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Zusammenfassung

Mittels semi-infiniter Optimierung kann eine Vielzahl von komplexen Problemen
modelliert werden. Dazu zählen Zerlege-, Packungs- und Abdeckungsprobleme,
die mit geometrischen Bedingungen wie Teilmengen- und Trennungsbedingungen
formuliert werden.

Die einfache Beschreibung hat aber ihren Preis: Ein semi-infinites Optimierungs-
problem ist häufig schwieriger zu lösen als ein endliches nicht lineares Problem.
Ein klassischer, leicht zu implementierender Lösungsansatz besteht in der Wahl
einer Diskretisierung der semi-infiniten Indexmenge. Ein Algorithmus, der die
Diskretisierungspunkte adaptiv wählt und ihre Anzahl klein hält, ist der Blanken-
ship- und Falk-Algorithmus. In jeder Iteration wird ein approximiertes Problem,
welches auf der bisherigen Diskretisierung basiert, gelöst. In einem zweiten Schritt
wird die am stärksten verletzte Restriktion bestimmt und zur Diskretisierung hinzu-
gefügt. Viele Aussagen über die Eigenschaften eines Grenzwertes der Iterierten sind
bekannt. Es gibt in der Literatur jedoch keine Aussagen, die die Geschwindigkeit
der Konvergenz beschreiben. Diese Lücke ist der Ansatzpunkt für diese Arbeit.

Ziel der Arbeit ist es, semi-infinite Optimierungsprobleme mit Hilfe einer adap-
tiven Diskretisierungsmethode und einer quadratischen Rate der Konvergenz zu
lösen. Der Fokus liegt zunächst auf dem Blankenship- und Falk-Algorithmus. Es
wird ein Beispiel mit einer beliebig langsamen Konvergenz eingeführt. Mittels
einer Regularitätsbedingung wird dieses Beispiel ausgeschlossen und Schranken in
Abhängigkeit der Ordnung des Grenzwertes entwickelt. Diese Schranken liefern
eine quadratische Rate der Konvergenz für den Fall eines Minimums der Ordnung
1. Anhand eines Beispiels wird gezeigt, dass dies nicht für Minima von höherer
Ordnung gilt.

Dieses Beispiel ist Motivation für eine neue adaptive Diskretisierungsmethode, die
eine quadratische Konvergenz auch für Minima von höherer Ordnung garantiert.
Anstatt einer strikten Trennung, wie im Blankenship- und Falk-Algorithmus, wer-
den weitere Informationen über die untere Stufe zu den diskretisierten Proble-
men hinzugefügt. Es werden drei Hauptresultate entwickelt: Zunächst wird for-
mal gezeigt, dass das neue Verfahren unter wenigen Regularitätsannahmen eine
quadratische Konvergenz garantiert. Weiter wird gezeigt, dass ein Grenzwert ein
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stationärer Punkt ist, wenn die Iterierten stationäre Punkte sind. Schließlich wer-
den Bedingungen eingeführt, unter denen lokale Lösungen gegen ein lokales Mini-
mum konvergieren.

Die neue Methode wird auf den Fall einer variablen Indexmenge erweitert und
es wird gezeigt, dass die vorherigen Resultate übertragen werden können. Die
Gemeinsamkeiten und die Unterschiede zwischen dem Verfahren von Blankenship
und Falk und der neuen Methode werden anhand von numerischen Beispielen un-
tersucht. Die Beispiele zeigen, dass die Anzahl der Iterationen und die benötigte
Zeit zum Lösen dieser reduziert werden kann.
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Abstract

Semi-infinite programming can be used to model a large variety of complex opti-
mization problems. Interesting applications include cutting and packing, or cover-
age problems, formulated with geometric constraints such as subset and separation
conditions.

The simple description of such problems comes at a price: semi-infinite problems are
often harder to solve than finite nonlinear problems. A classical solution approach,
which is easy to implement, is based on discretizing the semi-infinite index set.
The Blankenship and Falk algorithm adaptively chooses a small set of discretiza-
tion points. On every iteration, a solution of an approximate problem, based on
the current discretization, is calculated. In a second step, the most violated con-
straint is determined and added to the discretization. Many statements about the
properties of a limit of the iterates are known. We are not aware of any results in
the literature concerning the convergence speed. This gap is our starting point.

In this thesis we solve semi-infinite optimization problems using adaptive discretiza-
tion methods having a quadratic rate of convergence. First, we investigate the clas-
sical Blankenship and Falk algorithm. We present a worst case example for which
the method suffers from arbitrarily slow convergence. We exclude pathologies of
this type by making a mild regularity assumption. We develop bounds on the dis-
tance from each iterate to the limit that depend on the order of the limit. These
bounds show quadratic convergence for the special case of a minimum of order one.
We present an example which shows that quadratic convergence is not possible for
a minimum of order higher than one.

Motivated by this example we suggest a new adaptive discretization algorithm
with guaranteed quadratic convergence. This rate holds even for minima of order
higher than one. The key idea is to break the separated scheme of the Blankenship
and Falk algorithm and add more information about the lower-level problems to the
discretized problems. We develop three main results. First, we prove the Quadratic
Convergence Theorem, which rigorously establishes quadratic convergence under
mild regularity conditions. Second, we show that a limit point is a stationary
point, if the iterates are stationary points. Finally, we establish conditions under
which, for iterates that are local minima, their limit is a local minimum.
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We extend our new method to the case of a variable index-set, and show that the
previous results also hold for this case. We compare the Blankenship and Falk
algorithm to our new method by considering a series of numerical examples. In
these examples, our new method outperforms the Blankenship and Falk algorithm
in terms of number of iterations and runtime.
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List of symbols and abbreviations

General Notation

N natural numbers {1, 2, 3, . . . }
R real numbers

Rn n-dimensional Euclidean space

‖x‖ Euclidean norm, ‖x‖ :=
√
x2

1 + x2
2 + · · ·+ x2

n

Bε(x
∗) open ball around x∗ with radius ε

Bε(x
∗) closed ball around x∗ with radius ε

Df(x) derivative/Jacobi matrix

D2f(x) second derivative / Hessian

D1f(x,y) partial derivative of f with respect to the first variables x

D1,2f(x,y)
(
D1f(x,y)

∣∣∣D2f(x,y)
)

D2
1f(x,y) Hessian with respect to the first variables x

Dx

[
f
(
x,y(x)

)]
x=x∗

Dg(x∗) for g(x) := f
(
x,y(x)

)
Optimization problem

M feasible set

f objective Function

r radius of local minimum

ρ order of minimum

P finite non-linear optimization problem

LICQ linear independence constraint qualification

MFCQ Mangasarian-Fromovitz constraint qualification

SOSC second-order sufficient condition

Semi-infinite optimization

SIP semi-infinite optimization problem

x optimization variables

y index variables/lower-level variables

Y semi-infinite index set

g semi-infinite constraints

I indices of semi-infinite constraints
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Y i
0 (x) active indices, Y i

0 (x) := {y ∈ Y | gi(x,y) = 0}
λ Lagrange multipliers for the semi-infinite problem

Qi(x) i-th lower-level problem

ϕi i-th optimal value function

v constraints describing the semi-infinite index set

J indices of the lower-level constraints

J0(y) active indices in the lower level problem

Li lower-level Lagrange function

µi lower-level Lagrange multipliers

ELICQ extended linear independence constraint qualification

EMFCQ extended Mangasarian-Fromovitz constraint qualification

ESOSC extended second-order sufficient condition

Generalized semi-infinite optimization

GSIP generalized semi-infinite optimization problem

Y (x) semi-infinite index set of GSIP

t transformation function

S̃IP by transformation induced SIP

g̃ semi-infinite constraints of S̃IP

Z semi-infinite index set of S̃IP

z index variable of S̃IP

Q̃i(x) i-th lower-level problem of S̃IP
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1 Introduction

The first step in the optimization of an application consists of the transfer of the
application into a problem given in mathematical terms: the modeling phase. Ex-
amples, which demonstrate this step, can be found in [NPWU15]. The modeling
phase exhibits two major challenges. For example, one needs to make sure that a
solution found in a mathematical formulation also performs well in the true appli-
cation. At worst the mathematical problem does not reflect the reality well enough
at the found solution. What might look like a good solution in the mathematical
problem can be a poor one for the true application.

We will mainly focus on a second important aspect of the modeling phase: it
must be possible to solve the constructed problem numerically in a robust manner
and within a reasonable time. To achieve this goal it is beneficial to maintain as
”nice” a structure as possible of the original problem. A mathematical problem
with an easy description (for example by polynomials) is often easier to treat than
a problem with complex implicit formulations. This means that our goal is to
find an easy formulation of complex situations. The complexity of the situation is
then handled by a specialized algorithm. A class of optimization problems which
is able to model many complex applications in an easy fashion are semi-infinite
optimization problems.

In Chapter 2 we will formally introduce semi-infinite optimization problems. For a
compact non-empty set Y ⊆ Rm, the so-called semi-infinite index set, we consider
the following type of problems in this work:

SIP : min
x∈Rn

f(x)

s.t. g(x,y) ≤ 0 for all y ∈ Y .

The special feature and the reason why the problem is called semi-infinite, is that
the index set Y is allowed to have an infinite cardinality (while the number of
optimization variables is finite). If the index set depends on x, the problem is
called generalized semi-infinite optimization problem. The possibility to demand
infinitely many constraints is the power of semi-infinite optimization. It allows to
model complex applications in such a way that the functions f and g are simple.
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1 Introduction

The complexity of the situation is covered by the infinite cardinality of Y . To
demonstrate the discussed properties we briefly present two examples and show
how they can be modeled as semi-infinite optimization problems.

A field of optimization with an increasing interest is so-called robust optimization
(see for example [BTEN09]). Here one typically starts with an ordinary nonlinear
optimization problem parameterized by ξ:

P(ξ) : min
x∈Rn

f(x)

s.t. g(x, ξ) ≤ 0 .

We have already mentioned at the beginning of this introduction that optimization
problems can be used to model an application. That is why, often in a first step,
parameters ξ have to be adjusted to obtain a model function. These parameters
are determined using experiments. The obtained experimental data usually has
measurements errors. This is why in many applications the true parameters are
not known. If P(ξ) is solved for a single ξ, the solution can be infeasible for a second
choice of parameters. To avoid infeasiblility one can demand that the constraint
is fulfilled for a complete range of parameters ξ ∈ U . One obtains the following
(worst-case) robust optimization problem:

SIProb : min
x∈Rn

f(x)

s.t. g(x, ξ) ≤ 0 for all ξ ∈ U .

This problem is a semi-infinite optimization problem. The describing functions are
exactly the same as before. This means that if the original functions have nice
properties, the same properties are found again in the robust problem.

A geometric application of semi-infinite optimization are so-called design-centering
problems. There, one considers a variable set D(x) ⊆ Rm, the so-called design and
a fixed set C ⊆ Rm, the so-called container. The task is to maximize the volume
of D(x) such that the design is contained within the container C. This means one
considers the following optimization problem:

DC : max
x∈Rn

vol
(
D(x)

)
s.t. D(x) ⊆ C .

If we assume that the container can be described by inequalities (for the sake of
simplicity only one):

C = {y ∈ Rm | g(y) ≤ 0} ,
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we can reformulate the containment condition and again end up with a semi-infinite
problem:

SIPDC : min
x∈Rn

− vol
(
D(x)

)
s.t. g(y) ≤ 0 for all y ∈ D(x) .

Whenever the container and the design have a nice description by easy functions,
the same holds for the semi-infinite problem. Design-centering problems have an
interesting application in the maximal utilization of gemstones [Win08, KSW08].
There the container is the raw stone and the design is the precious stone that has to
be found. Not only containment conditions, but also other set-type conditions such
as non-overlapping conditions, can be modeled easily by semi-infinite optimization
problems (see for example [Sch13]).

Beside those two applications described in more detail, there is a whole variety
of applications and related problems that can be modeled and solved by semi-
infinite optimization problems. Classical applications are approximation problems
([HZ82]). More applications can be found in [HK93, Ste03, LS07]. In the works
[MBB09, BBM09] the authors show that semi-infinite optimization can also be
applied to model complicated constraints in thermodynamics.

The two examples as well as the further applications show that semi-infinite opti-
mization is a great tool to find nice problem descriptions which maintain a lot of
the original problem properties. However, these nice structural properties come at
a price. There are infinitely many constraints, which automatically makes the prob-
lem harder to solve. Simply to check a given point for feasibility, an optimization
problem (the so called lower-level problem) has to be solved.

This is why resolution approaches have been developed in the literature that try
to reformulate the semi-infinite problems into a finite nonlinear problem. One
possibility is to replace the lower-level problem by the KKT conditions. This ap-
proach results in an optimization problem with complementarity constraints. This
reformulation was for example used in the works [SS03] and [SW10] to develop al-
gorithms. Another possibility is to replace the lower-level problem with the help of
the Wolfe dual (see [DHSS13]). As a main benefit no complementarity constraints
have to be added.

Although only finite nonlinear optimization problems have then to be solved, these
approaches have two drawbacks. First, the lower-level problems have to be con-
vex. Otherwise these are not equivalent reformulations and a solution might be
infeasible. A second drawback lies in the structure of the resulting problem. Due
to the KKT conditions a complementarity condition is added. The Wolfe duality
overcomes this, but still adds an equality constraint. This change in the structure
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1 Introduction

can make it harder to solve the problems in practice. In particular, the goal we
formulated at the beginning is then not achieved. The nice structure and easy
description may be lost.

Another well known possibility to solve semi-infinite optimization problems and
to keep the structure of the original functions, are discretization methods (see for
example [Ree91, RR98, LS07]). The idea is rather simple. We cannot consider
infinitely many constraints at the same time, so we choose a finite subset Ẏ ⊆ Y .
Instead of all constraints we only consider the ones in Ẏ ⊆ Y . We then consider
the so called discretized problem:

SIP(Ẏ ) : min
x∈Rn

f(x)

s.t. g(x,y) ≤ 0 for all y ∈ Ẏ .

As there are only finitely many constraints, this problem can be solved by methods
developed for finite nonlinear optimization such as SQP methods (for example
[NW06]) or interior-point methods (for example [WB06]). The describing functions
do not change, which means that the structure of the problems directly depends
on the model. If we find an easy description of the application also the discretized
problems will directly benefit from it. The question is how to choose a discretization
Ẏ . We want to discuss here two different possibilities.

The first possibility is to choose a fine grid. This means that one chooses Ẏ in such
a way that the Hausdorff distance:

h = max
y∈Y

min
ẏ∈Ẏ
‖y − ẏ‖

becomes small (see for example [RR98]). One of the benefits is that the distance
between a local solution x∗ of the original problem and the solution of a discretized
problem ẋ can be bounded (see [Sti01]). Unfortunately the results show that in
the best case there is a L > 0 such that

‖x∗ − ẋ‖ ≤ L · h2 .

In many cases only weaker bounds hold. This means that, to guarantee an accuracy
of 10−6, we need the Hausdorff distance to be around 10−3. In a two-dimensional
example we would need already around one million discretization points, if the best
case bound holds. This means we need numerous discretization points which leads
to an optimization problem with numerous constraints. Solving this optimization
problem can be very time-consuming.

Another possibility is not to choose a fixed discretization set but to adapt a dis-
cretization set to a solution found so far. Blankenship and Falk already suggested in
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[BF76] to start with a small discretization Y 1, then to solve the discretized problem
SIP(Y 1) and obtain a first approximate solution x1. This first approximate solu-
tion only satisfies the constraints induced by the first discretization but is usually
infeasible for the semi-infinite problem. In [BF76] it is suggested to add the most
violated constraint, i.e. a y1 ∈ Y with

g(x1,y1) = max
y∈Y

g(x1,y) .

The old discretization together with y1 form a new discretization Y 2, which is used
to calculate the next approximate solution x2.

In the literature this simple scheme has been revisited multiple times and modified
versions have been published. Reemtsen used in [Ree91] a fine discretization and
solved the lower-level on this fine discretization. In [TR11] the authors modified
the algorithm by Blankenship and Falk to obtain feasible points after finitely many
steps. Mitsos then used these ideas in [Mit11] to obtain an outer and an inner
approximation for global optimization. In [MT15] the ideas are extended to gener-
alized semi-infinite optimization using a reformulation with disjunctive constraints.
In his PhD-thesis [Sch13] Schwientek used a transformation function to solve gener-
alized semi-infinite optimization problems more directly with the Blankenship and
Falk algorithm.

Beside the nice structural properties described before, one of the reasons for the
great success of the method by Blankenship and Falk are the nice convergence
properties. The following results are well known to hold under mild assumptions
(see [BF76], [Ree94]):

• If every xk is feasible for SIP(Y k), then any accumulation point is feasible for
SIP.

• If every xk is a global solution of SIP(Y k), then any accumulation point is a
global solution of SIP.

• If every xk is a local solution of SIP(Y k) and the radius of these solutions
does not vanish in the limit, then any accumulation point is a local solution
of SIP.

This means, that the guarantees for the solution of the discretized problem will
under mild assumption also be true for a limit point. Most of the results also easily
carry over to the aforementioned modifications.

As we have described it before, one of the motivations to use such an adaptive
scheme is the hope to need fewer discretization points and to observe a fast con-
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1 Introduction

vergence. Unfortunately, to the best of our knowledge, there are no results known
in the literature that describe a rate of convergence for adaptive discretization
methods.

This is the question which is the main topic of this work: under which conditions
does the algorithm by Blankenship and Falk provide a quadratic rate of conver-
gence. For the case that the algorithm by Blankenship and Falk does not have a
quadratic rate of convergence, we develop a new adaptive discretization method
that converges quadratically under mild assumptions. The scope of the thesis is
described in more detail in the next paragraph.

Scope of this work

The iterates xk of the adaptive discretization method by Blankenship and Falk are
in general not feasible for the original semi-infinite problem. The violation can be
measured by

αk := max
y∈Y

g(xk,y) .

If αk ≤ 0, then the current iterate will also be a solution of the original problem
SIP. We can in some sense measure by αk how close the approximate problem is
to the original problem locally around xk. An important question to a quadratic
rate of convergence is to bound the distance of the iterates xk to a limit point x∗

in terms of αk.

This question is closely related to the question mentioned above: how to bound the
same distance in terms of the mesh size h. Indeed, the statements provided in [Sti01]
could be used to develop a bound in the case of adaptive discretization. However,
we construct in this work a counterexample for the bounds provided in [Sti01]
and develop new assumptions for a similar situation. Under these assumptions
we show: if for every k ∈ N the iterate xk is a local solution of the approximate
problem SIP(Y k) and they converge towards a local solution x∗ of order ρ, then
there is an L1 > 0 such that

‖xk − x∗‖ ≤ L1αk
1
ρ .

The next step towards a quadratic rate of convergence is to investigate the maximal
violation αk. Therefore the lower-level problems have to be considered. We show
that under the Reduction Ansatz and some further regularity assumptions there is
an L2 > 0 such that

αk ≤ L2‖xk − xk−1‖2 .
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If the limit x∗ is a local solution of order ρ = 1, then combining those two inequal-
ities shows a quadratic rate of convergence.

Not every local solution is of order one. An easy example for a local minimum of
order two is shown in Figure 1.1. We demonstrate that the iterates constructed
according to the Blankenship and Falk algorithm do not converge with a quadratic
rate. One of the reasons is the strict separated nature of the algorithm by Blanken-
ship and Falk. In the approximate problem SIP(Y k), all points in the discretization
are considered, while all other points in Y are completely ignored. In the worst
case we find a solution which maximizes the violation between two discretization
points. In this work we aim at breaking this strictly separated scheme.

We have already seen that the Reduction Ansatz is needed to bound the maximal
violation αk. If we assume that the Reduction Ansatz holds at a given iterate xk

with αk > 0 we know that we can find a differentiable function y(·) such that for
every x close to xk the point y(x) is a local solution of

max
y∈Y

g(x,y) .

This means that we can develop the local solution linearly:

yk(x) := yk +Dy(x) · (x− xk) .

We use this linear information to construct an additional constraint that also ac-
counts for the points in Y which are not yet in the discretization. The new approx-
imate problem including the additional constraint and the constraints induced by

the discretization is denoted by SIP
k
(Y k+1). The iterates of the new algorithm are

shown in Figure 1.2.

The additional constraint has to be chosen carefully. The Blankenship and Falk
algorithm has very nice convergence properties and one wants to keep as many of
these properties as possible. With the chosen constraint we show in the following
that one of the most important properties is directly inherited, namely that any
accumulation point of the iterates xk is feasible. For the Blankenship and Falk
algorithm the type of solution of a limit point depends on the type of solution
obtained for the approximate problems. As we add an additional constraint that
changes for every iteration we do not have the following property anymore:

M1 ⊇M2 ⊇ · · · ⊇M .

where Mk denotes the feasible set of the approximate problem SIP
k−1

(Y k) in the
k-th iteration and M the feasible set of problem SIP. We may even have

Mk ⊆M .

9



1 Introduction

a) Iteration: k = 1 b) Iteration: k = 2

c) Iteration: k = 3 d) Iteration: k = 6

Figure 1.1: Example solved by the Blankenship and Falk algorithm with a linear rate
of convergence [light green - feasible set of SIP, dark green - feasible set of
approximate problem SIP(Y k), black arrow - descent direction of objective,
black lines - constraints induced by discretization, blue points - iterates,
black point - limit solution]

As we construct the linearization at a point locally, we may cut away complete
parts of the feasible set. This is why there is no hope that a limit point of global
solutions is always a global solution of the original problem.

This is somehow expected as a linearization uses the derivative to approximate the
solution, which is a local property. More interesting is the question about local
minima. It plays an important role that Mk ⊇ M does not hold in general. We
use, compared to the analysis of the Blankenship and Falk algorithm, different

10



a) Iteration: k = 1 b) Iteration: k = 2

Figure 1.2: Adaptive discretization algorithm with a quadratic rate of convergence [light
green - feasible set of SIP, dark green - feasible set of approximate prob-

lem SIP
k−1

(Y k), black arrow - descent direction of objective, black lines -
constraints induced by discretization, red line - additional constraint, blue
points - iterates, black point - limit solution]

techniques to investigate this question. In a first step we consider stationary points
and prove that under mild assumptions the limit is again a stationary point. After
we have investigated stationary points we assume that an iterate xk, which is a local
minimum of the approximate problem, satisfies a second-order sufficient condition.
If the curvature in this second-order sufficient condition does not vanish and some
further regularity assumptions hold, the limit will be a local solution of SIP.

After we have shown that many nice properties carry over from the original algo-
rithm to the new algorithm, we turn to the reason why we introduced an addi-
tional constraint: the quadratic rate of convergence. Compared to our analysis of
the Blankenship and Falk algorithm, we use a different tool: the so-called strong
stability of stationary points. This concept was introduced by Kojima in [Koj80].

We assume that every iterate xk is a stationary point of SIP
k−1

(Y k) and that they
converge towards a limit x∗, which is a strongly stable stationary point. We show
that xk is a stationary point of

SIP(αk,βk) : min
x∈Rn

f(x) + βk(x− xk)

s.t. g(x,y) ≤ αk for all y ∈ Ẏ

11



1 Introduction

for appropriate αk,βk. We show that the parameters αk and βk can be bounded
under mild regularity assumptions, i.e. there are L1, L2 > 0 such that

|αk| ≤ L1‖xk − xk−1‖4 ,

‖βk‖ ≤ L2‖xk − xk−1‖2 .

Strong stability of the limit point then leads to the Quadratic Convergence Theo-
rem.

After we have described the algorithm and the analysis in the case of a fixed index
set Y , we show how the algorithm can be extended to the case of a variable index
set. In his PhD-thesis, Schwientek [Sch13] showed that the adaptive discretization
can be extended to the case of variable index sets with the help of a transformation.
The main assumption is the existence of a compact fixed set Z and a function t
such that for every x ∈ Rn, we have:

t(x, Z) = Y (x) .

The same can be used for the new adaptive discretization algorithm. There are
two possibilities to construct a linearization. One can linearize the solution either
in the space of Y (x) or in the space of Z. We show that, for both possibilities, the
statements for the case of a fixed index set can be transferred to the generalized
case.

To show that all the theoretical statements can actually be observed, we imple-
mented the examples in MATLAB R©([MAT16]). We demonstrate that the new
algorithms need for the final steps (from accuracy 10−1 to 10−5), severely fewer
iterations, while for the first steps both algorithms behave similarly. We discuss
different further numerical aspects of the developed algorithms.

Structure of the thesis

The thesis is structured as follows. We formally introduce the needed theory of
nonlinear and semi-infinite optimization in Chapter 2. We cover for both types of
optimization problems the first and second-order optimality conditions (in Sections
2.1.1 and 2.2.1), as well as the concept of strong stability of stationary points (in
Sections 2.1.2 and 2.2.2).

In Chapter 3 we investigate the question of a quadratic rate of convergence for the
adaptive discretization proposed by Blankenship and Falk. We first introduce the
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algorithm and summarize important results from the literature. We continue by
investigating bounds based on the maximal current violation. We first transfer the
results obtained in [Sti01] to the situation of adaptive discretization. In Section
3.1.1 we then construct a counterexample for the results by Still. In the next Section
we give a new statement with a correct proof. In the second part of Chapter 3 we
prove a quadratic rate of convergence for the special case of local minima of order
one. We end this chapter with an example that shows that for minima of a higher
order no quadratic rate can be expected.

Motivated by this example we introduce the new algorithm in Chapter 4. We show
that the same example can now be solved with a quadratic rate of convergence.
In Section 4.1 we investigate the properties of a limit point. We begin by proving
that again every accumulation point of a sequence constructed by the algorithm is
feasible. Next we show that the limit of stationary points is a stationary point in
Section 4.1.1. For the convergence of local solutions we provide an example that
shows that the results cannot be directly transferred and then give two different
positive results in Section 4.1.2. In Section 4.2 we present and prove the Quadratic
Convergence Theorem for the introduced algorithm.

In Chapter 5 we show how the developed ideas can be transferred to the case of a
variable index set. This means we show how the newly developed algorithm can
be adapted to handle generalized semi-infinite optimization problems. We show in
Section 5.2 that the results previously presented also hold for this case.

We present numerical examples in Chapter 6. We show that the developed theoreti-
cal statements can be observed for these examples. We summarize our observations
in Section 6.3.

The thesis closes with a summary of the results and a suggestion of future work.
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2 Foundations of nonlinear and
semi-infinite optimization

This chapter gives a short introduction into the theory of nonlinear and semi-
infinite optimization, which is needed for this work. A more detailed introduction
into nonlinear optimization can be found in [GK02, JS04], or in the English books
[Ber99, BSS06, NW06]. Semi-infinite optimization is covered extensively in the
books [HZ82, Pol97] and the overview articles [HK93, LS07]. We first introduce an
optimization problem in general terms. Then in two sections we introduce first non-
linear optimization problems and then semi-infinite optimization problems. Both
sections are structured similarly. In the first part of these sections we introduce
conditions for optimality and stationary points. In the second part we summa-
rize results about the strong stability of stationary points, which has been first
introduced in [Koj80] and [Rob80]. While the concept is well studied for nonlinear
optimization, there is less literature about this concept in semi-infinite optimiza-
tion. We mainly follow the line presented in [Rüc99] but adapt the results to the
situation needed in this work. We start by introducing a general optimization
problem.

Let a closed set M ⊆ Rn and an at least continuous function f : M → R be given.
A general optimization problem or minimization problem is given by

min{f(x) | x ∈M} . (2.1)

The set M is called the feasible set and the function f is called objective function
(sometimes also simply objective). A point x ∈ M is called feasible . A point
x ∈ Rn \M is called infeasible. Three cases can be distinguished:

• The set M is empty. We set min{f(x) | x ∈M} :=∞.

• The objective function f is not bounded from below onM . Then no minimum
exists, we call the optimization problem unbounded and we set min{f(x) |
x ∈M} := −∞.
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2 Foundations of nonlinear and semi-infinite optimization

• The objective function f is bounded from below on M and M is not empty.
Then, as M is closed and f is continuous, also the image f(M) is closed. By
the boundedness the minimum exists.

The third case can for example be enforced by requiring the feasible set M to be
nonempty and compact.

Not in all literature about optimization it is assumed that the feasible set M is
closed. In such cases, a minimum can not be guaranteed and one formally has to
consider the following problem:

inf{f(x) | x ∈M} .

Indeed, we will introduce an optimization problem in Section 2.2 for which the
feasible set is not necessarily closed, so-called generalized semi-infinite optimization
problems. However, we will only consider problems of this type with an additional
property. This property will also ensure closedness of the feasible set.

For the theoretical considerations it is enough to consider minimization problems
as the following is well known:

max{−f(x) | x ∈M} = −min{f(x) | x ∈M} .

Different types of solutions can be characterized:

Definition 2.1. (Characterization of solutions)

• A feasible point, x∗ ∈ M , is called a global solution, a global optimum or a
global minimum, if, for every x ∈M , the following holds:

f(x∗) ≤ f(x) .

• A feasible point, x∗ ∈M , is called a local solution, a local optimum, or a local
minimum if there exists a radius r > 0 such that, for every x ∈M ∩Br(x

∗),
the following holds:

f(x∗) ≤ f(x) . (2.2)

The local solution is called strict, if the inequality in (2.2) can be replaced by
a strict inequality, for every x ∈M ∩Br(x

∗) with x 6= x∗.

• A local minimum, x∗, is called of order ρ ∈ N, if there is a constant L > 0
and a radius r > 0 such that, for every x ∈M ∩Br(x), the following holds:

f(x)− f(x∗) ≥ L‖x− x∗‖ρ .
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2.1 Nonlinear optimization

Maxima can be characterized analogously. Every local minimum of order ρ ∈ N is
also a strict local minimum. The order describes how ”strict” this local solution
is, which means that it bounds the growth from below around this optimum. The
strongest growth is given by ρ = 1.

For the theoretical as well as the numerical treatment the structure of f and the
description of M is of great importance. In the next section we first assume that
M can be described by finitely many equalities and inequalities. In Section 2.2 we
consider infinitely many inequalities.

2.1 Nonlinear optimization

In this section we assume that the feasible set M is given by

M =

{
x ∈ Rn

∣∣∣∣∣g(x) ≤ 0,

h(x) = 0

}
, (2.3)

for twice continuously differentiable functions g : Rn → R|I| and h : Rn → R|J |,
where |I| < ∞ and |J | < ∞. An optimization problem with a feasible set given
as in Equation (2.3) is called nonlinear optimization problem. We also write the
optimization problem as:

P: min
x∈Rn

f(x)

s.t. gi(x) ≤ 0 for all i ∈ I ,
hj(x) = 0 for all j ∈ J .

Problem P is called convex, if the functions gi, i ∈ I and f are convex and the func-
tions hj, j ∈ J are linear. In a convex optimization problem every local minimum
is a global minimum (see for example [BSS06]).

As we will later introduce semi-infinite problems we will call problem P also finite
nonlinear or simply finite optimization problem.

2.1.1 Optimality conditions

For the theoretical investigation and also for the design of algorithms it is of cru-
cial importance to find equivalent conditions for a point being an optimum. We
assume therefore for the rest of this section that the objective function, f , is twice
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2 Foundations of nonlinear and semi-infinite optimization

continuously differentiable. The following definitions and statements are all well
known and can for example be found in [GK02] or also in the references mentioned
at the beginning of this chapter.

Definition 2.2. (Stationary point, KKT conditions) A feasible point, x∗ ∈ M , is
called stationary point or critical point for problem P, if there exist λ∗ ∈ R|I| and
µ∗ ∈ R|J | with:

Df(x∗) +
∑
i∈I

λ∗iDgi(x
∗) +

∑
j∈J

µ∗jDhj(x
∗) = 0 , (2.4)

λ∗i ≥ 0 for all i ∈ I , (2.5)

λ∗i gi(x
∗) = 0 for all i ∈ I . (2.6)

The conditions given in (2.4)-(2.6) are called Karush-Kuhn-Tucker conditions (short:
KKT conditions). The triple (x∗,λ∗,µ∗) is called Karush-Kuhn-Tucker point (short:
KKT point).
If, for every i ∈ I, exactly one of the values gi(x

∗) and λ∗i equals zero, one says
that strict complementary slackness holds.

By introducing the Lagrange function, L : Rn × R|I| × R|J | → R, with

L(x,λ,µ) := f(x) +
∑
i∈I

λigi(x) +
∑
j∈J

µjhj(x) ,

one can equivalently state condition (2.4) by

D1L(x∗,λ∗,µ∗) = 0 .

The components of the vectors λ and µ are called Lagrange multipliers.

In the literature one can find both names: stationary point and critical point. If
the name critical point is used, stationary points are defined slightly differently.
For this work the concept of strong stability, which we introduce in the following
Section 2.1.2, is of great importance. In the corresponding literature the name
stationary point is used. This is why, we use the name stationary point throughout
the thesis.

The reason one is interested in stationary points is that under some further regu-
larity conditions every local solution is a stationary point. We begin by introducing
some regularity conditions and showing their connection. For x ∈ M we denote
the set of active indices by

I0(x) := {i ∈ I | gi(x) = 0} .
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2.1 Nonlinear optimization

Definition 2.3. (LICQ, MFCQ)

• A feasible point, x ∈M , satisfies the Linear Independence Constraint Quali-
fication (short: LICQ) for problem P, if the vectors:

Dgi(x), i ∈ I0(x) and Dhj(x), j ∈ J

are linearly independent.

• A feasible point, x ∈ M , satisfies the Mangasarian-Fromovitz Constraint
Qualification (short: MFCQ) for problem P, if the vectors Dhj(x), j ∈ J are
linearly independent and there exists a vector ξ ∈ Rn with

Dgi(x)ξ ≤ − 1 for all i ∈ I0(x) ,

Dhj(x)ξ = 0 for all j ∈ J .

The following connection between those regularity conditions is well known:

Lemma 2.4. (LICQ implies MFCQ) Assume x ∈M satisfies LICQ for P then x
also satisfies MFCQ.

The following theorem summarizes the connection between local minima and sta-
tionary points (see for example [GK02]):

Theorem 2.5. (First order optimality conditions)

• Assume x∗ is a local solution of P which satisfies the regularity condition
MFCQ. There exist λ∗ ∈ R|I| and µ∗ ∈ R|J | such that the KKT conditions
(2.4)-(2.6) are fulfilled, i. e. x∗ is a stationary point.
If even LICQ is satisfied at x∗, then the corresponding Lagrange multipliers
are uniquely determined.

• Assume problem P is convex and there exists a point x̂ with

gi(x̂) < 0, for i ∈ I and hj(x̂) = 0, for j ∈ J .

Then a global solution is a stationary point.

• Assume problem P is convex. Every stationary point is a global solution.

It is clear that in the non-convex case not every stationary point will be a local
solution. This can already be seen by considering the trivial example min{−x2 |
−1 ≤ x ≤ 1} at the point x = 0. Here, so-called second-order conditions are
needed. We will first introduce them and then give a sufficient condition for the
general case:
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2 Foundations of nonlinear and semi-infinite optimization

Definition 2.6. (SOSC) A KKT point, (x∗,λ∗,µ∗), is said to satisfy the Second-
Order Sufficient Condition (short: SOSC), if

d>D2
1L(x∗,λ∗,µ∗)d > 0 for every d ∈ T (x∗),d 6= 0 ,

where

T (x∗) :=

d ∈ Rn

∣∣∣∣∣∣∣
Dgi(x

∗)d ≤ 0 for i ∈ I0(x∗) with λ∗i = 0,

Dgi(x
∗)d = 0 for i ∈ I0(x∗) with λ∗i > 0,

Dhj(x
∗)d = 0 for j ∈ J

 .

We can now state second-order necessary and sufficient conditions (again for ex-
ample [GK02]).

Theorem 2.7. (Second-order optimality conditions)

• Let x∗ ∈ M be a local minimum that satisfies LICQ, then, with the uniquely
determined Lagrange multipliers λ∗ and µ∗ satisfying the KKT conditions,
the following holds:

d>D2
1L(x∗,λ∗,µ∗)d ≥ 0 for every d ∈ T (x∗) . (2.7)

• Let (x∗,λ∗,µ∗) be a KKT point that satisfies the second-order sufficient con-
dition SOSC. Then x∗ is a strict local minimum.
In [BS00] the authors show that the minimum is of order ρ = 2.

2.1.2 Strong stability of stationary points

After introducing stationary points and showing their connection to local solutions
we now investigate their stability. Again we need to assume that the objective
function, f , is twice continuously differentiable. Before we start with the formal in-
troduction of strong stability, we shortly motivate why this concept is of importance
for this work.

Within this thesis we do not directly solve a given problem P. Instead we gener-
ate iteratively problems which approximate the original problem (at least locally).
Thus we will look at a sequence of problems, {Pk}k∈N. In some sense they will con-
verge and we will have a notion of a distance, dist(Pk,P), between the approximate
problem and the original problem. The smaller dist(Pk,P) becomes the closer is
the approximate problem to the original problem. Now consider for every k ∈ N a
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2.1 Nonlinear optimization

stationary point xk of Pk and a stationary point x∗ of P. Assuming that xk con-
verge towards x∗, we want to be able to bound the distance of the iterates by the
means of dist(Pk,P), i.e. we search an L with the property:

‖xk − x∗‖ ≤ L · dist(Pk,P) . (2.8)

If there exists such a bound, one can continue working on bounding the distance
dist(Pk,P). If no such bound exists, the iterates, xk, converge slower than the
approximate problems, Pk. In the worst case we could have an arbitrarily slow con-
vergence for the iterates, though we are able to control the distance dist(Pk,P).

A possibility to ensure the existence of this bound is the stability of stationary
points. Therefore we investigate perturbations of the original problem. We first
introduce the considered perturbations. For an open bounded set, U ⊆ Rn, and
twice continuously differentiable functions, f̃ : Rn → R, g̃ : Rn → R|I| and h̃ :
Rn → R|J |, we let:

norm1(f̃ , g̃, h̃, U) = max


sup
x∈U

max
{
|f̃(x)|, ‖Df̃(x)‖

}
,

max
i∈I

sup
x∈U

max
{
|g̃i(x)|, ‖Dg̃i(x)‖

}
,

max
j∈J

sup
x∈U

max
{
|h̃j(x)|, ‖Dh̃j(x)‖

}


and

norm2(f̃ , g̃, h̃, U) = max


sup
x∈U

max
{
|f̃(x)|, ‖Df̃(x)‖, ‖D2f̃(x)‖

}
,

max
i∈I

sup
x∈U

max
{
|g̃i(x)|, ‖Dg̃i(x)‖, ‖D2g̃i(x)‖

}
,

max
j∈J

sup
x∈U

max
{
|h̃j(x)|, ‖Dh̃j(x)‖, ‖D2h̃j(x)‖

}
 .

(For a matrix A ∈ Rn×n let ‖A‖ = max{‖Ax‖ | x ∈ Rn, ‖x‖ = 1})

For δ > 0 let

Fδ(U) :=

{
(f̃ , g̃, h̃) : Rn → R1+|I|+|J |

∣∣∣∣∣f̃ , g̃, h̃ twice continuously differentiable

and norm2(f̃ , g̃, h̃, U) < δ

}
be the set of perturbations bounded by δ.

For a δ > 0 and (f̃ , g̃, h̃) ∈ Fδ(U), we consider the following perturbed optimization
problem:

P(f̃ , g̃, h̃) : min
x∈Rn

f(x) + f̃(x)

s.t. gi(x) + g̃i(x) ≤ 0 for all i ∈ I ,
hj(x) + h̃j(x) = 0 for all j ∈ J .
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2 Foundations of nonlinear and semi-infinite optimization

The notion of strong stability we introduce next is weaker compared to the assertion
presented at the beginning of this section. Under LICQ this notion of stability
already induces the existence of a constant as in (2.8). The concept has been first
introduced by Kojima in [Koj80]. He studied the perturbed problems P(f̃ , g̃, h̃).
He demanded local uniqueness of a stationary point and a continuity property of
the map of stationary solutions.

Definition 2.8. (Strong stability of stationary points [Koj80]) A stationary point,
x∗, is called strongly stable, if there exists an ε∗ > 0 such that, for every ε ∈ (0, ε∗],
there is a δ > 0 with the property that, for every (f̃ , g̃, h̃) ∈ Fδ(Bε∗(x

∗)), problem
P(f̃ , g̃, h̃) has a stationary point x̃ with

‖x− x̃‖ < ε ,

which is unique in Bε∗(x
∗).

In his work Kojima introduced for x ∈ Rn, λ ∈ R|I|, µ ∈ R|J | the function

Ψ(x,λ,µ) =


(
Df(x) +

∑
i∈I(λi)

+Dgi(x) +
∑

j∈J µjDhj(x)
)>

(λi)
− − gi(x), i ∈ I
hj(x), j ∈ J

 , (2.9)

where, for λ ∈ R, we let (λ)+ := max{0, λ} and (λ)− := min{λ, 0}.

In general this function will not be differentiable, but, as a composition of Lips-
chitz continuous functions, it will again be Lipschitz continuous. Kojima used this
function to give an equivalent definition of a stationary point. A point x∗ ∈ Rn is
a stationary point, if and only if there exist λ∗ ∈ R|I| and µ∗ ∈ R|J | such that

Ψ(x∗,λ∗,µ∗) = 0 .

With the help of this description Kojima derived different equivalent conditions for
a stationary point, x∗ ∈ M , to be strongly stable. We again need some notation
to introduce this equivalent characterization:

For a KKT point, (x∗,λ∗,µ∗) and Ī ⊆ {i ∈ I0(x∗) | λ∗i = 0}, we set

RĪ =

d ∈ Rn

∣∣∣∣∣∣∣
Dhj(x

∗)d = 0 for j ∈ J,
Dgi(x

∗)d = 0 for i ∈ I0(x∗) with λi > 0,

Dgi(x
∗)d = 0 for i ∈ Ī

 .

Let Z ∈ Rn×n be a symmetric matrix. By Sylvesters law we can choose an arbitrary
basis matrix Q of RĪ and the sign of

det
(
Q>ZQ

)
does not change. We denote this sign by sign det

(
Z
∣∣RĪ
)
.
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Theorem 2.9. (Characterization of strong stability [Koj80]) Let x∗ be a stationary
point of P assume that LICQ holds at x∗. Then x∗ is strongly stable, if and only
if

sign det
(
D2

1L(x∗,λ∗,µ∗)
∣∣RĪ
)

is constant and nonvanishing for all Ī ⊆ {i ∈ I0(x∗) | λ∗i = 0}, where λ∗,µ∗ are the
uniquely determined Lagrange multipliers such that (x∗,λ∗,µ∗) is a KKT point.

In [JKT90] the authors introduced a further characterization in terms of Clark’s
concept of a generalized derivative (see for example [Cla90]). As this characteriza-
tion has an important consequence, we will shortly introduce the concept and the
results derived in [JKT90].

Given an open bounded subset, U ⊂ Rn, a Lipschitz continuous function, f : U →
Rn and a point x ∈ U , the set

∂f(x) = conv
({

Z | ∃{xk}k∈N ⊆ U,xk → x,

f is differentiable in xk and Df(xk)→ Z
})

is called the generalized Jacobian. Here, conv denotes the convex hull of a set. The
generalized Jacobian is said to be nonsingular at x ∈ U , if every Z ∈ ∂f(x) is
nonsingular.

We can now give an equivalent characterization of a strongly stable stationary
point:

Theorem 2.10. (Strong stability and nonsingularity [JKT90]) Let x∗ be a station-
ary point of P and λ∗ ∈ R|I| and µ∗ ∈ R|J | such that Ψ(x∗,λ∗,µ∗) = 0. Then x∗

is strongly stable, if and only if ∂Ψ(x∗,λ∗,µ∗) is nonsingular.

The nonsingularity of a differentiable function enables the application of the implicit
function theorem. Exactly the same is possible for a Lipschitz continuous function
and the nonsingularity of the generalized Jacobian. We are going to introduce an
implicit function theorem and apply it to the strong stability under LICQ.

Define for a bounded open set, U ⊆ Rn, the following norm, for every Lipschitz
continuous function f : U → Rn:

‖f‖L,U := max

{
sup
x∈U

f(x), inf
{
c | ‖f(x)− f(y)‖ ≤ c‖x− y‖ for all x,y ∈ U

}}
.

The following implicit function theorem is introduced in [JKT90]:
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Theorem 2.11. (Lipschitz implicit function [JKT90]) Let U be a nonempty bounded
open subset of Rn, let f : U → Rn be a Lipschitz continuous function, and let
x∗ ∈ U be a point satisfying f(x∗) = 0. Suppose that ∂f(x∗) is nonsingular. Then
there exist real numbers ε > 0, δ > 0 and L > 0 such that the following holds:

i) For each Lipschitz continuous function g : U → Rn with ‖f − g‖L,U < δ,
there exists a unique solution x(g) in Bε(x

∗) to the equation g(x) = 0.

ii) for two Lipschitz continuous functions g1, g2 : U → Rn with ‖f − g1‖L,U < δ
and ‖f − g2‖L,U < δ, the following holds:∥∥x(g1)− x(g2)

∥∥ ≤ L sup
x∈U

∥∥g1(x)− g2(x)
∥∥ ≤ L‖g1 − g2‖L,U .

Before this theorem can be applied to the function Ψ, its norm has to be bounded.
In [JKT90] it is shown that for an arbitrary bounded open set, U := U1×U2×U3 ⊆
Rn × R|I| × R|J |, there exists an L > 0 such that, for every twice continuously
differentiable function, (f̃ , g̃, h̃) : Rn → R1+|I|+|J |, the following is true:

sup
(x,λ,µ)∈U

∥∥Ψ(x,λ,µ)−Ψf̃ ,g̃,h̃(x,λ,µ)
∥∥ ≤ L norm1(f̃ , g̃, h̃, U1) , (2.10)

‖Ψ−Ψf̃ ,g̃,h̃‖L,U ≤ L norm2(f̃ , g̃, h̃, U1) , (2.11)

where Ψf̃ ,g̃,h̃ is obtained by replacing f, g,h in Equation (2.9) by f+f̃ , g+g̃,h+h̃.

Applying Theorem 2.11 to Ψ(x∗,λ∗,µ∗) induces together with Equation (2.10) and
(2.11) the following theorem :

Theorem 2.12. (Lipschitz constant for strong stability [JKT90]) Let x∗ be a
strongly stable stationary point of P and suppose that LICQ is satisfied. Let ε∗

be chosen as in Definition 2.8. There exist real numbers δ∗ > 0 and L > 0 such
that:

• for every (f̃ , g̃, h̃) ∈ Fδ∗(Bε∗(x
∗)), the set Bε∗(x) contains a unique stationary

point, x(f̃ , g̃, h̃), of problem P(f̃ , g̃, h̃).

• the following holds:∥∥x∗ − x(f̃ , g̃, h̃)
∥∥ ≤ L norm1

(
f̃ , g̃, h̃, Bε∗(x

∗)
)
.

Strong stability together with LICQ will therefore be enough to guarantee the
property demanded in Equation (2.8).
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2.1 Nonlinear optimization

One has to mention here that a similar concept, so called strong regularity of KKT
points, has been developed by Robinson in [Rob80] nearly at the same time. In
Section 2.2.2 we discuss how to extend the notion of strong stability to the semi-
infinite case. There it will be easier to extend the concept of a stationary point,
but more difficult to extend the notion of a KKT point. This is due to the infinite
number of inequalities. However, for the finite case it is shown in [KT90] that both
concepts are under LICQ equivalent.

In the remainder of this section we discuss under which conditions we can even
have a differentiable function describing the stationary points locally. To this end,
assume that strict complementary slackness holds and LICQ is satisfied for a KKT
point (x∗,λ∗,µ∗). In such a point the function Ψ given in Equation (2.9) is con-
tinuously differentiable. By Theorem 2.9 the derivative is invertible, if and only if
sign det

(
D2

1L(x∗,λ∗,µ∗)
∣∣T (x∗)

)
6= 0, where under strict complementary slackness

we have:

T (x∗) =

{
d ∈ Rn

∣∣∣∣∣Dgi(x∗)d = 0 for i ∈ I0(x∗)

Dhj(x
∗)d = 0 for j ∈ J

}
= R∅ .

Considering only stationary points which are potentially local solutions, i.e. fulfill
the second-order necessary condition given in Theorem 2.7, Equation (2.7), one
sees easily that DΨ(x∗,λ∗,µ∗) is invertible, if and only if:

d>L(x∗,λ∗,µ∗)d > 0 for all d ∈ T (x∗),d 6= 0 ,

which is exactly the second-order sufficient condition (SOSC).

For twice continuously differentiable functions f : Rn×Rm → R, g : Rn×Rm → R|I|
and h : Rn×Rm → R|J | we consider the following so called parametric optimization
problem:

P(γ) : min
x∈Rn

f(x,γ)

s.t. g(x,γ) ≤ 0 ,

h(x,γ) ≤ 0 .

With the considerations above one receives applying the implicit function theorem
for differentiable functions the following well known result (see for example [Fia83,
JS04]):

Theorem 2.13. (Differentiability of stationary points) For a given parameter vec-
tor, γ∗ ∈ Rm, assume that (x∗,λ∗,µ∗) is a KKT point of P(γ∗). Moreover, assume
that for P(γ∗) the following is true:
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2 Foundations of nonlinear and semi-infinite optimization

• at x∗ LICQ is satisfied.

• x∗,λ∗ fulfill the strict complementary slackness condition.

• x∗,λ∗,µ∗ satisfy the second-order sufficient condition SOSC.

Then there are δ > 0, ε > 0 and a continuous differentiable function, ν = (x,λ,µ) :
Bδ(γ

∗)→ Rn × R|I| × R|J |, such that, for every γ ∈ Bδ(γ
∗):

• the point x(γ) is a local minimum of P(γ) which is unique in Bε(x
∗).

• the vectors λ(γ),µ(γ) are the unique Lagrange multipliers such that
(
x(γ),

λ(γ), µ(γ)
)

is a KKT point of P(γ).

Remark 2.14. (Derivatives of implicit function ν) With the implicit function
theorem also the derivative of ν can be calculated. Therefore denote by

L(x,λ,µ,γ) = f(x,γ) +
∑
i∈I

λigi(x,γ) +
∑
j∈J

µjhj(x,γ)

the Lagrangian of the parametric optimization problem P(γ). The following holds,
for every parameter vector γ close to γ∗:Dx(γ)

Dλ0(γ)
Dµ(γ)

 = −

(
D2

1L
(
x(γ),λ(γ),µ(γ),γ

) (
D1G

(
x(γ),γ

))>
D1G

(
x(γ),γ

)
0

)−1

(2.12)

·
(
D4D1L

(
x(γ),λ(γ),µ(γ),γ

)
D2G

(
x(γ),γ

) )
,

where
λ0 =

(
λi, i ∈ I0(x∗)

)
and

G(x,γ) =

(
gi(x,γ), i ∈ I0(x∗)
hj(x,γ), j ∈ J

)
.

For every i ∈ I \ I0(x∗) it is true:

Dλi(γ) = 0 .

If the involved functions are even more than twice continuously differentiable, then
the implicit function ν is more then once continuously differentiable.

To check the existence of derivatives for a given point and given parameters one
could check the assumptions of Theorem 2.13. Checking the second order sufficient
condition directly might be hard. It is often easier to check the existence of the in-
verse matrix in Equation 2.12. By Theorem 2.9 and Theorem 2.10 this is equivalent
for a local minimum.
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2.2 Semi-infinite optimization

2.2 Semi-infinite optimization

We turn now to the case of infinitely many inequality constraints. Let I, J be finite
index sets and

g : Rn × Rm → R|I| ,
v : Rm → R|J |

be twice continuously differentiable functions. We consider the following so-called
semi-infinite optimization problem.

SIP : min{f(x) | x ∈M} ,
where

M = {x ∈ Rn | g(x,y) ≤ 0 for all y ∈ Y }
and

Y = {y ∈ Rm | v(y) ≤ 0} .
As before we also write the optimization problem SIP as:

SIP : min
x∈Rn

f(x)

s.t. gi(x,y) ≤ 0 for all i ∈ I,y ∈ Y . (2.13)

The inequalities in (2.13) are called semi-infinite constraints, the set Y is called
semi-infinite index-set and its elements index variables or simply indices. In gen-
eral the cardinality of Y will be infinite, which means that the feasible set M is
described by infinitely many constraints. Throughout this work we assume that Y
is nonempty and compact.

The presented definition can be extended in different ways. It is possible to add
finitely many equalities in the description of the feasible set as well as to the de-
scription of the semi-infinite index-set. Even though many of the results presented
in this work can be extended to this case, a detailed discuss¡ion of those extensions
would exceed the scope of this thesis.

Finite inequality constraints do not have to be considered separately. Assume we
are given a function h : Rn → R. For an arbitrary but fixed ŷ ∈ Y and for every
x ∈ Rn, the following holds:

h(x) ≤ 0⇔ h(x)− ‖ŷ − y‖2 ≤ 0 for all y ∈ Y .

(It is beneficial for the following considerations to add the additional norm.) How-
ever, this reformulation is only done to simplify the exposition of the following
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2 Foundations of nonlinear and semi-infinite optimization

theory and the derived results. For the numerical implementation it is often bene-
ficial to consider finite inequality constraints separately.

Because there are infinitely many constraints determining whether a point is feasible
becomes an optimization problem. For every i ∈ I and x ∈ Rn, we introduce the
so-called lower-level problem:

Qi(x) : max
y∈Rm

gi(x,y) (2.14)

s.t. vj(y) ≤ 0 for all j ∈ J .

For every fixed x ∈ Rn, this is an ”ordinary” nonlinear optimization problem
considered in Section 2.1. The optimization variables, x, become parameters in
this problem and the former index variables, y, become optimization variables. For
every i ∈ I, x ∈ Rn, y ∈ Rm and µi ∈ R|J |, we denote the Lagrange function of
Qi(x) by

Li(x,y,µi) := gi(x,y)−
∑
j∈J

µij · vj(y) .

For every i ∈ I the function ϕi : Rn → R with

ϕi(x) := max{gi(x,y) | y ∈ Y }

is called optimal value function of the i-th lower level problem.

The feasible set can be equivalently described by

M = {x ∈ Rn | ϕi(x) ≤ 0 for all i ∈ I} .

Although this is again a nonlinear optimization problem, it is often not beneficial
to treat this problem directly by this reformulation. The functions ϕi, i ∈ I are
only implicitly given and for each evaluation an optimization problem has to be
solved. This can turn out to be a time-consuming task itself. Nevertheless, this
reformulation gives rise to a for theory and solution techniques important local
reduction. We discuss this further in the next paragraph.

Reduction Ansatz
We now introduce a well known technique to locally reduce the problem to a non-
linear problem. The so called Reduction Ansatz (see for example [HZ82, JTW92,
Kla92]).

For every i ∈ I and x ∈M we denote the set of active indices by

Y i
0 (x) := {y ∈ Y | gi(x,y) = 0} .
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2.2 Semi-infinite optimization

Every y∗ ∈ Y i
0 (x) is a global solution to the lower level problem Qi(x). If we

assume that LICQ holds in every y ∈ Y , then every global solution is a stationary
point. If we moreover assume that every global solution is even a strongly stable
stationary point, then by compactness of Y and local uniqueness there can only be
finitely many global solutions. This means we can write, for every i ∈ I:

Y i
0 (x) = {yi,1, . . . ,yi,qi} .

Further by strong stability (see Theorem 2.12), there exists a δ1 > 0 and an ε > 0
such that, for every i ∈ I and 1 ≤ k ≤ qi, there is a Lipschitz continuous function

yi,k : Bδ1(x
∗)→ Y (2.15)

such that, for every x ∈ Bδ1(x
∗), the point yi,k(x) is the unique stationary point

within Bε(y
i,k) for the i-th lower level problem Qi(x).

By continuity and the compactness of the sets Y \
⋃qi
k=1 Bε(y

i,k) there is δ2 > 0 such
that, for every x ∈ Bδ2(x

∗), there is no global solution within Y \
⋃qi
k=1Bε(y

i,k)
to the i-th lower level problem Qi(x). Thus, all global solutions can be described
by the Lipschitz continuous functions in Equation (2.15). For δ = min{δ1, δ2} we
have:

M ∩Bδ(x
∗) = {x ∈ Bδ(x

∗) | ∀ i ∈ I, 1 ≤ k ≤ qi : gi
(
x,yi,k(x)

)
≤ 0} . (2.16)

If we assume that strict complementary slackness holds for every i ∈ I and y ∈
Y i

0 (x), then the functions yi,k are even differentiable by Theorem 2.13. The calcu-
lation of the derivatives of gi

(
x,yi,k(x)

)
is well known (see the above references).

Usually a trick is used here. By Theorem 2.13 not only the local solution, yi,k, can
be described by a differentiable function but also the unique Lagrange-multipliers,
µi,k ≥ 0, satisfying the KKT conditions. By complementarity the following holds,
for every i ∈ I:

gi
(
x,yi,k(x)

)
= Li

(
x,yi,k(x),µi,k(x)

)
.

About the derivatives of the Lagrangian several things are known:
(1) as yi,k(x) is a local solution and LICQ is satisfied, we have :

D2L
(
x,yi,k(x),µi,k(x)

)
= 0 .

(2) we have seen in Remark 2.14 that, for every j ∈ J , we have either vj(y
i,k(x)) = 0

or Dµi,kj (x) = 0, which means:

D3Li
(
x,yi,k(x),µi,k(x)

)
Dµi,k(x) = 0 .
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2 Foundations of nonlinear and semi-infinite optimization

Combining both Equations we receive the following derivative:

Dx̃

[
gi
(
x̃,yi,k(x̃)

)]
x̃=x

= Dx̃

[
Li
(
x̃,yi,k(x̃),µi,k(x̃)

)]
x̃=x

= D1gi(x,y
i,k(x)) . (2.17)

This is again a differentiable function. Again by Remark 2.14, the following holds:

D2
x̃

[
gi
(
x̃,yi,k(x̃)

)]
x̃=x

= D2
1gi
(
x,yi,k(x)

)
+D2D1gi

(
x,yi,k(x)

)
Dyi,k(x)

= D2
1gi
(
x,yi,k(x)

)
−
(
Dyi,k(x)

)>
·D2

2Li
(
x,yi,k(x),µi,k(x)

)
·Dyi,k(x) . (2.18)

This means that we can describe M locally by finitely many twice continuously
differentiable functions.

We collect the needed Assumption in the following definition.

Definition 2.15. (Reduction Ansatz) Suppose LICQ holds at every point in Y
and let x∗ ∈M .
We say that the Reduction Ansatz is satisfied for Problem SIP at x∗, if, for every
i ∈ I and every active index y∗ ∈ Y i

0 (x∗), strict complementary slackness and the
second-order sufficient condition are satisfied for Qi(x

∗).

If the Reduction Ansatz holds at a given point, we can consider the problem locally
as a finite nonlinear optimization problem discussed in Section 2.1.

Generalized semi-infinite Optimization
Before we show how the concepts, introduced in Section 2.1.1 and Section 2.1.2, can
be transferred to the case of SIP, we want to introduce one generalization of these
problems, so-called generalized semi-infinite optimization problems. Therefore we
replace the function v in the definition of SIP by a twice continuously differentiable
function u : Rn × Rm → R|Ĵ |. We consider the following optimization problem.

GSIP : min
x∈Rn

f(x)

s.t. gi(x,y) ≤ 0 for all i ∈ I,y ∈ Y (x) ,

where
Y (x) =

{
y ∈ Rm | uj(x,y) ≤ 0 for all j ∈ Ĵ

}
.

The difference to problem SIP is, that the infinite index-set depends on the choice
of x. This dependency can change the structure of the feasible set severely. Even
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2.2 Semi-infinite optimization

closedness is not necessarily given anymore. An example and an investigation of
the structure and theory of GSIPs can be found in [Ste03]. Within this work we
only consider GSIPs which can be transformed into a problem of type SIP:

Definition 2.16. (Transformable GSIP) Suppose for problem GSIP there exists a
twice continuously differentiable function v : Rm̃ → R|J | and a twice continuously
differentiable function t : Rn × Z → Rm, where

Z :=
{
z ∈ Rm̃ | v(z) ≤ 0

}
.

Further suppose that Z is nonempty, compact and, for every x ∈ Rn, the following
holds:

t(x, Z) = Y (x) .

If such a transformation t and a set Z exist, GSIP is called transformable.

For a transformable GSIP and an i ∈ I the constraint

gi(x,y) ≤ 0 for all y ∈ Y (x)

can be equivalently replaced by the constraint

g̃i(x, z) := gi
(
x, t(x, z)

)
≤ 0 for all z ∈ Z ,

which is again of the same type as in (2.13). This means that we can equivalently
consider a problem of type SIP. We will therefore introduce no further theory for
GSIPs and assume that a given GSIP is transformable. However, for the development
of algorithms it can beneficial to use the original describing functions. As it is shown
for example in [Sch13] the transformation can destroy helpful properties especially
convexity.

In [Sti99] it is shown that under suitable assumptions, any general semi-infinite
optimization problem, can be at least locally converted into a standard one. Of
practical value is such a transformation only in cases where it is defined globally.

2.2.1 Optimality conditions

In this section we show how the results for nonlinear optimization, introduced in
Section 2.1.1, can be transferred to the semi-infinite case. Again we assume that
the objective function f is twice continuously differentiable. All results within this
section are well known and can for example be found in [LS07]. The difference to
the previous definition of a stationary point (Definition 2.2) is that infinitely many
constraints can be active. To transfer the results only a finite subset is chosen:
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2 Foundations of nonlinear and semi-infinite optimization

Definition 2.17. (Stationary point for SIP) A feasible point, x∗ ∈ M , is called
stationary point of SIP, if, for every i ∈ I, there are finitely many active indices,
yi,k ∈ Y i

0 (x∗), 1 ≤ k ≤ qi, and real numbers, λi,k ≥ 0, 1 ≤ k ≤ qi, such that:

Df(x∗) +
∑
i∈I

qi∑
k=1

λi,kDgi(x
∗,yi,k) = 0 . (2.19)

The real numbers λi,k are again called Lagrange multipliers.

Also the regularity conditions can be transferred

Definition 2.18. (ELICQ and EMFCQ)

• A feasible point, x ∈ M , satisfies the Extended Linear Independence Con-
straint Qualification (short: ELICQ) for problem SIP, if the vectors:

D1gi(x,y), i ∈ I,y ∈ Y i
0 (x)

are linearly independent.

• A feasible point, x ∈ M , is said to satisfies the Extended Mangasarian-
Fromovitz Constraint Qualification (short: EMFCQ), if there is a vector
ξ ∈ Rn with

D1gi(x,y)ξ ≤ − 1 for every i ∈ I,y ∈ Y i
0 (x) .

Again, the following connection between those two conditions holds:

Lemma 2.19 (ELICQ implies EMFCQ). Assume x ∈M satisfies ELICQ for SIP,
then x also satisfies EMFCQ.

A very similar connection of stationary points and local solutions as in Theorem
2.5 exists:

Theorem 2.20. (First order optimality for SIP) Assume x∗ ∈M is a local solution
of SIP and satisfies the regularity condition EMFCQ, then x∗ is a stationary point.
If also ELICQ is satisfied, then the multipliers in Equation (2.19) are uniquely
determined.

Next, we want to transfer the second-order optimality condition presented in The-
orem 2.21 to the semi-infinite case. A natural way to achieve this is to use the
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Reduction Ansatz. In this case, for every i ∈ I, there are only finitely many active
indices, i.e.:

Y i
0 (x∗) = {yi,1, . . . ,yi,qi} .

Moreover, there is an δ > 0 and we can describe, for i ∈ I and 1 ≤ k ≤ qi, the
active indices locally by continuously differentiable functions, yi,k : Bδ(x

∗) → Y ,
such that yi,k(x∗) = yi,k and

M ∩Bδ(x
∗) =

{
x ∈ Bδ(x

∗) | ∀ i ∈ I, 1 ≤ k ≤ qi : gi
(
x,yi,k(x)

)
≤ 0
}
.

We have seen that, for every i ∈ I and 1 ≤ k ≤ qi, the function gi
(
x,yi,k(x)

)
is

twice continuously differentiable.

As we have by the Reduction Ansatz only finitely many constraints, we can intro-
duce in contrast to Definition 2.17 a Lagrange multiplier λi,k ≥ 0 for every i ∈ I
and 1 ≤ k ≤ qi. We denote the Lagrangian of the reduced problem by

L(x∗,λ) := f(x∗) +
∑
i∈I

qi∑
k=1

λi,k · gi
(
x∗,yi,k(x∗)

)
. (2.20)

Also the cone of critical directions can be transferred. Consider a stationary point
x ∈M with corresponding Lagrange multipliers λ fulfilling Equation (2.19). Let

TSIP(x∗) :=

{
d ∈ Rn

∣∣∣∣∣D1gi(x
∗,yi,k)d ≤ 0 for i ∈ I, 1 ≤ k ≤ qi with λi,k = 0

D1gi(x
∗,yi,k)d = 0 for i ∈ I, 1 ≤ k ≤ qi with λi,k > 0

}
.

The following result about second-order conditions can for example be found in
[LS07] and [HK93]:

Theorem 2.21. (Second-order optimality conditions for SIP) For x∗ ∈M assume
that the Reduction Ansatz is satisfied

• Suppose that x∗ is a local minimum of SIP and ELICQ is satisfied. For the
uniquely defined Lagrange-multipliers λ ≥ 0 satisfying Equation (2.19) the
following holds:

d>D2
1L(x∗,λ)d ≥ 0 for all d ∈ TSIP(x∗) .

• Suppose that x∗ is a stationary point with Lagrange-multipliers λ ≥ 0 satis-
fying Equation (2.19). If

d>D2
1L(x∗,λ)d > 0 for all d ∈ TSIP(x∗),d 6= 0 , (2.21)

then x∗ is a strict local minimum of order ρ = 2. If (2.21) holds we say that
the extended second-order sufficient condition (short ESOSC) is satisfied.
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2 Foundations of nonlinear and semi-infinite optimization

We have calculated the first and the second derivative of the reduced problem in
Equations (2.17) and (2.18). Plugging them into the definition of the Lagrangian in
(2.20) shows that the first derivative of the Lagrangian only consists of derivatives
with respect to x. This is the reason why in the first order optimality conditions
also only derivatives with respect to x appear. The situation is different for the
second-order conditions. Here also a second derivative with respect to y appears,
namely:

−
∑
i∈I

qi∑
k=1

λi,k
(
Dyi,k(x)

)> ·D2
2Li
(
x,yi,k(x),µi,k(x)

)
·Dyi,k(x) ,

where µi,k(x) are the to yi,k(x) corresponding Lagrange-multipliers satisfying the
KKT conditions for Qi(x). This term is called shift term. Further investigations
about this term can be found in [BS98] and [Kaw88].

2.2.2 Strong stability of stationary points

We again investigate the behavior of stationary points under perturbations. The
concept of strong stability was first introduced to semi-infinite optimization by
Rückmann in [Rüc99]. We introduce the concept and the for this thesis needed
results. Again assume for this section that the objective function f is twice contin-
uously differentiable.

For a bounded open set, U ⊆ Rn, and twice continuously differentiable functions,
f̃ : Rn → R and g̃ : Rn × Rm → R|I|, we let

normSIP(f̃ , g̃, U) := max


sup
x∈U

max
{
|f̃(x)|, ‖Df̃(x)‖, ‖D2f̃(x)‖

}
,

max
i∈I

sup
x∈U

max
y∈Y

max
{
|g̃i(x,y)|, ‖Dg̃i(x,y)‖, ‖D2g̃i(x,y)‖

}
 .

For δ > 0 let

Fδ(U) :=

(f̃ , g̃)

∣∣∣∣∣∣∣
f̃ : Rn → R twice continuosly differentiable,

g̃ : Rn × Rm → R|I| twice continuously differentiable,

norm(f̃ , g̃, U) < δ

 .

Completely analogous to Definition 2.8 we can define strong stability in the semi-
infinite case:
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2.2 Semi-infinite optimization

Definition 2.22. (Strong stability for SIP [Rüc99]) A stationary point x∗ of SIP is
called strongly stable, if there is a ε∗ > 0 with the property that for every ε ∈ (0, ε∗]
there is a δ > 0 such that, for every (f̃ , g̃) ∈ Fδ(Bε∗(x

∗)), the problem

SIP(f̃ , g̃) : min
x∈Rn

f(x) + f̃(x)

s.t. gi(x,y) + g̃i(x,y) ≤ 0 for all i ∈ I,y ∈ Y

has a within Bε∗(x
∗) unique stationary point x(f̃ , g̃) and

‖x∗ − x(f̃ , g̃)‖ < ε .

We denote by M(f̃ , g̃) the feasible set of problem SIP(f̃ , g̃).

Similar to Kojima Rückmann considered an equivalent characterization of station-
ary points. First assume that at a given point, x∗ ∈M , the Reduction Ansatz holds,
i.e. there are ε∗r > 0 and δ∗r > 0 such that, for every (f̃ , g̃) ∈ Fδ∗r (Bε∗r(x

∗)) and i ∈ I,

there are continuously differentiable functions, yi,kgi+g̃i : Bε∗r(x
∗) → Rm, 1 ≤ k ≤ qi,

such that

M(f̃ , g̃) ∩Bε∗r(x
∗)

= {x ∈ Bε∗r(x
∗) | ∀ i ∈ I, 1 ≤ k ≤ qi : (gi + g̃i)

(
x,yi,kgi+g̃i(x)

)
≤ 0} ,

where Bε∗r(x
∗) denotes the closure of Bε∗r(x

∗). We intentionally added here the
semi-infinite constraining function gi in the description to mark the dependency of
the solutions, yi,kgi , to the semi-infinite constraints. This dependency is the reason
why the previous results presented in Section 2.1.2 can not directly be applied to
this situation.

In [Rüc99] Rückmann considered, for x ∈ Bε∗r(x
∗), the following Lipschitz contin-

uous function

Ψ(x,λ) =

(Df(x) +
∑

i∈I
∑qi

k=1(λi,k)+D1gi
(
x,yi,kgi (x)

))>
(λi,k)− − gi

(
x,yi,kgi (x)

)
, i ∈ I, 1 ≤ k ≤ qi

 . (2.22)

It is easy to see that x∗ is a stationary point if and only if there exist multipliers
λ∗ with Ψ(x∗,λ∗) = 0.

In [Rüc99] a similar statement to Theorem 2.9 is shown. Stating this theorem
would again require a lot of notation. But in the proof of this theorem Rückmann
also showed the following:

Theorem 2.23. (Strong stability and nonsingularity [Rüc99]) Let x∗ be a station-
ary point of SIP with multipliers λ∗ ≥ 0 fulfilling Equation (2.19). Assume ELICQ
is satisfied at x∗ and the Reduction Ansatz holds. Then x∗ is strongly stable, if an
only if the generalized Jacobian ∂Ψ(x,λ∗) is nonsingular.
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2 Foundations of nonlinear and semi-infinite optimization

The following second result is shown regarding only EMFCQ and not ELICQ

Theorem 2.24. (Strong stability under EMFCQ and not ELICQ [Rüc99]) Let x∗

be a stationary point of SIP. Suppose that the Reduction Ansatz and EMFCQ are
satisfied at x∗ and ELICQ is not satisfied. Then x∗ is strongly stable if and only
if for every choice of Lagrange multipliers λ ≥ 0 with

D1L(x∗,λ) = 0 ,

the following holds:

d>D2
1L(x,λ)d > 0 for all d ∈ R(x∗),d 6= 0 ,

where L(x∗,λ) is defined as for Theorem 2.21 and

R(x∗) :=
{
d ∈ Rn | D1gi

(
x∗,yi,k

)
d = 0 for i ∈ I, 1 ≤ k ≤ qi with λi,k > 0

}
.

The condition is even stronger then the second-order sufficient condition given
in Theorem 2.21. This means that in the second case only local minima can be
strongly stable.

Remark 2.25 (Multiple semi-infinite constraints). In [Rüc99] the results are only
shown regarding a single semi-infinite constraint. In theory multiple semi-infinite
constraints can be reformulated by a single semi infinite constraint. Therefore let

ĝ(x,y, z) :=
∑
i∈I

zigi(x,y)−
∑
i∈I

∑
i2∈I,i 6=i2

zizi2 .

For Z := {z ∈ R|I| | ∀i ∈ I : zi ≥ 0,
∑

i∈I zi = 1} and for every x ∈ Rn, the
following holds:

ĝ(x,y, z) ≤ 0 for all (y, z) ∈ Y × Z
⇔ gi(x,y) ≤ 0 for all i ∈ I,y ∈ Y .

Also all other properties can be transferred.

To gain a Lipschitz type relation we would like to use again Theorem 2.11 and
receive a similar statement to Theorem 2.12. This is not done in [Rüc99]. That is
why we add the proofs for these statements here. As a first step we need to bound
similarly as in Equations (2.10) and (2.11) the Lipschitz norm.

Lemma 2.26. (Bound on Lipschitz norm) For γ > 0 and a bounded open set

U2 ⊆ R(
∑
i∈I qi), there exists a L > 0 and a δ with 0 < δ < δ∗r such that, for every

twice continuously differentiable function (f̃ , g̃) ∈ Fδ(Bεr(x
∗)), the following holds:

sup
(x,λ)∈Bε∗r (x∗)×U2

‖Ψ(x,λ)−Ψf̃ ,g̃(x,λ)‖ ≤ L normSIP

(
f̃ , g̃, Bε(x

∗
r)
)
,

‖Ψ−Ψf̃ ,g̃‖L,Bε(x∗r)×U2 ≤ γ ,

where Ψf̃ ,g̃ is obtained by replacing f, g in (2.22) by f + f̃ , g + g̃.
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2.2 Semi-infinite optimization

Proof. We first introduce, for every (f̃ , g̃) ∈ Fδ∗r (Bε∗r(x
∗)), x ∈ Bε∗r(x

∗), i ∈ I and
1 ≤ k ≤ qi, an abbreviation:

hi,k(x) := gi
(
x,yi,kgi (x)

)
− (gi + g̃i)

(
x,yi,kgi+g̃i(x)

)
.

In the first part of the proof we introduce some bounds on hi,k. The claimed
inequalities then follow from these bounds.

Bounds on auxiliary function: First, there is by strong stability (see Theorem
2.12) a K1 such that, for every x ∈ Bε∗r(x

∗), i ∈ I and 1 ≤ k ≤ qi:

∥∥yi,kgi (x)− yi,kgi+g̃i(x)
∥∥ ≤ K1 norm1(g̃i(x, ·), 0, 0, Y ) ≤ K1 normSIP

(
f̃ , g̃, Bε∗r(x

∗)
)
.

This means:

‖hi,k(x)‖ =
∥∥gi(x,yi,kgi (x)

)
− (gi + g̃i)

(
x,yi,kgi+g̃i(x)

)∥∥
≤
∥∥gi(x,yi,kgi (x)

)
− gi

(
x,yi,kgi+g̃i(x)

)∥∥+
∥∥g̃i(x,yi,kgi+g̃i(x)

)∥∥
by differentiability there is a K2 such that:

≤ K2

∥∥yi,kgi (x)− yi,kgi+g̃i(x)
∥∥+ normSIP

(
f̃ , g̃, Bε∗r(x

∗)
)

≤ (K2 ·K1 + 1) normSIP

(
f̃ , g̃, Bε∗r(x

∗)
)

with L1 = K2 ·K1 + 1:

= L1 normSIP

(
f̃ , g̃, Bε∗r(x

∗)
)
. (2.23)

Completely analogous there is also a L2 such that, for every x ∈ Bε∗r(x
∗), i ∈ I

and 1 ≤ k ≤ qi:

‖Dhi,k(x)‖ =
∥∥D1gi

(
x,yi,kgi (x)

)
−D1(gi − g̃i)

(
x,yi,kgi+g̃i(x)

)∥∥
≤ L2 normSIP

(
f̃ , g̃, Bε∗r(x

∗)
)
. (2.24)

We have calculated the derivatives of yi,k in Remark 2.14. By this description there
is for every γ1 > 0 a δ > 0 such that, for every (f̃ , g̃) ∈ Fδ(Bε∗r(x

∗)), x ∈ Bε∗r(x
∗),

i ∈ I and 1 ≤ k ≤ qi the following holds:

∥∥Dyi,kgi (x)−Dyi,kgi+g̃i(x)
∥∥ ≤ γ1 . (2.25)
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2 Foundations of nonlinear and semi-infinite optimization

We moreover have

D2hi,k(x)

= D2
1gi
(
x,yi,kgi (x)

)
−D2

1(gi + g̃i)
(
x,yi,kgi+g̃i(x)

)
+D2D1gi

(
x,yi,kgi (x)

)
·Dyi,kgi (x)

−D2D1(gi + g̃i)
(
x,yi,kgi+g̃i(x)

)
·Dyi,kgi+g̃i(x)

= D2
1gi
(
x,yi,kgi (x)

)
−D2

1gi
(
x,yi,kgi+g̃i(x)

)
(2.26)

−D2
1g̃i
(
x,yi,kgi+g̃i(x)

)
(2.27)

+D2D1gi
(
x,yi,kgi (x)

)
·
(
Dyi,kgi (x)−Dyi,kgi+g̃i(x)

)
(2.28)

−
(
D2D1gi

(
x,yi,kgi+g̃i(x)

)
−D2D1gi

(
x,yi,kgi (x)

))
·Dyi,kgi+g̃i(x) (2.29)

−D2D1g̃i
(
x,yi,kgi+g̃i(x)

)
·Dyi,kgi+g̃i(x) . (2.30)

As Dyi,kgi is continuous on Bε∗r(x
∗) and by (2.25) the derivative Dyi,kgi+g̃i(x) can

be bounded. The terms (2.26) and (2.29) can than be bounded by continuity of
the second derivative. The terms (2.27) and (2.30) can be directly bounded by δ.
Finally the term in (2.28) can be bounded by the continuity of the second derivative
and by the inequality given in (2.25). All together this means that we can choose,
for every γ > 0, a δ > 0 such that, for every (f̃ , g̃) ∈ Fδ(Bε∗r(x

∗)), i ∈ I, 1 ≤ k ≤ qi,
the following holds:

‖D2hi,k(x)‖ < γ . (2.31)

First inequality: The first inequality now follows easily, for every x ∈ Bε∗r(x
∗)

and λ ∈ U2 ∥∥Ψ(x,λ)−Ψf̃ ,g̃(x,λ)
∥∥

≤ ‖Df̃(x)‖+
∥∥∑
i∈I

qi∑
k=1

(λi,k)+ ·Dhi,k(x)
∥∥+

∑
i∈I

qi∑
k=1

‖hi,k(x)‖

≤

(
1 + (L2 + λmaxL1)

∑
i∈I

qi

)
· normSIP

(
f̃ , g̃, Bε∗r(x

∗)
)
,

where λmax = maxi∈I max1≤k≤qi |λi,k| which is bounded by assumption.

Second inequality: For the second inequality it only remains to show, that we can
bound the Lipschitz constant, as the first inequality already bounds the first element
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2.2 Semi-infinite optimization

of the norm. Therefore we choose a δ > 0 such that, for every (f̃ , g̃) ∈ Fδ(Bε(x
∗)),

x1,x2 ∈ Bε∗r(x
∗), i ∈ I and 1 ≤ k ≤ qi, the following holds:

‖Df̃(x1)−Df̃(x2)‖ < γ

4
‖x1 − x2‖ , (2.32)

‖Dhi,k(x1)‖ ≤ γ

4 ·
∑

i∈I qi
, (2.33)

‖hi,k(x1)− hi,k(x2)‖ ≤ γ

4 ·
∑

i∈I qi
‖x1 − x2‖ , (2.34)

‖Dhi,k(x1)−Dhi,k(x2)‖ ≤ γ

4 ·
∑

i∈I qi · λmax
‖x1 − x2‖ . (2.35)

The choice of inequality (2.32) is possible by the definition of Fδ(Bε∗r(x
∗)), as it

bounds the second derivative. The inequalities (2.33) and (2.34) follow from the
inequality in Equation (2.24). Finally the choice for the last inequality is possible
due to Equation (2.31). The following is then true:∥∥ (Ψ(x1,λ1)−Ψf̃ ,g̃(x

1,λ1)
)
−
(
Ψ(x2,λ2)−Ψf̃ ,g̃(x

2,λ2)
) ∥∥

≤ ‖Df̃(x1)−Df̃(x2)‖+
∑
i∈I

qi∑
k=1

|λi,k1 − λ
i,k
2 | · ‖Dhi,k(x1)‖

+
∑
i∈I

qi∑
k=1

|λi,k2 | · ‖Dhi,k(x1)−Dhi,k(x2)‖+
∑
i∈I

‖hi,k(x1)− hi,k(x2)‖

≤ γ ·
∥∥∥∥(x1

λ1

)
−
(
x2

λ2

)∥∥∥∥ ,

which bounds the Lipschitz constant by γ

Again we can give a statement about a Lipschitz constant:

Theorem 2.27. (Lipschitz constant for strong stability) Let x∗ be a strongly stable
stationary point of SIP with Lagrange multipliers λ. Assume ELICQ is satisfied
at x∗ and the Reduction Ansatz holds. Then there are δ > 0, ε > 0 and an L > 0
such that, for every (f̃ , g̃) ∈ Fδ(Bε(x)), the perturbed problem, SIP(f̃ , g̃), has a
stationary point, x(f̃ , g̃), with

‖x∗ − x(f̃ , g̃)‖ ≤ L normSIP

(
f̃ , g̃, Bε(x

∗)
)
,

which is unique within Bε(x
∗).

Proof. Let ε = min{ε∗, ε∗r}, where ε∗ is chosen according to Definition 2.22 and ε∗r
according to the Reduction Ansatz.
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2 Foundations of nonlinear and semi-infinite optimization

Choosing a δ to guarantee existence and uniqueness is already possible by the
definition of strong stability.

The equivalent characterization of strong stability in Theorem 2.23 together with
the bounds introduced in Lemma 2.26 make sure that we can apply the implicit
function theorem (Theorem 2.11).
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3 Convergence speed for adaptive
discretization by Blankenship and
Falk

In this chapter we investigate the adaptive discretization method introduced by
Blankenship and Falk ([BF76]). We first motivate and introduce the algorithm.
Our main interest is to quantify the convergence rate. As a first step we give in
Section 3.1 a bound that connects the distance of a current iterate to a limit in
terms of the maximal violation of the current iterate. In Section 3.2 we then further
bound the maximal violation and obtain a quadratic rate of convergence for limit
points which are a minimum of order ρ = 1. We end this chapter with an easy
example that shows that for a minimum of higher order no quadratic rate can be
expected.

The main idea of the algorithm is to reduce problem SIP to a sequence of finite
nonlinear optimization problems. Therefore we consider a finite subset of the index
set Ẏ ⊆ Y . Problem

SIP(Ẏ ) : min
x∈Rn

f(x)

s.t. gi(x,y) ≤ 0 for all i ∈ I,y ∈ Ẏ

is called the discretized problem. We denote its feasible set by

M(Ẏ ) :=
{
x ∈ Rn | gi(x,y) ≤ 0 for all i ∈ I,y ∈ Ẏ

}
.

We will assume that we can solve this problem by algorithms developed for finite
nonlinear optimization, such as SQP-methods ([NW06]) or interior-point methods
([WB06]). The question that needs to be answered is how the discretized set Ẏ is
chosen, as the quality of the found solution will depend on this choice.

A classical way is to choose a fine grid. The benefit is that the violation of the
solution and a distance of a local solution of the discretized solution can be bounded
in terms of the grid size (see [Sti01]). However, a major disadvantages is that for
higher dimensions the number of discretization points needed to reach a specified

41



3 Convergence speed for adaptive discretization by Blankenship and Falk

grid size grows exponentially. This is cumbersome as many of the points in a
discretization defined by a grid will not be active at a solution.

This motivates to not work with a fixed discretization but to update the discretiza-
tion based on the solution x found so far. More precisely, for every i ∈ I, the
solutions of the lower-level problems

yi ∈ arg max{gi(x,y) | y ∈ Y }

are added to the discretization. This way the discretization can be kept small and
only the points actually needed are added to the discretization. These considera-
tions lead to the following algorithm first introduced by Blankenship and Falk in
[BF76]:

Algorithm 1 Adaptive discretization by Blankenship and Falk [BF76]

1: Input: initial point x1 ∈ Rn, initial discretization Y 1 ⊆ Y , k = 1.
2: while termination criterion is not met do
3: for i ∈ I do
4: calculate a global maximum yi,k of problem Qi(x

k).
5: end for
6: Y k+1 := Y k ∪

⋃
i∈I{yi,k}.

7: Calculate a solution xk+1 of the discretized problem SIP(Y k+1).
8: k = k + 1.
9: end while

While we require to calculate a global solution in Step 4 we do not specify the type
of solution found in Step 7, but every solution should at least fulfill xk ∈ M(Y k).
The type of solution calculated in Step 7 will of course influence the properties of a
limit point. But by the feasibility of the iterates the following is already true (see
for example [BF76]):

Lemma 3.1. (Feasibility of accumulation points) Let {xk}k∈N be constructed ac-
cording to Algorithm 1. Then, for every convergent subsequence {xkl}l∈N, the ac-
cumulation point

x∗ = lim
l→∞

xkl

is feasible for SIP.

As a consequence if M(Y 0) is compact, then for every α > 0 there exists a finite k̃
such that, for every k ≥ k̃:

max
i∈I

max
y∈Y

gi(x
k,y) ≤ α .
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3.1 Bounds based on the maximal violation

This is a global convergence property towards the feasible set. The next theorem
shows that the properties of the limit point depend on what we can guarantee in
Step 7 of Algorithm 1 (see [BF76] and [Ree94]).

Theorem 3.2. (Basic convergence properties) Let {xk}k∈N be constructed accord-
ing to Algorithm 1. Assume there is an x∗ such that:

lim
k→∞

xk = x∗ .

• Assume that, for every k ∈ N, the iterate xk is a global solution of SIP(Y k),
then x∗ is a global solution of SIP.

• Assume that, for every k ∈ N, the iterate xk is a local solution of SIP(Y k)
with radius rk and infk∈N rk > 0, then x∗ is a local solution of SIP.

We only assume here for simplicity of notation that the sequence {xk}k∈N is con-
vergent. Alternatively one can assume that M(Y 0) is compact and then investigate
every convergent subsequence.

A question that is not addressed in the literature for adaptive discretization algo-
rithms is, whether x∗ is again a stationary point, if, for every k ∈ N, the solution
xk is a stationary point of SIP(Y k). In Chapter 4 we investigate this question for
a new adaptive discretization method. We show that the limit point of stationary
points is again a stationary point. We point out that the same proof can also be
used to show this property for the original algorithm by Blankenship and Falk.

In the next section we investigate the speed in which the algorithm converges.
Therefore, we first bound the distance between a current iterate xk and the limit
point x∗.

3.1 Bounds based on the maximal violation

We have already seen above, that every tolerance on the semi-infinite constraints
can be reached after finitely many steps. The questions addressed now is how the
distance to a solution of the original problem SIP can be bounded in terms of the
reached tolerance.

Still investigated in [Sti01] exactly this question in the case of a fine discretization
with a maximal gird size. The main assumption made in [Sti01] can be transferred
to the situation of Algorithm 1 as follows:
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3 Convergence speed for adaptive discretization by Blankenship and Falk

Assumption 3.3. Let {xk}k∈N be a sequence of local solutions with radius rk > 0
constructed according to Algorithm 1 with:

lim
k→∞

xk = x∗ .

Assume x∗ is a local solution of order ρ and the regularity condition EMFCQ is
satisfied at x∗ for problem SIP.

We denote the maximal violation of the feasibility by:

αk := max
i∈I

max
y∈Y

max
{

0, gi(x
k,y)

}
= max

i∈I
max

{
0, g(xk,yi,k)

}
.

Under this assumptions the following bounds are stated in [Sti01]:

Theorem 3.4. Let Assumption 3.3 hold and the objective function f of SIP be
Lipschitz-continuous near x∗.

(i) There is a constant L1 > 0 and a k′ ∈ N such that

0 ≤ f(x∗)− f(xk) ≤ L1αk for all k ≥ k′ . (3.1)

(ii) There is a constant L2 > 0 and a k′′ ∈ N such that

‖x∗ − xk‖ ≤ L2αk
1
ρ for all k ≥ k′′ . (3.2)

Unfortunately, the assumptions made in [Sti01] are not strong enough and Equation
(3.1) as well as Equation (3.2) do not hold in general under Assumption 3.3. We
prove this by providing a counterexample in the next section. As the bounds in
[Sti01] are derived in the situation of a discretization by a fine grid, we show that
our counterexample also applies to this situation. However, in Section 3.1.2 we
strengthen Assumption 3.3 by requiring that the radii rk do not vanish. We show
that under this new assumption the bounds hold.

3.1.1 An example with arbitrarily slow convergence

We construct the counterexample within two steps. We first present a Lipschitz
continuous function on X = [−1, 1]2 with infinitely many local solutions.
Therefore let {cl}l∈N ⊆ X with:

cl =

(
1

3l
,
1

l

)>
.

44



3.1 Bounds based on the maximal violation

Around every cl we choose a circle Ul with radius rl := 1
3l

:

Ul := {x ∈ X | ‖x− cl‖ < rl} .

Note that the circles Ul are disjoint. We introduce the objective function f : X → R
by:

f(x) =

{
‖x‖+ 2‖cl − x‖ − 2rl for x ∈ Ul, l ∈ N,
‖x‖ otherwise .

The function is shown in Figure 3.1. We summarize the properties of the objective

a)

b)

Figure 3.1: Lipschitz continuous function f with infinitely many local solutions:
a) function values over X [colormap - function values, green - border of
feasible set M , red line - curve γ, black line - border of circles Ul, black
points - local minima]
b) function values along curve γ

function in the following lemma:

Lemma 3.5. For the above construction the following holds:

i) Function f is Lipschitz continuous.

ii) For every l ∈ N the center point cl is a strict local minimum of f with radius
rl.
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3 Convergence speed for adaptive discretization by Blankenship and Falk

Proof.

i) It is easy to see that we can write f , for every x ∈ X, as:

f(x) = min

{
‖x‖,min

l∈N

{
‖x‖+ 2‖cl − x‖ − 2rl

}}
.

As every single function is Lipschitz continuous (with Lipschitz constant at
most 3) the minimum is again Lipschitz continuous.

ii) Consider, for l ∈ N, a point x ∈ Ul with x 6= cl. The triangle inequality
yields:

f(x) = ‖x‖+ 2‖cl − x‖ − 2rl

≥ ‖cl‖+ ‖cl − x‖ − 2rl

> ‖cl‖ − 2rl

= f(cl) .

We consider the following semi-infinite problem:

SIPex : min f(x)

s.t. g(x, y) := −(x2 − y)2 +
1

2
x1 ≤ 0 for all y ∈ Y ,

x ∈ X ,

where
Y := [−1, 1] .

The feasible set is shown in Figure 3.1. We investigate the structure of the problem
in the following lemma.

Lemma 3.6. Problem SIPex has the following properties:

i) The feasible set is given by:

M = {x ∈ X | x1 ≤ 0} .

ii) The origin, x∗ = (0, 0)>, is a local minimum of order ρ = 1.

iii) There exists a vector ξ ∈ R2 such that

D1g(x∗, y0) · ξ ≤ −1 ,

for every y0 ∈ Y with g(x∗, y0) = 0. This means EMFCQ is satisfied at x∗

for SIPex.
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3.1 Bounds based on the maximal violation

Proof.

i) Let x ∈ X. The solution of the lower-level problem is given by y = x2. Thus:

max
y∈Y

g(x, y) =
1

2
x1 .

ii) On the feasible set M the objective function coincides with the norm, which
clearly has a local minimum of order ρ = 1 in x∗ = (0, 0)>.

iii) As by part i) the only solution of the lower-level problem for x∗ is given by
y0 = 0, we have with ξ := (−2, 0)>:

D1g(x∗, y0) · ξ =
(1

2
,−2x2

)
·
(
−2
0

)
=

1

2
· (−2) = −1 .

For an l ∈ N, the violation of the strict local solution cl is given by:

max
y∈Y

g(cl, y) =
1

2
· cl1 =

1

2
· 1

3l
.

However, we have for the function value as well as for the distance to the optimal
solution:

‖cl − x∗‖ ≥ 1

l
,

f(cl)− f(x∗) = f(cl) ≥ 1

l
− 2

3l
.

Thus, the local solutions are a counterexample for the bounds given in Equations
(3.1) and (3.2) of Theorem 3.4. It only remains to show that cl is actually a
sequence that can be constructed by Algorithm 1.

If the current discretization consists of the points

Y k =

{
1

l
| 0 ≤ l ≤ k

}
,
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3 Convergence speed for adaptive discretization by Blankenship and Falk

the next local solution ck+1 is still feasible, as, for 1 ≤ l ≤ k:

g

(
ck+1,

1

l

)
= −

(
1

k + 1
− 1

l

)2

+
1

2
· 1

3k+1

≤ −
(

1

k + 1
− 1

k

)2

+
1

2
· 1

3k+1

= −
(

1

k · (k + 1)

)2

+
1

2
· 1

3k+1

≤ 0 .

The next discretization point is then 1
k+1

. Thus, if an empty initial discretization

and c1 is chosen as first point we can generate the sequence {cl}l∈N as iterates of
Algorithm 1.

Remark 3.7. The first component of the local solutions 1
l

can be replaced by an
arbitrarily slow converging sequence (To keep the circles disjoint the radius can be
reduced to 1

3l+1 ). This is why there can be an arbitrarily slow convergence.

As we have mentioned before, the bounds in Equations (3.1) and (3.2) are presented
in [Sti01] for fine discretizations. We now show that the constructed example is also
a counterexample in this case. Consider the following sequence of discretizations:

Ẏ k =

{
1

2k
+

1 + 2l

3k
∣∣0 ≤ l ≤ 3k

}
∩ Y

∪
{

1

2k
− 1 + 2l

3k
∣∣0 ≤ l ≤ 3k

}
∩ Y

∪ {0, 1} .

The Hausdorff distance of the discretization to Y is given by:

dist(Ẏ k, Y ) = max
y∈Y

min
ẏ∈Ẏk
|y − ẏ| = 1

3k
.

But as, for every ẏ ∈ Ẏ k, the following holds:

g
(
c2k, ẏ

)
= −

(
1

2k
− ẏ
)2

+
1

2
· 1

32k

≤ −
(

1

3k

)2

+
1

32k

= 0 ,

the local solution c2k is feasible for the discretized problem. This means that there
is no chance to achieve a bound based on the mesh size.
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3.1 Bounds based on the maximal violation

3.1.2 A statement using the order of a minimum

The idea of the counterexample in the previous section is to construct a sequence
of local solutions, in such a way that their accumulation point is a local minimum.
But as the radii rl are vanishing, the property is not induced by the convergent
sequence. Actually x∗ is a global solution of f on X and not only on the feasible
set M .

To exclude the counterexample we add an assumption, making sure that the prop-
erty of x∗ being a local minimum, is induced by the convergent sequence.

Assumption 3.8. Let {xk}k∈N be a sequence of local solutions with radius rk > 0
generated by Algorithm 1 with:

lim
k→∞

xk = x∗ .

Assume x∗ is a local solution of order ρ and EMFCQ holds at x∗ for problem SIP.
Moreover assume:

inf
k∈N

rk > 0 . (3.3)

The assumption coincides with Assumption 3.3 except for the inequality in Equa-
tion (3.3). This inequality is motivated by Theorem 3.2. There it is needed to prove
that every accumulation point of local minima is again a local minimum. We can
now again formulate the bounds in Equations (3.1) and (3.2) and give a proof with
the strengthened assumption. Note that this proof follows the basic construction
also introduced in [Sti01], but as we have shown with the counterexample in Section
3.1.1, the proof in [Sti01] is not fully correct. That is why, we give a corrected and
complete proof here.

Theorem 3.9. Let Assumption 3.8 hold and the objective function f of SIP be
Lipschitz-continuous near x∗.

(i) There is a constant L1 > 0 and a k′ ∈ N such that

0 ≤ f(x∗)− f(xk) ≤ L1αk for all k ≥ k′ .

(ii) There is a constant L2 > 0 and a k′′ ∈ N such that

‖x∗ − xk‖ ≤ L2αk
1
ρ for all k ≥ k′′ .

The situation and the idea of the proof are depicted in Figure 3.2. In a first step,
the current infeasible iterate is shifted into the feasible set M . The size of this shift

49



3 Convergence speed for adaptive discretization by Blankenship and Falk

depends on the current violation. In a second step, the function values of the three
points are compared. Finally, the order of x∗ is used to bound the difference of the
shifted point x̄k and the optimal point x∗.

Figure 3.2: Construction for proof of Theorem 3.9 [light green - feasible set of SIP, dark
green - feasible set of approximate problem SIP(Y k), red point - current
infeasible iterate, blue point - shifted feasible point, black point - limit point]

Proof.
Construction of a feasible point:
In a first step we construct a feasible point, x̄k. According to EMFCQ there exists
a ξ such that, for every i ∈ I and for all y ∈ Y i

0 (x∗):

D1gi(x
∗,y) · ξ ≤ −1 .

For k ∈ N and t ∈ [0, 1], let:

x̄k(t) := xk + t · 2αkξ .

For every i ∈ I, the function D1gi is continuous and Y is compact. Thus, there is
some ε > 0 such that, for every i ∈ I, y ∈ Y i,ε

0 (x∗) and x ∈ Bε(x
∗), the following

holds:

D1gi(x,y) · ξ ≤ −1

2
,

where
Y i,ε

0 (x∗) := {y ∈ Y | ∃ y0 ∈ Y i
0 (x∗) with ‖y − y0‖ < ε} .

Choose a sufficiently large k1, such that

‖xk − x∗‖+ 2αk‖ξ‖ < ε

50



3.1 Bounds based on the maximal violation

for k ≥ k1. By the mean value theorem there is, for every i ∈ I, y ∈ Y i,ε
0 (x∗) and

k ≥ k1, an s ∈ [0, 1] such that

gi
(
x̄k(1),y

)
= gi(x

k,y) +D1gi
(
x̄k(s),y

)
· 2αkξ ≤ αk −

1

2
· 2αk = 0 .

As, for every i ∈ I, the set Y \Y i,ε
0 (x∗) is compact and the functions gi are contin-

uous, the maximum

max
y∈Y \Y i,ε0 (x∗)

gi(x
∗,y)

is attained and is strictly less than 0. By continuity there is a ε2 such that, for
x ∈ Bε2(x

∗) and y ∈ Y \ Y i,ε
0 (x∗):

gi(x,y) < 0 ,

Choose a sufficiently large k2, such that

‖xk − x∗‖+ 2αk‖ξ‖ < ε2

for k ≥ k2. Thus, for k ≥ max(k1, k2), the point x̄k := x̄k(1) is feasible.
Now the two claims follow easily:
Proof of i): By Assumption 3.8 the radii of the local solutions xk do not converge
to 0. This means that, for sufficiently large k, the distance of the local solution x∗

to xk is smaller than rk and, as M ⊆M(Y k), we have

f(x∗) ≥ f(xk) . (3.4)

Again, for sufficiently large k, the feasible point x̄k is close enough to x∗ such that

f(x̄k) ≥ f(x∗) . (3.5)

By the local Lipschitz-continuity of f , there is a constant L such that, for sufficiently
large k:

0 ≤ f(x∗)− f(xk) ≤ f(x̄k)− f(xk)

≤ L · ‖x̄k − xk‖
= L · 2αk‖ξ‖ . (3.6)

Which shows the first assertion.
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3 Convergence speed for adaptive discretization by Blankenship and Falk

Proof of ii): By Assumption 3.8 x∗ is a local solution of order ρ. This means
that, for sufficiently large k, there is a K > 0 such that

‖x∗ − xk‖ ≤ ‖x∗ − x̄k‖+ ‖x̄k − xk‖

≤
(
f(x̄k)− f(x∗)

K

) 1
ρ

+ 2 · αk · ‖ξ‖

≤
(
f(x̄k)− f(xk)

K

) 1
ρ

+ 2 · αk · ‖ξ‖

≤
(
L · 2αk‖ξ‖

K

) 1
ρ

+ 2 · αk · ‖ξ‖

≤

((
L2‖ξ‖
K

) 1
ρ

+ 2‖ξ‖

)
(αk)

1
ρ ,

where we’ve used the inequalities in Equations (3.4), (3.5) and (3.6) for the third
and fourth inequality.

The continuous differentiability of gi, i ∈ I and the regularity condition EMFCQ
are only needed to construct a feasible point such that distance of this point to the
original iterate can be bounded. Alternatively, one can assume this property in a
more direct way. One could demand the existence of a neighborhood U of x∗ and
a constant L ∈ R such that, for every x ∈ U , there exists a feasible x̄ ∈M with

‖x− x̄‖ ≤ Lα ,

where α = maxi∈I maxy∈Y max{0, gi(x,y)}. As this assumption does not need any
differentiability properties, Theorem 3.8 holds also for problems where the semi-
infinite constraints are not differentiable.

The considerations show the great importance of the maximal violation αk. The
next question is of course: How does this maximal violation behave? In the next
section we try to control the maximal violation of the current iterate and then
derive a statement about the rate of convergence.

3.2 Quadratic rate of convergence for optima of
order one

In this section we bound the maximal violation and investigate the question of a
quadratic rate of convergence for the Blankenship and Falk algorithm. We put
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3.2 Quadratic rate of convergence for optima of order one

special interest into limits x∗ which are local minima of order ρ = 1, i.e. there is a
radius r > 0 and an L > 0 such that, for every x ∈M ∩Br(x

∗):

L‖x∗ − x‖ ≤ f(x)− f(x∗) .

We show in Theorem 3.11 that in this case the iterates converge with a quadratic
rate. At the end of this section we present an example which shows that for higher
orders no quadratic rate holds. We begin with an example which turns out to have
a quadratic rate of convergence. It also shows, that quadratic convergence is the
best one can show in the general case as it is not convergent in a higher order.

Example 3.10. Consider the following semi-infinite problem:

SIPex : min x

s.t. g(x, y) := −(x− y)2 − x ≤ 0 for all y ∈ Y ,

x ∈ X := [−1, 1] .

where
Y = [−1, 1] .

The solution of the lower-level problem, maxy∈Y g(x, y), is given by y = x. This
means that the feasible set is given by M = [0, 1]. If all current discretization points
are negative

Ẏ ⊆ [−1, 0] ,

then the point

x = ẏ − 1

2
+

√
1

4
− ẏ

is a local solution of M(Ẏ ), where ẏ = max Ẏ . As, for every x ∈ [−1, 0), the
following holds:

x < x− 1

2
+

√
1

4
− x < 0 , (3.7)

a possible sequence generated by Algorithm 1 is given by the recursive rule:

x1 = − 1 ,

xk+1 = xk −
1

2
+

√
1

4
− xk .

By Equation (3.7) this is a strictly increasing sequence in [−1, 0) which converges
towards 0. By applying l’Hôpital’s rule twice, one sees easily:

−1 = lim
x→0

−1
4

(
1
4
− x
)− 3

2

2
= lim

x→0

1− 1
2

(
1
4
− x
)− 1

2

2x
= lim

x→0

x− 1
2

+
√

1
4
− x

x2
,
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3 Convergence speed for adaptive discretization by Blankenship and Falk

which shows quadratic convergence. Again, by applying l’Hôpital’s rule twice, we
also have, for x < 0:

∞ = lim
x→0

−1
4

(
1
4
− x
)− 3

2

6x
= lim

x→0

1− 1
2

(
1
4
− x
)− 1

2

3x2
= lim

x→0

x− 1
2

+
√

1
4
− x

x3
,

which shows that there is no c ∈ R such that for large k:

|xk+1| ≤ c|xk|3 .

After this motivating example, we now prove that under the assumption of a local
solution of order ρ = 1 and some further assumptions concerning the lower-level
problems, a quadratic rate of convergence holds.

Theorem 3.11. Let Assumption 3.8 be satisfied. Assume that for every i ∈ I there
is exactly one active index:

Y i
0 (x∗) = {yi,∗} . (3.8)

Moreover, assume that the Reduction Ansatz holds in x∗ and that x∗ is a local
minimum of order ρ = 1. Then there is a constant L such that, for sufficiently
large k:

‖xk+1 − x∗‖ ≤ L‖xk − x∗‖2 .

Before proving Theorem 3.11 we need some preparation. As we assume, by the
Reduction Ansatz, LICQ to be satisfied in every yi,∗ ∈ Y , there are, for every
i ∈ I, unique Lagrange multipliers µi,∗ such that:

D2Li(x∗,yi,∗,µi,∗) = 0 ,

µi,∗j ≥ 0 for all j ∈ J ,

µi,∗j vj(y
i,∗) = 0 for all j ∈ J .

In the following Lemma we show that the solutions of the lower-level problem as
well as the Lagrange multipliers converge. Moreover, active indices do not change
for large k.

Lemma 3.12. Assume that the same assumptions as for Theorem 3.11 hold.

i) The solutions of the lower-level problems converge , i.e. for every i ∈ I:

lim
k→∞

yi,k = yi,∗ .

ii) As LICQ is satisfied for every i ∈ I and all iterates yi,k, there exist unique
Lagrange multipliers µi,k satisfying the KKT conditions. For those Lagrange
multipliers the following is true:

lim
k→∞

µi,k = µi,∗ .
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3.2 Quadratic rate of convergence for optima of order one

iii) For sufficiently large k and every i ∈ I the active indices in the lower-level
do not change:

J0(yi,k) = J0(yi,∗) ,

where, for y ∈ Y :
J0(y) := {j ∈ J | vj(y) = 0}

denotes the set of active indices in the lower-level problem.

Proof.

i) By the Reduction Ansatz and the uniqueness in Equation (3.8), there is an
ε > 0 and, for every i ∈ I, a continuously differentiable function

yi : Bε(x
∗)→ Y

such that, for every x ∈ Bε(x
∗), the point yi(x) is the unique global solution

of Qi(x). We therefore have, for sufficiently large k:

yi,k = yi(xk) .

The convergence follows directly from the continuity of this map.

ii) With the Reduction Ansatz we not only have continuously differentiable func-
tions describing the global solution of the lower-level problems, but also for
their unique Lagrange multipliers. The claim then follows by exactly the
same arguments as in part i).

iii) For every j ∈ J with vj(y
i,∗) > 0, we have, for sufficiently large k, by part i)

and continuity:
vj(y

i,k) > 0 ,

which shows, that for sufficiently large k:

J0(yi,k) ⊆ J0(yi,∗) .

For an j ∈ J0(yi,∗) we know by strict complementary slackness (Reduction
Ansatz) that µi,∗j > 0. By part ii) this also holds for µi,kj , for sufficiently large
k. This is again only possible if:

vj(y
i,k) = 0 .

Thus:
J0(yi,∗) ⊆ J0(yi,k) .
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3 Convergence speed for adaptive discretization by Blankenship and Falk

We are now ready to prove the quadratic rate of convergence stated in Theorem
3.11:

Proof. (Theorem 3.11) We first develop two more inequalities. In combination
with the bound derived in Theorem 3.9, they will provide the quadratic rate of
convergence.

Bound on the solution of the lower-level problems: By the strong stability
of yi,∗, for every i ∈ I, there exists a K1 > 0 such that, for sufficiently large k and
every i ∈ I, the following holds:

‖yi,k+1 − yi,k‖ ≤ K1‖xk+1 − xk‖ . (3.9)

Bound on the next violation: By the complementarity condition of the KKT
conditions, for the unique Lagrange multipliers µi,k the following holds:

µi,kj vj(y
i,k) = 0 .

As by Lemma 3.12 the active indices do not change anymore, for sufficiently large
k, we also have:

µi,kj vj(y
i,k−1) = 0 .

For every i ∈ I, we can conclude:

gi(x
k,yi,k)

≤ gi(x
k,yi,k)− gi(xk,yi,k−1)

= gi(x
k,yi,k)− gi(xk,yi,k−1)−

∑
j∈J

µi,kj
(
vj(y

i,k)− vj(yi,k−1)
)

by Taylor there exists a ŷ = tyi,k + (1− t)yi,k−1 for a t ∈ [0, 1] such that

=

(
−D2gi(x

k,yi,k) +
∑
j∈J

µi,kj ·Dvj(yi,k)

)
· (yi,k−1 − yi,k)

+
1

2
(yi,k−1 − yi,k)T ·

(
−D2

2g(xk, ŷ) +
∑
j∈J

µi,kj ·D2vj(ŷ)

)
· (yi,k−1 − yi,k)

by the choice of the Lagrange multipliers

= 0

+
1

2
(yi,k−1 − yi,k)T ·

(
D2

2Li(xk, ŷ,µi,k)
)
· (yi,k−1 − yi,k) .

As µi,k,yi,k and xk all converge, there is a constant K2 such that, for sufficiently
large k:

αk = max
i∈I

max
{

0, gi(x
k,yi,k)

}
≤ K2‖yi,k − yi,k−1‖2 . (3.10)
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Combining the inequalities
By Theorem 3.9 and the assumption that x∗ is a local minimum of order ρ = 1,
there is a K3 such that, for sufficiently large k, the following holds:

‖xk − x∗‖ ≤ K3αk .

Combining this inequality with the inequalities given in Equations (3.9) and (3.10)
we have with L := K1 ·K2 ·K3:

‖xk − x∗‖ ≤ K3αk

≤ K3K2‖yi,k − yi,k−1‖2

≤ K3K2K1‖xk − xk−1‖2

= L‖xk − xk−1‖2 .

This looks very similar to the desired quadratic rate of convergence. Indeed, as, for
sufficiently large k, one has

‖xk − x∗‖ ≥ 2L
(
‖xk − x∗‖2 + 2‖xk − x∗‖‖xk−1 − x∗‖

)
,

the following is true, for sufficiently large k:

‖xk − x∗‖ ≤ 2 · ‖xk − x∗‖ − 2L
(
‖xk − x∗‖2 + 2‖xk − x∗‖‖xk−1 − x∗‖

)
≤ 2L‖xk − xk−1‖2 − 2L

(
‖xk − x∗‖2 + 2‖xk − x∗‖‖xk−1 − x∗‖

)
≤ 2L‖xk−1 − x∗‖2 .

Except for the minimum being of order one, we have made a second restrictive
assumption. We assumed that for every i ∈ I there is exactly one active index.
The assumption that there is at least one active index is only done to avoid case
distinctions. If there is a semi-infinite constraint with no active index it can simply
be dropped for large k. In the next remark we discuss the case of more then one
active index.

Remark 3.13. i) By the Reduction Ansatz, there can only be finitely many
active indices. We can therefore partition the sequence into subsequences
such that the solutions of the lower-level problems yi,k converge. For each of
this subsequences we will have a quadratic rate of convergence.

ii) A possibility to still achieve a quadratic rate of convergence for the full se-
quence is to alter Step 4 in Algorithm 1. Instead of calculating, for every
i ∈ I, only one global solution to the lower-level problem Qi(x

k), one can
calculate every local solution and add them to the discretization.
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3 Convergence speed for adaptive discretization by Blankenship and Falk

The question that arises is whether the quadratic rate of convergence also holds for
optima of higher order (especially order ρ = 2). We show in the next example that
this is not the case.

Example 3.14. We consider the following semi-infinite optimization problem:

SIPex : min
x∈Rn

− x1 +
3

2
x2

s.t. − y2 + 2y · x1 − x2 ≤ 0 for all y ∈ [−1, 1] ,

x1, x2 ∈ [−1, 1] .

One can easily see that the solution of the lower-level problem is given by y = x1.
This means that the feasible set is given by M = {x ∈ [−1, 1]2 | x2 ≥ x2

1}. Using
the KKT conditions the global solution can be easily calculated and is given by:

x∗ =

(
1

3
,
1

9

)>
.

The corresponding solution of the lower-level problem is:

y∗ =
1

3
.

To see that in this example, we do not have a quadratic rate of convergence, we
have to investigate the sequence generated by Algorithm 1 a bit further. Starting
with an empty discretization the first iterates can be calculated analytically and are
given by:

x1 = (1,−1)> ,

y1 = 1 ,

x2 = (0,−1)> ,

y2 = 0 .

Thus, after the first two iterations we have two points in the discretization with:

y2 ≤ y∗ ≤ y1 .

The following Lemma 3.15 will show that for the next iterations the following holds
for suitable k1, k2 < k + 1:

xk+1
1 =

xk11 + xk21

2
It is well known that a bisection has only a linear rate of convergence, if it does not
terminate after finitely many steps. Because of the starting values the element of
the bisection can, for every k ≥ 3, be written as:

xk1 =
a

2k
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3.2 Quadratic rate of convergence for optima of order one

for a suitable natural number a ∈ N. This expression can never reach 1
3

by a
divisibility argument.

Some iterations are shown in Figure 3.3. The iterative solutions are shown in
blue and the limit in black. One can see that the iterates make some kind of a
zig-zagging movement. This is due to the fact that when the approximate problem
SIP(Y k) is solved, we respect all constraints induced by the discretization, but we
do not account for any point not in this discretization. In the worst case, the next
iteration maximizes the violation between two discretization points.

The following lemma gives a rule to calculate the next iterate for the previous
example.

Lemma 3.15. Consider problem SIPex given in Example 3.14 and a finite dis-
cretization Ẏ ⊆ [−1, 1]. Assume there are y1, y2 ∈ Ẏ with:

y1 = max{y ∈ Ẏ | y ≤ y∗} ≤ y∗ ≤ min{y ∈ Ẏ | y ≥ y∗} = y2 .

Then x̂ with

x̂1 =
y1 + y2

2
,

x̂2 = y1y2

is a global solution of the discretized problem:

SIPex(Ẏ ) : min
x∈Rn

− x1 +
3

2
x2

s.t. − y2 + 2y · x1 − x2 ≤ 0 for all y ∈ Ẏ ,

x1, x2 ∈ [−1, 1] .

The solution is unique as long as y∗ /∈ Ẏ .

Proof. First we note that problem SIPex(Ẏ ) is a convex problem. Thus, by Theorem
2.5 the global solutions are exactly the points satisfying the KKT conditions.

It is easy to see that for x̂ it holds:

−y2
1 + 2 · y1x̂1 − x̂2 = −y2

2 + 2 · y2x̂1 − x̂2 = 0 ,

which means that the constraints are active. By the strict concavity of the semi-
infinite constraint in y, this also shows:

−y2 + 2yx̂1 − x̂2 ≤0 for all y ∈ Ẏ with y ≤ y1 ,

−y2 + 2yx̂1 − x̂2 ≤0 for all y ∈ Ẏ with y ≥ y2 .
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a) Iteration: k = 2 b) Iteration: k = 3

c) Iteration: k = 4 d) Iteration: k = 7

Figure 3.3: Example solved by the Blankenship and Falk algorithm with a linear rate
of convergence [light green - feasible set of SIP, dark green - feasible set of
approximate problem SIP(Y k), black arrow - descent direction of objective,
black lines - constraints induced by discretization, blue points - iterates,
black point - limit solution]

This means that x̂ is feasible for SIPex. Moreover, for 0 ≤ λ1 := 1−3y1
2(y2−y1)

and

0 ≤ λ2 := 1−3y2
2(y1−y2)

, the following holds:

0 =

(
−1

3
2

)
+ λ1

(
2y1

−1

)
+ λ2

(
2y2

−1

)
.

This shows that x̂ satisfies the KKT conditions and is a global solution.
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Now assume that the global solution is not unique. This means that there are
two different global solutions. By convexity the complete line connecting those two
solutions is feasible and by linearity of the objective also optimal. As there are
infinitely many points on the line and only finitely many discretization points in
Ẏ , there are two global solutions, say x̂ and x̂+ s · c with s ∈ R and

c =

(
3
2

1

)
,

with the same active index ẏ ∈ Ẏ . Thus, we have:

−ẏ2 + 2ẏ · x̂1 − x̂2 = 0 ,

−ẏ2 + 2ẏ · (x̂1 + s · c1)− x̂2 − s · c2 = 0 .

This is only possible if ẏ = 1
3

= y∗.

In this chapter we have investigated the speed of convergence of the Blankenship
and Falk algorithm. We showed how the distance of an iterate to an optimal solution
can be bounded in terms of the maximal violation of the semi-infinite constraints.
In the second part we have bounded the maximal violation. In the special case of
a minimum of order ρ = 1 this led to a quadratic rate of convergence. With the
last example we showed that for optima of higher order no quadratic rate can be
expected. In the next chapter we use more information to obtain a better rate of
convergence, namely the derivative of the solution of the lower-level problem.
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4 An adaptive discretization
method with quadratic rate of
convergence

In the last example of the previous chapter we have seen that the adaptive dis-
cretization method by Blankenship and Falk (Algorithm 1) does not converge
quadratically, if the order of a minimum is larger than one. In Example 3.14
we already discussed one of the reasons for this: the algorithm treats the lower-
level problem and the discretized problems separately. In the k-th step for the
discretized problem SIP(Y k) only the discretization points Y k are considered but
no further structure of the lower-level problems and analogous in the solution of
the lower-level problems, we only use the current iterate xk, but no information on
how this point is affected by the lower-level. In this chapter we aim at breaking
this strict separated scheme and add information of the lower-level problems to the
discretized problems.

We begin by describing how information of the lower-level problem can be ob-
tained and added by an additional constraint. We then introduce a new adaptive
discretization algorithm that respects this additional constraint. The main topic
of this chapter is the investigation of the new method. In Section 4.2 we prove the
Quadratic Convergence Theorem, which states that the introduced algorithm has
a quadratic rate of convergence. We start by considering the two main steps (Step
4 and 7) of Algorithm 1 separately and show how they are implemented in the new
algorithm.

In the k-th iteration we solve, for every i ∈ I, the following lower-level problem:

Qi(x
k) : max

y∈Rm
gi(x

k,y)

s.t. vj(y) ≤ 0 for all j ∈ J .

Assume now that the iterates converge towards a point x∗. We further assume that
at this point the Reduction Ansatz holds and there is, for every i ∈ I, exactly one
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active index yi,∗. We can use Theorem 2.13 to obtain an ε > 0 and, for every i ∈ I,
differentiable functions:

yi : Bε(x
∗)→ Y ,

µi : Bε(x
∗)→ R|J |

such that, for every x ∈ Bε(x
∗), the point yi(x) is the unique global solution of

Qi(x) and µi(x) are the unique Lagrange multipliers satisfying the KKT condi-
tions.

If the current iterate xk is sufficiently close to x∗, we know that the derivatives of
the solutions of the lower-level problems exist. Around these points we can develop
the functions describing the solutions of the lower-level problems linearly:

yi,k(x) :=yi,k +Dyi(xk) · (x− xk) ,
µi,k(x) :=µi,k +Dµi(xk) · (x− xk) .

However, for a current iterate xk of the algorithm, we usually do not know how
close we are to the limit point x∗. Nevertheless, we can check for the current iterate
xk and every i ∈ I, whether the conditions for Theorem 2.13 are satisfied. (For
example using Remark 2.14.) If this is the case, the solution can again be described
locally and derivatives can be calculated. We collect for a given point x ∈ Rn all
indices for which the conditions of Theorem 2.13 are satisfied in

Īk :=
{
i ∈ I | yi,k satisfies all assumptions of Theorem 2.13 for Qi(x

k)
}
.

If limk→∞ x
k = x∗ and the Reduction Ansatz holds at x∗, we have for sufficiently

large k:
Īk = I .

In contrast to the discretized problem introduced in Chapter 3, we now consider a
problem where we add linear information about the lower-level problem. Therefore,
let for i ∈ Īk:

gki (x) := Li
(
x,yi,k(x),µi,k(x)

)
,

where again, for i ∈ I, the function

Li(x,y,µi) = gi(x,y)−
∑
j∈J

µij · vj(y)

is the lower-level Lagrange function. To receive the next iterate xk+1 we solve the
following nonlinear optimization problem:

SIP
k
(Y k+1) : min

x∈Rn
f(x)

s.t. gi(x,y) ≤ 0 for all y ∈ Y k+1, i ∈ I ,
gki (x) ≤ 0 for all i ∈ Īk .
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One may be surprised that the Lagrange function is used here instead of the original
semi-infinite constraint. The next lemma gives an answer to this question. We
calculate the first and second derivatives.

Lemma 4.1. Consider a fixed x∗ ∈ Rn and an i ∈ I. Let yi,∗ ∈ Y be a global
solution of the lower-level problem Qi(x

∗) satisfying all conditions for Theorem
2.13. Denote the unique Lagrange multipliers satisfying the KKT conditions by
µi,∗. Let

yi(x) =yi,∗ +Dyi(x∗) · (x− x∗) ,
µi(x) =µi,∗ +Dµi(x∗) · (x− x∗)

and
gi(x) := Li

(
x,yi(x),µi(x)

)
.

For the derivatives the following holds:

Dgi(x
∗) = D1gi(x

∗,yi,∗)

and

D2gi(x
∗) = D2

1gi(x
∗,yi,∗)−

(
Dyi(x∗)

)> ·D2
2Li(x∗,yi,∗,µi,∗) ·Dyi(x∗) .

Proof. As all conditions for Theorem 2.13 are satisfied, there is an ε > 0 and
differentiable functions yi : Bε(x

∗) → Y and µi : Bε(x
∗) → R|J |, which locally

describe the solution of the lower-level problem and the corresponding Lagrange
multipliers. We show next the statements for the first and second derivatives.

First derivative: For x ∈ Rn, the following is true:

Dgi(x) =Dx̃

[
Li
(
x̃,yi(x̃),µi(x̃)

) ]
x̃=x

= D1Li
(
x,yi(x),µi(x)

)
(4.1)

+D2Li
(
x,yi(x),µi(x)

)
·Dyi(x∗) (4.2)

+D3Li
(
x,yi(x),µi(x)

)
·Dµi(x∗) . (4.3)

Now for x = x∗, as the index set Y is a fixed set, the following holds:

D1Li
(
x∗,yi(x∗),µi(x∗)

)
= D1Li

(
x∗,yi,∗,µi,∗

)
= D1gi(x

∗,yi,∗) .

Further, by the KKT conditions the following holds:

D2Li
(
x∗,yi(x∗),µi(x∗)

)
= D2Li

(
x∗,yi,∗,µi,∗

)
= 0

By Remark 2.14 we know that, for every j ∈ J , either vj(y
i,∗) = 0 or Dµij(x

∗) = 0.
This means:

D3Li
(
x∗,yi(x∗),µi(x∗)

)
·Dµi(x∗) = −

∑
j∈J

vj(y
i,∗) ·Dµij(x∗) = 0 .
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4 An adaptive discretization method with quadratic rate of convergence

Second derivative: We consider the three terms of the first derivative given in
(4.1)-(4.3) separately. For the first term (4.1) we have, as we developed the lower-
level solution and the corresponding Lagrange-multipliers linearly:

Dx

[
D1Li

(
x,yi(x),µi(x)

) ]
x=x∗

= Dx

[
D1Li

(
x,yi(x),µi(x)

) ]
x=x∗

.

The same calculations as for the Reduction Ansatz in Equation (2.18) show:

Dx

[
D1Li

(
x,yi(x),µi(x)

) ]
x=x∗

= D2
1gi(x

∗,yi,∗)−
(
Dyi(x∗)

)> ·D2
2Li(x∗,yi,∗,µi,∗) ·Dyi(x∗) .

By the KKT conditions we have, for every x ∈ Bε(x
∗):

D2L
(
x,yi(x),µi(x)

)
= 0 .

This means:

Dx

[
D1Li

(
x,yi(x),µi(x)

) ]
x=x∗

= Dx

[
D1Li

(
x,yi(x),µi(x)

) ]
x=x∗

= 0 ,

which shows that the derivative of the second term (4.2) vanishes.

For the third term (4.3) we again have that, for every j ∈ J , either vj(y
i(x)) = 0

for every x ∈ Bε(x
∗) or Dµij(x

∗) = 0. This shows that also the third term (4.3)
vanishes at x∗ in the second derivative.

Comparing the derivatives calculated in Lemma 4.1 with the derivatives calculated
for the Reduction Ansatz in Equation (2.17) and (2.18), one can see that they
coincide. This means that the first two derivatives of the additional constraints
coincide with the derivatives of the local description by finitely many constraints.
If we would chose to use the semi-infinite constraint (instead of the Lagrange func-
tion), only the first derivative would coincide.

There are two reasons why it is important to also match the second derivative: (1)
we have seen in Theorem 2.21 that the second derivative is important for a point
being a local minimum, (2) the approximate problem is locally closer to the true
problem, which makes the quadratic rate of convergence possible.

With the above consideration we obtain the following algorithm:
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Algorithm 2 Adaptive discretization method with linear information

1: Input: initial point x1, initial discretization Y 1 ⊆ Y, k = 1.
2: while termination criterion is not met do
3: for i ∈ I do
4: Compute a global solution yi,k and Lagrange multipliers µi,k of Qi(x

k).
5: Determine Dyi(xk) and Dµi(xk) if they exist.
6: end for
7: Y k+1 = Y k ∪

⋃
i∈I{yi,k}.

8: Determine a solution xk+1 of problem SIP
k
(Y k+1).

9: k = k + 1.
10: end while

Again, we do not specify which kind of solution we compute in Step 8 but we
demand that at least a feasible point is found. Analogous to the statements about
Algorithm 1, the same questions can be asked here:

• Is every accumulation point feasible?

• If one is able to calculate global/ local minima in Step 8, will the limit again
be a global/local solution?

• Is every accumulation point of stationary points again a stationary point?

We discuss these questions in Section 4.1. The reason why we developed the new
algorithm is the hope that the linear information can speed up the convergence. We
show in Section 4.2 that this is indeed the case and the algorithm has a quadratic
rate of convergence. Before stating all theoretical statements and proofs, we first
consider a slightly modified version of Example 3.14 introduced in Section 3.2:

Example 4.2. In Example 3.14 replace every x1 by x2
1. We obtain the following

problem:

SIPex : min − x2
1 +

3

2
x2

s.t. − y2 + 2y · x2
1 − x2 ≤ 0 for all y ∈ [−1, 1] ,

x1 ∈ [0, 1], x2 ∈ [−1, 1] .

The solution of the lower-level problem is given by y = x2
1, which is differentiable.

The first iterates of the modified algorithm can be calculated numerically. They are
shown in Figure 4.1. Moreover, they and their distance to the optimal solution are
listed in Table 4.1. As one can see, an accuracy of 10−6 is reached in 4 iterations.
With the bisection type iterates of the Blankenship and Falk algorithm, calculated in
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4 An adaptive discretization method with quadratic rate of convergence

Example 3.14, approximately 20 iterations are needed to reach the same accuracy.
One can clearly see that the convergence is much faster and the iterates seem to
converge quadratically.

a) Iteration: k = 2 b) Iteration: k = 3

Figure 4.1: Adaptive discretization method with a quadratic rate of convergence [light
green - feasible set of SIP, dark green - feasible set of approximate prob-

lem SIP
k−1

(Y k), black arrow - descent direction of objective, black lines -
constraints induced by discretization, red line - additional constraint, blue
points - iterates, black point - limit solution]

Iteration k xk ‖xk − x∗‖
1 (1,−1) 1.1888
2 (0,−1) 1.2522
3 (0.707107, 0) 0.1708
4 (0.573761, 0.108057) 0.0047
5 (0.57735, 0.111111) 2.1979 · 10−07

Table 4.1: First iterates for Example 4.2

For all the statements presented in the following we assume that the Reduction
Ansatz holds at a limit point. We want to comment briefly on cases where this is
not true, and the Reduction Ansatz does not hold at the limit point. In this case
we can still apply Algorithm 2, but linear information will not be added. If no
derivative exists, the algorithm coincides with the adaptive discretization method
by Blankenship and Falk investigated in Chapter 3. In other words, this means
that if the Reduction Ansatz holds in a limit point we can expect a quadratic rate
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4.1 Basic convergence properties

of convergence and all the properties proven in the following. But if this is not the
case, the algorithm does not completely fail, but coincides with the Blankenship
and Falk algorithm

4.1 Basic convergence properties

In this Section we give an answer to the questions formulated above about the
convergence properties. In Subsection 4.1.1 we prove that a limit of stationary
points is again a stationary point. In the next subsection we then investigate the
convergence of local solutions. Analogous to Lemma 3.1 we first prove that every
accumulation point of a sequence constructed by Algorithm 2 is feasible.

Lemma 4.3. Let {xk}k∈N be constructed according to Algorithm 2. Every accu-
mulation point x∗ of {xk}k∈N is feasible.

Proof. By construction of the algorithm we have, for every k′ ≥ k + 1 and i ∈ I:

gi(x
k′ ,yi,k) ≤ 0 .

By assumption x∗ is an accumulation point and Y is compact, hence we can choose
subsequences {xkl}l∈N and {yi,kl}l∈N, for every i ∈ I, such that

lim
l→∞

xkl = x∗ ,

lim
l→∞

yi,l = yi,∗ .

For an arbitrary point y ∈ Y and every i ∈ I, the following holds by continuity:

gi(x
∗,y) = lim

l→∞
gi(x

kl ,y)

≤ lim
l→∞

gi(x
kl ,yi,kl)

= gi( lim
l→∞

xkl , lim
l→∞

yi,kl)

= gi( lim
l→∞

xkl+1 , lim
l→∞

yi,kl)

= lim
l→∞

gi(x
kl+1 ,yi,kl) ≤ 0 .

It is noteworthy that exactly the same proof can be used to show the same property
(Lemma 3.1) for the original algorithm by Blankenship and Falk. The additional
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4 An adaptive discretization method with quadratic rate of convergence

constraint is not needed. The feasibility of accumulation points is a global conver-
gence property that is directly inherited.

After showing feasibility of any accumulation point, the next question is whether
we can guarantee x∗ to be a global solution, if, for every k ∈ N, the iterate xk is a
global solution of the current approximate problem. Unfortunately, some important
properties do not hold anymore for Algorithm 2. The additional constraint is not
part of the original constraints and can cut away parts of the feasible set. It may
hold:

M *Mk

and thus also:
min
x∈M

f(x) < min
x∈Mk

f(x) ,

where Mk denotes the feasible set of problem SIP
k−1

(Y k). These are important
properties in the original algorithm (Algorithm 1) for the convergence of global
as well as local minima. Therefore, finding a general statement asserting that an
accumulation point is again a global solution is not possible.

However, the situation is better for local solutions. As we will see in Section
4.1.2, under slightly different assumptions from those in Theorem 3.2 we can still
guarantee that any accumulation point of local solutions is again a local solution.
The proof is very different. We start in the next Section 4.1.1 by showing that a
sequence of stationary points converges to a stationary point.

To simplify the exposition of the following statements we make a general assump-
tion.

Assumption 4.4. Let {xk}k∈N be constructed according to Algorithm 2. Assume
there is an x∗ ∈ Rn with

lim
k→∞

xk = x∗ .

Assume that the Reduction Ansatz holds at x∗ and the objective function f is twice
continuously differentiable. Further assume:

• For every i ∈ I, there is a y ∈ Y with

gi(x
∗,y) = 0 .

• For every k ∈ N the following holds:

Īk = I . (4.4)

This means that all derivatives of the solutions of the lower-level exist.
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4.1 Basic convergence properties

The last two assumptions are only made to avoid case distinctions in the proofs.
If there is an i ∈ I such that no active index exists, one can simply consider the
problem locally without this semi-infinite constraint. As we assume the Reduction
Ansatz to hold in the limit point x∗, there is a k′ ∈ N such that (4.4) holds for all
k ≥ k′. If this index is larger than 1, we can start the algorithm again with the
current point and the current discretization as initialization.

4.1.1 Convergence of stationary points

In this section we investigate an accumulation point of stationary points. Thus, for
a sequence {xk}k∈N constructed by Algorithm 2, we assume that, for every k ∈ N,

the current iterate xk is a stationary point of SIP
k−1

(Y k).

We already know by Lemma 4.3 that x∗ is a feasible point. As the Reduction
Ansatz is assumed to be satisfied, the set of active indices Y i

0 (x∗) has, for every
i ∈ I, only a finite cardinality. We need to find Lagrange multipliers λ∗ ≥ 0 such
that

0 = Df(x∗) +
∑
i∈I

∑
y∈Y i0 (x∗)

λ∗i,yD1gi(x
∗,y) . (4.5)

The idea is to construct these multipliers as limits of the multipliers corresponding
to the iterates. We denote, for every i ∈ I, the set of active discretization points
in the k-th iteration by

Y i,k
0 := {y ∈ Y k | gi(xk,y) = 0} .

By assumption there exist, for every k ∈ N, Lagrange multipliers λk ≥ 0 and

λ
k ≥ 0 such that:

0 = Df(xk) +
∑
i∈I

∑
y∈Y i,k0

λki,yD1gi(x
k,y) +

∑
i∈I

λ
k

iDg
k−1
i (xk) , (4.6)

where, for every i ∈ I, the multiplier λ
k

i is 0 if gk−1
i (xk) < 0.

For the construction of the Lagrange-multipliers in (4.5) we need to match the
active indices and the additional constraints in a current iteration to the active
indices in the limit. We do this with the next two lemmas, first for the active
indices Y i,k

0 (xk) then for the additional constraints gk−1
i (xk).

Lemma 4.5. Let Assumption 4.4 be satisfied. For every δ > 0 there is a k′ ∈ N
such that, for all k ≥ k′, i ∈ I and y ∈ Y with

gi(x
k,y) = 0 ,
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4 An adaptive discretization method with quadratic rate of convergence

there is a yi,∗ ∈ Y i
0 (x∗) such that

‖yi,∗ − y‖ < δ .

Proof. Fix throughout the proof an i ∈ I. The set

Y i,δ := Y \
⋃

y∈Y i0 (x∗)

Bδ(y)

is a compact set. Thus the maximum:

max
{
gi(x

∗,y) | y ∈ Y i,δ
}

is attained and is strictly less than 0. Therefore, by continuity there is a k′ such
that, for k ≥ k′ and y ∈ Y i,δ:

gi(x
k,y) < 0 ,

which induces the claim.

By continuity and the lemma above we can, for every ε > 0, choose a k′ ∈ N such
that, for all k ≥ k′, i ∈ I and y ∈ Y k with

gi(x
k,y) = 0 ,

there is a yi,∗ ∈ Y i
0 (x∗) such that

‖D1gi(x
∗,yi,∗)−D1gi(x

k,y)‖ < ε . (4.7)

Similarly we can also achieve a bound for the additional constraints:

Lemma 4.6. Let Assumption 4.4 be satisfied. For i ∈ I consider a converging
subsequence {yi,kl}l∈N with

yi,∗ := lim
l→∞

yi,kl .

Then yi,∗ ∈ Y i
0 (x∗). Moreover, for every ε > 0, there is an l′ ∈ N such that, for

every l > l′ and i ∈ I, the following holds:

‖D1gi(x
∗,yi,∗)−Dgkl−1

i (xkl)‖ < ε .

Proof. For i ∈ I, consider an arbitrary converging subsequence {yi,kl}l∈N. For yi,∗

and y ∈ Y the following holds:

gi(x
∗,yi,∗) = lim

l→∞
gi(x

kl ,yi,kl)

≥ lim
l→∞

gi(x
kl ,y)

= g(x∗,y) .
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4.1 Basic convergence properties

Which means yi,∗ is a global solution of Qi(x
∗). As we have assumed to have at

least one active index, we must have yi,∗ ∈ Y i
0 (x∗).

We have seen in Lemma 4.1 that, for every i ∈ I and k ∈ N, the following holds:

Dgki (x
k) = D1g(xk,yi,k) . (4.8)

For every ε > 0 we can choose by continuity an l′ ∈ N such that, for every l > l′

and i ∈ I, we have:

‖D1gi(x
∗,yi,∗)−D1gi(x

kl−1,yi,kl−1)‖ < ε

2
,

‖Dgkl−1
i (xkl−1)−Dgkl−1

i (xkl)‖ < ε

2
.

Combining these inequalities with Equation (4.8) shows:

‖D1gi(x
∗,yi,∗)−Dgkl−1

i (xkl)‖
≤ ‖D1gi(x

∗,yi,∗)−D1gi(x
kl−1,yi,kl−1)‖

+ ‖Dgkl−1
i (xkl−1)−Dgkl−1

i (xkl)‖
< ε .

We can now construct multipliers which converge towards the Lagrange multipliers
of x∗. Therefore, choose a δ > 0 such that, for every i ∈ I, the balls Bδ(y),y ∈
Y i

0 (x∗) are disjoint. As xk is a stationary point, there are Lagrange-multipliers

λk ≥ 0 and λ
k ≥ 0 as in (4.6).

For every k ∈ N, i ∈ I and y ∈ Y i
0 (x∗), let

λ̂ki,y =
∑

ẏ∈Y i,k0 (xk),
‖ẏ−y‖<δ

λki,ẏ +

{
λ
k

i if ‖yi,k−1 − y‖ < δ ,

0 otherwise .

We need to bound the constructed Lagrange multipliers.

Lemma 4.7. Let Assumption 4.4 be satisfied. Assume that, for every k ∈ N, the

current iterate xk is a stationary point of SIP
k−1

(Y k) and that EMFCQ is satisfied
at x∗. There is a constant K > 0 such that, for sufficiently large k, the following
holds: ∑

i∈I

∑
y∈Y i0 (x∗)

λ̂ki,y ≤ K .
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4 An adaptive discretization method with quadratic rate of convergence

Proof. As EMFCQ holds, there is a ξ ∈ Rn such that, for every i ∈ I,y ∈ Y i
0 (x∗)

D1gi(x
∗,y)ξ ≤ −1 .

By Equation (4.7) and Lemma 4.6 we can choose a k′ ∈ N such that, for every
k ≥ k′, i ∈ I and y ∈ Y i,k

0 , the following is true:

D1gi(x
k,y)ξ ≤ − 0.5 ,

Dgk−1
i (xk)ξ ≤ − 0.5 .

Multiplying the stationarity condition given in Equation (4.6) with the vector ξ
shows, for k ≥ k′:

0 =

Df(xk) +
∑
i∈I

∑
y∈Y i,k0

λki,yD1gi(x
k,y) +

∑
i∈I

λ
k

iDg
k−1
i (xk)

 · ξ
≤ Df(xk)ξ − 0.5

∑
i∈I

∑
y∈Y i,k0

λki,y − 0.5
∑
i∈I

λ
k

i

by resorting and using the definition of the Lagrange multipliers:

= Df(xk)ξ − 0.5
∑
i∈I

∑
y∈Y i0 (x∗)

λ̂ki,y .

The boundedness now follows directly from the boundedness of Df(xk).

We are ready to prove that the limit point is again a stationary point.

Theorem 4.8. Let Assumption 4.4 be satisfied. Assume that, for every k ∈ N, the

current iterate xk is a stationary point of SIP
k−1

(Y k) and that EMFCQ is satisfied
at x∗. Then x∗ is a stationary point of SIP.

Proof. Choose an arbitrary ε > 0 and a δ > 0 such that, for every i ∈ I, the balls
Bδ(y),y ∈ Y i

0 (x∗) are disjoint.

By Lemma 4.5 we can choose a k1 ∈ N such that, for every k ≥ k1, i ∈ I and
y ∈ Y i,k

0 , there is a yi,∗ ∈ Y i
0 (x∗) with

‖y − yi,∗‖ < δ ,

‖D1gi(x
k,y)−D1gi(x

∗,yi,∗)‖ < ε

2K
,
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4.1 Basic convergence properties

where K is chosen as in Lemma 4.7. By Lemma 4.6 we can choose k2 ∈ N such
that, for every k ≥ k2 and i ∈ I, there is a yi,∗ ∈ Y i

0 (x∗) with:

‖yi,k−1 − yi,∗‖ < δ ,

‖gk−1
i (xk)−D1gi(x

∗,yi,∗)‖ < ε

2K
. (4.9)

Moreover, by the convergence of {xk}k∈N and the continuous differentiability of the
objective there is a k3 ∈ N such that, for k ≥ k3, the following holds:

‖Df(x∗)−Df(xk)‖ < ε

2
.

Let k′ := max{k1, k2, k3}. Combining, for k ≥ k′, the three inequalities with the
stationarity condition for xk (see Equation (4.6)) shows:∥∥Df(x∗) +

∑
i∈I

∑
y∈Y i0 (x∗)

λ̂ki,yDgi(x
∗,y)

∥∥
≤ ‖Df(x∗)−Df(xk)‖

+
∑
i∈I

∑
y∈Y i0 (x∗)

∑
ẏ∈Y i,k0
‖ẏ−y‖<δ

λki,ẏ
∥∥D1gi(x

∗,y)−D1gi(x
k, ẏ)

∥∥
+
∑
i∈I

λ
k

i

∥∥D1gi(x
∗,yi,∗)−Dgk−1

i (xk)
∥∥

<
ε

2
+

ε

2K
·

∑
i∈I

∑
y∈Y i0 (x∗)

λ̂ki,y


≤ ε . (4.10)

where, for every i ∈ I and k ≥ k, the active index yi,∗ is chosen according to (4.9).
As, for every i ∈ I and y ∈ Y i

0 (x∗), by Lemma 4.7 the multiplier λ̂ki,y are bounded,
we can choose a subsequence {xkl}l∈N such that, for every i ∈ I and y ∈ Y i

0 (x∗):

λ∗i,y := lim
l→∞

λ̂kli,y

exists. From the inequality in Equation (4.10) it follows:

Df(x∗) +
∑
i∈I

∑
y∈Y i0 (x∗)

λ∗i,yD1gi(x
∗,y) = 0 .

Remark 4.9. We presented the proof here in the context of Algorithm 2, but the
same proof can be used to show a similar statement for the Blankenship and Falk
algorithm (Algorithm 1). The only difference lies in the fact that no additional
constraint has to be considered, which only simplifies the proof.
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4 An adaptive discretization method with quadratic rate of convergence

4.1.2 Convergence of local solutions

Now we turn our interest to the convergence of local solutions. Therefore we assume

that for every iteration the calculated solution xk is a local minimum of SIP
k−1

(Y k).
The main question is under which conditions an accumulation point is again a local
solution. We have seen in Theorem 3.2 that for the algorithm by Blankenship and
Falk (Algorithm 1) the only property needed are that the radii do not vanish in
the limit. The next example shows that the situation is more complicated in case
of Algorithm 2.

Example 4.10. We consider the following semi-infinite optimization problem:

SIPex : min
x∈R2

x2

s.t. − x2 + (1 + x2
1)(4x1 · y1 + y2 − 3x2

1) + x2
1 ≤ 0 for all y ∈ Y ,

x1, x2 ∈ [−1, 1] ,

where

Y := {y ∈ [−2, 2]2 | y2 + 2y2
1 ≤ 0} .

It is easy to see that for every x ∈ [−1, 1]2 the point and the multiplier

y(x) =

(
x1

−2x2
1

)
,

µ(x) := (1 + x2
1)

make up the unique KKT point of the lower-level problem Q(x). As LICQ is
satisfied at every point, y(x) is the unique global solution. Plugging in the lower-
level solution into the semi-infinite constraint shows that the feasible set can be
described by:

M := {x ∈ [−1, 1]2 | −x2 − x4
1 ≤ 0} .

As it can be seen in Figure 4.2, the feasible set is non-convex. There are two global
solutions (−1,−1)>, (1,−1)> and one stationary point (0, 0)> of the semi-infinite
problem SIPex.

Using x0 = (0, 1)> as an initial point, the first solution of the lower-level prob-
lem and the Lagrange multiplier are y1 = (0, 0)>, µ1 = 1. The linearly developed
functions are given by

yi,1(x) =

(
x1

0

)
µ1(x) = 1 .

76



4.1 Basic convergence properties

The additional constraint is then given by

g1
i (x) = −x2 + (1 + x2

1)(4x2
1 − 3x2

1) + x2
1 − 2x2

1 = −x2 + x4 . (4.11)

The next iterate is a solution of the following problem:

min{x2 | x2 ≥ x4
1} .

(the discretization can be dropped, as the feasible set is a subset of M and all feasible
sets induced by a discretization are supersets.) The feasible set of the approximate
problem is also shown in Figure 4.2. The problem is convex and has a unique global
solution at x2 = (0, 0)>. In the next iteration the solution of the lower-level and its
linearization do not change. Which means that for all k > 1:

xk = (0, 0)>

Figure 4.2: Feasible sets of approximate and original problem in Example 4.10 [light

green - feasible set of SIPex, dark green - feasible set of SIP
k−1

(Y k) for
k > 1, black arrow - descent direction of objective, blue point - limit point
of constructed sequence, black points - global solutions of SIPex]

The example shows that even if we are able to calculate a global solution of the ap-

proximate problem SIP
k−1

(Y k) in every iteration, it does not mean that the iterates
converge towards a local solution of the original problem SIP. In the example the
iterates do not converge towards a global or local minimum. But the limit point is
a local solution of a different problem.
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4 An adaptive discretization method with quadratic rate of convergence

The next lemma shows that this is always the case:

Lemma 4.11. Let {xk}k∈N be constructed according to Algorithm 2. Assume that,

for every k ∈ N, the iterate xk is a local solution of SIP
k−1

(Y k) with radius rk.
Assume:

lim
k→∞

xk = x∗ ,

lim
k→∞

yi,k = yi,∗ ,

r := inf
k∈N

rk > 0 .

Further assume that the Reduction Ansatz and EMFCQ hold at x∗. Then x∗ is a
local solution of

SIP : min
x∈Rn

f(x)

s.t. gi(x,y) ≤0 for all i ∈ I,y ∈ Y ,

gi(x) ≤0 for all i ∈ I ,

where, for i ∈ I:

gi(x) = Li
(
x,yi,∗ +Dyi(x∗)(x− x∗),µi,∗ +Dµi(x∗)(x− x∗)

)
.

Proof. In a first step we try to construct for a point ẋ ∈ Rn feasible for SIP, a point

which is feasible for the iterate problem SIP
k−1

(Y k).

By EMFCQ there is a vector ξ with

D1gi(x
∗,y)ξ ≤ −1

for every i ∈ I and y with gi(x
∗,y) = 0.

By Lemma 4.1 there is a δ1 > 0 such that, for sufficiently large k and every
x ∈ Bδ1(x

∗), the following holds:

Dgk−1
i (x)ξ ≤ −1

2
.

By continuity there is also a δ2 > 0 such that, for every i ∈ I, the following holds:

D1gi(x,y)ξ ≤ −1

2
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4.1 Basic convergence properties

for every y ∈ Y i,δ2
0 and x ∈ Bδ2(x

∗), where

Y i,δ2
0 (x∗) :=

⋃
y∈Y i0 (x∗)

Bδ2(y)

Let δ := min{δ1, δ2, r}.

Consider an arbitrary but fixed ẋ ∈ Bδ/2(x∗) which is feasible for SIP.

The chosen point is not always feasible for SIP
k−1

(Y k). It fulfills all constraints
induced by the discretization points, but may be infeasible for the additional con-
straints. We can measure the violation by

αk = max
i∈I

max{0, gk−1
i (ẋ)} .

By the feasibility for SIP we know that αk converges towards 0. We can now

construct a point which is feasible for SIP
k−1

(Y k). Let

x̄k := ẋ+ 2αkξ .

Choose k sufficiently large such that ‖x̄k − ẋ‖ ≤ δ/2.

After we have constructed the point we now briefly prove that it is indeed feasible
for sufficiently large k.

By Taylor there is, for sufficiently large k and i ∈ I, an x̃ := tẋ + (1− t)x̄k, for a
suitable t ∈ [0, 1], such that

gk−1
i (x̄k) = gk−1

i (ẋ) +Dgk−1
i (x̃)2αkξ ≤ αk − 2

1

2
αk = 0 .

Completely analogous, for sufficiently large k, i ∈ I and y ∈ Y i,δ
0 , the following also

holds:
g(x̄k,y) ≤ −αk .

For every i ∈ I, the set Y := Y k \ Y i,δ
0 is a compact set. Thus, maxy∈Y gi(x

∗,y)
is attained and is strictly less than 0. By continuity we can choose k sufficiently
large such that, for every y ∈ Y , the following holds:

gi(x̄
k,y) < 0 .
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4 An adaptive discretization method with quadratic rate of convergence

The three inequalities prove feasibility.

By definition we have δ ≤ r. Together with the feasibility this shows, for sufficiently
large k:

f(xk) ≤ f(x̄k) .

As x̄k converges towards ẋ, we have:

f(x∗) = lim
k→∞

f(xk) ≤ lim
k→∞

f(x̄k) = f(ẋ) .

The claim is shown as ẋ was chosen arbitrarily in Bδ/2(x∗) and feasible for SIP.

If the local solutions of SIP and SIP coincide, the limit of local minima is again a
local solution. But we have seen in Example 4.10 that this is not always the case.
We already know by the convergence result about stationary points (Theorem 4.8)
that x∗ is a stationary point of the original problem SIP. The question that arises
now is: under which additional conditions one can be sure that a found point is
indeed a local solution and not only a stationary point.

A possibility is to check for the second-order sufficient condition. We therefore
assume for the remainder of this section that the objective function f is twice
continuously differentiable and that there is for every i ∈ I a unique active index:

Y i
0 (x∗) = {yi,∗} .

By the Reduction Ansatz there is an ε > 0 and, for every i ∈ I, a continuously
differentiable function

yi : Bε(x
∗)→ Y ,

which locally describes the unique solution of the i-th lower-level problem. By
Theorem 2.21 a sufficient condition for x∗ to be a local solution of SIP, is given by
the existence of Lagrange multipliers λ ≥ 0 and λ ≥ 0 such that

Df(x∗) +
∑
i∈I

λiDx

[
gi
(
x,yi(x)

)]
x=x∗

+
∑
i∈I

λiDgi(x
∗) = 0

and for all d ∈ T (x∗),d 6= 0:

d> ·

(
D2f(x∗) +

∑
i∈I

λiD
2
x

[
gi
(
x,yi(x)

)]
x=x∗

+
∑
i∈I

λiD
2gi(x

∗)

)
· d > 0 ,

where

T (x∗) :=


d ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣

Dx

[
gi
(
x,yi(x)

)]
x=x∗

d ≤ 0 for all i ∈ I,

Dx

[
gi
(
x,yi(x)

)]
x=x∗

d = 0 for all i ∈ I, with λi > 0,

Dgi(x
∗)d ≤ 0 for all i ∈ I,

Dgi(x
∗)d = 0 for all i ∈ I, with λi > 0


.
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4.1 Basic convergence properties

By Lemma 4.1 we know that, for every i ∈ I:

Dx

[
gi
(
x,yi(x)

)]
x=x∗

= Dgi(x
∗) ,

D2
x

[
gi
(
x,yi(x)

)]
x=x∗

= D2gi(x
∗) .

This means that the sufficient conditions for the problems SIP and SIP coincide.
As a consequence if the limit point satisfies the second-order sufficient condition for
SIP, we can be sure that it is also a local minimum of the original problem SIP.

In the remainder of this section we give conditions on the sequence {xk}k∈N, which
ensure that the limit point satisfies the sufficient condition ESOSC. We assume
that the limit point satisfies the regularity condition EMFCQ. From Lemma 4.5
it then follows that MFCQ is satisfied, for sufficiently large k, for xk. Thus, the

iterate is a stationary point and there are Lagrange multipliers λk ≥ 0 and λ
k ≥ 0

such that:

Df(xk) +
∑
i∈I

∑
y∈Y i,k0

λki,yDgi(x
k,y) +

∑
i∈I

λ
k

iDg
k−1
i (xk) = 0 ,

where λ
k

i = 0 if gk−1
i (xk) < 0. As there can be active constraints enforced by the

discretization the cone of critical directions T (xk) for problem SIP
k−1

(Y k) can be
small and a limit condition is harder to formulate based on its sufficient condi-
tions. This is why we consider a modified condition based only on the additional
constraints. Therefore let, for sufficiently large k and i ∈ I:

λ̂ki := λ
k

i +
∑

y∈Y i0 (xk)

λki,y

T k := {d ∈ Rn | Dgk−1
i (xk)d = 0 for all i ∈ I with λ̂k > 0}

and

κk := min
d∈Tk,‖d‖=1

d>

(
D2f(x) +

∑
i∈I

λ̂kD2gk−1
i (xk)

)
d .

We are now ready to prove the following theorem about the convergence of local
solutions.

Theorem 4.12. Let the regularity Assumption 4.4 be satisfied. Assume that, for

every k ∈ N, the solution xk is a local minimum of SIP
k−1

(Y k) and, for every i ∈ I,
the following holds:

λ∗i := lim inf
k→∞

λ̂ki > 0 ,

κ := lim inf
k→∞

κk > 0 .
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4 An adaptive discretization method with quadratic rate of convergence

Assume that the Reduction Ansatz and ELICQ are satisfied at x∗ for SIP. Further
assume that at x∗ the solution of the lower-level problem is unique, for every i ∈ I.
Then x∗ is local minimum of SIP.

The first limit ensures strict complementary slackness. The second one makes sure
that the curvature does not vanish.

Proof. By the proof of Theorem 4.8 we know that:

Df(x∗) +
∑
i∈I

λ∗iD1gi(x
∗,yi,∗) = 0 .

This means that x∗ is a stationary point. It remains to show that the second-order
sufficient condition is satisfied.

Choose a fixed d ∈ T (x∗) with ‖d‖ = 1. As, for every i ∈ I, we have λ∗i > 0, the
following holds:

D1gi(x
∗,yi,∗) · d = 0 .

By Lemma 4.6 the following is also true:

lim
k→∞

yi,k = yi,∗ .

As the derivatives of the constraints are by assumption linearly independent in the
limit we can construct for sufficiently large k vectors dk with ‖dk‖ = 1 such that,
for every i ∈ I:

D1gi(x
k,yi,k) · dk = 0 (4.12)

and
lim
k→∞

dk = d .

By Equation (4.12) we have dk ∈ T k and the following holds by definition:

(
dk
)>(

f(xk) +
∑
i∈I

λ̂
k
D2gk−1

i (xk)

)
dk ≥ κk .

Taking the limit inferior shows:

d>

(
D2f(x∗) +

∑
i∈I

λ∗iD
2gi(x

∗)

)
d ≥ κ .

Which shows that the second-order sufficient condition is satisfied for SIP. We have
seen that this is equivalent to the second-order sufficient condition for SIP.
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The benefit of this theorem is that we can check the introduced second-order con-
dition at an iterate. The iterates are the only thing we have at hand as we need to
terminate the algorithm after finitely many steps.

In this Section we have shown statements about the properties of a limit point. We
have seen that under mild conditions every accumulation point of stationary points
is again a stationary point and an accumulation point of local solutions is again a
local solution. We now turn to the main reason why we have introduced the new
algorithm, namely the quadratic rate of convergence.

4.2 Quadratic rate of convergence

We have already shown in Section 4.1.1 that the limit of stationary points is again
a stationary point. We therefore assume this in the following and show that the
iterates converge with a quadratic rate. The main statement of this section is the
Quadratic Convergence Theorem. We begin by strengthening our previous assump-
tions. To prove the quadratic rate of convergence, we assume the following:

Assumption 4.13. (General regularity assumptions for quadratic convergence) Let
the describing functions g and v be three times continuously differentiable and the
objective f be twice continuously differentiable. Let {xk}k∈N be constructed accord-
ing to Algorithm 2. Assume that, for every k ∈ N, the point xk is a stationary-point

of SIP
k−1

(Y k). Assume there is a strongly stable stationary point x∗ ∈M with

lim
k→∞

xk = x∗ .

Moreover assume that x∗ has the following properties:

• The constraint qualification EMFCQ is satisfied.

• The Reduction Ansatz holds at x∗.

• For every i ∈ I, the global solution yi,∗ of the lower-level problem Qi(x
∗) is

unique and
gi(x

∗,yi,∗) = 0 . (4.13)

We finally assume that Īk = I, for every k ∈ N.

The last assumption and Equation (4.13) are, similar to Assumption 4.4, only
added to avoid case distinctions in the proof. We will comment on the uniqueness

83



4 An adaptive discretization method with quadratic rate of convergence

of the lower-level solutions after the Quadratic Convergence Theorem and point
out a possible extension to the case of multiple lower-level solutions. All remaining
assumptions are basic regularity assumptions.

Before starting to prove the quadratic rate of convergence, we summarize the fur-
ther properties induced by Assumption 4.13. Note that by the differentiability
assumptions, the Reduction Ansatz yields a ε > 0 and, for every i ∈ I, the twice
continuously differentiable functions:

yi : Bε(x
∗)→ Y ,

µi : Bδ(x
∗)→ R|J |

such that for every x ∈ Bε(x
∗) the point yi(x) is the unique global solution of

Qi(x) and µi(x) are the unique corresponding Lagrange multipliers satisfying the
KKT conditions. Thus, for sufficiently large k, we have:

yi,k = yi(xk) ,

µi,k = µi(xk) .

The following lemma follows easily by continuity and the proof is completely anal-
ogous to the proof of Lemma 3.12.

Lemma 4.14. Let Assumption 4.13 hold. Then, for every i ∈ I, also the following
is true:

lim
k→∞

yi,k = yi,∗ ,

lim
k→∞

µi,k = µi,∗ .

Moreover, for every i ∈ I, the set of active indices in the lower-level does not change
for sufficiently large k:

J0(yi,k) = J0(yi,∗) .

To prove the quadratic rate of convergence, we have to show that there exists a
constant L > 0 such that, for sufficiently large k, we have

‖xk+1 − x∗‖ ≤ L‖xk − x∗‖2 .

The basic line of the proof is to first find a perturbed semi-infinite problem. We do
this in such a way that the current iterate xk is a stationary point of this problem.
As a next step we have to bound the perturbation. After we have achieved bounds,
we can use the strong stability of a limit point to obtain the quadratic rate of
convergence. We begin by introducing the considered perturbation.
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4.2 Quadratic rate of convergence

For i ∈ I, we denote again the set of active discretization points in iteration k by

Y i,k
0 := {y ∈ Y k | gi(xk,y) = 0}

As xk is a stationary point, we know that there are multipliers λk ≥ 0 and λ
k ≥ 0

such that

0 = Df(xk) +
∑
i∈I

∑
y∈Y i,k0

λki,yD1gi(x
k,y) +

∑
i∈I

λ
k

iDg
k−1
i (xk) . (4.14)

The main idea of the proof is to replace, for i ∈ I, every derivative of the constraints
by D1gi(x

k,yi,k). Equation (4.14) will not hold with an equality anymore, but we
will introduce a βk ∈ Rn such that

Df(xk) +
∑
i∈I

λ̂kiD1gi(x
k,yi,k) = βk ,

where, for i ∈ I, we let λ̂ki := λ
k

i +
∑
y∈Y i,k0

λki,y. We will also introduce for every

i ∈ I an αi ∈ R such that:

gi(x
k,y) ≤ αi for all y ∈ Y ,

gi(x
k,yi,k) = αi .

This means that xk is a stationary point of a perturbed semi-infinite optimization
problem. The perturbation can be controlled by α and β. To obtain a quadratic
rate of convergence, we need to bound these parameters. Therefore, we first investi-
gate in the next two lemmas (Lemmas 4.15 and 4.16) the difference of the additional
constraint gk−1

i (xk) to the constraint gi(x
k,yi,k). The following two lemmas (Lem-

mas 4.17 and 4.18) will then investigate the active discretization points. We start
by bounding the distance of the lower-level solution added in the next iteration to
our linear approximation.

Lemma 4.15. Let Assumptions 4.13 hold. There exists a K1 ∈ R such that, for
i ∈ I and sufficiently large k, the following holds:

‖yi,k − yi,k−1(xk)‖ ≤ K1‖xk − xk−1‖2 ,

‖µi,k − µi,k−1(xk)‖ ≤ K1‖xk − xk−1‖2 .

Proof. Consider throughout the proof a fixed index i ∈ I. The function yi(x)
describing the lower-level solution is twice continuously differentiable. Thus, by a
Taylor expansion of yi(xk) around xk−1, there is an x̂ = t · xk + (1− t) · xk−1, for
an appropriate t ∈ [0, 1], such that

‖yi,k − yi,k−1(xk)‖ = ‖yi(xk)− yi(xk−1)−Dyi(xk−1)(xk − xk−1)‖

=
1

2
‖(xk − xk−1)> ·D2y(x̂) · (xk − xk−1)‖ .
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4 An adaptive discretization method with quadratic rate of convergence

The statement now follows easily by the continuity of D2y. The proof for the
Lagrange multipliers µi,k is completely analogous.

We can now bound the next values and derivatives of the semi-infinite constraints.

Lemma 4.16. Let Assumption 4.13 hold.

i) There is a K2 ∈ R such that, for sufficiently large k and i ∈ I, the following
holds:

|gi(xk,yi,k)− gk−1
i (xk)| ≤ K2 · ‖xk − xk−1‖4 .

ii) There is a K3 ∈ R such that, for sufficiently large k and i ∈ I, the following
holds:

‖D1gi(x
k,yi,k)−Dgk−1

i (xk)‖ ≤ K3‖xk − xk−1‖2 .

Proof. Consider throughout the proof a fixed i ∈ I.

i) Note that, for every k ∈ N, we have

gi(x
k,yi,k) = Li(xk,yi,k,µi,k) ,

by the complementarity conditions. By definition the following is also true:

gk−1
i (xk) = Li

(
xk,yi,k−1(xk),µi,k−1(xk)

)
.

By the KKT conditions for the lower-level problem we have

D2Li(xk,yi,k,µi,k) · (yi,k−1(xk)− yi,k) = 0 .

As by Lemma 4.14 the active indices do not change, for sufficiently large k,
we also have:

D3Li(xk,yi,k,µi,k) · (µi,k−1(xk)− µi,k) = 0 .

This means that, for every i ∈ I and sufficiently large k, by a Taylor expansion
in (yi,k,µi,k), there are

ŷ = t · yi,k−1(xk) + (1− t)yi,k ,
µ̂ = t · µi,k−1(xk) + (1− t)µi,k ,
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4.2 Quadratic rate of convergence

for an appropriate t ∈ [0, 1], such that:

‖gi(xk,yi,k)− gk−1
i (xk)‖

= ‖Li(xk,yi,k,µi,k)− Li(xk,yi,k−1(xk),µi,k−1(xk))‖

=
1

2
‖
(
yi,k−1(xk)− yi,k
µi,k−1(xk)− µi,k

)>
·D2

2,3Li(xk, ŷ, µ̂) ·
(
yi,k−1(xk)− yi,k
µi,k−1(xk)− µi,k

)
‖

By continuity there is a K ∈ R which bounds the second derivative and we
have together with Lemma 4.15, for sufficiently large k:

‖gi(xk,yi,k)− gk−1
i (xk)‖

≤ 1

2
K ·

(
‖yi,k−1(xk)− yi,k‖2 + ‖µi,k−1(xk)− µi,k‖2

)
≤ K ·K1 · ‖xk+1 − xk‖4 .

ii) We first bound each term and then combine these terms.

Analogous to part i) we have, for sufficiently large k:

D2Li(xk,yi,k,µi,k)Dyi(xk−1) = 0 ,

D3Li(xk,yi,k,µi,k)Dµi(xk−1) = 0 .

As all involved functions are at least twice continuously differentiable, there
is an L1 with

‖D2,3Li(xk,yi,k−1(xk),µi,k−1(xk)) ·
(
Dyi(xk−1)
Dµi(xk−1)

)
‖

≤ L1(‖yi,k−1(xk)− yi,k‖+ ‖µi,k−1(xk)− µi,k‖)
≤ L1 · 2 ·K1 · ‖xk − xk−1‖2 ,

where we used again Lemma 4.15 in the last inequality. Analogously there is
also an L2 > 0 such that, for sufficiently large k:

‖D1gi(x
k,yi,k)−D1Li(xk,yi,k−1(xk),µi,k−1(xk))‖

=‖D1gi(x
k,yi,k)−D1gi(x

k,yi,k−1(xk))‖
≤L2 ·K1‖xk − xk−1‖2

We can now bound the derivative with the help of the chain-rule and the
above inequalities, for sufficiently large k:

‖D1gi(x
k,yi,k)−Dgk−1

i (xk)‖
=‖D1gi(x

k,yi,k)−D1Li(xk,yi,k−1(xk),µi,k−1(xk))

−D2,3Li(xk,yi,k−1(xk),µi,k−1(xk)) ·
(
Dyi(xk−1)
Dµi(xk−1)

)
‖

≤L1 · 2 ·K1‖xk − xk−1‖2 + L2 ·K1‖xk − xk−1‖2 .
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Letting K3 = (2L1 + L2)K1 the claim follows.

If the only active constraints in the stationarity conditions (4.14) are the additional
constraints gk−1

i (xk), then the inequalities derived in the above lemma would al-
ready suffice to bound the parameter βk. But the points in Y k are needed to
guarantee convergence to a feasible point and we cannot exclude the possibility
that some of the constraints

gi(x
k,y) ≤ 0 for all i ∈ I,y ∈ Y k

are active. We need to investigate these constraints further in the next two lemmas.
The goal is it to show in Lemma 4.18 that, for every i ∈ I, the distance of any
active index in Y k to the solution yi,k can be bounded quadratically.

The next lemma gives a lower growth condition. It is important that the constant
given in this lemma is independent of the current iterate.

Lemma 4.17. Let Assumption 4.13 hold. There is a constant K4 > 0, a k′ ∈ N
and an ε > 0 such that, for every i ∈ I, k ≥ k′ and y ∈ Y with ‖y − yi,∗‖ < ε, the
following holds:

gi(x
k,yi,k)− gi(xk,y) ≥ K4‖yi,k − y‖2 .

Proof. As we assumed the Reduction Ansatz to hold in x∗, the global solution yi,∗

is strongly stable. By exactly this property there is an ε > 0, an L′ > 0 and a
k′ ∈ N such that, for every 0 < L ≤ L′ and k ≥ k′, there exists a unique stationary
point of

max
y∈Y

gi(x
k,y) + L‖yi,k − y‖2 (4.15)

in Bε(y
i,∗). For every k ∈ N, the KKT conditions are not affected at the point yi,k

by the added term L‖y − yi,k‖2. This means that this point is still a stationary
point. We need to show that it is still a local maximum. By compactness the
maximum

max
y∈Y

‖y−yi,∗‖=ε

gi(x
∗,y)− gi(x∗,yi,∗)

is attained and is strictly less than 0. We can therefore choose a k′′ and a L′′ such
that, for every k ≥ k′′, L ≤ L′′ and y ∈ Y with ‖y− yi,∗‖ = ε, the following holds:

gi(x
k,y) + L‖yi,k − y‖2 < gi(x

k,yi,k) .

As, for sufficiently large k, the iterate of the lower-level, yi,k, lies within Bε(y
i,∗)

there must be a local minimum withinBε(y
i,∗)∩Y for the problem given in Equation
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4.2 Quadratic rate of convergence

(4.15). As LICQ holds everywhere and by uniqueness of the stationary point, this
point must be, for sufficiently large k, the stationary point yi,k.

For every y ∈ Y ∩Bε(y
i,∗) we then have for K4 := min{L′, L′′}:

gi(x
k,y) +K4‖yi,k − y‖2 ≤ gi(x

k,yi,k)

We can now bound the difference of all active constraints to the current solution
of the lower-level problem:

Lemma 4.18. Let Assumption 4.13 hold. For sufficiently large k, i ∈ I and a
y ∈ Y with gi(x

k,y) = 0, the following holds:

‖yi,k − y‖ ≤
√
K2

K4

‖xk − xk−1‖2 ,

where K2 and K4 are chosen according to Lemma 4.16 and 4.17.

Proof. Consider throughout this proof a fixed i ∈ I. If gi(x
k,yi,k) < 0, there cannot

be any active y ∈ Y , because yi,k is the global maximum. For the remainder of

the proof we therefore assume gi(x
k,yi,k) ≥ 0. As xk is feasible for SIP

k−1
(Y k), we

know by Lemma 4.15, for sufficiently large k:

gi(x
k,yi,k) ≤ K2‖xk − xk−1‖4 .

By Lemma 4.17 there is an ε ≥ 0 and a k′ ∈ N such that, for k > k′ and y ∈ Y
with ‖y − yi,∗‖ < ε:

gi(x
k,yi,k)− gi(xk,y) ≥ K4‖yi,k − y‖2 .

If we now further have gi(x
k,y) = 0, we obtain:

K2‖xk − xk−1‖4 ≥ gi(x
k,yi,k)− gi(xk,y) ≥ K4‖yi,k − y‖2 ,

which proves the claim for all y ∈ Y with ‖y − yi,∗‖ < ε.

Note that the set Y i
ε := {y ∈ Y | ‖y − yi,∗‖ ≥ ε} is compact. Thus the maximum

maxy∈Y iε g(x∗,y) is attained and is strictly less then 0. By continuity we have, for
sufficiently large k and for all y ∈ Y i

ε :

gi(x
k,y) < 0 .
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4 An adaptive discretization method with quadratic rate of convergence

As a direct consequence of this lemma, there is a constant K5 such that, for suffi-
ciently large k and y ∈ Y i,k

0 , the following holds:

‖D1gi(x
k,yi,k)− gi(xk,y)‖ ≤ K5‖xk − xk−1‖2 . (4.16)

We have now obtained all necessary bounds needed to prove the quadratic rate
of convergence. As already mentioned in the beginning of this section, for every

sufficiently large k, there are Lagrange-multipliers λk ≥ 0 and λ
k ≥ 0 such that

Equation (4.14) holds. Again, we denote the sum of Lagrange multipliers, for i ∈ I,

by λ̂ki = λ
k

i +
∑
y∈Y i,k0

λki,y.

Let for k ∈ N and i ∈ I:

βk := Df(xk) +
∑
i∈I

λ̂kiD1gi(x
k,yi,k) , (4.17)

αki :=

{
max{0, gi(xk,yi,k)} if λ̂ki = 0 ,

gi(x
k,yi,k) otherwise .

(4.18)

We are now ready to prove the quadratic rate of convergence.

Quadratic Convergence Theorem. Let the general regularity assumptions (As-
sumption 4.13) be satisfied. There is a constant L such that, for sufficiently large
k, the following holds:

‖xk+1 − x∗‖ ≤ L‖xk − x∗‖2 .

Proof. We first consider the case where ELICQ is satisfied. In a second proof we
show the rate of convergence if ELICQ is not satisfied but EMFCQ is satisfied.

First case: ELICQ holds at x∗:
By Equation (4.17) and (4.18) the next iterate, xk+1, is a stationary point for the
modified SIP:

SIPkmod : min
x∈Rn

f(x)− βk+1 · x

s.t. gi(x,y)− αk+1
i ≤ 0 for all i ∈ I,y ∈ Y

By the strong stability of x∗, we know by Theorem 2.27 that there is a constant L′

such that, for sufficiently large k:

‖xk+1 − x∗‖ ≤ L′ ·
(
‖αk+1‖+ ‖βk+1‖

)
. (4.19)
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4.2 Quadratic rate of convergence

We now need to bound the two parameters αk and βk. By Equation (4.17) and
the definition of λ̂ki :

‖βk‖ = ‖Df(xk) +
∑
i∈I

λ̂kiD1gi(x
k,yi,k)‖

= ‖
∑
i∈I

λ
k

i

(
D1gi(x

k,yi,k)−Dgk−1
i (xk)

)
+
∑
i∈I

∑
y∈Y i,k0

λi,ky
(
D1gi(x

k,yi,k)−D1gi(x
k,y)

)
‖

= : (A) .

By Lemma 4.16 and the inequality given in Equation (4.16), the following holds :

(A) ≤

∑
i∈I

λ
k

i +
∑
i∈I

∑
y∈Y i,k0

λi,ky

max{K3, K5}‖xk − xk−1‖2

= : (B) .

By Lemma 4.7 the Lagrange multipliers are bounded and there is a L1 > 0 such

that

(B) ≤ L1‖xk − xk−1‖2 . (4.20)

To bound the absolute value of αki , for i ∈ I, we have to make a case distinction.

First case: assume that gi(x
k,yi,k) ≥ 0. As gki (x

k+1) ≤ 0, we have by Lemma 4.16:

αki ≤ K2‖xk − xk−1‖4 . (4.21)

Second case: assume that gi(x
k,yi,k) < 0. If λ̂ki = 0, then it holds αki = 0, by

definition. If λ̂ki > 0, then we must have λ
k

i > 0, as no y ∈ Y k can be active. We
have by the complementarity conditions:

gk−1
i (xk) = 0 .

Again, Lemma 4.16 shows the same inequality as in Equation (4.21). In summary,
there is an L2 > 0 with:

αki ≤ L2‖xk − xk−1‖2 . (4.22)
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4 An adaptive discretization method with quadratic rate of convergence

Using the inequality given in Equation (4.19) in combination with the inequalities
given in Equations (4.20) and (4.22), we receive further, for sufficiently large k:

‖xk+1 − x∗‖ ≤L′(L1 + L2)‖xk+1 − xk‖2

≤L′(L1 + L2)
(
‖xk+1 − x∗‖2 + ‖xk+1 − x∗‖ · ‖xk − x∗‖+ ‖xk − x∗‖2

)
≤1

2
‖xk+1 − x∗‖+ L′(L1 + L2)‖xk − x∗‖2 , (4.23)

where the last inequality holds for sufficiently large k, as the first two terms converge
faster to 0 than ‖xk+1 − x∗‖. The claim is shown for L = 2L′(L1 + L2).

Second case: ELICQ does not hold at x∗:
Completely analogous to the first case, there is a K2 such that Equation (4.21)
holds. We now first introduce some neighborhoods of x∗.

(1) As ELICQ does not hold at x∗, but EMFCQ does, we know from Theorem 2.24
that the strongly stable stationary point x∗ satisfies the second-order sufficient
condition ESOSC. By Theorem 2.21, the limit point x∗ is a local minimum and
there is an ε1 > 0 and an L1 > 0 such that, for all x ∈M ∩Bε1(x

∗), the following
holds:

f(x)− f(x∗) ≥ L1 · ‖x∗ − x‖2 . (4.24)

(2) We denote the feasible set of problem SIPkmod by Mk. By the strong stability
there is an ε2 > 0 such that, for sufficiently large k, there is an unique stationary
point of SIPkmod within

Mk ∩Bε2(x
∗) .

(3) As EMFCQ holds at x∗ for SIP, there is an ξ such that, for every i ∈ I, we
have:

D1gi(x
∗,yi,∗) ≤ −1 .

We can choose an ε3 > 0 and a δ > 0 such that, for all x ∈ Bε3(x
∗), i ∈ I and

y ∈ Bδ(y
i,∗), the following holds:

D1gi(x,y)ξ ≤ −1

2
. (4.25)

(4) For every i ∈ I, the set Y i,δ := Y \ Bδ(y
i,∗) is compact. The maximum

maxy∈Y i,δ gi(x) is attained for every i ∈ I. By continuity we can choose an ε4 such
that, for every x ∈ Bε4(x

∗), i ∈ I and y ∈ Y i,δ, the following holds:

gi(x,y) ≤ 0 . (4.26)
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4.2 Quadratic rate of convergence

Let ε := min{ε1, ε2, ε3, ε4}. Denote by x̂k ∈Mk ∩Bε/2(x∗) a point with:

f(x̂k) = min
x∈Mk∩Bε/2(x∗)

f(x) .

We will see in the following that xk = x̂k. We first move the constructed point
towards feasibility. As maxi∈I α

k
i converges to 0, we have, for sufficiently large k:

2‖ξ‖max
i∈I

αki < ε/2 . (4.27)

By (4.26) and using a first-order Taylor expansion together with (4.25), the point:

x̄k := x̂k + 2ξmax
i∈I

αki

is, for sufficiently large k, feasible for SIP (see for details the proof of Theorem 3.9).
By continuity and the inequality given in (4.21) there is an L2 > 0 such that, for
sufficiently large k:

f(x̄k)− f(x̂k) ≤ L2‖xk − xk−1‖4 .

As by construction f(x̂k) ≤ f(x∗) we obtain using (4.24), for sufficiently large k:

‖x̂k − x∗‖ ≤
√
L2

L1

‖xk − xk−1‖2 .

This means that, for sufficiently large k, the point x̂k is contained in Bε/2(x∗) and is

a local minimum of SIPkmod. From (4.25), it follows that EMFCQ holds for SIPkmod.
This means that x̂k is a stationary point. By uniqueness we have:

x̂k = xk .

The quadratic convergence now follows completely analogous to (4.23).

In Remark 3.13, we commented on the assumption of exactly one active index in
the case of Theorem 3.11. We pointed out that there are two ways to treat the
case of multiple active indices. One of them was the quadratic convergence of
subsequences. This cannot be easily applied here, as the most important bounds
derived in Lemma 4.15 are not true anymore, if we have multiple active indices.

The second possibility introduced in Remark 3.13 was to alter the algorithm such
that in Step 4, one calculates all local minima of the lower-level problems, rather
than one global solution. This approach can be transferred here directly.

We have introduced in this chapter a new adaptive discretization algorithm. The
key idea for achieving a quadratic rate of convergence is to include additional
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4 An adaptive discretization method with quadratic rate of convergence

information of the lower-level problem in the approximate problems. We did this
using a linearization of the solutions of the lower-level problems. We have shown in
Section 4.1 that many convergence properties of the Blankenship and Falk algorithm
also hold for the new adaptive discretization method. In Section 4.2 we presented
and proved the Quadratic Convergence Theorem. Under the Reduction Ansatz
and some further regularity assumptions, we can assume to observe a quadratic
rate of convergence. In the next Chapter we transfer the ideas and the theoretical
statements, to the case of an variable index set.
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5 The generalized semi-infinite case

In this chapter we discuss different possibilities how to extend the developed Al-
gorithm 2 to generalized semi-infinite optimization problems. In the next section
we present two different possibilities how the ideas can be transferred. As one
possibility is directly covered by the analysis of Algorithm 2, we mainly focus on
the second possibility and use the ideas to develop Algorithm 3. In Section 5.2 we
show that all results presented in the previous chapter, including the Quadratic
Convergence Theorem, can be transferred.

5.1 Two algorithmic variants

The difference of a GSIP compared to a SIP consists in the x-dependency of the
index set. As we want to use a discretization method, we assume that problem
GSIP is transformable (see Definition 2.16), i.e. there is a nonempty compact set

Z = {z ∈ Rm̃ | ∀j ∈ J : vj(z) ≤ 0}

and a twice continuously differentiable function t : Rn × Z → Rm such that, for
every x ∈ Rn:

t(x, Z) = Y (x) .

We have seen in Section 2.2 that every transformable GSIP can be equivalently
described by a problem of type SIP. We denote the by the transformation induced
problem by:

S̃IP : min
x∈Rn

f(x)

g̃i(x, z) ≤ 0 for all i ∈ I,z ∈ Z ,

where
g̃i(x, z) := gi(x, t(x, z)) .

In [Sch13] it is shown how this transformation can be used to extend the adaptive
discretization method by Blankenship and Falk (Algorithm 1) to solve problems of
type GSIP.
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5 The generalized semi-infinite case

To construct the next discretization points in the k-th iteration one has two possi-
bilities. One can either solve, for i ∈ I, the original lower-level problems:

Qi(x
k) : max

y∈Y (xk)
gi(x

k,y) ,

or one can solve, for i ∈ I, the lower-level problems of the standard semi-infinite
problem S̃IP induced by the transformation:

Q̃i(x
k) : max

z∈Z
g̃i(x

k, z) .

If one calculates a global solution yi,∗ of Problem Qi(x
k), then z∗ with t(xk, z∗) =

yi,∗ is a global solution of Q̃i(x
k). In [Sch13] an example is presented which shows

that it can be beneficial to use the original problem, as properties like convexity
can get lost by the transformation.

In both cases one solves in iteration k for a given discretization Zk the following
discretized problem:

S̃IP(Zk) : min
x∈Rn

f(x)

s.t. g̃i(x, z) ≤ 0 for all i ∈ I,z ∈ Zk .

Also for adding linear information one has two possibilities.

• One can consider, for an i ∈ I, the transformed problem Q̃i(x
k). Assuming

that the derivative of the lower level solution Dzi(xk) and the corresponding
Lagrange-multipliers Dµi(xk) exist and denoting the lower level Lagrangian

by L̃i, the additional constraint would be given by

L̃i(x, zi,k +Dzi(xk) · (x− xk),µi,k +Dµi(xk)(x− xk)) ≤ 0 .

The algorithm then completely coincides with Algorithm 2 applied to the
transformed problem S̃IP. (With the exception that the original lower-level
problem and the transformation can be used to obtain a solution zi,k)

• A second possibility consists in considering the original lower-level problems
Qi(x). For i ∈ I, x ∈ Rn, y ∈ Rm and µi ∈ R|J |, the lower-level Lagrange
function is given by:

Li(x,y,µi) = gi(x,y)−
∑
j∈J

µijuj(x,y) .

The difference to the case SIP is the x-dependency of the constraints.
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5.1 Two algorithmic variants

If the Reduction Ansatz holds at a given point x ∈ M for SIP, we have, for
every i ∈ I and every z ∈ Z with gi(x, z) = 0, an ε > 0 and a continuous
differentiable function z : Bε(x)→ Z, such that locally the maximum of the
lower-level problem can be described by one of these functions. Now letting
for x ∈ Bε(x

∗)

y(x) := t(x, z(x)) ,

we obtain differentiable functions which describe the global solution for the
original lower-level problem Qi(x

∗).

We collect at a current iterate xk all indices in Īk for which the above prop-
erties hold. For every i ∈ Īk we can consider the following constraint with
linear information:

ĝki (x) := Li
(
x,yi,k +Dyi(xk) · (x− xk),µi,k +Dµi(xk) · (x− xk)

)
.

We then solve the following optimization problem to find the next iterate
xk+1:

ŜIP
k
(Zk+1) : min

x∈Rn
f(x)

s.t. g̃i(x, z) ≤ 0 for all i ∈ I,z ∈ Zk+1 ,

ĝki (x) ≤ 0 for all i ∈ Īk .

Depending on the transformation one of both approaches might lead to problems
with a structure that is easier to solve. For example: one might lead to convex prob-
lems, while the other formulation leads to non-convex problems. For complicated
transformations also the condition can be worse of the transformed problem. In

this case it can be beneficial to solve problem ŜIP
k
(Zk+1). We show their different

performance with some numerical examples in Chapter 6.

The consideration above give rise to the following algorithm solving GSIP.
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5 The generalized semi-infinite case

Algorithm 3 Adaptive discretization with quadratic rate of convergence solving
GSIP

1: Input: initial point x1 ∈ Rn, initial discretization Z1 ⊆ Z, k = 1.
2: while termination criterion is not met do
3: for i ∈ I do
4: Compute a global solution yi,k and Lagrange multipliers µi,k of Qi(x

k).
5: Determine Dyi(xk) and Dµi(xk) if they exist.
6: Determine a zi,k such that:

yi,k = t(xk, zi,k) .

7: end for
8: Zk+1 = Zk ∪

⋃
i∈I{zi,k}.

9: Determine a solution xk+1 of problem ŜIP
k
(Zk+1).

10: k = k + 1.
11: end while

Formally this is a new algorithm and the same questions already investigated in
Chapter 4 can be asked. We discuss in the next section under which assumption
the results can be transferred. We do not prove all the statements again, but point
out why the proof is either completely analogous or which argument can be used
to transfer the statements.

5.2 Transfer of the convergence results

One of the important properties of Algorithm 2 is that every accumulation point
of the iterates xk is feasible. As the proof of Lemma 4.3 only uses discretization
points the same holds for Algorithm 3.

Lemma 5.1. Let {xk}k∈N be constructed according to Algorithm 3. Every accu-
mulation point x∗ of {xk}k∈N is feasible.

After showing that any accumulation point of the iterates is feasible we investigated
a sequence of stationary points and local minima. An important auxiliary state-
ment in the case of an fixed index set investigated the derivatives of the additional
constraints. It stated that the first and the second derivatives coincide with the
derivatives of the functions locally describing the feasible set. The next Lemma
shows that this is also the case for the functions ĝki , i ∈ I.
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5.2 Transfer of the convergence results

Lemma 5.2. Consider a fixed x∗ ∈ Rn and i ∈ I. Let zi,∗ ∈ Z be a global solution
of the lower level problem Q̃i(x

∗) satisfying all conditions for Theorem 2.13. Denote
the unique Lagrange multipliers satisfying the KKT conditions by µi,∗. Let:

yi(x) =yi,∗ +Dyi(x∗) · (x− x∗) ,
µi(x) =µi,∗ +Dµi(x∗) · (x− x∗) .

and
ĝi(x) := Li

(
x,yi(x),µi(x)

)
.

For the derivatives the following holds:

Dĝi(x
∗) = Dx

[
gi
(
x,yi(x)

)]
x=x∗

= Dx

[
g̃i
(
x, zi(x)

)]
x=x∗

= D1g̃i(x
∗, zi,∗)

and
D2ĝi(x

∗) = D2
x

[
gi
(
x,yi(x)

)]
x=x∗

= D2
x

[
g̃i
(
x, zi(x)

)]
x=x∗

.

The proof is completely analogous to the proof of Lemma 4.1. The equality to the
derivatives of g̃i, for i ∈ I, follows easily, as we have by construction:

gi
(
x,yi(x)

)
= g̃i

(
x, zi(x)

)
.

To simplify the following statements we collect the needed regularity assumptions
(similar to Assumption 4.4):

Assumption 5.3. Let {xk}k∈N be constructed according to Algorithm 3. Assume
there is a x∗ ∈ Rn with

lim
k→∞

xk = x∗ .

Suppose the Reduction Ansatz and EMFCQ hold at x∗ for S̃IP and the objective
function f is twice continuously differentiable. Further assume:

• For every i ∈ I there is at least one y ∈ Y (x∗) with

gi(x
∗,y) = 0 .

• For every k ∈ N the following holds:

Īk = I .

As by Lemma 5.2 the derivatives of the additional constraints coincide, also their
limits are the same. As a consequence the construction for stationary points can
be transferred directly and we have similar to Theorem 4.8 the following result:
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Theorem 5.4. Let Assumption 5.3 be satisfied. Moreover assume that, for every

k ∈ N, the current iterate xk is a stationary point of ŜIP
k−1

(Zk). Then the limit

x∗ is a stationary point of S̃IP.

The next question we considered in Subsection 4.1.2 is the convergence of local
solutions. We have seen that an accumulation point of local solutions is not nec-
essarily a local solution of the original problem. Completely analogous of Lemma
4.11 the following holds for GSIP.

Lemma 5.5. Let {xk}k∈N be constructed according to Algorithm 2, Assume that,

for every k ∈ N, the solution xk is a local solution of ŜIP(Zk) with radius rk.
Assume:

lim
k→∞

xk = x∗ ,

lim
k→∞

yi,k = yi,∗ ,

r := inf
k∈N

rk > 0 .

Further assume that the Reduction Ansatz and EMFCQ hold at x∗. Then x∗ is a
local solution of

ŜIP : min
x∈Rn

f(x)

s.t. gi(x,y) ≤ 0 for all i ∈ I,y ∈ Y (x) ,

ĝi(x) ≤ 0 ,

where

ĝi(x) := Li
(
x,yi,∗ +Dyi(x∗)(x− x∗),µi,∗ +Dµi(x∗)(x− x∗)

)
.

We again assume for the following that the objective function f is twice continu-
ously differentiable and the solution of the lower-level problem Qi(x

∗) is unique.
By Lemma 5.2 the first and second derivative coincide with the first and second
derivative of the functions which locally describe the feasible set. This means that
the second-order sufficient condition for problem ŜIP and the transformed problem
S̃IP coincide. In other words: if the second-order sufficient condition for ŜIP hold
at a point x∗ ∈M , the point is local minimum of GSIP.

We presented in Subsection 4.1.2 conditions that guarantee the second-order suffi-
cient condition in the limit. As, for sufficiently large k, the point xk is a stationary

point there are Lagrange-multipliers λ
k ≥ 0 and λk ≥ 0 such that:
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5.2 Transfer of the convergence results

0 = Df(xk) +
∑
i∈I

∑
z∈Zk0

λki,zD1g̃i(x
k, z) +

∑
i∈I

λ
k

iDĝ
k−1
i (xk) ,

where Zk
0 := {z ∈ Zk | g̃i(xk, z) = 0}. Again there can be active constraints

enforced by the discretization. That is why we consider similarly to Theorem 4.12
a modified condition based only on the additional constraints. Therefore let, for
k ∈ N and i ∈ I:

λ̂ki := λ
k

i +
∑

y∈Y i0 (xk)

λki,y ,

T k := {d ∈ Rn | Dĝk−1
i (xk)d = 0 for all i ∈ I with λ̂ki > 0}

and

κk := min
d∈Tk,‖d‖=1

d>

(
D2f(x) +

∑
i∈I

λ̂kiD
2ĝk−1
i (xk)

)
d .

Theorem 5.6. Let Assumption 5.3 be satisfied, Assume that, for every k ∈ N,

the solution xk is a local solution of ŜIP
k−1

(Zk) and the following holds, for every
i ∈ I:

λ∗i := lim inf
k→∞

λ̂ki > 0 ,

κk := lim inf
k→∞

κk > 0 .

Assume that the Reduction Ansatz and ELICQ hold at x∗ for S̃IP. Further assume
that, for every i ∈ I, the solution of the lower-level problem Qi(x

∗) is unique. Then
x∗ is a local solution of GSIP.

The proof is completely analogous to the proof of Theorem 4.12

The last property we have shown in Chapter 4 is the quadratic rate of convergence.
We briefly discuss how the derived bounds can be transferred to the case GSIP
and then state the quadratic convergence in this situation. We therefore assume
additionally to Assumption 5.3 that the describing functions g,u of GSIP and the
transformation function, t, are three times continuously differentiable. We further
assume that there is, for every i ∈ I, a unique yi,∗ with gi(x

∗,yi,∗) = 0.

First the bounds (Lemma 4.15 and 4.16) concerning the additional constraints can
be shown with exactly the same proofs considering, for i ∈ I, the original lower-level
problem Qi(x) of GSIP. We have again the following bounds:

‖g̃i(xk, zi,k)− ĝk−1
i (xk)‖ = ‖gi(xk,yi,k)− ĝk−1

i (xk)‖ ≤ K1‖xk − xk−1‖4
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5 The generalized semi-infinite case

and

‖D1g̃i(x
k, zi,k)−Dĝk−1

i (xk)‖ = ‖Dĝki (xk)−Dĝk−1
i (xk)‖ ≤ K1‖xk − xk−1‖2 .

We now switch, for every i ∈ I, to the lower-level problems Q̃i(x) of the transformed
problem. Similar to Lemma 4.17 and 4.18 we can find, with the help of the strong
stability of zi,∗, a K2 > 0 such that, for sufficiently large k, i ∈ I and a z ∈ Z with
g̃i(x

k, z) = 0, the following holds:

‖zi,k − z‖ ≤ K2‖xk − xk−1‖2 .

Similar to the considerations in section 4.2 the current iterate xk is a stationary
point of the following semi-infinite problem:

SIPkmod : min
x∈Rn

f(x)− βk · x

s.t. g̃i(x, z)− αki ≤ 0 for all i ∈ I,z ∈ Z ,

for appropriate αk and βk. The inequalities above can be used to bound both
parameters. Analogous to the Quadratic Convergence Theorem we obtain the
following statement:

Theorem 5.7. Let Assumption 5.3 be satisfied. Further assume:

• the describing functions g,u of GSIP and the transformation function t are
three times continuously differentiable.

• for every i ∈ I, there is a unique yi,∗ ∈ Y (x∗) with gi(x
∗,yi,∗) = 0.

• the current iterate xk is, for every k ∈ N, a stationary point of ŜIP
k−1

(Zk).

Finally assume that the limit x∗ is a strongly stable stationary point. There is a
L > 0 such that, for sufficiently large k, the following holds:

‖xk+1 − x∗‖ ≤ L‖xk − x∗‖2 .
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6 Numerical aspects

In the previous chapters we have seen that for Algorithm 2 and Algorithm 3 a
quadratic rate of convergence can be expected. In this chapter we want to show that
this quadratic rate and an improvement in the number of iterations and compute
time can be observed also for numerical examples. We compare the two approaches
introduced in Chapter 5, which extended Algorithm 2 to generalized semi-infinite
problems. One of the approaches transforms the generalized semi-infinite problem
to a standard semi-infinite problem and then applies Algorithm 2. We therefore only
consider problems which are transformable generalized semi-infinite optimization
problems.

We begin this chapter by summarizing further details of our implementation. We
then introduce so-called design-centering problems, which are the source of the
considered test problems. In Section 6.1 we discuss the solution of three numerical
examples. For one of them we give an analytical solution. The benefit is that we
can compare the calculated iterates with the true solution of the problem. With
the second example we investigate the effects of an increasing dimension. The
third example is non-convex. Using this example we study the question whether
discretization points are needed. In Section 6.2 we discuss the growth of the problem
dimension. We compare the Blankenship and Falk algorithm to the newly developed
Algorithms 2 and 3. In Section 6.3 we give a short summary of our observations.

Details of implementation
All implementations were done in MATLAB R© [MAT16]. All finite nonlinear prob-
lems were solved using the SQP method provided by the MATLAB R© function
fmincon (part of MATLAB R© Optimization ToolboxTM). The standard settings
were used except for the accuracy. We required an accuracy in the optimization
variables, the objective function and the constraints of 10−8. All derivatives were
calculated analytically and provided to fmincon as well as to the calculation of the
linearization. To check the existence and to calculate the derivatives of the implicit
functions we use Remark 2.14.

As mentioned in the introduction we consider in the following only generalized
semi-infinite optimization problems. We solve the problems of type GSIP with three
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6 Numerical aspects

different approaches. All problems are transformable, which means that there is an
equivalent standard semi-infinite optimization problem S̃IP. The first two solution
approaches consist of applying the Blankenship and Falk algorithm (Algorithm 1)
and the newly developed algorithm (Algorithm 2) to the induced standard semi-

infinite problem S̃IP. To calculate a solution of the lower-level problems, we use
the original lower-level problem and transform it back as suggested in [Sch13] and
discussed in Chapter 5. The third solution approach consists of applying Algorithm
3 to the generalized semi-infinite problem. The three approaches together with their
abbreviation are summarized in Table 6.1.

AB&F Blankenship and Falk algorithm applied to equivalent problem S̃IP.

ASIP Algorithm 2 applied to equivalent problem S̃IP.

AGSIP Algorithm 3 applied to problem GSIP.

Table 6.1: Notation for the tested algorithms

So far we did not specify a stopping criterion for any of the introduced algorithms.
One possibility is to set a tolerance on the maximal violation of the new points,
i.e.:

αk = max
i∈I

gi(x
k,yi,k) .

We have seen in Theorem 3.9 that the distance to the limit can then be bounded.
Unfortunately, if the local solution is of order two, there is a constant L such that:

‖xk − x∗‖ ≤ L
√
αk .

This leads to the following negative effect: if, for example L = 1, then even if the
violation is approximately 10−6, the distance to an optimal solution can still be
approximately 10−3. This is why, we do not use the current violation. Instead we
use the size of the last step as a stopping criterion for all three algorithms. We
terminate the algorithm as soon as

‖xk+1 − xk‖ < 10−5

holds.

Design-centering problems
A well studied class of examples for GSIPs are so called design-centering problems
(see for example [Ste03, HB17]). There, one considers a fixed set C ⊆ Rm, the so-
called container, and, for every x ∈ Rn, a second parametrized set Y (x) ⊆ Rm, the
so-called design. The task is to maximize the volume of Y (x) under the condition:

Y (x) ⊆ C . (6.1)
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6.1 Three numerical examples

Assume that we can describe the sets C and Y (x) for every x ∈ Rn by:

C := {y ∈ Rm | gi(y) ≤ 0 for all i ∈ I} ,
Y (x) := {y ∈ Rm | uj(x,y) ≤ 0 for all j ∈ J}

with twice continuously differentiable functions g : Rm → R|I|,u : Rn×Rm → R|J |
and finite index sets I, J . If such a description exists, one can reformulate a problem
with a set inclusion condition given as in Equation (6.1) by a GSIP:

GSIPDC : max
x∈Rn

vol
(
Y (x)

)
s.t. gi(y) ≤ 0 for all i ∈ I,y ∈ Y (x) .

As we have seen in Chapter 2, finitely many inequalities on the parameters x can
be added easily.

The following three examples are all design-centering problems. For every example
we describe the considered design and container. Furthermore, we provide a trans-
formation function and describe the additional restrictions on the parameters.

6.1 Three numerical examples

We begin with a two dimensional example which can be solved analytically. The
benefit of an analytic solution is that the algorithms are easy to compare and
different effects, described already in the previous chapters theoretically, can be
found again in the numerics.

Example with an analytic solution: To demonstrate the quadratic rate numer-
ically, we consider as a first example the embedding of an ellipse into a triangle.
Therefore, consider the following description of an ellipse:

Y (x) :=
{
y ∈ R2 |

(
y − c(x)

)> (
A(x)A(x)>

)−1 (
y − c(x)

)
≤ 1
}
,

where

c(x) =

(
x1

x2

)
and A(x) =

(
x3 x5

0 x4

)
.

To make sure that the inverse of A(x) exists, the lower bounds of x3 and x4 are set
to 10−6. The volume is given by:

vol(Y
(
x)
)

= πx3x4 .
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A transformation from the unit disk to Y (x) is given by:

t(x, z) = A(x)z + c(x) .

We choose the following triangle as a container:

C :=

y ∈ R2

∣∣∣∣∣∣∣∣
−y1 − 1 ≤ 0,

−y2 − 1 ≤ 0,

1

4
y1 + y2 −

3

4
≤ 0

 . (6.2)

The exact same triangle was for example considered as a test problem in [Sch13].
Solving the resulting optimization problem analytically yields the following solu-
tion

x∗ =

(
5

3
,−1

3
,
4
√

3

3
,
2

3
,−4

3

)>
.

The solution x∗ of the design centering problem is depicted in Figure 6.1.

Figure 6.1: Largest ellipse in the Triangle C [green - design, blue - container]

As initial values for the algorithms we use a unit disk:

x1 = (0, 0, 1, 1, 0)> .

The distances of the first iterates to the optimal solution, calculated by the different
algorithms, are given in Table 6.2. The two algorithms with linear information
needed both 5 iterations which took approximately 0.7 seconds for Algorithm ASIP

and 0.97 seconds for Algorithm AGSIP. The algorithm by Blankenship and Falk
AB&F needed 21 iterations to meet the stopping criterion (2.36 seconds).

Many properties can be explained from the theoretical analysis we have done before.
Considering the first 4 iterates calculated by AB&F and by AGSIP one can see that
the distance to the optimal solution is similar. This is due to Lemma 4.3. For both
algorithms the convergence is guaranteed by the discretization points. Starting
with iteration 5 we are close enough so that the quadratic rate of convergence can
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6.1 Three numerical examples

Iteration AB&F ASIP AGSIP

1 2.5480 2.5480 2.5480
2 3.4975 2.156 3.5146
3 0.3374 3.9415 · 10−2 0.4730
4 0.7586 1.0997 · 10−5 0.1002
5 0.2543 8.9662 · 10−6 3.5645 · 10−4

6 6.5552 · 10−2 7.1661 · 10−7 6.8389 · 10−8

7 2.3665 · 10−2 - -
8 1.7667 · 10−2 - -

...

Table 6.2: Distances of the iterates to the optimal solution, ‖xk − x∗‖, for the three
algorithms under consideration

be observed for AGSIP. The convergence for Algorithm AB&F is still only enforced
by the discretization points. This is why now a much slower convergence can be
observed for Algorithm AB&F . Comparing only the ’final steps’ the algorithm with
linear information only needs 2 iterations from an accuracy of 0.1 to 7 · 10−8. The
Blankenship and Falk algorithm needs for these ’final steps’ further 15 iterations.

We comment next on the difference between the iterates calculated by Algorithm
ASIP and the ones calculated by Algorithm AGSIP. One can first observe that for
ASIP, the range where a quadratic rate holds, is already reached in iteration 3. In
the next example we observe this effect again. We comment there why Algorithm
ASIP reaches the quadratic rate faster than Algorithm AGSIP. Unfortunately, there
is also a drawback: in iteration 5 the numerical error is already too large so that no
further quadratic rate can be observed. A possible reason why the numerical error
is larger for ASIP is the following: to calculate a solution of the transformed lower-
level problem Q̃i(x

k), for i ∈ I, we use the original lower-level problem Qi(x
k),

for i ∈ I and then use the transformation to obtain a solution to the transformed
lower-level problem. This is why all tolerances on the accuracy hold for the original
lower-level problem. The error for the transformed problem might be larger. This
means also the error for the derivatives can be larger.

Example with a higher problem dimension: For the next example we consider
again an ellipse, but this time in an arbitrary dimension m ≥ 3. Completely
analogous to the first example we can describe the design by

Y (x) :=
{
y ∈ Rm |

(
y − c(x)

)> (
A(x)A(x)>

)−1 (
y − c(x)

)
≤ 1
}
,

where c(x) is the vector consisting of the first m optimization variables and A(x)
is an m-dimensional upper triangular matrix. Again, we assume that its entries
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on the diagonal are larger than 10−6. The volume is given as the product of the
diagonal elements and the constant volume of a unit ball in m dimensions. As a
transformation we can use as before:

t(x, z) = A(x)z + c(x) .

As a container we consider the unit simplex in m dimensions. To avoid numerical
difficulties in higher dimension we scale the length of the edges by the dimension:

C =

y ∈ Rm

∣∣∣∣∣∣∣
m∑
i=1

yi ≤ m

−yi ≤ 0 for all 1 ≤ i ≤ m

 .

The resulting GSIP consists of m + (m+1)·m
2

optimization variables, m + 1 semi-
infinite constraints and m index variables. The problem and the optimal solution
for m = 3 are shown in Figure 6.2. For m = 3 and edge-length 1 the example was
considered as a test-problem in [Ste11].

Figure 6.2: Optimal solution for design-centering problem: Embedding of three dimen-
sional Ellipse into a simplex [green - design, blue - container]

As initial parameters we set c(x) = 0 and set A(x) to be the identity matrix. The
number of iterations and the time needed for increasing dimension are given in
Table 6.3.

As expected, one can observe that the number of iteration for the Blankenship
and Falk algorithm grows much faster than for the other two algorithms. While
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6.1 Three numerical examples

m AB&F ASIP AGSIP

3 33 4 7
4 53 4 10
5 82 4 15
6 108 4 19

a)

m AB&F ASIP AGSIP

3 6.21 1.88 2.08
4 37.17 1.95 6.60
5 177.80 4.11 20.13
6 593.60 5.70 49.34

b)

Table 6.3: Number of iterations and time needed to solve embedding of higher dimen-
sional ellipse into simplex: a) Number of iterations, b) Time in seconds

the number of iterations for algorithm ASIP remains constant, one can observe
that the number of iterations needed by AGSIP also grows moderately. In Table
6.4 we have divided the iterations into the iterations that are needed to reach a
step size of less than 10−1 and the remaining steps with smaller step size: While

m steps > 10−1 steps < 10−1

3 4 3
4 7 3
5 10 5
6 16 3

Table 6.4: Number of steps needed by Algorithm AGSIP with size larger than 10−1 and
less than 10−1

the number of iteration with a step size larger than 10−1 grows, The number of
iterations with a step size less than 10−1 is almost constant. Both observations can
be explained with the previously developed theory: (1) We have already discussed
in the previous section and in Lemma 4.3 that the convergence is guaranteed by
the discretization points. This is true for the algorithms with linear information as
well as for the algorithm by Blankenship and Falk. As the number of discretization
points needed increases for Algorithm AB&F , the same can be expected for the first
iterations of Algorithm AGSIP. (2) Once the step size becomes small enough, the
quadratic convergence, guaranteed by Theorem 5.7, becomes dominant and only a
few iterations, independent of the dimension, remain.

Another interesting aspect, one can observe in Table 6.3, is that the number of
steps stays constant, if we use Algorithm ASIP. This means that for this example
it is better to use a linearization of the solution of the transformed lower-level
problems Q̃i(x

k). Independent of the dimension, the current iterate xk is already
after one step close enough to a limit point. The quadratic rate of convergence can
be applied and after three additional iterations the step size is less than 10−5. The
behavior for the last three iterations is similar to the ones of Algorithm AGSIP. The
difference lies in the earlier iterations in which we need to come close enough to

109



6 Numerical aspects

a limit point. To explain this difference further, we consider the first iteration in
more detail.

For both algorithms the size of the first step is similar:

‖x1
GSIP − x2

GSIP‖ ≈2.2466 ,

‖x1
SIP − x2

SIP‖ ≈1.5354 ,

where xkGSIP,x
k
SIP denote the iterates generated by Algorithm AGSIP and Algorithm

ASIP respectively. Both algorithms calculate an approximate to the next lower-level
solution. Algorithm AGSIP uses a linearization in the original lower-level problem.
We denote the approximate solution by y1

GSIP. In Algorithm ASIP we linearize
the solutions in the transformed lower-level problem. We denote the approximate
solution by z1

SIP. We can calculate the difference to the true solution:

‖yi,2GSIP − y
1
GSIP‖ ≈ 1.8246 ,

‖yi,2SIP − t(x
2
SIP, z

1
SIP)‖ ≈ 0.2435 .

One can see that the approximation found by Algorithm ASIP is closer to the true
solution. As a consequence the true feasible set is better approximated and the
next iterate is closer to the limit point.

This example shows that the approximation calculated in the transformed lower-
level problem can be closer to the original problem on a larger range. Unfortunately
this depends on the chosen transformation and no general statement can be made.
However, we have seen in Chapter 4 and 5 that both approximations have locally
the same quality.

A non-convex problem As a third example we consider a slightly modified version
of a design called boat introduced in [Sch13]. First let

Z =

z ∈ R2

∣∣∣∣∣∣∣
(z1 −

1

2
)2 + z2

2 − 1 ≤ 0,

(z1 +
1

2
)2 + z2

2 − 1 ≤ 0

 .

For x ∈ R4 we consider a rotation matrix:

R(x) =

(
cos(x2) − sin(x2)
sin(x2) cos(x2)

)
.

As design we then consider for every x ∈ R4:

Y (x) =
{
R(x) · x1 · z +

(
x3

x4

)
| z ∈ Z

}
. (6.3)

110



6.1 Three numerical examples

To make sure that Y (x) has an infinite cardinality, we demand further: x1 ≥ 10−6.
A transformation to a fixed set is already given in the description in Equation
(6.3).

As a container we use a concavified version of the triangle given in (6.2):

C :=


y ∈ R2

∣∣∣∣∣∣∣∣∣∣∣

−y1 − 1 ≤ 0,

−y2 − 1 ≤ 0,

1

4
y1 + y2 −

3

4
≤ 0,

−y1 − y2
2 ≤ 0


.

This container was first used in [SS03] and [Ste03] as a test object.

We use the following initial point:

x1 = (0, 1, 0, 0)> .

Running the algorithms we observe that all three terminate with the same solu-
tion:

x∗ ≈ (1.4199, 1.5708, 1.1456,−0.2900)> . (6.4)

While the Algorithms ASIP and AGSIP both needed 6 iterations, algorithm AB&F

needed 18 iterations. The design and the container for the optimally chosen pa-
rameters are shown in Figure 6.3.

Figure 6.3: Largest boat in concavified triangle [green - design, blue - container]

In the remainder we investigate the question whether the discretization points are
needed for the algorithms with linear information. To do so, we use Algorithm
AGSIP but ignore all constraints induced by the discretization points in the solu-
tion of problem ŜIP. This means we only respect the constraints induced by the
linearizations. We choose a grid on the rectangle [−2, 8]× [−2,−2]:

X =

{
−2 +

10 · i
20
| 0 ≤ i ≤ 20

}
×
{
−2 +

4 · j
10
| 0 ≤ j ≤ 10

}
.
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In a first experiment we use for every (x3, x4) ∈ X the following initial point:

x1 = (0, 1, x3, x4)> .

For no such choice of an initial point the modified version of Algorithm AGSIP

converges, if the discretization points are ignored. Next we modify the starting
points and choose for the first two entries the optimal ones given in Equation (6.4).
This means, for (x3, x4) ∈ X, we use:

x1 = (x∗1, x
∗
2, x3, x4)

as an initial point. The convergent and non-convergent runs are shown in Figure
6.4. One can see that, if the starting values are chosen close enough to the limit, the
algorithm converges often without discretization points. However, if the starting
values are not chosen good enough, the discretization points are needed to guarantee
convergence. Which reflects the observation we have made in Lemma 4.3.

Figure 6.4: Convergent vs non-convergent starting values for modified Algorithm AGSIP

without discretization points [blue - container, red points - non-convergent
starting points, green points - convergent starting points, black point - op-
timal solution]

6.2 Increase of problem dimension

After we have commented on the number of iterations and the time needed for every
example, we turn now to the nonlinear problems solved within every iteration. For
Algorithm AB&F we solve a discretized problem in every iteration. Its complexity
depends on the number of discretization points and the semi-infinite constraints g̃.
For the Algorithms AGSIP and ASIP a further constraint, based on a linearization,
is added. This additional constraint can affect the time needed for solving the
approximate problem.
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6.2 Increase of problem dimension

We consider the second example from the previous Section. In Table 6.3 one can
see for m = 3 that, although Algorithm AB&F needs approximately five times more
iterations than Algorithm AGSIP, the runtime is only larger by a factor of three.
This means that the solution of the approximate problems consisting only of the
discretization points is faster. Indeed, for Algorithm AB&F the time needed per
iteration ranges from 0.06 seconds for the first iteration to 0.4 seconds for the last
iteration. In comparison, Algorithm AGSIP needs already 0.22 seconds for the first
iteration which increases up to 0.5 seconds in the last iteration. In Figure 6.5 we
show how the step size between two iterates decreases over time. One can see that
at the beginning Algorithm AB&F reaches smaller step sizes in less time. We can
see the effect of the quadratic rate of convergence later. Once smaller step sizes are
reached, Algorithms ASIP and AGSIP become much faster.

Figure 6.5: Time needed by the algorithms to reach specific step size for design-
centering problem three dimensional ellipse into simplex

For the same example one can observe that the time needed per iteration changes
for dimension m = 6. Here Algorithm AB&F still needs approximately 5 times more
iteration and now also the runtime is 10 times larger. While the first approximate
problems can still be solved faster (between 0.2 to 1 second), the last iterations
take up to 20 seconds. The slowest iteration for the Algorithms ASIP and AGSIP

takes 5 seconds.

The larger runtime to solve a single approximate problem for AB&F is due to the
problem dimension. In iteration k we have for all three algorithms the following
number of discretization points:

|Zk| = k · |I| .
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As every discretization point induces |I| constraints in the discretized problem
there are k · |I|2 many constraints. In the discussed example one can observe that
approximately a fixed number L of points is needed to decrease the current step
size of the Blankenship and Falk algorithm AB&F by a factor of 10. To reach an
accuracy of 10−6 we thus need around 6 · L discretization points. This means that
we have in the last problem

6 · L · |I|2

constraints. In the discussed example this means that in the final iteration we
consider a problem with 528 constraints for m = 3 and 5292 constraints for m =
6.

For Algorithm AGSIP we only need to reach an accuracy of 10−2. After this accuracy
is reached, we need only two or three further iterations because of the quadratic
rate of convergence. This means that the maximal number of constraints is ap-
proximately given by:

(2 · L+ 3) · |I|2 + |I| .

In the discussed example we consider in the final iteration a problem with 116
constraints for m = 3 and 938 constraints for m = 6. For Algorithm ASIP, we
only need to consider a problem with at most 67 constraints, for m = 3 and 203
constraints for m = 6.

In other words: for the first iterations the constraints, based on the linearization,
can influence the compute time needed to solve the approximate problems, but for
later iterations the number of discretization points increases and we obtain problems
with more and more constraints. This number of constraints becomes the dominant
factor. As the algorithms with linear information need less iterations, the problem
dimension does not grow as much as for the Blankenship and Falk algorithm.

6.3 Summary

After we have presented the solutions of the numerical examples, we now summarize
the observations we have made.

In the first example we have seen that the quadratic rate of convergence reduces the
number of iterations. Especially for the ’final steps’ only a couple of iterations are
needed while the algorithm by Blankenship and Falk still needs many iterations.
For achieving a result with high precision, i.e. a small distance to the limit, it is
important to benefit from the quadratic rate of convergence.
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In the second example, having higher problem dimensions, we saw that this benefit
becomes even larger. For a six-dimensional example the original algorithm took
almost 10 minutes to converge, while the algorithms with linear information only
took less then 6 and 50 seconds respectively. Using the examples we also discussed
the influence of the transformation on the earlier iterates. These iterates are needed
to first come close to a limit point and do not benefit from the quadratic rate of
convergence. The earlier iterates calculated by Algorithm AGSIP show a behavior
similar to the iterates calculated by the Blankenship and Falk algorithm. In this
example, the approximation is closer, if a linearization of the solution in the trans-
formed lower-level problem is used. That is why Algorithm ASIP reached in this
example the quadratic rate of convergence faster.

In the third example we studied the question whether the discretization points are
needed for Algorithm 2 and Algorithm 3 or whether one could simply consider
an algorithm without these points. We have seen that no convergence can be
guaranteed, if the starting point is not close enough to an optimal solution. This
reflects the observations made in Lemmas 4.3 and 5.1.

In Section 6.2 we took a closer look at the nonlinear problems solved in each
iteration. We have seen that in the earlier iterations the additional constraint,
based on the linearization, can increase the compute time needed to solve the new
approximate problems. For further iterations the number of discretization points
and constraints increases. As a consequence the optimization solver needs more
time to solve the discretized problems. As we need fewer iterations in the algorithms
with linearization, this effect is larger for the Blankenship and Falk algorithm. This
means that not only the number of iterations is reduced by the Algorithms AGSIP

and ASIP but also the time needed for each iteration.
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Summary and further work

The aim of this thesis is to solve semi-infinite optimization problems by adaptive
discretization methods with a quadratic rate of convergence. To do so, we first in-
vestigated the convergence speed of the classical Blankenship and Falk algorithm.
In every iteration of the algorithm a solution of an approximate problem based
on the current discretization is calculated, the so-called discretized problem. In
a second step, the most violated constraint is determined and added to the dis-
cretization, the so-called lower-level problem. The algorithm treats the lower-level
problem and the discretized problems separately. To improve the convergence, we
introduced a new adaptive discretization algorithm. The key idea is to use deriva-
tives to capture the dependence of the solutions of the lower-level problems on
the optimization variables of the semi-infinite problem. Using this technique we
achieved a quadratic rate of convergence.

In Chapter 3 we started with the analysis of the Blankenship and Falk algorithm.
Therefore we assumed that a local minimum of the current discretized problem is
calculated in every iteration. We divided the analysis into two steps.

• In a first part we bounded the distance from the current iterate to a limit
point in terms of the maximal violation of the semi-infinite constraints. The
derived bounds depend on the order of a local minimum. Before we presented
a rigorous statement we constructed a worst case example with arbitrarily
slow convergence. This example can also be used as a counterexample to
bounds presented in the literature. We excluded this example by demanding
that the radii of the local solutions do not vanish in the limit.

• The second part consisted of bounding the maximal violation of the semi-
infinite constraints for the current iterates. We showed that the violation of
the current iterate can be bounded by a constant times the square of the
previous step size.

Combining both bounds provided quadratic convergence in the special case of a
minimum of order one. However, not every minimum is of order one. We introduced
an example with a minimum of order two and showed that in this case only a linear
rate of convergence holds.
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The Blankenship and Falk algorithm achieves linear convergence in this example
mainly because of the separated nature of the Blankenship and Falk algorithm. In
the solution of the discretized problems, only the current discretization points are
considered. All other points in the index set are ignored. This observation moti-
vated a new adaptive discretization method. Instead of adding only the solutions of
the lower-level problems, we also calculated a linearization of these solutions. Us-
ing this linearization, we injected an additional constraint which accounts for the
points not yet added to the discretization.We solve a new approximate problem on
every iteration, having the constraints induced by the discretization points together
with the injected constraint. We proved the Quadratic Convergence Theorem in
Chapter 4. This states that a sequence of stationary points converges to a strongly
stable stationary point in the new algorithm, with a quadratic rate under some
mild regularity assumptions.

One of the strengths of the Blankenship and Falk algorithm is its convergence prop-
erties. We showed that many of them also hold for our new method in the first
part of Chapter 4. We showed that any accumulation point is a feasible point.
We showed that iterates that are stationary points of the approximate problems,
converge to a stationary point of the semi-infinite problem.To investigate the ac-
cumulation points of local solutions, we studied second-order sufficient conditions.
We established properties of the iterates that are sufficient to ensure that an accu-
mulation point is a local minimum.

In [Sch13], classical adaptive discretization methods are applied to a variable index-
set via a transformation. We used this transformation and presented two techniques
for applying the new method to generalized semi-infinite optimization problems.
We showed that our Quadratic Convergence Theorem and other convergence state-
ments also hold in this case.

In the last chapter we implemented the Blankenship and Falk algorithm alongside
our new method, with linear information. We solved three numerical problems. In
each case, our method converged in fewer iterations. As a result, the number of
discretization points added was reduced. The approximate problems thus had fewer
constraints, and could be solved faster. Our method thus required fewer iterations
and less compute time per iteration . This advantage was especially pronounced in
the more complex problems we considered.

We focused in this thesis on theoretical statements about the convergence prop-
erties of a new minimization method. These include the rate of convergence of
the method, and properties of its limit points. Our chosen numerical examples
motivate further questions.
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• We observed that earlier iterations could be solved faster without the addi-
tional constraints we devised via a linearization. These constraints are needed
to guarantee the quadratic rate of convergence once the iterates are close to
a limit point, but could be omitted early in the calculation. We could, for
instance, introduce the additional constraints once the step size falls below a
threshold.

• Solving the earlier iterates without the linearization makes it more likely that
the method will find a global minimum. As we noted in Chapter 4, our new
method is not guaranteed to converge to a global solution. Starting without
the linearization, however, makes it more likely that the method will get close
to a global solution. Once it is sufficiently close, it is guaranteed to converge
quadratically to this solution.

• We generally assumed that we could solve the approximate and lower-level
problems in every iteration using standard solvers. To ensure the quadratic
convergence of our method, we demanded very high precision of these solvers
for every step in the solution process. However, this high precision is not
necessary for the earlier iterates. It would be interesting to understand how
the required precision depends on the iteration. For instance, lower precision
requirements early on might not affect overall convergence, but could save
substantial compute time. These issues could be investigated practically via
numerical experiment, and also theoretically.
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Vieweg+Teubner Verlag, Wiesbaden and s.l., 1982.

[JKT90] H. T. Jongen, D. Klatte, and K. Tammer. Implicit functions and sensi-
tivity of stationary points. Mathematical Programming, 49(1-3):123–138,
1990.

[JS04] F. Jarre and J. Stoer. Optimierung. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004.

[JTW92] H. T. Jongen, F. Twilt, and G. W. Weber. Semi-infinite optimization:
Structure and stability of the feasible set. Journal of Optimization Theory
and Applications, 72(3):529–552, 1992.

[Kaw88] H. Kawasaki. An envelope-like effect of infinitely many inequality con-
straints on second-order necessary conditions for minimization problems.
Mathematical Programming, 41(1-3):73–96, 1988.

[Kla92] D. Klatte. Stability of Stationary Solutions in Semi-Infinite Optimization
via the Reduction Approach. In W. Oettli and D. Pallaschke, editors,
Advances in optimization, volume 382 of Lecture Notes in Economics and
Mathematical Systems, pages 155–170. Springer-Verlag, Berlin and New
York, 1992.

[Koj80] M. Kojima. Strongly Stable Stationary Solutions in Nonlinear Programs.
In S. M. Robinson, editor, Analysis and Computation of Fixed Points,
pages 93–138. Academic Press, 1980.

122



Bibliography
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[WB06] A. Wächter and L. T. Biegler. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming.
Mathematical Programming, 106(1):25–57, 2006.

[Win08] A. Winterfeld. Application of general semi-infinite programming to
lapidary cutting problems. European Journal of Operational Research,
191(3):838–854, 2008.

125





Eigene Publikationen

Hesse, R.; Walczak, M.; Seidel, T.; Asprion, N.; Bortz, M.: Optimized data ex-
ploration applied to the simulation of a chemical process. Computers & Chemical
Engineering 124: 326-342, 2019.

127





Scientific career

Name Tobias Seidel

Date/ place of birth 16.06.1993 / Heidelberg

10/2011 - 05/2014 Bachelor studies in Mathematics
at Technical University of Kaiserslautern
Bachelor thesis
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