-level quality
assurance run. One reason might be that the performance of the
inspection was high and many problems were already found before
testing. Another reason might be that informal quality assurance
activities conducted before the systematic application of inspections and
testing found some defects that had already been corrected. Finally, if
we take a detailed look at the defect distribution of the inspection
defects, no value is extremely prominent, which makes it harder to
define a concrete threshold regarding which concrete code classes to
prioritize. Therefore, one conclusion might be that due to similar defect
density of all inspected code classes, testing different parts would be
preferable.

Table 17 Effort savings when focusing on certain functionality during test execution.

tester 1 tester 2
reading support: GIT 10 6
reading support: SGIT 7 6 x x
reading support: GC 7 6 x x
reading support: VID 0 30 x x x
reading support: CL 3 2 x x
interaction 33 21 x x x x
report generation 15 10 x x x x
checklist creation 40 10 x x x x
Effort (min) 190 177 159 142
Effort savings (%) 8% 14% 23% 31%
Efficiency 0.037 0.040 0.044 0.049
Efficiency
improvement (%) 8.82% 17.65% 29.41% 44.12%

Tested functionality Effort (min)

206
/

0.034

/

Tested classes based on
selection rules

H1.6 Efficiency (defect types): Our second objective was to analyze
the relationship between defect types identified in the inspection and
during testing, and to analyze efficiency when focusing on certain defect
types. Considering assumption 3, many of those inspection defects
classified as ‘other’ were documentation problems (e.g., missing
explanation of a method, unclear description). Such kinds of defects
affect the maintainability of the product under test and are not
detectable with testing, since they do not influence the observable
functionality. Regarding testing, six additional usability problems were
found by one tester (e.g., bad readability of parts of reading support).
Such kinds of problems can be identified if a graphical user interface is
used during testing, but are usually not found during the inspection.

In terms of maintainability and usability, it is rather easy to dedicate
them to inspection respectively testing activities in order to find such
problems. However, with respect to the ODC classification used for the

Empirical Validation

 123

inspection defects, detecting a relationship to defects found during the
system test is difficult due to the difference in granularity between code
defect types and system defect types. A retrospective analysis of the
seven functional defects found during testing revealed that most of
them were classified as checking or algorithm / method defects, which
exactly matches the two defect types identified most often during
inspections (see Table 18). Nevertheless, it is still unclear whether it is
possible to systematically select or derive system tests that can address
such kinds of problems and how this could be done. Therefore, it is not
possible to calculate concrete efficiency values in the given context. It
may be that a defect classification, such as the ODC, is not suitable for
guiding system test activities. An explorative study for identifying an
appropriate defect classification would be necessary in this case. Finally,
due to an uncompleted unit testing activity, no new insights regarding
the relationships between inspection defect types and testing defect
types could be obtained on the unit level.

Table 18 ODC-classified defects from inspection and system testing.

ODC defect types Inspection Testing
algorithm / method 53 2
checking 36 4
function / class / object 32 0
assignment / initialization 13 0
relationship 1 1
timing / serialization 0 0
interface / o-o messages 0 0
other 54 6

Total 189 13

Summary of the evaluation To conclude the main results, first trends
have emerged that it may be possible to guide testing activities based on
inspection results, i.e., to predict defect-prone parts and defect types
based on inspection defect data, and to focus testing activities on certain
parts and defect types. However, the quality and the efficiency of such
focusing depend on the assumptions made in the given context. In the
context of this case study, parts that had not been inspected contained
additional defects that were found during testing. However, this can
only be stated for defects found during system testing because unit
testing could not be fully completed. With respect to defect types,
especially maintainability defects were found during inspections, while
usability problems were found during testing. An effort reduction for
test case execution of up to 31% was achievable when focusing on parts
of the system with a comparable quality being achieved, which is an
efficiency improvement of between around 9 and 44%. Though it was
possible to focus defect types for testing based on the inspection results,
concrete efficiency values could not be calculated.

Empirical Validation

 124

The applicability of the approach could be demonstrated. One important
prerequisite for a suitable application of the In2Test approach on the
same system level is appropriate testability, which has to be ensured by
the design of further evaluations.

Finally, considering the overall effort, effectiveness, and efficiency of the
inspection and testing activities, a small improvement of the efficiency of
the In2Test approach compared to a non-integrated approach could be
found (between 0.9% and 4%). One reason for the small improvement
is the small number of test defects found. One explanation for this might
be that during development, defects that are observed are corrected
directly, and are then not counted during the explicit testing activities. In
addition, the inspection already found a lot of defects, which were
corrected after the inspection, and which then could not be found
during testing. Table 19 shows an overview of the results. With respect
to the test defects found, we only considered the functional defects
(because the analysis of H1 also considers mostly those kinds of defects,
and usability problems are rather found during a visual inspection of the
graphical user interface than during functional testing). Furthermore, we
considered the effort for conducting the defect detection during the
inspection, respectively the effort for conducting the test execution. In
our context, the inspection is superior to testing, which is also consistent
with studies from different contexts (Laitenberger and DeBaud, 2000;
Elberzhager, 2005). Performing the inspection only would lead to the
highest efficiency value. However, in this case, not all defects would
have been found. With respect to the scope of this thesis, it could be
seen that the overall efficiency (i.e., reduced effort at same effectiveness)
of the In2Test approach is slightly improved compared to a non-
integrated approach, which is true for all four selection rules SR1-SR4.

Table 19 Comparison of different quality assurance processes.

No. Approach # defects found
Effort needed

(minutes) Efficiency
1 Inspection 189 1450 0.1303
2 Testing (after inspection) 7 206 0.0340

3
Non-integrated in-
spection and testing 196 1656 0.1184

4.1 In2Test (SR 1) 196 1640 0.1195
4.2 In2Test (SR 2) 196 1627 0.1205
4.3 In2Test (SR 3) 196 1609 0.1218
4.4 In2Test (SR 4) 196 1592 0.1231

5.3.5 Limitations of the Study

Next, a discussion of what we consider to be the most relevant threats to
validity is given (Wohlin et al., 2000).

Empirical Validation

 125

Conclusion validity: The number of testers and the number of found test
defects was low. One reason might be the low experience regarding
testing. Consequently, no statistically significant data could be obtained.
However, the results showed a trend that the integrated inspection and
testing approach is able to guide testing activities. The figures for effort
saving are based only on certain parts of the test execution and are
rather low. With this, an initial idea is given of what potential effort
reductions might be achievable.

Construct validity: To demonstrate the integrated approach, different
assumptions were derived in our context. Four assumptions were used
and analyzed regarding their suitability. However, more assumptions are
conceivable and may lead to better or worse predictions. In the
inspection, no standard checklists were used. Finally, the selection of
ODC was reasonable when focusing on the unit test level, but it might
not be suitable for the system level during testing.

Internal validity: The subjects selected for the inspection and for the
testing activity may have influenced the number of defects that were
found. However, the effect was slightly reduced by using checklists that
focus an inspector on certain aspects in the code and by using
equivalence partitioning, respectively addressing the main functionality,
for the testing activity. The developer of the tool also tested the tool,
which resulted in a lower number of defects. However, a second tester
not involved in tool development also tested the tool. Ultimately, the
defects could be classified differently.

External validity: The DETECT tool inspected and tested in the case study
is one example to which the integrated inspection and testing approach
was applied. Few test defects were found that could be used for the
analysis of the assumptions. A larger software product, as typically
developed by software companies, is expected to result in more test
defects to be found. Assumptions have to be evaluated anew in each
new environment, meaning that the conclusions drawn with respect to
the used assumptions cannot be generalized directly. Finally, the results
can only be transferred to a context where a comparable number of
defects are found during inspection and testing activities.

5.4 Case Study 2: JSeq

5.4.1 Context of the Study

The integrated inspection and testing approach was applied twice in the
same context. The first run was primarily intended to gain experience
with the approach in the new context and to obtain data for the EDB.
The second run, which was performed six months after the first one,

Empirical Validation

 126

used the gathered data to perform more meaningful inspection
monitoring and a more fine-grained prioritization with respect to defect
content and defect types (i.e., additional selection rules were defined).
Both the one-stage approach focusing only on defect-prone parts of the
system under test and the two-stage approach focusing on defect-prone
parts and defect types were applied.

The artifact to be checked was a Java prototype tool, which had mainly
been developed by one developer. The tool supports practitioners in
performing sequence-based specifications (Prowell et al., 1999). At the
point of the evaluation, it consisted of 76 classes, over 650 methods,
and about 8,500 lines of code (LoC). In both runs, those code parts
containing the main business logic were selected for application of the
approach. In the first run, four code classes with a total of about 1,000
LoC were chosen. In the second run, four different code classes with a
total of about 2,400 LoC were selected. The code classes of the first and
the second run differed due to continuous development of the tool.

In both runs, four inspectors conducted the code inspection. In the first
run, one inspector had very good knowledge about inspections, but only
limited programming knowledge, while the remaining inspectors had
very good programming experience, but only limited inspection
knowledge. In the second run, one programmer who was no longer
available was replaced by an experienced inspector, again with limited
programming experience. Due to project restrictions, the testing activity
was performed by a single developer of the tool prototype, who was not
involved in the inspection.

5.4.2 Design of the Study

The case study described in this section followed a similar design as the
first evaluation of the integrated inspection and testing approach.

Both runs of the case study followed the same design. First, a code
inspection (step 1) was performed by four computer scientists. To
prepare the code inspection, two developers and two additional persons
involved in the tool prototype development gathered five relevant quality
properties of the system. Afterwards, one inspection expert derived
individual checklists for each collected quality property (see Appendix A).
Some checklist questions were similar to those mentioned in (Burnstein,
2002). Each checklist consisted of between four and nine questions and
focused on requirements fulfillment, functional aspects, extensibility,
performance, and reliability. Using checklists adapted to the environment
instead of standard checklists improved defect detection and is
consistent with recommendations made by authors of inspection
literature (Wiegers, 2002; Gilb and Graham, 1993). Based on these
checklists, the inspection was performed. The inspectors were selected

Empirical Validation

 127

systematically so that each checklist could be answered effectively by the
corresponding inspector. After the inspection was finished, experienced
quality assurance engineers compiled the inspection defect profile (one
expert in the first run, two experts in the second run). In addition, each
defect found by the inspectors was discussed in a group session until
agreement on the classification of the defects was achieved.

After the inspection was finished, inspection quality monitoring (step 2)
was done by those experts who put together the inspection defect
profile. In the first run, inspection data from the literature, such as
reading rate (i.e., inspected LoC per hour per inspector), was used to
evaluate the validity of the results. In the second run, the results from
the first run were treated as historical data and, consequently, used for
the comparison in order to perform the monitoring step.

Step 3 comprised the prioritization, which was done based on the
inspection defect profile and assumptions made to focus the testing
activity.

Following the integrated inspection and testing approach, focused
testing activities would be the next step. However, in order to be able to
evaluate whether the prioritization of the defect types is suitable based
on the inspection defect profile, one developer of the tool prototype first
performed a non-integrated testing activity (step 4), i.e., an experience-
based testing activity including equivalence partitioning was conducted
without using any information from the prioritization step. The defect
results from the experience-based testing activity were used as a baseline
and compared with the prioritization (i.e., step 3) of the integrated
approach in order to answer the defined research questions.

The following variables were taken into account in the case study: Effort
was measured in minutes. Size was measured in lines of code, with a
distinction being made between the complete length of a code class and
the mean method length of a code class. Finally, McCabe complexity
was used as complexity measure. An approach A is of comparable
quality to another approach B if at least the same number of defects is
found. Efficiency was calculated using the number of defects found per
minutes. For applying the assumptions, respectively the selection rules,
different quantifications of variables were used. For example, regarding
the number of defects, absolute number and defect density were taken.
In addition, a severity classification was used (minor, major, crash).
Furthermore, ODC (ODC, 2002) was chosen for defect classification due
to its high industry orientation. Experiences from industry show that
ODC promises to be a suitable classification (Bridge and Miller, 1997).
Moreover, the classification is able to classify both inspection and testing
defects, which is a necessary prerequisite for the integrated two-stage
approach. The following seven defect types, as suggested by ODC, were
taken into account (for an explanation and examples of each defect

Empirical Validation

 128

type, see (ODC, 2002): Assignment / Initialization; Checking; Algorithm /
Method; Function / Class / Object; Timing / Serialization; Interface / O-O
Messages; Relationship.

5.4.3 Execution of the Study

Besides answering the determined research questions in the two runs of
the case study, the first run of the case study was also used to evaluate
the general applicability of the integrated approach.

First Run – Conducting the Inspection (Step 1)

Before the inspection was performed, all inspectors and one tool
developer met to familiarize themselves with the code and the checklists
and to answer questions. Afterwards, each inspector individually
checked all four code classes with a different checklist and documented
the findings in a bug-tracking tool, which took a total of 435 minutes for
all inspectors. Next, a group session of the inspectors took place in which
the inspection issues were classified jointly according to the ODC. Based
on these results, one quality assurance engineer put together the
inspection defect profile, which is shown in Table 20 (defect content)
and Table 21 (sorted list of ODC-classified defects).

Table 20 Inspection defect profile – Defect content.
M

ai
n

Total

Code class

S
B

S
T

re
eS

ta
te

S
B

S
T

re
eC

om
pe

ra
to

r

S
B

S
T

re
e

26 6 27 8 67

M
ai

n

Total
Defect content

Code class

S
B

S
T

re
eS

ta
te

S
B

S
T

re
eC

om
pe

ra
to

r

S
B

S
T

re
e

In total, 67 issues were found by the inspectors, of which 48 could be
classified according to ODC. 19 issues could not be classified and were
treated as Other defects (e.g., unclear or missing code comments).

Empirical Validation

 129

Table 21 Inspection defect profile – ODC-classified defects.

Severity
ODC defect type
Algorithm / Method 11 6 1 18
Checking 4 6 3 13
Interface / O-O Messages 8 1 0 9
Function / Class / Object 2 3 3 8
Timing / Serialization 0 0 0 0
Assignment / Initialization 0 0 0 0
Relationship 0 0 0 0
Other 18 1 0 19
Total 43 17 7 67

major crash Sub-
total

minor

First Run – Monitoring the Inspection Results (Step 2)

Unfortunately, no context-specific historical inspection data was available
for the tool prototype in order to monitor the inspection results. Instead,
data from the first study of the integrated inspection and testing
approach (Elberzhager et al., 2012) was used since the environment was
similar. In addition, suggestions from the literature were taken and
compared with metrics, such as an inspector’s reading rate. The reading
rate was 550 LoC per hour, which is higher than suggestions from
Barnard and Price (Barnard and Price, 1994), but consistent with
experiences from industry (Cohen, 2006) and results from the first study.
One reason for the high number might be that all lines of code were
counted (e.g., blank lines, commentary lines). Another reason is that
different checklists were used, which pointed the inspectors to different
parts in the code. Consequently, some parts were read in detail while
other parts were just scanned or not read at all. Furthermore, low
inspection experience of some inspectors and time constraints may be
further reasons. Finally, though this was just a gut feeling of the
inspection experts, 67 issues found per thousand lines of code seemed
to be appropriate.

First Run – Prioritization (Step 3)

One assumption was used for the prioritization of the first stage:

A large number of different studies performed in various environments
has shown that an accumulation of defects, i.e., a Pareto distribution,

Empirical Validation

 130

can be observed rather than an equal distribution of defects. A lot of
studies have confirmed this observation (see Section 4.4.4), resulting in
an 80/20 rule (Boehm and Basili, 2001; Shull et al., 2002). Based on the
empirically validated hypothesis that an accumulation of defects can
often be observed, assumption A1 was defined with respect to the
integrated inspection and testing approach. The derived selection rule
(SR) is:

In order to be able to evaluate the prioritization of defect types, one
assumption was defined for the second stage:

S2-A1: Defects of the defect types that are found most often by the
inspection indicate more defects of the defect types to be found
with testing (i.e., a Pareto distribution of defects of certain defect

types is assumed).

An accumulation of defects of certain defect types could also be
observed in several studies rather than an equal distribution of defect
types, independent of a concrete defect classification (see Section 4.4.4).
Thus, the derived selection rule is:

S2-A1-SR1: Prioritize those two ODC defect types for testing that
appeared most often based on the inspection defect profile.

The assumptions and selection rules given here are kept simple in order
to support the evaluation. Based on the two selection rules (one for each
stage), the code classes expected to be most defect-prone and the
defect types expected to appear most often were prioritized.
Consequently, SBSTreeState and SBSTree were selected at stage 1, and
Algorithm / Method and Checking were chosen at stage 2. For the one-
stage approach, only the assumption for the first stage and the derived
selection rule are relevant, while for the two-stage approach, both
assumptions and selection rules are relevant, resulting in one combined
prioritization.

First Run – Selecting Test Cases and Conducting the Testing Activity (Step 4)

In order to be able to evaluate the proposed approach, one developer
first performed the testing activity of the four already inspected code

Empirical Validation

 131

classes without using the prioritization information. Afterwards, the
defect results from this experience-based testing activity including
equivalence partitioning were used as a baseline for analyzing and
evaluating the prioritization of the integrated inspection and testing
approach.

Second Run – Conducting the Inspection (Step 1)

Before the inspection was conducted in the second run, an overview
meeting was performed again. The developer of the prototype tool
explained the structure of the code classes and the relationships among
them. Furthermore, the ODC defect classification was discussed in order
to gain the same understanding of the defect types. Due to the
experiences obtained from the first run, the inspectors were to classify
each defect on their own. After the meeting, each inspector checked all
four code classes with a different checklist. Each issue found was
documented in a bug-tracking tool, with a short description of the
problem, the place where it was found, the severity, and the ODC defect
type being recorded. The inspection (i.e., the defect detection task) took
about three to four hours per inspector, resulting in an overall effort of
835 minutes.

Table 22 Inspection defect profile – defect content, defect density, and severity classes.

Total S
eq

ue
nc

e

S
eq

ue
nc

eT
ab

le
M

od
el

S
im

pl
eK

ey
ed

T
ab

le
M

od
el

S
im

pl
eO

rd
er

ed
K

ey
ed

T
.

Code class

defect content (dc) 14 40 39 7 100
defect density (dd) 0.061 0.029 0.056 0.061 -

dc minor defects 10 31 25 5 71
dc major defects 3 9 14 1 27
dc crash defects 1 0 0 1 2

dd minor defects 0.043 0.023 0.036 0.044 -
dd major defects 0.013 0.007 0.020 0.009 -
dd crash defects 0.004 0.000 0.000 0.009 -

Total S
eq

ue
nc

e

S
eq

ue
nc

eT
ab

le
M

od
el

S
im

pl
eK

ey
ed

T
ab

le
M

od
el

S
im

pl
eO

rd
er

ed
K

ey
ed

T
.

After the inspection had been performed, all issues were analyzed by
two experienced QA engineers in order to eliminate duplicates and
comments such as improvement suggestions and questions, and put

Empirical Validation

 132

together the defect profile. In total, 100 defects remained. Next, the
classification of each defect was checked. If the two quality assurance
engineers did not agree with the classification of a defect, this was
discussed with the corresponding inspector.

The final inspection defect profile can be found in Table 22 and Table
23. With respect to the inspection results, the defect content, the defect
density, as well as the defect content and defect density for each severity
class per code class are shown. With respect to the ODC, 54 defects
could be classified, while 46 defects were treated as Other defects.

Table 23 Inspection defect profile – sorted list of ODC-classified defects.

Severity
ODC defect type
Function / Class / Object 10 14 0 24
Algorithm / Method 9 4 0 13
Relationship 7 0 0 7
Checking 1 2 2 5
Interface / O-O Messages 4 1 0 5
Assignment / Initialization 0 0 0 0
Timing / Serialization 0 0 0 0
Other 40 6 0 46
Total 71 27 2 100

minor major crash Sub-
total

Second Run – Monitoring the Inspection Results (Step 2)

Since the inspection results from the first run were available, the new
inspection results could be compared with historical inspection results, as
suggested by Aurum et al. (Aurum et al., 2002), who state that
“historical data may help to determine the quality of the current
inspection”. Comparing the inspection data is justified by the same
context and is more meaningful than using data from different
environments. Table 24 summarizes some inspection metrics. The
reading rate in the second run was slightly higher, namely 685 LoC per
hour compared to 550 LoC per hour in the first run. The reasons given
above for explaining the high reading rate in the pilot study are also
applicable for the case study. The average number of defects found was
a bit lower in the second run (42 defects per thousand LoC compared to
67 defects per 1000 LoC). An explanation for this is that some code
parts were not commented very well and consequently, the inspectors
did not inspect some parts in detail due to unclarities. The distribution of
minor, major, and crash defects is similar. Finally, the rate of classified
defects was lower compared to the first run. One reason was again that
many of those Other defects emphasized missing or bad comments.
Thus, although the performance of the inspectors was slightly lower

Empirical Validation

 133

compared to the first run, the results seemed reasonable enough to
allow them to be used in the prioritization step.

Table 24 Inspection metrics of 1st and 2nd run of the case study.

Metrics
Inspection first run

(historical data)
Inspection second run

(current data)
Total number of defects 67 100
Number of problems / 1000 LoC 67 issues per 1000 LoC 42 defects per 1000 LoC
Overall effort (minutes) 435 835
Average reading rate 550 LoC per hour 685 LoC per hour
ODC classified defects in % 72% 54%
Severity in % (minor / major / crash) 64% / 25% / 11% 71% / 27% / 2%

Second Run – Prioritization (Step 3)

Focusing of the testing activity for the first stage was mainly based on
the inspection profile and three product metrics. Three assumptions
were used, with S1-A1 being the same as in the first run. Some
rationales and empirical evidence for each assumption are presented
next.

As mentioned for the first run, a number of studies and experiments
confirm this assumption.

S1-A2: Parts of the code where a large number of inspection defects
are found (i.e., a Pareto distribution of defects is assumed) and
which are of small size indicate more defects to be found with

testing.

A size metric is often used to prioritize defect-prone parts and thus, to
focus a testing activity. Though this metric is often applied, a number of
studies have shown inconsistent results when size is applied as the sole
metric for predicting defect-prone modules. Emam et al. (Emam et al.,
2002) state that if models are built to predict fault-proneness, more
variables than just size should be used (see Section 4.4.4). Thus,
inspection results were combined with two different size metrics, namely
class length and mean method length.

Empirical Validation

 134

S1-A3: Parts of the code where a large number of inspection defects
are found (i.e., a Pareto distribution of defects is assumed) and

which are of high complexity indicate more defects to be found with
testing.

Besides size, complexity is another popular metric often used to focus a
testing activity (see Section 4.4.4). Schröter et al. (Schröter et al., 2006)
note that new metrics or combinations of existing metrics should be
used to study the relationship between complexity and the presence of
bugs. Thus, in order to improve the prioritization of code classes
expected to be most defect-prone, the inspection results were combined
with one complexity metric, namely McCabe’s cyclomatic complexity,
with a focus on code classes that have high complexity.

Table 25 Assumption metrics and their corresponding values.

Code class
Class length

(LoC)
Mean method
length (LoC)

Mean McCabe
complexity

Sequence 231 3.28 1.78
SequenceTableModel 1364 13.54 3.90
SimpleKeyedTableModel 701 8.11 2.91
SimpleOrderedKeyedT. 115 7 2

Overall, 32 selection rules were initially derived from the three
assumptions manually, mainly based on a brainstorming session.
Following the assumptions, selection rules with respect to the inspection
results were derived first, resulting in a focus on the most defect-prone
parts. This means that defect content, defect density, and those two
metrics combined with three severity classes were determined, resulting
in eight concrete selection rules. Second, common metrics identified
during related work were considered and combined with the inspection
results. This comprised two different size metrics and one established
complexity metric. The eight defect metrics defined before were
combined with each product metric, resulting in the 24 additional
selection rules. Table 25 shows the values of the assumption metrics for
each code class (the last two metrics were calculated using the metrics
tool (Metrics, 2010)). Based on the inspection defect profile and the
defined metrics, the derived selection rules were applied to prioritize
code classes for the test activity.

In order to be able to perform two-staged prioritization and do a more
fine-grained analysis of the defect type prioritization, two additional
selection rules were derived for stage 2 compared to the first run,
resulting in the following three selection rules:

Empirical Validation

 135

S2-A1-SR1: Prioritize those two ODC defect types for testing that
appeared most often based on the inspection defect profile.

S2-A1-SR2: Prioritize those three ODC defect types for testing that
appeared most often based on the inspection defect profile.

S2-A1-SR3: Prioritize those three ODC defect types for testing that
appeared most often based on the inspection defect profile. In

addition, consider those defect types that have high severity and
appeared most often both in past inspection and in past testing

activities.

However, in order to avoid an exploding number of combinations of
stage 1 and stage 2 assumptions and selection rules, only one
assumption and the following selection rule of stage 1 was used for the
combined prioritizations:

The output of applying this single selection rule of stage 1 is combined
with each output of applying the three selection rules of stage 2,
resulting in three combined prioritizations.

Figure 38 Combined prioritization of code classes and defect types based on applied selection rules.

Empirical Validation

 136

Figure 38 shows the concrete prioritizations of code classes (based on
Table 22) and defect types (based on Table 23 and Table 27) for each of
those combined prioritizations.

Second Run – Selecting Test Cases and Conducting the Testing Activity (Step 4)

Similar to the first run, one developer of the tool prototype performed
the experience-based testing activity without prioritization information.
Besides the four inspected code classes, four additional, highly
connected code classes were tested.

5.4.4 Results of the Study and Lessons Learned

First Run

An experience-based testing activity of all four code classes including
equivalence partitioning was performed by one person. Overall, seven
additional defects were found, with three defects being found in
SBSTreeState and four defects in SBSTree (see Table 26). About 70% of
these defects were critical ones (i.e., classified as major or crash). The
prioritization of the code classes fits exactly to those code classes where
the defects occurred and consequently, assumption A1 could be
confirmed in the given context.

The inspection defect profile in combination with the assumption was
suitable for prioritizing certain parts of the code and for focusing the
testing activity, and thus, the applicability of the approach could be
shown. The main results of the first run of the case study with respect to
the research questions can be summarized as follows.

H1.1 Effort (system parts): It was not possible to determine any
concrete test effort reduction. This was mainly due to continuous
development, rapidly changing code, and an unsystematic test.

H1.2 Effort (defect types): No explicit effort reduction was measured
when testing was focused on defect types.

H1.3 Effectiveness (system parts): Based on assumption S1-A1, all
defects could be found with the integrated approach, just as with the
non-integrated approach.

Empirical Validation

 137

Table 26 Number of defects found (defect content) by inspection and testing per code class.

S
B

S
T

re
eC

om
pe

ra
to

r

S
B

S
T

re
e

M
ai

n

TotalS
B

S
T

re
eS

ta
te

Code class

Number of
defects found by

inspection 26 6 27 8 67
testing 3 0 4 0 7

Prioritization x x

S
B

S
T

re
eC

om
pe

ra
to

r

S
B

S
T

re
e

M
ai

n

TotalS
B

S
T

re
eS

ta
te

H1.4 Effectiveness (defect types): Table 27 shows a comparison of
the defect types that appeared during inspection and testing. The two
prioritized defect types based on the inspection defect profile were again
found most often by the testing activity. No additional defect types were
found. This means that in our context, the integrated two-stage
inspection and testing approach was able to prioritize those defect types
within the selected code classes for testing that actually appeared during
the testing activity, and that no defect types were missed.

Table 27 Defect types found by inspection and testing, and prioritized defect types for selection rule
of stage 2.

ODC defect type
Algorithm / Method 18 4 x
Checking 13 3 x
Interface / O-O Messages 9 0
Function / Class / Object 8 0
Timing / Serialization 0 0
Assignment / Initialization 0 0
Relationship 0 0

Inspection
defects

Testing
defects

Prioriti-
zation

H1.5 & H1.6 Efficiency (system parts and defect types): In order to
check the feasibility of the approach in the new context, only one
assumption and one derived selection rule was used for the sake of
simplicity (for both system parts and defect types). The assumption and
selection rule used led to appropriate predictions. However, due to a lack
of clear effort numbers, concrete efficiency values could not be
calculated.

Empirical Validation

 138

Second Run

During the non-integrated testing activity in the second run, six
additional defects were found (i.e., defects not already found by
inspection, see Table 28). Five test defects were found in
SimpleKeyedTableModel (code class three) and one test defect in
TableUtil, which is invoked by that code class. Overall, 16 hours of test
effort were needed to test all eight code classes with the non-integrated
approach, including correction and documentation (see upper part of
Table 29). Based on the test result, the integrated inspection and testing
approach was applied to evaluate the determined research questions.

Table 28 Number of defects found (defect content) by inspection and testing per code class.

S
im

pl
eK

ey
ed

T
ab

le
Li

nk
S

et
S

im
pl

eK
ey

ed
T

ab
le

Li
nk

T
ab

le
U

til

TotalS
eq

ue
nc

eT
ab

le
M

od
el

S
im

pl
eK

ey
ed

T
ab

le
M

od
el

S
im

pl
eO

rd
er

ed
K

ey
ed

T
.

M
ul

tip
le

K
ey

ed
T

ab
le

Li
nk

S
et

 S
eq

ue
nc

e

Code class

Number of
defects found by

inspection 14 40 39 7 - - - - 100
testing 0 0 5 0 0 0 0 1 6

S
im

pl
eK

ey
ed

T
ab

le
Li

nk
S

et
S

im
pl

eK
ey

ed
T

ab
le

Li
nk

T
ab

le
U

til

TotalS
eq

ue
nc

eT
ab

le
M

od
el

S
im

pl
eK

ey
ed

T
ab

le
M

od
el

S
im

pl
eO

rd
er

ed
K

ey
ed

T
.

M
ul

tip
le

K
ey

ed
T

ab
le

Li
nk

S
et

 S
eq

ue
nc

e

H1.1 Effort (system parts): Overall, an effort reduction of between 6%
and 34% was achieved by the integrated inspection and testing
approach when focusing on code classes in the given context
(considering the effective selection rules). If considering only the test
execution effort (which includes test case specification effort, but not
documentation and correction effort), an effort reduction of between
9% and 50% was achieved. The achievable effort reductions depend on
different assumptions and the concrete selection rules. For example,
fifteen hours of test effort were needed when code classes one, three,
and four were tested only, i.e., code class two was not prioritized and
thus, omitted, resulting in an effort reduction of one hour needed to test
this code class in the non-integrated testing activity. The test
documentation and the correction activity remained stable in the
integrated approach.

Though not considered explicitly, traditional product metrics can be
compared with this result. Selecting code classes with high complexity,
low mean method length, or a large class would lead to effort
reductions of between 6% (mean method length) and 9% (high
complexity, large code class).

Some selection rules select a set of code classes or a single code class
that was not defect-prone. In this case, the effort reduction considering
test execution was between 34% and 37% (if the correction effort is

Empirical Validation

 139

skipped in such a case, the overall effort reduction is about 62%).
Finally, some selection rules were not able to select any code class, which
would result in a 100% effort reduction; however, such selection rules
are of no practical relevance.

H1.2 Effort (defect types): No explicit effort reduction was measured
when testing was focused on defect types. However, the applied
selection rules only selected a subset of defect types, which might result
in effort reduction for testing.

Table 29 Effort of the non-integrated test and different effort reductions of the prioritized test.

Test Effort
Tested code

classes
Effort

reduction
Test execution 11.0 h
Test documentation 01.0 h
Correction 04.0 h
Non-integrated test effort 16.0 h 1-8

15.0 h 1+3+4 6.25%
14.5 h 1+3, 2+3 9.38%
10.5 h 3 34.38%

Prioritized code classes:
Test effort reduction with
quality preservation

H1.3 Effectiveness (system parts): In the bottom part of Table 29,
only those selections of code classes and the resulting test effort
reduction are shown in which the defect-prone class
SimpleKeyedTableModel (class three, including one calling class) is
contained. Consequently, this class has to be tested with the integrated
approach by all means in order to achieve comparable quality. However,
18 of the initially defined selection rules led to quality preservation, while
14 of them did not select the defect-prone class three.

H1.4 Effectiveness (defect types): Table 37 shows the defect types
found by inspection and testing activities (sorted by number of
inspection defects) and the prioritized defect types per selection rule of
stage 2. Depending on the concrete selection rules, those defect types
could be selected of which more defects are found. However, only one
of three selection rules prioritized all relevant defect types.

H1.5 Efficiency (system parts): Next, a detailed analysis of each
assumption and the derived selection rules with respect to efficiency
(calculated as the number of defects per minute) is given in order to
analyze which ones led to appropriate selections of code classes in the
given context in an efficient manner. Note that during this case study,
the integrated approach was only applied to prioritize code classes that
were also inspected. Before the application of the selection rules, which
was done by two experienced QA engineers, a clarification of what

Empirical Validation

 140

“high”, “low”, “small”, and “large” meant in the given context was
done. In most cases, the definition was obvious or discussed until the
same understanding was gained. The calculation of efficiency values can
be found in Table 30. The complete test effort was taken into account
for the calculation because of the more realistic view. However, if only
the test execution time was considered, an efficiency improvement of up
to about 100% could be achieved.

Table 30 Calculation of efficiency values.

Efficiency values Calculation

Efficiency
improvements

6 defects / 960 minutes = 0.00625 n/a n/a
6 defects / 900 minutes ~ 0.00667 (0.00667-0.00625)*100/0.00625 6.72 %
6 defects / 870 minutes ~ 0.00690 (0.00690-0.00625)*100/0.00625 10.40 %
6 defects / 630 minutes ~ 0.00952 (0.00952-0.00625)*100/0.00625 52.32 %

S1-A1: Overall, the selection rules for assumption S1-A1 led to suitable
selections of code classes for testing and an efficiency improvement
could be observed for six of eight selection rules. Table 31 shows each
applied selection rule for assumption S1-A1, the selected classes, and the
achieved effort reduction together with the efficiency improvement. If
the defect-prone class three is selected, ‘+’ marks a suitable quality Q of
the selection rule, otherwise ‘-‘ is chosen and no effort reduction is
calculated (expressed as “/” in Table 31 - Table 34) because no
comparable quality is achieved. For example, using the selection rule
A1.01 ‘defect content (high)’ resulted in prioritizing the code classes
SequenceTableModel (40 inspection defects found) and
SimpleKeyedTableModel (39 inspection defects found) and
consequently, in an effort reduction of about nine percent, or in other
words, an efficiency improvement of about 10 percent. The same
selection of code classes was done when choosing classes containing the
largest numbers of minor and major defects (A1.03 and A1.04, see Table
22 for concrete values). The two selection rules A1.02 and A1.06, which
focus on crash severity, led to class selections that did not contain any
defects or, more precisely, did not select the defect-prone class three,
and therefore did not show an improvement of efficiency. Due to the
high criticality of crash defects, already one such defect within a code
class was interpreted as high defect content or high defect density for
this severity class. However, due to the very low number of crash defects
found, a different interpretation is conceivable.

With respect to defect density in general (A1.05), code classes one,
three, and four were selected (see Table 22, where the defect density of
the three mentioned classes is about twice as high as that of code class
two). The resulting effort reduction was about six percent (efficiency
improvement: about 6.67 percent). When prioritizing code classes with
high defect density for defects classified as minor or major (A1.07 and
A1.08), an effort reduction of between six and nine percent is

Empirical Validation

 141

achievable. Based on the described results, six of eight selection rules led
to an appropriate selection of code classes with improved efficiency.
Consequently, based on those selection rules, assumption S1-A1 could
be confirmed as efficient in our context (Table 31).

Table 31 Evaluation results of assumption S1-A1.

No.
Selection rule: Focus testing on those
code classes in which the inspection
determined..

Prioritized
classes

Effort
reduction

Efficiency
improve-

ment
Q.

A1.01 defect content (high) 2, 3 9.38% 10.4 % +
A1.02 crash severity (defect content (high)) 1, 4 / / -
A1.03 major severity (defect content (high)) 2, 3 9.38% 10.4 % +
A1.04 minor severity (defect content (high)) 2, 3 9.38% 10.4 % +
A1.05 defect density (high) 1, 3, 4 6.25% 6.7 % +
A1.06 crash severity (defect density (high)) 1, 4 / / -
A1.07 major severity (defect density (high)) 1, 3 9.38% 10.4 % +
A1.08 minor severity (defect density (high)) 1, 3, 4 6.25% 6.7 % +

Assumption 1: Parts of the code where a large number of inspection defects are found
indicate more defects to be found with testing.

Table 32 Evaluation results of assumption S1-A2 with respect to class length.

No.
Selection rule: Focus testing on those code
classes in which the inspection determined..

Prioritized
classes

Effort
reduction

Efficiency
improve-

ment
Q.

A2.01 defect content (high) & class length (low) - / / -

A2.02
 crash severity (defect content (high)) &
 class length (low) 1, 4 / / -

A2.03
 major severity (defect content (high)) &
 class length (low) - / / -

A2.04
 minor severity (defect content (high)) &
 class length (low) - / / -

A2.05 defect density (high) & class length (low) 1, 4 / / -

A2.06
 crash severity (defect density (high)) &
 class length (low) 1, 4 / / -

A2.07
 major severity (defect density (high)) &
 class length (low) 1 / / -

A2.08
 minor severity (defect density (high)) &
 class length (low) 1, 4 / / -

A2.01* defect content (high) & class length (high) 2, 3 9.38% 10.4 % +

A2.02*
 crash severity (defect content (high)) &
 class length (high) - / -

A2.03*
 major severity (defect content (high)) &
 class length (high) 2, 3 9.38% 10.4 % +

A2.04*
 minor severity (defect content (high)) &
 class length (high) 2, 3 9.38% 10.4 % +

A2.05* defect density (high) & class length (high) 3 34.38% 52.3 % +

A2.06*
 crash severity (defect density (high)) &
 class length (high) - / -

A2.07*
 major severity (defect density (high)) &
 class length (high) 3 34.38% 52.3 % +

A2.08*
 minor severity (defect density (high)) &
 class length (high) 3 34.38% 52.3 % +

Assumption 2: Parts of the code where a large number of inspection defects are found and
which are of small size indicate more defects to be found with testing.

Assumption 2*: Parts of the code where a large number of inspection defects are found and
which are of large size indicate more defects to be found with testing.

Empirical Validation

 142

S1-A2: With respect to the second assumption, two different size metrics
were used in determining the selection rules, namely the total length of
the code class and the mean method length within the code class. The
selection rules, the corresponding code classes that were prioritized, and
the effort reduction are shown in Table 32 and Table 33.

With respect to the class length, all eight selection rules led to
inappropriate prioritizations of code classes and consequently showed no
efficiency improvement. None of the eight selection rules chose the
defect-prone code class three (either no code class fulfilled both criteria
or classes one and four were selected). To further analyze the
combination of inspection defects and class length, an alternative
assumption S1-A2* was defined, which combined defect accumulation
with code classes of large size (instead of small class length). As
mentioned in the rationales for S1-A2, some studies showed that large-
sized modules are more defect-prone than small-sized modules (e.g.,
Emam et al., 2002). One reason in our context could be that a lot of
functionality was put into large code classes, and that therefore more
problems occurred in such classes. Furthermore, the two smaller code
classes are very small and thus might contain only minor (and uncritical)
functionality, which led to no problems.

Table 33 Evaluation results of assumption S1-A2 with respect to mean method length.

No.
Selection rule: Focus testing on those
code classes in which the inspection
determined..

Prioritized
classes

Effort
reduction

Efficiency
improve-

ment
Q.

A2.09
 defect content (high) &
 mean method length (low) 3 34.38% 52.3 % +

A2.10
 crash severity (defect content (high)) &
 mean method length (low) - / / -

A2.11
 major severity (defect content (high)) &
 mean method length (low) 3 34.38% 52.3 % +

A2.12
 minor severity (defect content (high)) &
 mean method length (low) 3 34.38% 52.3 % +

A2.13
 defect density (high) &
 mean method length (low) 1, 3, 4 6.25% 6.7 % +

A2.14
 crash severity (defect density (high)) &
 mean method length (low) 1, 4 / / -

A2.15
 major severity (defect density (high)) &
 mean method length (low) 1, 3 9,38% 10.4 % +

A2.16
 minor severity (defect density (high)) &
 mean method length (low) 1, 3, 4 6.25% 6.7 % +

Assumption 2: Parts of the code where a large number of inspection defects are found and
which are of small size indicate more defects to be found with testing.

In the given context, the alternative assumption S1-A2* led to suitable
results when class length was used as a size metric. Six of eight derived
selection rules included the defect-prone class three, and thus, showed
an efficiency improvement of up to 52%. When using the selection rule
‘defect density (high) & class length (high)’ (A2.05*), only the defect-

Empirical Validation

 143

prone code class three was prioritized (i.e., ‘defect density (high)’ is true
for classes one, three, and four, ‘class length (high)’ is true for code
classes two and three, resulting in a prioritization of code class three).
This led to an effort reduction of 34%, respectively to an efficiency
improvement of 52%. The same was true when the focus was on defect
density for major and minor severity (A2.07* and A2.08*). By combining
high defect content, high major and minor severity defects with high
class length (A2.01*, A2.03*, A2.04*), an effort reduction of about nine
percent was achieved (see Table 22, Table 24 and Table 32), resulting in
an efficiency improvement of about 10%. Again, using crash severity in
combination with class length led to an inappropriate prioritization. One
reason might be the very low number of such defects found.

With respect to combinations with the size metric ‘mean method length
(low)’ (a mean method length < 10 LoC was chosen), six of eight
selection rules led to appropriate prioritizations of code classes (see Table
33). Furthermore, selection rules combining different defect content
metrics and mean method length prioritized only the defect-prone code
class three (A2.09, A2.11, A2.12), resulting in an effort reduction of
about 34%. Using defect density instead, an effort reduction of between
six and nine percent could be achieved. Finally, crash severity defect
content and severity again led to inappropriate prioritizations (A2.10,
A2.14), and to corresponding efficiency improvements.

In summary, combining two different size metrics with defect metrics led
to inconsistent results. While selection rules combining class length and
different defect metrics led to insufficient prioritizations when derived
from S1-A2, an alternative assumption S1-A2* resulted in very promising
results. With respect to the second size metric mean method length, the
prioritization of code classes was very appropriate when using selection
rules derived from S1-A2. Thus, different efficiency improvements could
be observed.

Consequently, assumption S1-A2 can neither be confirmed nor rejected
for all selection rules in our context. The quality of the prioritization
depends on the size metric chosen in the corresponding selection rules.
Furthermore, the results indicate the importance of analyzing
assumptions and selection rules carefully in each new context in order to
evaluate which ones are best suited for the prioritization of code classes,
and which ones are most efficient.

S1-A3: The results for the different selection rules of assumption 3 were
appropriate (see Table 34). An effort reduction of 9% was achieved
when combining ‘defect content (high)’ with ‘McCabe (high)’ (A3.01),
i.e., an efficiency improvement of about 10% was achieved. The same
efficiency improvement, i.e., an effort reduction of 9%, was also
achieved for large numbers of major and minor defects combined with a
high McCabe value. A combination of high defect density and a high

Empirical Validation

 144

McCabe value led to an effort reduction of 34% (A3.05), which is also
true for a combination of high major and minor severity defect density
with a high McCabe value (A3.07 and A3.08). These selection rules led
to an improvement of efficiency of more than 50%. Finally, considering
crash severity (A3.02 and A3.06), inappropriate prioritizations were
made. However, the six selection rules prioritizing at least the defect-
prone code class three confirmed S1-A3.

Table 34 Evaluation results of assumption S1-A3.

No.
Selection rule: Focus testing on those code
classes in which the inspection determined..

Prioritized
classes

Effort
reduction

Efficiency
improve-

ment
Q.

A3.01 defect content (high) & McCabe (high) 2, 3 9.38% 10.4 % +

A3.02
 crash severity (defect content (high)) &
 McCabe (high) - / / -

A3.03
 major severity (defect content (high)) &
 McCabe (high) 2, 3 9.38% 10.4 % +

A3.04
 minor severity (defect content (high)) &
 McCabe (high) 2, 3 9.38% 10.4 % +

A3.05 defect density (high) & McCabe (high) 3 34.38% 52.3 % +

A3.06
 crash severity (defect density (high)) &
 McCabe (high) - / / -

A3.07
 major severity (defect density (high)) &
 McCabe (high) 3 34.38% 52.3 % +

A3.08
 minor severity (defect density (high)) &
 McCabe (high) 3 34.38% 52.3 % +

Assumption 3: Parts of the code where a large number of inspection defects are found and
which are of high complexity indicate more defects to be found with testing.

To recap the results with respect to H1.5, many useful selection rules
were identified for our context and all three assumptions are valuable,
i.e., showed an efficiency improvement, though more evaluation across
a number of QA runs is necessary to identify the most beneficial
selection rules and obtain more evidence in the given context in order to
enable application of the integrated inspection and testing approach. For
the integrated approach to be applied, evidence is needed regarding the
assumptions and derived selection rules that lead to appropriate
selections of code classes to be tested. Our analyses can give initial
answers, with the assumptions and selections rules being able to serve as
a starting point for applying and analyzing them and their efficiency in a
different context.

Selection rules concentrating on inspection defects alone led to
efficiency improvements of between 7% and 10%, which is equal to the
best product metrics applied in our context (see Table 35 and Table 36.)
Combining the inspection results with such product metrics, an
improvement of up to 50% is possible. However, this is only valid for
some combinations, as shown above.

Empirical Validation

 145

Table 35 Control assumption C1 using product metrics

No.
Selection rule: Focus testing on those code
classes which have

Prioritized
classes

Effort
reduction

Efficiency
improve-

ment
Q.

C1.01 class length (high) 2, 3 9.38% 10.4 % +
C1.02 mean method length (high) 2 / / -
C1.03 McCabe (high) 2, 3 9.38% 10.4 % +

Assumption C1: Parts of the code which are of high size, respectively high complexity indicate
more defects to be found with testing.

Table 36 Control assumption C2 using product metrics

No.
Selection rule: Focus testing on those code
classes which have

Prioritized
classes

Effort
reduction

Efficiency
improve-

ment
Q.

C2.01 class length (low) 1, 4 / / -
C2.02 mean method length (low) 1, 3, 4 6.25% 6.7 % +
C2.03 McCabe (low) 1, 4 / / -

Assumption C2: Parts of the code which are of low size, respectively low complexity indicate
more defects to be found with testing.

H1.6 Efficiency (defect types): Three selection rules were applied that
prioritized different sets of defect types in order to check their efficiency.
The first one prioritized Function / Class / Object and Algorithm / Method
(24, respectively 13, classified defects). With testing, four more defects
of the defect type Algorithm / Method were found, but no defects of the
type Function / Class / Object. Moreover, two additional defects of
different defect types were not found when applying selection rule one
(SR1). The second selection rule also prioritized the defect type
Relationship, of which one additional defect was found by testing. Thus,
the second selection rule led to better prioritization. Finally, the third
selection rule of stage 2 additionally prioritized Checking defects due to
the high severity of defects of this defect type based on the inspection
defect profile and due to the history, where this defect type had already
appeared. Consequently, only SR3 identified all defects of prioritized
defect types. Table 37 shows an overview of the prioritizations.

The integrated two-stage approach was able to prioritize those defect
types that actually represent the sets with the highest number of defects
during testing. The selected defect types are highly dependent on the
concrete selection rules and only the most comprehensive selection rule
prioritized all relevant defect types. However, all selection rules
prioritized the additional defect type Function / Class / Object for testing,
but no test defect was assigned to this defect type. Therefore, all
selections resulted in slightly lower overall efficiency. Nevertheless, all
three selection rules did not focus on all seven ODC defect types and,
consequently, it is assumed that effort reduction (though not measured
explicitly), and thus efficiency improvement, is achievable.

Empirical Validation

 146

Table 37 Evaluation results with respect to defect types.

ODC defect type SR1 SR2 SR3
Function / Class / Object 24 0 x x x
Algorithm / Method 13 4 x x x
Relationship 7 1 x x
Checking 5 1 x
Interface / O-O Messages 5 0
Assignment / Initialization 0 0
Timing / Serialization 0 0

Inspection
defects

Testing
defects

Prioritization

Summary of the study: With respect to the evaluated hypotheses, it is
not possible to provide statistically significant results mainly due to a
single tester only. This drawback came from project and effort
restrictions. However, based on the test results of the single tester, it
could be shown that different test effort reductions of between 6% and
34% could be achieved with the integrated approach depending on
which assumptions and concrete selection rules were used to prioritize
code classes in our context. This led to an efficiency improvement of
between 7% and 52%. A comparison of 32 initially defined selection
rules for selecting code classes was performed. 18 selection rules led to
an appropriate selection (i.e., no undetected test defect), while 14 led to
inappropriate selections. Changing assumption A2 with respect to the
size metric class length (i.e., instead of low-sized ones, which was initially
taken from identified related work, high-sized ones are used) and
combining it with inspection results changed the ratio to 24 suitable
ones and eight bad ones. A fine-grained consideration of minor or major
defects was usually not more efficient than the more coarse-grained
defect content or defect density metric. Finally, selection rules using
crash defects should be omitted in our context due to only two defects
being classified as such. With respect to prioritizing defect types,
selection rules could be found that selected all relevant defect types. It
was not possible to derive concrete effort reductions or efficiency values;
however, effort savings and efficiency improvements are expected
because not all defect types were prioritized.

Finally, considering the overall effort, effectiveness, and efficiency of the
inspection and testing activities, an improvement in the efficiency of the
In2Test approach compared to a non-integrated approach could be
found (between 4.1% and 28.2% depending on the selection rules
applied; SR 1*-SR 3* summarize those selection rules with the same
values). Again, pure inspection leads to the highest efficiency, by
omitting a certain number of defects. Furthermore, inspections are again
superior with respect to testing only after the inspection in the given
context, which is consistent with observations from other environments
(Laitenberger, 1998). Table 38 shows a summary of the quality assurance
results with respect to different quality assurance approaches. We

Empirical Validation

 147

considered the effort for conducting the defect detection during the
inspection, respectively the effort for conducting the test definition and
execution.

Table 38 Comparison of different quality assurance processes.

No. Approach # defects found
Effort needed

(minutes) Efficiency
1 Inspection 100 835 0.1198
2 Testing (after inspetion) 6 660 0.0091

3
Non-integrated in-
spection and testing 106 1495 0.0710

4.1 In2Test (SR 1*) 106 1435 0.0739
4.2 In2Test (SR 2*) 106 1405 0.0754
4.3 In2Test (SR 3*) 106 1165 0.0910

5.4.5 Limitations of the Study

As in any empirical study, there are threats to the validity of the study
results (Wohlin et al., 2000). Below, a discussion of what we consider to
be the most relevant threats in our case study is presented.

Conclusion validity: Due to the low number of test effort data of the
testers, it was not possible to perform statistical tests (i.e., low statistical
power). However, the initial results show that the approach is able to
prioritize those code classes that are defect-prone and that the two-
stage approach is able to prioritize those defect types that appeared
most often during testing. Furthermore, test defects found by only one
single testing activity were considered, i.e., test defects that might be
found in later testing activities or after delivery were not considered in
the analysis of the prioritization.

Construct validity: To demonstrate the integrated approach, different
assumptions were derived in our context. Nevertheless, different
assumptions might have led to better or worse results. Moreover, in
order to be able to apply an assumption, it has to be operationalized into
concrete selection rules. This might have been done in a different way
and, consequently, alternative code classes and defect types might have
been prioritized. A decision on how to treat, e.g., “low” and “high” was
made to allow application of the selection rules. As mentioned above,
concrete values have to be chosen depending on the context because
fixed values are not necessarily valid in each environment. However, a
different determination might have led to different test prioritizations. A
representative number of different selection rules were derived in order
to compare them. Some of them were correlated. Still, additional ones
may further support prioritization. In addition, no standard checklists
were used, which might have affected the inspection performance.

Empirical Validation

 148

However, some checklist questions were taken from the literature, which
can be considered as standard questions. Finally, the selection of ODC
may have influenced the prioritization of defect types.

Internal validity: The selection of the subjects was done systematically,
but another selection might have led to different defects being found for
inspection and testing. Regarding testing, the effect was slightly reduced
by using equivalence partitioning; regarding inspections, the effect was
slightly reduced by using checklists that focused the inspectors on certain
aspects in the code. Finally, defects could be classified differently.

External validity: The prototype tool, which is rather small, can be
considered as an initial example to which the integrated approach was
applied. Few test defects were found (which is also a consequence of the
size of the prototype tool, respectively the low number of tested code
classes). Thus, only those few test defects could be classified. A larger
software product, as typically developed by software companies, is
expected to result in more test defects being found and classified during
testing activities. Thus, the conclusions drawn have to be treated with
caution. Moreover, only one classification was applied, although an
industry-related one. Furthermore, assumptions and derived selection
rules have to be evaluated anew in each new context, meaning that the
conclusions drawn with respect to the used selection rules cannot be
generalized directly. Finally, the results can only be transferred to an
environment where a comparable number of defects are found in
inspections.

5.4.6 Trend Analysis of Assumptions and Selection Rules

H1.7 Validity of assumptions (system parts): When applying the
integrated inspection and testing approach in a new context, it has to be
decided which assumptions and selection rules should be used for
prioritizing parts of the system and thus, how the testing activities
should be focused. The presented assumptions and selection rules can
serve as a starting point for prioritizing those code classes expected to be
most defect-prone. However, the selected assumptions and selection
rules have to be evaluated in order to demonstrate their suitability. The
steps for performing this analysis are presented below, as well as their
application in the concrete context of the study for those assumptions
that were used for the stage-1 prioritization.

A prerequisite for conducting this analysis is an available set of rules. Due
to the fact that only one assumption and no concrete selection rules
were applied in the pilot study, additional rules had to be evaluated for
the pilot study. Consequently, each selection rule applied in the case
study has been analyzed subsequently for the pilot study in order to be

Empirical Validation

 149

able to analyze which assumptions and selection rules were valid in both
QA runs.

The objective of the following analysis is to identify those selection rules
that led to consistent predictions of defect-prone code classes with
respect to both QA runs. Those selection rules appear to be stable in the
given context and are promising candidates for future prioritization steps
regarding code parts. All necessary information was already gathered
during the QA runs, i.e., defect information per code class and product
metrics. In addition, each defined assumption and all derived selection
rules had to be analyzed and compared based on the gathered data.

In order to be able to analyze the quality of each assumption and the
corresponding selection rules across both QA runs, each possibility for
defining an assumption was exploited. With respect to the inspection
defects, two different assumptions are possible:

1. Parts of the code where a large number of inspection defects is
found indicate more defects to be found with testing.

2. Parts of the code where a low number of inspection defects is
found indicate more defects to be found with testing.

Regarding the combination of inspection defects and size, the following
four assumptions were defined:

1. Parts of the code where a large number of inspection defects is
found and which are of small size indicate more defects to be
found with testing.

2. Parts of the code where a large number of inspection defects is
found and which are of high size indicate more defects to be
found with testing.

3. Parts of the code where a low number of inspection defects is
found and which are of small size indicate more defects to be
found with testing.

4. Parts of the code where a low number of inspection defects is
found and which are of high size indicate more defects to be
found with testing.

Finally, regarding the combination of inspection defects and complexity,
four assumptions were determined:

1. Parts of the code where a large number of inspection defects is
found and which are of high complexity indicate more defects
to be found with testing.

Empirical Validation

 150

2. Parts of the code where a large number of inspection defects is
found and which are of low complexity indicate more defects to
be found with testing.

3. Parts of the code where a small number of inspection defects is
found and which are of high complexity indicate more defects
to be found with testing.

4. Parts of the code where a small number of inspection defects is
found and which are of low complexity indicate more defects to
be found with testing.

Table 39 Number of selection rules that were compared in the trend analysis.

Selection Metric one Metric two #
2 x 2 x 4 = 16

 high /
low

 defect content /
 defect density

all defects /
high severity defects /
med. severity defects /

low severity defects
4 x 2 x 4 = 32

high + high /
high + low /
low + high /
low + low

defect content + class length /
defect density + class length

all defects + LoC /
high severity defects + LoC /
med. severity defects + LoC /

low severity defects + LoC
4 x 2 x 4 = 32

high + high /
high + low /
low + high /
low + low

defect content + method length /
defect density + method length

all defects + LoC /
high severity defects + LoC /
med. severity defects + LoC /

low severity defects + LoC
4 x 2 x 4 = 32

high + high /
high + low /
low + high /
low + low

defect content + McCabe /
defect density + McCabe

all defects + McCabe /
high severity defects + McCabe /
med. severity defecty + McCabe /

low severity defects + McCabe
2 x 1 = 2

high / low class length
2 x 1 = 2

high / low mean method length
2 x 1 = 2

high / low McCabe complexity
Sum: 118

VI size

VII complexity

defect
content +

complexity
IV

sizeV

defect
content +

size
III

Assumptions

defect
content

defect
content +

size

I

II

For each of the ten assumptions, corresponding selection rules were
derived based on the determined metrics (e.g., defect content, defect
density, mean method length, McCabe complexity, and severity classes).
This resulted in 112 selection rules to be compared. Performing the
analysis in that way, each assumption and the derived selection rules
were analyzed in detail and conclusions regarding which ones led to the
best prioritizations of code classes could be drawn. Remember that a
large number of category four selection rules were expected due to this
kind of analysis. In order to be able to compare the different selection
rules with selection rules using only product metrics, additional
assumptions were defined, focusing on the two different size metrics
(i.e., class length and mean method length) and the single complexity
metric (i.e., McCabe complexity) only. Consequently, six additional
selection rules were defined (e.g., small and large class length), resulting

Empirical Validation

 151

in a total of 118 selection rules to be analyzed. Table 39 shows the
calculation.

In order to judge the quality of a selection rule, four different quality
categories for a selection rule were defined. Table 40 gives an overview
of the four categories, as explained in detail in Section 4.4.

Table 40 Quality categories with respect to prioritization of code classes.

Decription

1 excellent
All code classes in which defects are found are prioritized, and code classes in
which no defects are found are not prioritized.

2 good
All code classes in which defects are found are prioritized, but code classes in
which no defects are found are also prioritized.

3 bad
Only some code classes in which defects are found are prioritized (includes also
the prioritization of code classes in which no defects are found).

4 worst No code class which is defect-prone is prioritized.

Category

Figure 39 shows how the selection rules were classified with respect to
the quality categories over the two QA runs performed. The first group,
called “acceptable”, comprises selection rules that were either classified
as one or two. Selection rules that were classified as one in both QA runs
showed the best prioritizations, followed by a one in the first run and a
two in the second run. Nine selection rules fit into one of those two
categories. Some examples are “defect content (high)”, “defect content
(high) & class length (high)”, and “defect content (high) & mean method
length (low)”. Furthermore, some combinations of size metrics with
major and minor severity (defect content) showed excellent or good
prioritizations.

Two more selection rules focusing either on high class length or on low
mean method length only were classified into category two in both runs.
These two selection rules can be treated as control selection rules
because they do not consider defect results from the inspection.
However, although they presented satisfactory results, they were not the
most efficient ones.

The “neutral” group comprises selection rules where at least one
selection rule is put into category three and the other selection rules are
not categorized worse than category three. Though these twelve
selection rules led only to acceptable results in one run, they prioritized
at least some code classes in the other run that were defect-prone. Thus,
they should be analyzed further in subsequent QA runs. Two examples
are “defect density (high)” and “defect density (high) & mean method
length (low)”. For the second QA run, no selection rule was classified in
category three since there was only one defect-prone code class (and
thus, no defect-prone subset exists).

Empirical Validation

 152

Finally, most of the selection rules (around 80 percent) were classified as
“non-acceptable”. Due to the high number of different concrete
combinations of selection rules and the low number of QA runs, this
result was expected. Selection rules that were classified as one/four or
four/one showed promising results in one QA run, but performed worse
in the other. Usually, McCabe complexity was used in these selection
rules, which is the same as in the selection rules classified as two/four or
four/two. This shows that selection rules that combine McCabe
complexity with inspection results lead to inconsistent prioritizations in
our context. More specifically, low McCabe complexity (and those
selection rules that combine McCabe complexity and inspection defect
numbers) led to suitable predictions in the first quality assurance run,
while high McCabe complexity led to good predictions in the second
run. One reason might be that the quality-assured parts in the first
iteration were still not very complex, but did contain defects. However,
this was changed in the second iteration (i.e., the software became more
complex).

Figure 39 Quality categories of 118 selection rules over two QA runs.

Empirical Validation

 153

The main conclusions of this analysis can be summarized as follows:

 Nine selection rules showed very promising prioritization results
over the two QA runs and should be considered in subsequent
QA runs. All of these nine selection rules use inspection defect
results.

 Two control selection rules (class length high and mean method
length low) also led to good prioritization results (twice classified
as two), but not as efficiently as the aforementioned nine
selection rules, i.e., the nine most promising selection rules that
use inspection results only or combine inspection results with
product metrics led to prioritizations that are more efficient than
selection rules using only single product metrics.

 Selection rules that use McCabe complexity or combine this
complexity metric with inspection results led to inconsistent
results over the two QA runs.

 In general, assumptions and selection rules using inspection
defect information or combining it with product metrics are a
promising approach for prioritizing code classes that are
expected to be defect-prone. However, the best ones have to be
identified by detailed analyses in a given context.

In this analysis, initial and easy-to-gather defect and product metrics
were used to define the selection rules. However, a lot of different
metrics exist that may also lead to worthwhile prioritizations. Some of
these are mentioned in Chapter 3. Thus, additional analyses are
necessary, especially when performing further QA runs and trying to
identify those selection rules that continuously lead to acceptable
prioritizations. Furthermore, in order to improve confidence in the
prioritization results for testing activities, not only one, but a set of the
most promising selection rules can be considered. Nevertheless, different
selection rules have to be analyzed over each new QA run again and the
information gathered has to be taken into consideration, i.e., it has to be
evaluated continuously which selection rules are the best ones (which is
something that can change).

5.5 Summary

In this chapter, the integrated inspection and testing approach In²Test
was evaluated during two case studies. In both case studies, a tool was
developed and two quality assurance activities were performed, namely
inspections and testing. The defect data was used to evaluate certain
hypotheses.

Empirical Validation

 154

An overview of the results can be found in Table 41. Overall, statistically
significant results could not be obtained due to small sample sizes.
However, initial positive trends could be demonstrated.

First of all, H1.1 showed positive trends. An effort reduction for
executing test cases of more than 20% was achieved in both case
studies when the In2Test approach was applied. However, this result
depends on the assumption and selection rules applied, i.e., there
existed also assumptions and selection rules that did not lead to such an
effort reduction. Effort reduction was achieved in our context, and we
observed positive trends with respect to this hypothesis, whereas no
statistically significant results could be achieved due to the small sample
size. Moreover, additional effort for deriving assumptions and selection
rules was not considered here. It is worth noting that the best
assumptions, respectively selection rules, led to a similar effort reduction
of about 30% in both case studies. With respect to H1.2, an effort
reduction is also achievable when only focusing on certain defect types.
However, no concrete effort numbers could be obtained. Rather, the
parenthesized checkmark is based on the fact that focusing on certain
defect types was possible instead of selecting all defect types (i.e.,
defects were not distributed equally with respect to all considered defect
types, and those defect types were primarily selected, into which most of
the defects were classified).

Table 41 Summary of the results of the performed case studies.

Hypothesis Case study I1 Case study II1

H1.1: Effort (system parts)

H1.2: Effort (defect types) (2) (2)
H1.3: Effectiveness (system parts)
H1.4: Effectiveness (defect types)
H1.5: Efficiency (system parts)

H1.6: Efficiency (defect types) (2) (2)

H1.7: Validity of assumptions (system parts) 3

H1.8: Validity of assumptions (defect types)
H2.1: Applicability in industrial context

3 Results are based on two quality assurance runs

1 Results are based on quantitative data, but the sample size was too small to
 conduct statistical analyses
2 Results are based on quantitative data for focusing and no real effort data

H1.3 and H1.4 indicate a potential for improved effectiveness, i.e., a
similar number of defects were found when the In2Test approach was
applied. Again, the result is dependent on concrete assumptions and
selection rules. In the first case study, H1.4 was evaluated with respect to
different system levels (i.e., defect types from code inspection used for
focusing defect types on the system test level). Though the same defect
types were found during inspections and testing, it is unclear how to use

Empirical Validation

 155

defect type results of the code inspection to focus on those defect types
on the system test level.

Hypotheses H1.5 and H1.6 used different assumptions for focusing
testing on parts of the system and on certain defect types in order to
evaluate an improvement in efficiency. These two assumptions
summarize the aggregated results of H1.1 together with H1.3, and of
H1.2 together with H1.4 with respect to one quality assurance run. With
respect to assumptions that were used to focus testing on certain parts
of a system, H1.5 shows positive trends and an improvement in
efficiency of between 6.7% and 52.4% was achieved. A number of
different assumptions and their refined selection rules led to suitable
results. With respect to H1.6, only an indirect statement could be made
due to a lack of exact effort data. Hence, this hypothesis got a
checkmark in parentheses.

Finally, in the second case study, two quality assurance runs could be
performed, which allowed analyzing assumptions and selection rules
across both quality assurance runs and initially investigating the validity
of underlying assumptions with respect to focusing system parts. Again,
a set of assumptions and selection rules could be found that were valid
during both quality assurance runs, which strengthens the validity of
these assumptions. However, additional quality assurance runs are
necessary to improve the validity of the applied assumptions and
selection rules.

The remaining hypotheses could not be tested during the case studies
and remain to be validated during future work. However, though the
approach was not applied in an industrial setting, first positive trends
regarding its applicability could be gathered during the two evaluations.

Overall, hypothesis H1 can neither be confirmed nor rejected based on
the two case studies because no statistical analyses were possible due to
the small sample size. However, based on the analyzed sub-hypotheses,
first positive results could be obtained that encourage using inspection
defect data to focus testing activities in order to improve test efficiency
and overall quality assurance efficiency (i.e., reduced effort at the same
quality level).

Conclusion and Future Work

 157

6 Conclusion and Future Work

6.1 Summary and Conclusion

This thesis presented the integrated inspection and testing approach
In2Test, which integrates inspection and testing in order to focus testing.
It can be considered as a light-weight approach since it does not require
any particular inspection or testing technique. Inspection defect data is
used to predict defect-prone parts or defect types, and testing is focused
on such parts or on the selected defect types. Though the use of
inspection results might not be the only appropriate predictor of defect-
prone parts or defect types, it can, however, give valuable support, e.g.,
for allocating test effort, defining the order of tests, or improving the
efficiency and effectiveness of quality assurance activities and thus, for
improving the overall quality of the system under test. As shown by the
state-of-the-art and state-of-the-practice analyses, inspections and
testing are well-established quality assurance activities. However, they
are usually applied in isolation, meaning that synergy effects are often
not exploited by systematic integration. In particular, inspection results
are often not used for focusing testing activities. In detail, the In2Test
approach contributes the following components:

 The In2Test approach makes explicit use of inspection defect
data and is able to combine them with established metrics and
historical data in order to identify potentially problematic areas
and defect types, and thereby improves prioritization. A process
was presented that shows the necessary steps, from the
inspection to the focused test activity.

 In order to be able to conduct prioritization, knowledge about
the relationships between inspections and testing is necessary. If
such knowledge is not available, assumptions have to be stated.
A formal model for describing assumptions was presented, and
guidelines on how to derive, evaluate, and apply them were
stated. Furthermore, refined selection rules that make
assumptions operational were shown. Finally, a set of initial
assumptions describing the relationships between inspection
and testing defects were given.

 A prototype implementation of the prediction component was
performed. With the DETECT tool, which can be used to
conduct inspections, the inspection results can be visualized,
and selection rules can be defined. Based on these rules, the

Conclusion and Future Work

 158

tool presents suggestions as to which parts or which defect
types should be focused on during subsequent testing activities.

The In2Test approach was evaluated in two case studies. The main goal
of this thesis was to evaluate whether any effort improvement at a
comparable level of quality could be obtained, i.e., whether any
improved efficiency could be achieved. The following results were
achieved in the given contexts:

 An effort reduction of between 6% and 34% was achieved
when focusing testing on specific parts of the system, which
depended on the selection rules used in the given contexts.

 Although no concrete effort reduction could be measured when
focusing on specific defect types, some improvement is
expected.

 Overall, comparable quality could be achieved in the case studies
when tests were focused on specific parts and specific defect
types. However, this also depended on specific assumptions and
concrete selection rules.

 An efficiency improvement of between 7% and 52% was
achieved when focusing testing on specific parts of the system,
which depended on the selection rules used in the given
contexts. With respect to overall quality assurance efficiency,
this means an improvement of up to 28% of the In2Test
approach compared to a non-integrated approach when
considering defect detection efforts.

 Although no concrete efficiency improvement could be
measured when focusing on specific defect types, some
improvement is expected.

 One case study demonstrated that a specific set of assumptions
and selection rules that focused testing on specific parts were
valid during two quality assurance runs, which improved
confidence in these assumptions and selection rules in the given
environment.

 New insights about the relationships between inspections and
testing could be gained. For instance, in one case study, more
defects were found during testing when the inspection had
found a significant number of defects. Moreover, such selection
rules showed better performance than established metrics such
as size or complexity. In another case study, in which different
development stages were addressed, focusing the test on parts

Conclusion and Future Work

 159

that had not been inspected resulted in additional defects.
These results also indicate that assumptions and selection rules
have to be validated again in each new context in order to find
the most appropriate ones in a given environment.

6.2 Open Questions and Future Work

Further development and evaluation of the In2Test approach will take
place, especially in the context of the Stiftung Rheinland-Pfalz für
Innovation project QKIT. In general, the following aspects may be
addressed by future work:

 Approach improvement: The approach should be studied in
terms of the extent to which it is applicable to different
development phases such as requirements inspections used for
prioritizing system test activities or design inspections used for
prioritizing integration test activities. Moreover, results from
different inspection phases may be cumulated in order to focus
different testing activities.

 Approach improvement: Inspections are often only performed
on limited parts of the product. However, the limited inspection
results should also be used to prioritize those parts of the
product to be tested that were not inspected (e.g., based on
characteristics of the inspected parts that are similar to
suggested parts of the product), i.e., a scaling mechanism for
the integrated approach should be considered.

 Approach improvement: A procedure for deriving test cases
based on prioritized defect types has to be defined.

 Approach improvement: Focusing on specific system parts and
omitting other parts completely is a rather coarse-grained style
of prioritization. Therefore, calibration of testing techniques may
result in more appropriate focusing, e.g., defining how many
equivalence classes should be derived for prioritized and for
non-prioritized parts may lead to better prioritization.

 Approach improvement: Instead of omitting entire parts of the
system, such as code classes or code defect types, effort could
be allocated on a percentage basis, i.e., most of the test effort
should be allocated to those parts of the system expected to be
most defect-prone or to defect types expected to appear most
often. This can be supported by creating a sorted list of the
parts to be tested instead of putting all parts to be tested into a
prioritized and non-prioritized set.

Conclusion and Future Work

 160

 Approach improvement: The In2Test approach currently does not
offer any overall confidence measure to support the decision on
when to stop testing. Confidence in the results of this thesis is
supported to the extent that valid assumptions are used for the
given contexts. However, an overall confidence value depends
on many criteria, such as domain, usage scenarios, or criticality
of defects. The In2Test approach may support finding an answer
regarding this question by considering inspection and test defect
data, but more criteria have to be considered in future work and
a more comprehensive definition of confidence has to be given.

 Approach improvement: Besides inspection results and product
metrics used as input for focusing testing activities, feedback
from inspectors or further experts and process metrics could also
provide valuable input for the prediction that could be
incorporated into the existing In2Test approach. D’Ambros et al.
(D’Ambros et al., 2010) state that usually a single focusing
technique does not work consistently in all environments and
thus, a mix of different prediction techniques might provide
more valuable predictions of defect-proneness.

 Approach improvement: One important challenge is to explore
ways on how to use the approach in highly iterative and
adaptive development processes.

 Approach embedding: The In2Test approach may be used to
balance different quality assurance activities. For this, it has to
be embedded into a holistic approach for determining quality
assurance activities. One goal might be to develop empirically-
based guidance on how to embed different kinds of quality
assurance activities and their interrelations into a development
process model. Depending on the development goals and
characteristics as well as on so-called defect flow models, which
describe the defect slippage of the lifecycle, guidance for
integrating different kinds of quality assurance activities and
their interfaces could be developed. The usability of such an
approach has to be ensured, meaning an answer is needed to
the question of how to present which information to support a
quality engineer in making the “right” decision to improve the
overall quality.

 Quality assurance strategy: In this thesis, the In2Test approach
was applied to improve efficiency at a comparable level of
quality. However, exploiting the given effort and improving the
number of defects found, or improving both efficiency and
effectiveness, are further goals of the integrated approach that
should be addressed.

Conclusion and Future Work

 161

 Assumptions: Additional assumptions should be defined and
evaluated in order to better understand the relationships
between inspections and testing and to obtain more evidence.
This includes especially defect distributions obtained by these
quality assurance activities (e.g., expressed as defect content,
defect density, or number of defects per defect type) Based on
such knowledge, new theories that explain the observations
made could be derived. If such solid empirical knowledge and
derived theories explaining the relationships were available, then
it would be possible to guide and focus quality assurance
activities, such as testing, in a more appropriate manner.

 Assumptions: The approach should be applied across several
releases in order to identify the most valuable assumptions and
selection rules in a given environment and to gain statistically
significant results. This also includes comparing different
assumptions and selection rules.

 Selection rules: Instead of using a single selection rule, it might
be more worthwhile in real settings to combine the best
possible selection rules for the most appropriate focusing and to
reduce the number of overlooked defects. Guidelines describing
how to combine selection rules are needed.

 Evidence: Assumptions that use inspection defect data for
focusing testing activities should be compared to established
concepts, such as using product metrics (e.g., size, complexity)
for the prediction of defect-proneness and defect types.

 Evaluations: Additional evaluations of the integrated approach in
different contexts (e.g., industrial environments, academia, or
open-source projects) where inspection and test data are
available may substantiate the usefulness of the integrated
approach.

 Evaluations: An experiment design that compares groups using
the In2Test approach with groups not using the In2Test approach
may result in additional conclusions regarding the suitability and
efficiency improvements of the integrated approach. Two
different study designs can be found in Appendix B.

 Evaluations: A comparison of the integrated approach to
existing approaches for predicting defect-proneness and
focusing testing activities has to be conducted, for example a
comparison between the In2Test approach and approaches
using different metrics with respect to efficiency improvements,
for instance.

Conclusion and Future Work

 162

 Alternative early data: Instead of using inspection defect data for
focusing testing activities, data from different static analyses
could be used instead or in combination.

 Sophisticated tool support: The initial tool prototype should be
extended in order to support the In2Test approach more
comprehensively. For example, additional product metrics could
be used and combined with inspection metrics, and historical
data could be considered when defining rules for the focusing
activity.

References

 163

References

A.F. Ackerman, L.S. Buchwald, F.H. Lewsky. Software Inspections: An
Effective Verification Process. IEEE Software, vol. 6, no. 3, pp. 31-36,
1989.

A. Aggarwal, P. Jalote. Integrating Static and Dynamic Analysis for
Detecting Vulnerabilities, In: Proceedings of the 30th Annual
International Conference on Computer Software and Applications, pp.
343-350, 2006.

P. Andersson. The Use and Limitations of Static Analysis Tools to Improve
Software Quality. CrossTalk: The Journal of Defense Software
Engineering, vol. 21, no. 6, pp. 18-21, 2008.

C. Andersson, P. Runeson. A Replicated Quantitative Analysis of Fault
Distributions in Complex Software Systems. IEEE Transactions on
Software Engineering, vol. 33, no. 5, pp. 273-286, 2007.

C. Andersson, T. Thelin, P. Runeson, N. Dzamashvili. An Experimental
Evaluation of Inspection and Testing for Detection of Design Faults. In:
Proceedings of the 2003 International Symposium on Empirical Software
Engineering, pp. 174-184, 2003.

C. Artho, A. Biere. Combined Static and Dynamic Analysis. Electronic
Notes in Theoretical Computer Science, vol. 131, pp. 3-14, 2005.

A. Aurum, H. Petersson, C. Wohlin. State-of-the-Art: Software
Inspections after 25 Years. Software Testing, Verification and Reliability,
vol. 12, no. 3, pp. 133-154, 2002.

A. Avancini, M. Ceccato. Towards Security Testing with Taint Analysis
and Genetic Algorithms. In: Proceedings of the 2010 ICSE Workshop on
Software Engineering for Secure Systems, pp. 65-71, 2010.

D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel,
G. Vigna. Saner: Composing Static and Dynamic Analysis to Validate
Sanitization in Web Applications. In: Proceedings of the 2008 IEEE
Symposium on Security and Privacy, pp. 387-401, 2008.

J. Barnard, A. Price. Managing Code Inspection Information. IEEE
Software, vol. 11, no.2, pp. 59-69, 1994.

References

 164

V.R. Basili, L.C. Briand, W.L. Melo. A Validation of Object-Oriented
Design Metrics as Quality Indicators. IEEE Transactions on Software
Engineering, vol. 22, no. 10, pp. 751-761, 1996.

V.R. Basili, G. Caldiera, H.D. Rombach. The Experience Factory.
Encyclopedia of Software Engineering, vol. 1, John Wiley & Sons, pp.
469-476, 1994.

V.R. Basili, G. Caldiera, H.D. Rombach. Goal Question Metric Paradigm.
Encyclopedia of Software Engineering, vol. 1, John Wiley & Sons, pp.
528-532, 1994b.

V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S.
Soerumgaard, M. Zelkowitz. The Empirical Investigation of Perspective-
based Reading. Empirical Software Engineering, vol. 1, no. 2, pp. 133-
164, 1996.

V.R. Basili, B.T. Perricone. Software Errors and Complexity: An Empirical
Investigation. Communication of the ACM, vol. 27, no. 1, pp. 42-52,
1984.

V.R. Basili, R.W. Selby. Comparing the Effectiveness of Software Testing
Strategies. IEEE Transactions on Software Engineering, vol. 13, no. 12,
pp. 1278-1296, 1987.

W.J. Baumwol, A.S. Blinder. Macroeconomics: Principles and Policy.
Orlando, Florida, Harcourt, 2001.

K. Beck. Extreme Programming. Addison-Wesley, München, 2000.

B. Beizer, Software Testing Techniques. 2nd Edition, International
Thomson Computer Press, 1990.

T. Berling, P. Runeson. Evaluation of a Perspective based Review Method
Applied in an Industrial Setting. IEE Proceedings, vol. 150, no. 3, pp.
177-184, 2003.

T. Berling, T. Thelin. An Industrial Case Study of the Verification and
Validation Activities. In: Proceedings of the 9th International Symposium
on Software Metrics, pp. 226-238, 2003.

T. Berling, T. Thelin. A Case Study of Reading Techniques in a Software
Company. In: Proceedings of the 2004 International Symposium on
Empirical Software Engineering, pp. 229-238, 2004.

A. Bertolino. Software Testing Research: Achievements, Challenges,
Dreams. In: Proceedings of Future of Software Engineering, pp. 85-103,
2007.

References

 165

A. Bertolino, E. Marchetti. A Brief Essay on Software Testing. Technical
report, pp. 1-14, 2004.

S. Biffl. Using Inspection Data for Defect Estimation. IEEE Software, vol.
17, no. 6, pp. 36-43, 2000.

D.B. Bisant, J.R. Lyle. A two-Person Inspection Method to Improve
Programming Productivity. IEEE Transactions on Software Engineering,
pp. 1294-1304, 1989.

B. Boehm. Guidelines for Verifying and Validating Software
Requirements and Design Specification. In: Proceedings of the European
Conference on Applied Information Technology of the International
Federation for Information Processing, pp. 711-719, 1979.

B. Boehm, V.R. Basili. Software Defect Reduction Top 10 List. IEEE
Computer, vol. 34, no. 1, pp. 135-137, 2001.

L. Briand, K.E. Emam, B. Freimut. A Comparison and Integration of
Capture-Recapture Models and the Detection Profile Method. In:
Proceedings of the 9th Internatioal Symposium on Software Reliability
Engineering, pp. 32-43, 1998.

L.C. Briand, K. El Emam, B. Freimut, O. Laitenberger. Quantitative
Evaluation of Capture-Recapture Models to Control Software
Inspections. In: Proceedings of the 8th International Symposium on
Software Reliability Engineering, pp. 234-244, 1997.

L. Briand, B. Freimut, O. Laitenberger, G. Ruhe, B. Klein. Quality
Assurance Technologies for the EURO Conversion – Industrial Experience
at Allianz Life Assurance. In: Proceedings of the 2nd International
Software Quality Week Europe, pp. 1-23, 1998b.

N. Bridge, C. Miller, Orthogonal Defect Classification Using Defect Data
to Improve Software Development. In: International Conference on
Software Quality, pp. 197-213, 1997.

British Standard 7925-2, Software Testing, Part 2: Software Component
Testing, 1998.

B. Brykczynski. A Survey of Software Inspection Checklists. ACM
SIGSOFT Software Engineering Notes, vol. 24, no.1, pp. 82-89, 1999.

I. Burnstein. Practical Software Testing, Springer, 2002.

J. Carver, J. van Voorhis, V. Basili. Understanding the Impact of
Assumptions on Experimental Validity. In: Proceedings of the 2004

References

 166

International Symposium on Empirical Software Engineering, pp. 251-
260, 2004.

P. Centonze, R. Flynn, M. Pistoia. Combining Static and Dynamic Analysis
for Automatic Identification of Precise Access-control Policies. In:
Proceedings of the 23rd Annual Computer Security Applications
Conference, pp. 292-303, 2007.

J.K. Chaar, M.J. Halling, I.S. Bhandari, R. Chillarege. In-process
Evaluation for Software Inspection and Test. IEEE Transactions on
Software Engineering, vol. 19, no. 11, pp. 1055-1070, 1993.

T.F. Chang, A. Danylyzsn, S. Norimatsu, J. Rivera, D. Shepard, A.
Lattanze, J. Tomayko. “Continuous Verification” in Mission Critical
Software Development. In: Proceedings of the 13th Hawaii International
Conference on System Sciences, pp. 273-284, 1997.

R.N. Charette. Why Software Fails. IEEE Spectrum, vol. 32, no. 9, pp. 42-
49, 2005.

O. Chebaro, N. Kosmatov, A. Giorgetti, J. Julliand. Combining Static
Analysis and Test Generation for C Program Debugging. Tests and
Proofs, vol. 6143, pp. 94-100, 2010.

J. Chen, H. Zhou, S.D. Bruda. Combining Model Checking and Testing
for Software Analysis. In: Proceedings of the 2008 International
Conference on Computer Science and Software Engineering, pp. 206-
209, 2008a.

Y. Chen, S. Liu, W.E Wong. A Method Combining Review and Testing
for Verifying Software Systems. In: Proceedings of the 2008 International
Conference on BioMedical Engineering and Informatics, pp. 827-831,
2008b.

J. Chen, S. MacDonald. Towards a Better Collaboration of Static and
Dynamic Analyses for Testing Concurrent Programs. In: Proceedings of
the 6th workshop on Parallel and distributed systems: testing, analysis,
and debugging, pp. 1-9, 2008.

T.Y. Chen, P.L. Poon, S.F. Tang, T.H. Tse, Y.T. Yu. Applying Testing to
Requirements Inspection for Software Quality Assurance. Information
Systems Control Journal, vol. 6, pp. 50-56, 2006.

Q. Chen, L. Wang, Z. Yang. HEAT: An Integrated Static and Dynamic
Approach for Thread Escape Analysis. In: Proceedings of the 33rd Annual
IEEE International Computer Software and Applications Conference, pp.
142-147, 2009.

References

 167

Q. Chen, L. Wang, Z. Yang, S.D. Stoller. HAVE: Detecting Atomicity
Violations via Integrated Dynamic and Static Analysis. In: Proceedings of
the 12th International Conference on Fundamental Approaches to
Software Engineering: Held as Part of the Joint European Conferences
on Theory and Practice of Software, pp. 425-439, 2009b.

M. Ciolkowski, O. Laitenberger, S. Biffl. Software Reviews: The State of
the Practice. IEEE Software, vol. 20, no. 6, pp. 46-51, 2003.

J. Cohen. Best Kept Secrets of Peer Code Review: Code Reviews at Cisco
Systems. pp. 63-87, 2006.

R. Conradi, A.S. Marjara, B. Skatevik, An Empirical Study of Inspection
and Testing Data at Ericsson, Norway, In: Proceedings of the 24th NASA
Software Engineering Workshop, 1999.

C. Csallner, Y. Smaragdakis. Check 'n' Crash: Combining Static
Checking and Testing. In: Proceedings of the 27th International
Conference on Software engineering, pp. 422-431, 2005.

C. Csallner, Y. Smaragdakis, T. Xie. DSD-Crasher: A Hybrid Analysis Tool
for Bug Finding. ACM Transactions on Software Engineering and
Methodology, vol. 17, no. 2, pp. 1-37, 2008.

M. D’Ambros, M. Lanza, R. Robbes. An Extensive Comparison of Bug
Prediction Approaches. In: Proceedings of the 7th IEEE Working
Conference on Mining Software Repositories, pp. 31-41, 2010.

G. Denaro, M. Pezze. An Empirical Evaluation of Fault-Proneness Models.
In: Proceedings of the 24th International Conference on Software
Engineering, pp. 241-251, 2002.

C. Denger. SafeSpection - A Framework for Systematization and
Customization of Software Hazard Identification by Applying Inspection
Concepts. PhD Theses in Experimental Software Engineering, vol. 27,
Fraunhofer IRB Verlag, 2009.

C. Denger, M. Ciolkowski, F. Lanubile. Does active guidance improve
software inspections? A preliminary empirical study. In: Proceedings of
the IASTED International Conference Software Engineering, pp. 408-
413, 2004.

C. Denger, F. Elberzhager. Unifying Inspection Processes to Create a
Framework to Support Static Quality Assurance Planning. In: Proceedings
of the 33rd Euromicro Conference on Software Engineering and
Advanced Applications, pp. 271-280, 2007.

References

 168

E.W. Dijkstra. The Humble Programmer. Communications of the ACM,
vol. 15, no. 10, pp. 859-866, 1972.

E.P. Doolan. Experience with Fagan’s Inspection Method. Software –
Practice and Experience, vol. 22, no. 2, pp. 173-182, 1992.

E. Duke. V&V of Flight and Mission-Critical Software. IEEE Software vol.
6, no. 3, pp. 39-45, 1989.

A. Dunsmore, M. Roper, M. Wood. Systematic Object-Oriented
Inspection - An Empirical Study. In: Proceedings of the 23rd International
Conference on Software Engineering, pp. 123-144, 2001.

A Dunsmore, M. Roper, M. Wood. Further Investigations into the
Development and Evaluation of Reading Techniques for Object-oriented
Code Inspections. In: Proceedings of the 24th International Conference
on Software Engineering, pp. 47-57, 2002.

A. Dunsmore, M. Roper, M. Wood. The Development and Evaluation of
Three diverse Techniques for Object-oriented Code Inspection. IEEE
Transactions on Software Engineering, vol. 29, no. 8, pp. 677-686,
2003.

S.G. Eick, C.R. Loader, M.D. Long, L.G. Votta, S.V. Wiel. Estimating
Software Fault Content Before Coding. In: Proceedings of the 14th
International Conference on Software Engineering, pp. 59-65, 1992.

K.E. Emam, S. Benlarbi, N. Goel, W. Mela, H. Lounis, S.N. Rai. The
Optimal Class Size for Object Oriented Software. IEEE Transactions on
Software Engineering, vol. 28, no.5, pp. 494-509, 2002.

F. Elberzhager. Analysis of Empirical Findings on Quality Assurance
Techniques. Diploma thesis, University of Kaiserslautern, 2005.

F. Elberzhager, R. Eschbach. Towards Reduction of Test Effort –
Predicting Defect-prone Code Classes and Expected Defect Types based
on Inspection Results. In: Proceedings of the 36th Euromicro Software
Engineering and Advanced Application, Work in Progress Session, 2010.

F. Elberzhager, R. Eschbach, C. Jung, A. Klaus. DEFECT – Tool-supported
Inspection Guidance. In: Proceedings of the 36th Euromicro Software
Engineering and Advanced Application, Work in Progress Session,
2010a.

F. Elberzhager, R. Eschbach, J. Kloos. Indicator-based Inspections: A Risk-
oriented Quality Assurance Approach for Dependable Systems. In:
Proceedings of the Software Engineering 2010 edition, GI-Edition
Lecture Notes in Informatics, vol. 159, pp. 105-116, 2010b.

References

 169

F. Elberzhager, R. Eschbach, J. Muench. Using Inspection Results for
Prioritizing Test Activities. In: Proceedings of the 21st International
Symposium on Software Reliability Engineering, Supplemental
Proceedings, pp. 263-272, 2010c.

F. Elberzhager, R. Eschbach, J. Muench. The Relevance of Assumptions
and Context Factors for the Integration of Inspections and Testing. In:
Proceedings of the 37th Euromicro Software Engineering and Advanced
Application, Software Product and Process Improvement, pp. 388-391,
2011a.

F. Elberzhager, R. Eschbach, J. Muench. Using Context-specific
Relationships for the Integration of Inspection and Test Processes, Project
Report in the Context of the Stiftung Rheinland-Pfalz für Innovation
Project Qualitäts-KIT (grant: 925), Fraunhofer IESE report no. 094.11/E,
2011c.

F. Elberzhager, R. Eschbach, J. Muench, A. Rosbach. Reducing Test
Effort: A Systematic Mapping Study on Existing Approaches. Information
and Software Technology, vol. 54, no. 10, pp. 1092-1106, 2012b.

F. Elberzhager, R. Eschbach, J. Muench, A. Rosbach. Inspection and Test
Process Integration based on Explicit Test Prioritization Strategies. In:
Proceedings of the 4th Software Quality Days, pp. 181-192, 2012.

F. Elberzhager, A. Klaus, M. Jawurek. Software Inspections using Guided
Checklists to Ensure Security Goals. In: Proceedings of the International
Conference on Availability, Reliability and Security, pp. 853-858, 2009.

F. Elberzhager, J. Muench. Using Early Quality Assurance Metrics to
Focus Testing Activities. In: Proceedings of the DASMA Metrik Kongress,
(Metrikon), pp. 29-36, 2011.

F. Elberzhager, J. Muench, D. Rombach, B. Freimut. Optimizing Cost and
Quality by Integrating Inspection and Test Processes. In: Proceedings of
the International Conference on Software and Systems Process, pp. 3-
12, 2011d.

F. Elberzhager, J. Muench, V. Tran. A Systematic Mapping Study on the
Combination of Static and Dynamic Quality Assurance Techniques.
Information and Software Technology, vol. 54, no. 1, pp. 1-15, 2012a.

K.E. Emam, O. Laitenberger, T. Harbich. The Application of Subjective
Estimates of Effectiveness to Controlling Software Inspections. Journal of
Systems and Software, vol. 54, no. 2, pp. 119-136, 2000.

References

 170

A. Endres. An Analysis of Errors and their Causes in System Programs.
IEEE Transactions on Software Engineering, vol. 1, no. 2, pp. 140-149,
1975.

A. Endres, D. Rombach. A Handbook of Software and Systems
Engineering,” Addison-Weseley, Pearson Education Limited, 2003.

G.D. Everett, R. McLeod. Software Testing: Testing Across the Entire
Software Development Life Cycle. John Wiley and Sons, New Jersey,
2007.

M.E. Fagan. Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal, vol. 15, no. 3, pp. 182-211, 1976.

M.E. Fagan. Advances in Software Inspections. IEEE Transactions on
Software Engineering, vol. 12, no. 7, pp. 744-751, 1986.

M.E. Fagan. Inspections - Evolution and History: 1972-2001. Talk given
at sd&m conference, slides, 2001,
http://pioneer.chula.ac.th/~sperapho/pub/f_7_fagan.pdf, last visited:
January 06, 2012.

R.L. Feldmann, J. Münch, S. Vorwieger, Experiences with Systematic
Reuse: Applying the EF/QIP Approach, In: Proceedings of the European
Reuse Workshop, 1997.

N.E. Fenton, N. Ohlsson. Quantitative Analysis of Faults and Failures in a
Complex Software System. IEEE Transactions on Software Engineering,
vol. 26, no. 8, pp. 797-814, 2000.

L.A. Franz, J.C. Shih. Estimating the Value of Inspections and Early
Testing for Software Projects. Hewlett-Packard Journal, pp. 60-67, 1994.

G.A. Gack. An Economic Analysis of Software Defect Removal Methods.
Based on Managing the Black Hole: The Executive's Guide to Software
Project Risk, Business Expert Publishing, 2010.

V. Garousi, T. Varma. A Replicated Survey of Software Testing Practices
in the Canadian Province of Alberta: What has Changed from 2004 to
2009? Journal of Systems and Software, vol. 83, no. 11, pp. 2251-2262,
2010.

A.M. Geras, M.R. Smith, J. Miller. A Survey on Software Testing Practices
in Alberta. Canadian Journal of Electrical and Computer Engineering, vol.
29, no. 3, pp. 183-191, 2004.

T. Gilb, D. Graham. Software Inspections. Addison-Wesley, 1993.

References

 171

P. Godefroid, P. de Halleux, A.V. Nori, S.K. Rajamani, W. Schulte, N.
Tillmann, M.Y. Levin. Automating Software Testing Using Program
Analysis. IEEE Software, vol. 25, no. 5, pp. 30-37, 2008.

M. Gopinathan, S.K. Rajamani. Enforcing Object Protocols by Combining
Static and Runtime Analysis. In: Proceedings of the 23rd ACM SIGPLAN
conference on Object-oriented programming systems languages and
applications, pp. 245-260, 2008.

R.B. Grady. An Economic Release Decision Model: Insights into Software
Project Management. In: Proceeedings of the Applications of Software
Measurement Conference, pp. 225-239, 1999.

R.B. Grady, T. van Slack. Key Lessons in Achieving Widespread Inspection
Use. IEEE Software, vol. 11, no. 4, pp. 46-57, 1994.

A. Gupta, P. Jalote. Test Inspected Unit or Inspect Unit Tested Code? In:
Proceedings of the 1st International Symposium on Empirical Software
Engineering and Measurement, pp. 51-60, 2007.

B. Hailpern, P. Santhanam. Software Debugging, Testing, and
Verification. IBM Systems Journal, vol. 41 no. 1, 2002.

M. Hamill, K. Goseva-Popstojanova. Common Trends in Software Fault
and Failure Data. IEEE Transactions on Software Engineering, vol. 35, no.
4, pp. 484-496, 2009.

A. Hanna, H.Z. Ling, X. Yang, M. Debbabi. A Synergy between Static and
Dynamic Analysis for the Detection of Software Security Vulnerabilities.
In: Proceedings of the Confederated International Conferences, CoopIS,
DOA, IS, and ODBASE 2009 on the Move to Meaningful Internet
Systems: Part II, pp. 815-832, 2009.

J.T. Harding. Using Inspection Data to Forecast Test Defects. Software
Technology Transition, pp. 19-24, 1998.

L. Harjumaa, I. Tervonen, A. Huttunen. Peer Reviews in Real Life –
Motivators and Demotivators. In: Proceedings of the 5th International
Conference on Quality Software, pp. 29-36, 2005.

M.J. Harrold. Testing: A Roadmap. In: Proceedings of the Conference on
The Future of Software Engineering, pp. 61-72, 2000.

W.S. Harwood, A New Model for Inquiry: Is the Scientific Model Dead?
Journal of College Science Teaching, vol. 33, no. 7, pp. 29-33, 2004.

M. Hayes. Quality First. Information Week, no. 889, p. 38, 2002.

References

 172

H. Hedberg. Introducing the Next Generation of Software Inspection
Tools. Product Focused Software Process Improvement; Lecture Notes in
Computer Science, vol. 3009/2004, pp. 234-247, 2004.

J. Heidrich, J. Münch, W. Riddle, D. Rombach. People-Oriented Capture,
Display, and Use of Process Information. New Trends in Software Process
Modelling; Series on Software Engineering and Knowledge Engineering,
vol. 18, pp. 121-180, 2006.

R. Hower, Software QA and Testing Resource Center, 2011,
http://www.softwareqatest.com/qatfaq2.html, last visited: January 06,
2012.

W.S. Humphrey. The Software Quality Challenge. Crosstalk – The Journal
of Defense Software Engineering, vol. 21, no. 6, pp. 4-9, 2008.

IEEE Standard 610.12-1990. IEEE Standard Glossary of Software
Engineering Terminology, 1990.

IEEE Standard 829-1998. IEEE Standard for Software Test
Documentation, 1998.

IEEE Standard 1028-1997. IEEE Standard for Software Reviews, IEEE
Software Society, 1997.

Inspection repository, Fraunhofer Inspection Repository, 2011,
http://inspection.iese.de, last visited: January 06, 2012.

ISO/IEC 15504 Standard (Spice). International Standard, part 1-5, 2006.

ISO/IEC 62304 Standard. Medical device software - Software life cycle
processes, 2006.

F. Iturbe. Systematic Testing and Reviewing. In: Proceedings of the 11th
International Conference on Software Engineering and Knowledge
Engineering, pp. 295-299, 1999.

M. Ivarsson, T. Gorschek. A Method for Evaluating Rigor and Industrial
Relevance of Technology Evaluations. Empirical Software Engineering,
vol. 16, no. 3, pp. 365-395, 2011.

D. Jackson, M. Thomas, L.I. Millett, Editors. Software for Dependable
Systems: Sufficient Evidence? Committee on Certifiably Dependable
Software Systems, National Research Council, National Academy of
Sciences, 2007.

J. Jacobs, J. van Mol, R. Kusters, J. Trienekens, A. Brombacher.
Identification of Factors that Influence Defect Injection and Detection in

References

 173

Development of Software Intensive Products. Information and Software
Technology, vol. 49, no. 7, pp. 774-789, 2007.

I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Development
Process. Addison-Wesley, Amsterdam, 1999.

P. Jalote, M. Haragopal. Overcoming the NAH Syndrome for Inspection
Deployment. In: Proceedings of the 20th international conference on
Software engineering, pp. 371-378, 1998.

P. Jalote, V. Vangala, T. Singh, P. Jain. Program Partitioning: A
Framework for Combining Static and Dynamic Analysis. In: Proceedings
of the 2006 international workshop on Dynamic systems analysis, pp.
11-16, 2006.

D. Janzen, H. Saiedian. Test-driven Development: Concepts, Taxonomy,
and Future direction. IEEE Computer, vol. 38, no. 9, pp. 43-50, 2005.

R. Jeffery, L. Scott. Has twenty-five Years of Empirical Software
Engineering made a Difference? In: Proceedings of the 9th Asia-Pacific
Software Engineering Conference, pp. 539-546, 2002.

P.M. Johnson. Reengineering Inspections. Communication of the ACM,
vol. 41, no. 2, pp. 49-52, 1998.

P.M. Johnson, D. Tjahjono. Does every Inspection Really Need a
Meeting? Empirical Software Engineering, vol. 3, no. 1, pp. 9-35, 1998.

C. Jones. Applied Software Measurement: Assuring Productivity and
Quality. McGraw-Hill, 1991.

C. Jones. Software Project Management Practices: Failure versus Success.
Crosstalk – The Journal of Defense Software Engineering, vol. 17, no.
10, pp. 5-9, 2004.

C. Jones. Measuring Defect Potentials and Defect Removal Efficiency.
Crosstalk – The Journal of Defense Software Engineering, vol. 21, no. 6,
pp. 11-13, 2008.

P. Joshi, K. Sen, M. Shlimovich. Predictive Testing: Amplifying the
Effectiveness of Software Testing. In: Proceedings of the 6th joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on the foundations of software engineering, pp.
561-564, 2007.

N. Juristo, A.M. Moreno, W. Strigel. Software Testing Practices in
Industry. IEEE Software, vol. 23, no.4, pp. 19-21, 2006.

References

 174

N. Juristo, A.M. Moreno, S. Vegas. Reviewing 25 Years of Testing
Technique Experiments. Empirical Software Engineering, vol. 9, no. 1-2,
7-44, 2004.

N. Juristo, S. Vegas. Functional Testing, Structural Testing and Code
Reading: What Fault Type do they Each Detect? Empirical Methods and
Studies in Software Engineering, vol. 2765, pp. 208-232, 2003.

E. Kamsties, C.M. Lott. An Empirical Evaluation of Three Defect
Detection Techniques. In: Proceedings of the 5th European Software
Engineering Conference, pp. 362-383, 1995.

S.H. Kan. Metrics and Models in Software Quality Engineering. Addison-
Wesley, Reading, MA, 1995.

E. Kantorowitz, A. Guttmann, L. Arzi. The Performance of the N-fold
Requirements Inspection Method. Requirements Engineering Journal,
vol. 2, no. 3, pp. 152-164, 1997.

D.W. Karolak. Software Engineering Risk Management, IEEE Computer
Society Press, Wiley, 1996.

J. Kasurinen, O. Taipale, K. Smolander. Analysis of Problems in Testing
Practices. In: Proceedings of the 16th Asia-Pacific Software Engineering
Conference, pp. 309-315, 2009.

D. Kelly, T. Shepard. Task-directed Software Inspections. Journal of
Systems and Software, vol. 73, no. 2, pp. 243-256, 2004.

J.C. Kelly, J.S. Sherif, J. Hops. An Analysis of Defect Densities found
during Software Inspections. Journal of Systems and Software, vol. 17,
no. 2, pp. 111-117, 1992.

B. Kinochita. Measuring Software Quality with Metrics – Why Static and
Dynamic Analysis should Walk Hand-In-Hand. Testing Experience, no.
11, 2010.

B.A. Kitchenham, S. Charters. Guidelines for Performing Systematic
Literature Reviews in Software Engineering. Technical Report EBSE-2007-
01, Keele University and University of Durham, 2007.

M. Klaes, F. Elberzhager, R. v. Lengen, T. Schulz, J. Goebbels. A
Framework for the Balanced Optimization of Quality Assurance
Strategies Focusing on Small and Medium Sized Enterprises. In:
Proceedings of the 35th Euromicro Conference on Software Engineering
and Advanced Applications, pp. 335-342, 2009.

References

 175

M. Klaes, F. Elberzhager, J. Muench, K. Hartjes, O.v.Graevemeyer.
Transparent Combination of Expert and Measurement Data for Defect
Prediction – An Industrial Case Study. In: Proceedings of the 32nd
International Conference on Software Engineering, pp. 119-128, 2010a.

M. Klaes, F. Elberzhager, H. Nakao. Managing Software Quality through
a Hybrid Defect Content and Effectiveness Model. In: Proceedings of the
2nd ACM-IEEE international symposium on Empirical software
engineering and measurement, pp. 321-323, 2008a.

M. Klaes, H. Nakao, F. Elberzhager, J. Münch. Predicting Defect Content
and Quality Assurance Effectiveness by Combining Expert Judgment and
Defect Data - A Case Study. In: Proceedings of the 19th International
Symposium on Software Reliability Engineering, pp. 17-26, 2008b.

M. Klaes, H. Nakao, F. Elberzhager, J. Münch. Support Planning and
Controlling of Early Quality Assurance by Combining Expert Judgment
and Defect Data--A Case Study. Empirical Software Engineering, vol. 15,
no. 4, pp. 423-454, 2010b.

J.C. Knight, A.E. Myers. An Improved Inspection Technique.
Communication of ACM, vol. 36, no. 11, pp. 50-69, 1993.

S. Kollanus, J. Koskinen. Survey of Software Inspection Research: 1991-
2005. Computer Science and Information Systems reports, Working
Papers WP-40, University of Jyväskylä, Finland, 2007.

T. Koomen, M. Pol. Test Process Improvement: A Practical Step-by-Step
Guide to Structure Testing. ACM Press, 1999.

P.D. Kumar, A. Nema, R. Kumar. Hybrid Analysis of Executables to
Detect Security Vulnerabilities. Proceedings of the 2nd India software
engineering conference, pp. 141-148, 2009.

O. Laitenberger. Studying the Effects of Code Inspections and Structural
Testing on Software Quality. In: Proceedings of the 9th International
Symposium on Software Reliability Engineering, pp. 237-246, 1998.

O. Laitenberger, C. Atkinson, M. Schlich, K. El Eman. An Experimental
Comparison of Reading Techniques for Defect Detection in UML Design
Documents. Journal of Systems and Software, vol. 53, no. 2, p. 183-204,
2000.

O. Laitenberger, J.M. DeBaud. Perspective-based Reading of Code
Documents at Robert Bosch GmbH. Information and Software
Technology, vol. 39, no. 11, pp. 781-791, 1997.

References

 176

O. Laitenberger, J.M. DeBaud. An Encompassing Life Cycle centric Survey
of Software Inspection. Journal of Systems and Software, vol. 50, no. 1,
pp. 5-31, 2000.

O. Laitenberger, K. El Emam, T.G. Harbich. An Internally Replicated
Quasi-Experimental Comparison of Checklist and Perspective-Based
Reading of Code Documents. IEEE Transactions on Software
Engineering, vol. 27, no. 5, pp. 387-421, 2001.

F. Lanubile, T. Mallardo. Inspecting Automated Test Code: A Preliminary
Study. In: Proceedings of the 8th international conference on Agile
processes in software engineering and extreme programming, pp. 115-
122, 2007.

E. Lee. Software Inspections: How to Diagnose Problems and Improve
the Odds of Organizational Acceptance. Crosstalk, vol. 10, no. 8, pp. 10-
13, 1997.

N. Leveson, C.S. Turner. An Investigation of the Therac-25 Accidents.
IEEE Computer, vol. 26, no. 7, pp. 18-41, 1993.

P. Liggesmeyer. Software-Qualität: Testen, Analysieren und Verifizieren
von Software. Spektrum Akademischer Verlag, Heidelberg, 2009.

S. Liu. Integrating Specification-based Review and Testing for Detecting
Errors in Programs. In: Proceedings of the 9th international conference
on formal methods and software engineering, pp. 136-150, 2007.

S. Liu, T. Tamai, S. Nakajima. Integration of Formal Specification, Review,
and Testing for Software Component Quality Assurance. In: Proceedings
of the 2009 ACM symposium on Applied Computing, pp. 415-421,
2009.

G.A.D. Lucca, M.D. Penta. Integrating Static and Dynamic Analysis to
Improve the Comprehension of Existing Web Applications. In:
Proceedings of the 7th IEEE International Symposium on Web Site
Evolution, pp. 87-94, 2005.

M.V. Mantyla, C. Lassenius. What Types of Defects are really Discovered
in Code Reviews? IEEE Transactions on Software Engineering, vol. 35,
no. 3, pp. 430-448, 2009.

J. Martin, W.T. Tsai. N-fold Inspection: A Requirements Analysis
Technique. Communications of ACM, vol. 33, no. 2, pp. 225-232, 1990.

P. Massicotte, L. Badri, M. Badri. Aspects-classes Integration Testing
Strategy: An Incremental Approach. Rapid Integration of Software
Engineering Techniques, vol. 3943, pp. 158-173, 2006.

References

 177

T. McGibbon. A Business Case for Software Process Improvement.
Technical Report F30602-92-C-0158. Data & Analysis Center for
Software (DACS), 1996; revised version published 2007.

Metrics, Eclipse Metrics plugin, http://metrics.sourceforge.net/, 2010, last
visited: January 06, 2012.

J. Miller. Estimating the Number of Defects after Inspection. Software
Testing, Verification and Reliability, vol. 9, no. 4, pp. 167-189, 1999.

K.H. Möller. Fehlerverteilung als Hilfsmittel zur Qualitätsverbesserung
und Fehlerprognose. VDE Fachtagung Technische Zuverlässigkeit, Berlin
VDE Verlag, 1985.

K.H. Möller, D.J. Paulish. An Empirical Investigation of Software Fault
Distribution. In: Proceedings of the IEEE First International Software
Metrics Symposium, 1993.

J.C. Munson, T.M. Khoshgoftaar. The Detection of Fault-Prone
Programs, IEEE Transactions on Software Engineering, vol. 18, no. 5., pp.
423-433, 1992.

G.J. Myers. A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections. Communications of the ACM, vol. 21, no. 9,
pp. 760-768, 1978.

G.J. Myers. The Art of Software Testing. New York Wiley and Sons,
1979.

N. Nagappan, T. Ball, A. Zeller. Mining Metrics to Predict Component
Failures. In: Proceedings of the International Conference on Software
Engineering, pp. 452-461, 2006.

S.P. Ng, T. Murnane, K. Reed, D. Grant, T.Y. Chen. A Preliminary Survey
on Software Testing Practices in Australia. In: Proceedings of the 2004
Australian Software Engineering Conference, pp. 116-125, 2004.

A.V. Nori, S.K. Rajamani, S. Tetali, A.V. Thakur. The Yogi Project:
Software Property Checking via Static Analysis and Testing. In:
Proceedings of the 15th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems: Held as Part of
the Joint European Conferences on Theory and Practice of Software, pp.
178-181, 2009.

ODC. Orthogonal Defect Classification v5.11, IBM, 2002, available:
http://www.research.ibm.com/softeng/ODC/ODC.HTM, last visited
January 06, 2012.

References

 178

N. Ohlsson, H. Alberg. Predicting Fault-Prone Software Modules in
Telephone Switches, IEEE Transactions on Software Engineering, vol. 22,
no. 12, pp. 886-894, 1996.

N. Ohlsson, M. Helander, C. Wohlin. Quality Improvement by
Identification of Fault-prone Modules Using Software Design Metrics. In:
Proceedings of the 6th International Conference on Software
Engineering, pp. 1-13, 1996.

T.J. Ostrand, E.J. Weyuker. The Distribution of Faults in a Large Industrial
Software System. In: Proceedings of the 2002 ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 55-64,
2002.

T.J. Ostrand, E.J. Weyuker, R.M. Bell. We’re Finding most of the Bugs,
but what are we Missing? In: Proceedings of the 3rd International
Conference on Software Testing, Verification and Validation, pp. 313-
322, 2010.

T. Otte, R. Moreton, H.D. Knoell. Applied Quality Assurance Methods
under the Open Source Development Model. In: 32nd Annual IEEE
International Computer Software and Applications Conference, pp.
1247-1252, 2008.

D.L. Parnas, D.M. Weiss. Active Design Reviews: Principles and Practices.
In: Proceedings of the 8th International Conference on Software
Engineering, pp. 132-136, 1985.

M.C. Paulk. The Capability Maturity Model: Guidelines for Improving the
Software Process. SEI Series in Software Engineering, Addison-Wesley,
1995.

H. Peine, M. Jawurek, S. Mandel. Security Goal Indicator Trees: A Model
of Software Features that Supports Efficient Security Inspection. In:
Proceedings of the 11th IEEE High Assurance Systems Engineering
Symposium, pp. 9-18, 2008.

D.E. Perry, A.A. Porter, L.G. Votta, Empirical Studies of Software
Engineering: A Roadmap, In: Proceedings of the Future of Software
Engineering, pp. 345-355, 2000.

K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson. Systematic Mapping
Studies in Software Engineering. In: Proceedings of the 12th
International Conference on Evaluation and Assessment in Software
Engineering, pp. 1-10, 2008.

References

 179

K. Peterson, C. Wohlin. Context in Industrial Software Engineering
Research. In: Proceedings of the 3rd International Symposium on
Empirical Software Engineering and Measurement, pp. 401-404, 2009.

H. Petersson, T. Thelin, P. Runeson, C. Wohlin. Capture–Recapture in
Software Inspections after 10 Years Research – Theory, Evaluation and
Application. Journal of Systems and Software, vol. 72, no. 2, pp. 249-
264, 2004.

B. Pettichord. Agile Testing Challenges. Pacific Northwest Software
Quality Conference, 2004, available: http://pettichord.com/, last visited:
January 06, 2012.

R. Pressman. Software Engineering: A Practitioner’s Approach. 7th
edition, McGraw-Hill, 2009.

A. Porter, L.G. Votta. Comparing Detection Methods for Software
Requirements Specification: A Replication Using Professional Subjects.
Empirical Software Engineering, vol. 3, no. 4, p. 355-379, 1998.

S.J. Prowell, C.J. Trammell, R.C. Linger, J.H. Poore. Cleanroom Software
Engineering: Technology and Process, Addison-Wesley Professional,
1999.

H. Remus. Integrated software validation in the view of
inspections/reviews. In: Proceedings of a symposium on Software
validation: inspection-testing-verification-alternatives, pp. 57-65, 1984.

Risk Digest, Forum on Risks to the Public in Computers and Related
Systems. ACM Committee on Computers and Public Policy, moderated
by P.G. Neumann, 1985-2011, available: http://catless.ncl.ac.uk/risks, last
visited: January 06, 2012.

D. Rombach, M. Ciolkowski, R. Jeffery, O. Laitenberger, F. McGarry, F.
Shull. Impact of Research on Practice in the field of Inspections, Reviews
and Walkthroughs: Learning from Successful Industrial Uses. ACM
SIGSOFT Software Engineering Notes, vol. 33, no. 6, pp. 26-35, 2008.

M. Roper, M. Wood, J. Miller. An Empirical Evaluation of Defect
Detection Techniques. Information and Software Technology, vol. 39,
no. 11, pp. 763-775, 1997.

W. Royce. Managing the Development of Large Software Systems. In:
Proceedings of the IEEE WESCON 26, pp. 1–9, 1970; reprinted in:
Proceedings of the 9th International Conference on Software
Engineering, pp. 328-338, 1987.

References

 180

P. Runeson. A Survey of Unit Testing Practices. IEEE Software, vol. 23,
no. 4, pp. 22-29, 2006.

P. Runeson, C. Andersson, T. Thelin, A. Andrews, T. Berling. What Do
We Know about Defect Detection Methods? IEEE Software, vol. 23, no.
3, pp. 82-90, 2006.

P. Runeson, A. Andrews. Detection or Isolation of Defects? An
Experimental Comparison of Unit Testing and Code Inspection. In:
Proceedings of the 14th International Symposium on Software Reliability
Engineering, pp. 3-13, 2003.

A. Schröter, T. Zimmermann, R. Premraj, A. Zeller. If your Bug Database
could Talk. In: Proceedings of the 5th International Symposium on
Empirical Software Engineering, pp. 18-20, 2006.

M. Shaw, Prospects for an Engineering Discipline of Software, IEEE
Software, vol. 7, no.6, pp. 15-24, 1990.

Shields consortium, D2.1: Formalism definitions and representation
schemata, deliverable of the SHIELDS research project within the
European Community's Seventh Framework Programme, 2008,
available: http://www.shields-project.eu, last visited: January 06, 2012.

F. Shull, V. Basili, B. Boehm, A.W. Brown, P. Costa, M. Lindvall, D. Port, I.
Rus, R. Tesoriero, M. Zelkowitz. What we have Learned about Fighting
Defects, In: Proceedings of the 8th IEEE Symposium on Software Metrics,
pp. 249-258, 2002.

D.I.K. Sjoberg, T. Dyba, M. Jorgensen. The Future of Empirical Methods
in Software Engineering Research. Future of Software Engineering, pp.
358-378, 2007.

T. Spillner, P. Liggesmeyer. Software Qualitätssicherung in der Praxis –
Ergebnisse einer Umfrage. Informatik Spektrum, vol. 17, no. 6, pp. 368-
372, 1994.

T. Spillner, T. Linz. Basiswissen Softwaretest, Aus- und Weiterbildung
zum Certified Tester, Heidelberg, dpunkt Verlag, 2003.

T. Spillner, K. Vosseberg, M. Winter, P. Haberl. Wie wird in der Praxis
getestet? Online-Umfrage in Deutschland, Schweiz und Österreich.
OBJEKTspektrum Ausgabe Testing/2011, 2011.

T. Spillner, K. Vosseberg, M. Winter. Umfrage 2011 - Softwaretest in der
Praxis vom 01.05. - 31.05. Aktuelle Ergebnisse, available:
http://www.softwaretest-umfrage.de/, last visited: January 06, 2012.

References

 181

S.S. So, S.D. Cha, T.J. Shimeall, Y.R. Kwon. An Empirical Evaluation of Six
Methods to Detect Faults in Software. Software Testing, Verification and
Reliability, vol. 12, no. 3, pp. 155-171, 2002.

P. Strooper, M.A. Wojcicki. Selecting V&V Technology Combinations:
How to Pick a Winner? In: Proceedings of the 12th IEEE International
Conference on Engineering Complex Computer Systems, pp. 87-96,
2007.

D. Talby, A. Keren, O. Hazzan, Y. Dubinsky. Agile Software Testing in a
Large-Scale Project. IEEE Software, vol. 23, no. 4, pp. 30-37, 2006.

G. Tassey. The Economic Impacts of Inadequate Infrastructure for
Software Testing. National Institute of Standards and Technology,
Research Triangle Institute – Health, Social, and Economic Research,
Planning Report 02-3, Triangle Park, N.C., 2002.

T. Thelin, P. Runeson, B. Regnell. Usage-based Reading – an Experiment
to Guide Reviewers with Use Cases. Information and Software
Technology, vol. 43, no. 15, pp. 925-938, 2001.

T. Thelin, P. Runeson, C. Wohlin. An Experimental Comparison of Usage-
based Reading and Checklist-based Reading. IEEE Transactions on
Software Engineering, vol. 29, no. 8, pp. 687-704, 2003.

T. Thelin, P. Runeson, C. Wohlin, T. Olsson, C. Andersson. Evaluation of
Usage-based Reading – Conclusions after Three Experiments. Empirical
Software Engineering, vol. 9, no. 1-2, pp. 77-110, 2004.

TMap, Test Management Approach, 2011, available:
http://www.tmap.net/en/tmap-next, last visited January 06, 2012.

G. Travassos, F. Shull, M. Fredericks, V.R. Basili. Detecting Defects in
Object Oriented Designs: Using Reading Techniques to Improve Software
Quality. In: Proceedings of the 14th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pp.
47-56, 1999.

L.L. Tripp, W.F. Struck, B.K. Pflug. The Application of Multiple Team
Inspections on a Safet-critical Software Standard. In: Proceedings of the
4th Software Engineering Standards Application Workshop, pp. 106-
111, 1991.

B. Turhan, G. Kocak, A. Bener. Data Mining Source Code for Locating
Software Bugs: A Case Study in Telecommunication Industry. Expert
Systems with Applications, vol. 36, no. 6, pp. 9986-9990, 2009.

References

 182

V. Venkatesh, M.G. Morris, G.B. Davis, F.D. Davis. User Acceptance of
Information Technology: Toward a Unified View. MIS Quarterly, vol. 27,
no. 3, pp. 425-478, 2003

L.G. Votta. Does every Inspection Need a Meeting? In: Proceedings of
the 1st ACM SIGSOFT Symposium on Foundations of Software
Engineering, pp. 107-117, 1993.

S. Wagner. A Literature Survey of the Quality Economics of Defect
Detection Techniques. In: Proceedings of the 2006 ACM / IEEE
International Symposium on Empirical Software Engineering, pp. 194-
203, 2006.

S. Wagner, J. Jürjens, C. Koller, P. Trischberger. Comparing Bug Finding
Tools with Reviews and Test. In: Proceedings of the 17th International
Conference on Testing of Communicating Systems, pp. 40-55, 2005.

N. Ward. Integrated Formal Verification and Validation of Safety Critical
Software. In: Proceedings of the Aerospace Software Engineering for
Advanced Systems Architectures Conference, pp. 10-13, 1993.

E.F. Weller. Lessons from three years of inspection data. IEEE Software,
vol. 10, no. 5, pp. 38-45, 1993.

K.E Wiegers. Peer Reviews in Software. Addison-Wesley, 2002.

S.V. Wiel, L. Votta. Assessing Software Designs Using Capture-Recapture
Methods. IEEE Transactions on Software Engineering, vol. 19, no. 11, pp.
1045-1054, 1993.

D. Winkler, S. Biffl, K. Faderl. Investigating the Temporal Behavior of
Defect Detection in Software Inspection and Inspection-based Testing.
Product-Focused Software Process Improvement, vol. 6156, pp. 17-31,
2010.

D. Winkler, B. Riedl, S. Biffl. Improvement of Design Specifications with
Inspection and Testing. In: Proceedings of the 31st Euromicro
Conference on Software Engineering and Advanced Applications, pp.
222-231, 2005.

M. Wood, M. Roper, A. Brooks, J. Miller. Comparing and Combining
Software Defect Detection Techniques – A Replicated Empirical Study. In:
Proceedings of the 6th European Software Engineering Conference, pp.
262-277, 1997.

C. Wohlin, P. Runeson. Defect Content Estimations from Review Data.
In: Proceedings of the 20th International Conference on Software
Engineering, pp. 400-409, 1998.

References

 183

C. Wohlin, P. Runeson, J. Brantestam. An Experimental Evaluation of
Capture-Recapture in Software Inspection. Software Testing, Verification
and Reliability, vol. 5, no. 4, pp. 213-232, 1995.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslen.
Experimentation in software engineering an introduction, Kluwer, 2000.

M.A. Wojcicki, P. Strooper. An Iterative Empirical Strategy for the
Systematic Selection of a Combination of Verification and Validation
Technologies. In: Proceedings of the 5th International Workshop on
Software Quality, pp. 9-14, 2007.

M.V. Zelkowitz, D.R. Wallace, Experimental Models for Validating
Technology, IEEE Computer, vol. 31, no. 5, pp. 23-31, 1998.

S. Zhang, Y. Lin, Z. Gu, J. Zhao. Effective Identification of Failure-
inducing Changes: A Hybrid Approach. In: Proceedings of the 8th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, pp. 77-83, 2008.

D.M. Zimmerman, J.R. Kiniry. A Verification-centric Software
Development Process for Java. In: Proceedings of the 9th International
Conference on Quality Software, pp. 76-85, 2009.

Appendix A - Checklists used during Evaluation

 185

Appendix A Checklists used during Evaluation

Appendix A shows the different checklists that were used during the two
case studies.

A.1 DETECT Evaluation: Checklists

1. Requirements checklist

 Does the navigation in the GIT model work properly?

 Does the depth-first search work correctly in the GIT model?

 Does the recovery mechanism work correctly?

 Do the logical functions for the GIT work correctly?

 Does the history view reflect the structure of the GIT?

 Are all comments saved and shown properly?

 Does the parser of the history file work correctly?

 Is the report shown correctly?

2. Functional checklist

 Are all calculations done correctly?

 Are all loops, branches and logical operators complete, correct,
and nested correctly?

 Are all break conditions correctly implemented?

 Are data structures used correctly?

 Does each variable have its correct type? Is each variable
instantiated correctly?

 Are values correctly committed?

Appendix A - Checklists used during Evaluation

 186

 Are there any methods that were not called? Do redundant
variables exist?

3. Extensibility checklist

 Is the code documented completely and correctly? Do the
comments fit to the source code?

 Are the methods easy to understand?

 Were appropriate method names chosen?

 Is the code structured in a consistent way?

 Please check side effects.

4. Reliability checklist

 Does the code have appropriate exception handling?

 Is debugging and error information gathered?

 Is xml-code parsed sufficiently?

A.2 JSeq Evaluation: Checklists

1. Requirements checklist

 Is a mechanism for organizing requirements implemented and
implemented correctly?

 Is a mechanism for organizing interfaces, stimuli, and responses
implemented and implemented correctly?

 Is a correct enumeration implemented (e.g., enumeration of
sequences of a determined length, extensibility with respect to
length of sequences, etc.)?

 Is a mechanism for organizing states implemented and
implemented correctly?

 Is a mechanism for allocating states implemented and
implemented correctly?

 Please check all change functions with respect to enumerations
(e.g., renaming, deleting, sorting stimuli).

Appendix A - Checklists used during Evaluation

 187

 Please check if changes within the stimulus list are conducted
correctly.

 Please check if changes within the response list are conducted
correctly.

 Please check all further enumeration functionalities.

2. Functional checklist

 Are all calculations done correctly?

 Are all loops, branches and logical operators complete, correct,
and nested correctly?

 Are all break conditions correctly implemented?

 Are data structures used correctly?

 Does each variable have its correct type? Is each variable
instantiated correctly?

 Are values correctly committed?

 Are there methods that were not called? Do redundant variables
exist?

3. Extensibility checklist

 Is the code documented completely and correctly? Do the
comments fit to the source code?

 Are the methods easy to understand?

 Were appropriate method names chosen?

 Is the code structured in a consistent way?

 Please check side effects.

4. Performance checklist

 Please check if more efficient methods or algorithms could
improve the performance.

Appendix A - Checklists used during Evaluation

 188

 Are values calculated efficiently (e.g., is each calculated value
used, are the same values calculated more than once and could
they be reused)?

 Are loops used efficiently?

 Are methods called in an unnecessary manner?

5. Reliability checklist

 Does the code have appropriate exception handling?

 Is debugging and error information gathered?

 Is data stored periodically?

 Is external data used correctly in the software?

 Can a saved file be loaded correctly?

Appendix B - Experimental Designs

 189

Appendix B Experimental Designs

B.1 Design 1

This design is similar to a typical industry setting and could be applied
during concrete development and quality assurance activities.

First, a code inspection using a checklist is performed by two
independent groups. Each group consists of one developer and one
tester. Each group checks a set of those code classes the developer was
responsible for. The checklist covers different quality aspects, such as
commentaries, structure, and functional aspects. Each group uses the
same checklist, which consists of various questions. Using a so-called
focused checklist that is adapted to the environment instead of using a
standard checklist improves effectiveness and is consistent with
recommendations found in the literature (Gilb and Graham, 1993). Due
to the availability of the developer, each finding can be discussed
immediately and it can be decided if a real defect was discovered, which
is documented and corrected afterwards. After the inspection has been
completed, an experienced quality assurance engineer aggregates the
findings for each group into a defect profile.

The second step comprises the quality monitoring of the derived defect
profile. Reading rate, overall number of found defects, and defect
distribution across the inspected code parts are considered and checked
for each defect profile from the two groups.

A crossover design is selected to allow a comparison of a non-focused
test with a focused test using the In2Test approach. Testing techniques
are taught in a training session. First, the focused test is conducted.

In step 3, the prioritization of parts of the system is done, i.e., the test
strategy for the focused test is derived. One assumption, already used in
the case studies performed before, is made, namely a Pareto distribution.
Code classes in which a significant number of defects were found during
the inspection are selected due to the assumption that more defects are
expected in such parts. Those code classes are then tested more
intensively using mainly equivalence partitioning and, to some extent,
boundary-value analyses (step 4), and non-prioritized code classes are
rarely tested or even not tested at all. Focusing could be done by
omitting and selecting complete code classes, or by selecting more or
fewer test cases (per equivalence classes) per code class. It could also

Appendix B - Experimental Designs

 190

include different efforts for explorative testing. Defects found during
testing are documented and corrected afterwards.

In order to be able to compare the focused test with a non-focused test
in terms of effectiveness and efficiency, each group also performs a non-
focused test of the code classes of another group without using their
inspection results. No prioritization strategy is derived, but a
standardized testing where each code class is treated equally is done on
the uncorrected code from the prioritized testing activity (i.e., corrected
code from after the inspection is done), again using equivalence
partitioning and boundary value analyses. The time needed and the
defects found are documented, and compared with the results from the
prioritized test.

In the experiment, the following variables are considered: number of
found defects is measured as defect content (absolute number) and
defect density (relative number); effort is measured in minutes, and
number of test cases; and size is measured in lines of code. Efficiency is
calculated using the number of defects found per time period.

Group BGroup A

Non-focused test

Focused test

Training session

System I (feature set I): 4-5 small code
classes & requirements

System I (feature set II): 4-5 small code
classes & requirements

Inspection Inspection

Additional input:
-

Additional input:
Current inspection defect profile FS I

Assumption (e.g., Pareto)

Test case definition with equivalence partitioning
and test execution FSII

Additional input:
-

Test case definition with equivalence partitioning
and test execution FSI

Test case definition with equivalence partitioning
and test execution FSI

Additional input:
Current inspection defect profile FS II

Assumption (e.g., Pareto)

Test case definition with equivalence partitioning
and test execution FSII

The figure above shows an overview of the design2. Finally, several
variations and extensions are possible with respect to the given design,
such as groups with more subjects or more groups in order to achieve
higher validity in the results. Furthermore, more than one quality
assurance run could be performed in order to adapt the initial

2 The design was presented during a poster session at the ISERN 2011 meeting.

Appendix B - Experimental Designs

 191

assumption and to find those assumptions that fit best in the given
context.

B.2 Design 2

This design is to be used in a lecture with a number of students and the
constraint of limited time. Therefore, some material has to be prepared
for the experiment.

Instead of an inspection being conducted by the students themselves to
derive a defect profile, this has to be prepared in advance, i.e.,
inspection results are predefined with respect to a certain system under
inspection. In addition, historical inspection and test defect data are
prepared and are used as input for the students to conduct the
prioritization.

Two groups of students are determined, each of which gets four to five
small code classes. This forms the basis for the testing activity, where a
test case definition using equivalence partitioning is used. The code
classes also have to be prepared with respect to seeded defects. A
training session that teaches the students basic testing should be held.

Since there are two groups, a crossover design is possible. The first
group starts with a focused test of those code classes for which they also
got a defect profile (i.e., current inspection data) and the historical
defect data. Based on the historical data, each student has to derive an
assumption that seems valid from his point of view. The historical defect
data implies a Pareto distribution; however, we did not want to state an
instruction such as “Focus on the three top defect-prone code classes”,
as this would decrease the significance of the experiment. Consequently,
we push the students into a certain direction, but also give them some
degree of freedom for the prioritization. Based on the derived
assumption, each student in the focused group should derive test cases
for the prioritized code classes. The non-focused group derives test cases
for the same code classes without any prioritization. The time is
restricted to, for instance, 90 minutes, which is the normal time of one
lecture session.

Afterwards, students from the focused group do a non-focused test on
the second set of code classes, and vice versa.

A comparison of the groups in both runs can be done in order to analyze
whether the focused group was more efficient than the non-focused
group. In the experiment, the following variables are considered: number
of found defects during testing is measured as defect content (absolute

Appendix B - Experimental Designs

 192

number), and effort is measured in minutes. Efficiency is calculated using
the number of defects found per time period.

Certain options for adaptations exist, for instance, performing the test
cases after defining them. However, this depends on the available
resources and on time restrictions. Finally, the figure below gives an
overview of the design3.

3 The design was presented during a poster session at the ISERN 2011 meeting.

Appendix C - Questionnaire

 193

Appendix C Questionnaire

A questionnaire was developed to allow getting feedback from
practitioners. Such feedback can be gathered based on a presentation
about the approach, i.e., no time-consuming evaluation is needed for
gaining such feedback. The questionnaire is based on the Unified Theory
of Acceptance and Use of Technology (UTAUT) model (Venkatesh et al,
2003), and has been adapted with respect to the In2Test approach.
Furthermore, some general questions are included at the beginning in
order to be able to classify the participants of the questionnaire.

The specific question parts A to E (see part “Evaluation of the Use and
Acceptance of the In2Test approach” in the questionnaire) can be
mapped to hypothesis 2.1, respectively to the research questions 2.1 to
2.4 as follows:

 RQ 2.1 (improvement): Questions A, C, (E)

 RQ 2.2 (understandability): Questions B

 RQ 2.3 (applicability): Questions B, C, D

 RQ 2.4 (reasonability): Questions A

Questionnaire about the In2Test Approach

Please answer the following questions. Answer as spontaneously as you
can. This will take you about 5-10 minutes. Of course, your answers will
remain completely anonymous. Thank you very much for taking the time
to fill out the questionnaire.

General Questions

Company: Start Time:

Domain: End Time:

Profession / role:

Dealing with Quality Assurance

 Question A
lot

Rather
a lot

Neither a
lot nor
little

Rather
little

Little

1. How do you rate your knowledge about

Appendix C - Questionnaire

 194

software inspections / reviews?

2. How do you rate your knowledge about
software testing?

3. How do you rate your experience with
software inspections / reviews?

4. How do you rate your experience with
software testing?

 Question Answer

5. For how many years have you been working with
software inspections / reviews?

5.1 Which inspection techniques have you applied (e.g.,
informal reviews, formal inspections, walkthroughs)?

5.2 Which kinds of documents have you inspected (e.g.,
requirements, code)?

6. For how many years have you been working with
software testing?

6.1 Which testing techniques have you applied (e.g.,
experience-based, requirements-based, boundary-
value analysis)?

6.2 On which level have you done testing (e.g., unit,
components, system)?

 Question Daily Weekly Monthly Rarely Never

7. How often have you personally performed
or attended software inspections / reviews
during the past 12 months?

8. How often have you personally performed
or attended software testing during the
past 12 months?

Motivation

 Question Agree Disagree
9. I am interested / motivated in getting to know new

approaches for software development.

10. I am interested / motivated in getting to know new
approaches for software quality assurance.

11. I would like to know more about quality assurance
techniques.

12. The topic was too new for me to comprehend it.

Appendix C - Questionnaire

 195

I would like to make the following comment(s) / improvement suggestion(s):

I had a problem with … <please explain>:

Evaluation of the Use and Acceptance of the In2Test Approach

The following questions are based on the Unified Theory of Acceptance
and Use of Technology (UTAUT).

(A) Performance expectancy Agree Disagree

I would find the In2Test approach useful in my work.

Using the In2Test approach enables me to accomplish tasks more
quickly.

Using the In2Test approach increases my productivity.

If I use the In2Test approach, I will increase my chances of getting
a raise (e.g., by decreasing effort, by finding more defects).

(B) Effort expectancy Agree Disagree

My interaction with the In2Test approach would be clear and
understandable.

It would be easy for me to become skillful at using the In2Test
approach.

I would find the In2Test approach easy to use.

Learning to apply the In2Test approach is easy for me.

(C) Attitude toward using technology Agree Disagree

Using the In2Test approach is a good idea.

The In2Test approach makes work more interesting.

Working with the In2Test approach is fun.

I like working with the In2Test approach.

(D) Facilitating conditions Agree Disagree

I have the resources necessary to use the In2Test approach.

I have the knowledge necessary to use the In2Test approach.

The In2Test approach is compatible with other approaches I use.

(E) Behavioral intention to use the system Agree Disagree

I intend to use the In2Test approach in the next 6 months.

I predict I would use the In2Test approach in the next 6 months.

I plan to use the In2Test approach in the next 6 months.

Appendix D - Initial Industrial Evaluation Results

 196

Appendix D Initial Industrial Evaluation Results

In order to continue the evaluation of the integrated approach, we are
currently analyzing defect data from an industry partner from the
automotive domain. We analyzed inspection and test defect data from
twelve different modules (see next figure), and calculated effectiveness
values when omitting a certain number of modules due to currently
seven different criteria (i.e., we are doing a retrospective analysis).

Defect data

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

Modules

D
ef

ec
ts

Inspection (all) Inspection (all, scalled) Test

For example, look at the first bar in the figure below where we
considered all inspection and test defects that were documented. If the
top three modules were selected for testing, which contained the most
inspection defects, about 30% of all testing defects had been found.
Furthermore, if the top-5 modules were selected based on the inspection
results, more than 80% of the test defects have been found. Focusing
on two thirds of all modules would lead to more than 90% of all test
defects found. In the last case, a selection of the top-10 modules would
lead to no additional benefit. Besides taking all inspection defects into
account, we performed the same analysis with respect to three
additional inspection metrics and three product metrics. The two scaled
bars consider the fact that for some code modules, only parts were
inspected, and we upscaled the inspection defect data accordingly. The
two bars “inspection w/o comments” discarded those inspection issues
that were classified as comment. Next, we considered size in lines of
code, considering the smallest ones first and then the largest ones first.
Finally, we analyzed waste_line, which is a measure that expresses how
much has changed between released versions of a module.

Appendix D - Initial Industrial Evaluation Results

 197

Effectiveness

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Inspection
Pareto (all)

Inspection
Pareto (all
scalled)

Inspection
Pareto (w/o
comments)

Inspection
Pareto (w/o
comments

scalled)

size smallest
(LoC)

size largest
(LoC)

waste_line
high

Selection criterion

%
 t

es
t

d
ef

ec
ts

 f
o

u
n

d

Selection top 10

Selection top 8

Selection top 5

Selection top 3

Based on the results displayed in the figure above, we could draw some
initial conclusions for the given context.

1. General observations: First of all, three metrics provide appropriate
results when only the top-3 modules are considered (two inspection
metrics, one size metric). With respect to the top-5 selection criterion, all
four inspection metrics provide suitable results, i.e., more than 80% of
the defects were found. With respect to the top-10 selection, all except
one metric lead to suitable results.

2. Specific observations: With respect to the inspection metrics, only two
of four led to appropriate results when selecting the top-3 defect-prone
modules based on the inspection results (i.e., about 80% of the test
defects were found). This changes when the top-5 modules are
considered. With respect to the top-8 modules, three metrics out of four
led to defect numbers for testing of more than 90%. One inspection
metric even found all defects when the top-10 modules were
considered, i.e., two modules could completely be omitted during
testing and all test defects would have been found. This means that an
effort reduction would be possible without any reduction in quality. With
respect to size, focusing on the largest modules first also led to
appropriate results in this context, but these were not as good as when
the inspection results were considered. However, the difference is small.

3. Other observations: Though the size metric focusing on the smallest
modules first is also mentioned in the literature as a good predictor of
defect-proneness, it showed bad results in our context (even for the top-
10 smallest modules).

We are currently focusing on the comparison of the superior size metric
and the inspection metrics with respect to defect data of additional
modules, i.e., the analysis in the given context is still continuing.

 199

Lebenslauf

Name Frank Elberzhager

Wohnort Wilhelmstr. 16
 67655 Kaiserslautern

Geburtsdatum 29. März 1980

Geburtsort Wipperfürth

Familienstand Verheiratet

Staatsangehörigkeit Deutsch

Schulbildung 1986-1989 Städtische Gemeinschaftsgrundschule

Hückeswagen
 1989-1996 Städtische Realschule Hückeswagen
 1996-1999 Engelbert von Berg Gymnasium Wipperfürth
 Abschluss: Abitur

Zivildienst 1999-2000 Ev. Altenzentrum Hückeswagen

Studium 2000-2005 Technische Universität Kaiserslautern
 Abschluss: Dipl.-Inform.

Berufstätigkeit 2005-heute Wissenschaftlicher Mitarbeiter am Fraunhofer-

Institut für Experimentelles Software
Engineering, Kaiserslautern

Kaiserslautern, den 9. Januar 2012

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project Management in Software
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability
Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic
Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop
Feedback

Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-
Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software
Process Improvement: Combining Software Process Assessment and
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for
Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies
through Simulation. Development and Empirical Validation of a Simulation
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for
Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support
for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization
and Customization of Software Hazard Identification by Applying Inspection
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’
Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of
Software Engineering Experience

Volume 30 Isabel John (2009), Pattern-based Documentation Analysis for Software
Product Lines

Volume 31 Martín Soto (2009), The DeltaProcess Approach to Systematic Software
Process Change Management

Volume 32 Ove Armbrust (2010), The SCOPE Approach for Scoping Software
Processes

Volume 33 Thorsten Keuler (2010), An Aspect-Oriented Approach for Improving
Architecture Design Efficiency

Volume 34 Jörg Dörr (2010), Elicitation of a Complete Set of Non-Functional
Requirements

Volume 35 Jens Knodel (2010), Sustainable Structures in Software Implementations by
Live Compliance Checking

Volume 36 Thomas Patzke (2011), Sustainable Evolution of Product Line Infrastructure
Code

Volume 37 Ansgar Lamersdorf (2011), Model-based Decision Support of Task
Allocation in Global Software Development

Volume 38 Ralf Carbon (2011), Architecture-Centric Software Producibility Analysis

Volume 39 Florian Schmidt (2012), Funktionale Absicherung kamerabasierter Aktiver
Fahrerassistenzsysteme durch Hardware-in the-Loop-Tests

Volume 40 Frank Elberzhager (2012), A Systematic Integration of Inspection and
Testing Processes for Focusing Testing Activities

