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Abstract. The low-level task of foreground-background segregation is an im-

portant foundation for many high-level computer vision tasks and has been in-

tensively researched in the past. Nonetheless, unregulated environments usually

impose challenging problems, especially the difficult and often neglected under-

water environment. There, among others, the edges are blurred, the contrast is

impaired and the colors attenuated. Our approach to this problem uses an efficient

Background Subtraction algorithm and evaluates it in combination with different

spatial models.
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1 Introduction

Nowadays Computer Vision Systems are used in various fields of applications such as

automation, surveillance, human assistance or inspection. Background Subtraction has

been used for many years for Computer Vision problems but is still a very valuable

source for low level information. It can recognize almost arbitrary objects in any scene,

as long as they are in motion. This information can later be reprocessed in different

high-level vision tasks.

In order to gather information about the objects of interest in a specific scene, the

background of this scene has to be modeled. The task of creating and sustaining an

adequate background model is not trivial and associated with many difficulties like

changes in the lightning conditions, slightly moving background objects or shadows. A

large number of different approaches have been developed to tackle these requirements

and create an adequate background model even under harsh conditions. Some use Sub-

space Learning Models like LDA [1], INMF [2] or PCA [3] to model the background.

Other renowned methods adopted techniques like Kalman Filters [4], SVMs [5] or His-

tograms [6] to background modeling in the hope that they could better cope with these

problems.

However, the most promising and common method at the moment is a statistical

approach where each background pixel is modeled as a Gaussian Distribution. This

approach is justified by the fact that the intensity of a pixel in a completely static scene

will vary over time according to a Normal distritution N (μ,σ2) due to the inevitable
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measurement errors inherent in every camera system. A threshold per pixel and channel

can be easily derived from the mean and variances of these distributions to distinguish

between foreground and background.

There exist some approaches which use just one Normal Distribution per pixel [7],

algorithms which use a Mixture of Gaussians [8, 9] or Gaussian-Kernel based methods

[10] to model the background. Methods which use a Mixture of Gaussians (MoG) pro-

duce in most cases better results than the Single Gaussian (SG) algorithms, because they

can model difficult situations (like a swaying tree) better if they are correctly adjusted.

Nevertheless, they have a higher memory usage and more parameters which need to be

carefully tuned.

A common disadvantage of all Background Subtraction approaches is the missing

incorporation of spatial information about the scenes in the model. Natural images are

assumed to be very smooth because they usually depict real objects like trees,animals or

buildings. This assumption can be used to improve the segmentation which was derived

from the Background Subtraction. An example of this is [11], where a simple method

is used which erases all connected areas containing less than a certain amount of fore-

ground (or background) pixels. A more sophisticated approach is applied in [12] where

a Conditional Random Field models the neighbourhood relations of the pixels. Graph

Cuts are used in [13] and in [14] the spatial information is represented in a tensor to

whom a Subspace Learning algorithm is applied. The usage of a tensor ensures that all

dimensions are treated equally.

We implemented two different spatial models to test both on underwater videos.

The first method is based on the popular Normalized Cut (NCut) approach which has

been used intensively for single image segmentation [15, 16]. Nonetheless, it has never

been applied on videos because of some inherent characteristics which make the NCut

unsuitable for videos (see section 2.2) and the high computational costs which forbid

any real time application. The first problem can be adressed with a reformulation of the

NCut, which adopts it to some video specific requirements. The second problem can be

solved by the usage of a simple and fast local optimization algorithm which lowers the

computational cost significantly.

The second approach uses Markov Random Fields to represent the spatial relation

in the image. This model consists of an undirected graph which is underlaid with a

probability map. The probabilites for each pixel are deduced from the Background Sub-

traction. Nonetheless, the most important model parameter is the neighborhood system,

which is a generalized Moore Neighborhood in our case. These large neighborhood sys-

tems can model the natural smoothness in images better than the simple 4-connected

Neighborhoods normally used.

All of these approaches have been optimized for air images and have not been eval-

uated on the more difficult underwater images[17, 18, 8, 16]. In the results section we

used different self-made underwater videos to compare the two approaches for spatial

modeling. Although Markov Random Fields fall behind in accuracy on air images, the

same method wins clearly on the difficult underwater images. This result suggest that

more special analysis should be made for underwater images and that maybe special

algorithms are required for the same task there.
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2 Our Approach

In the first part of this section we will explain the Background modeling with the Gaus-

sian Switch Model (GSM) and Background Subtraction with a voting algorithm[19].

The second part describes the N2Cut [20] as a new spatial model for video segmentation

and in the last segment a Markov Random Field combined with a Belief Propagation

algorithm is introduced as another spatial model. Both of them will be evaluated on

underwater images in the results section.

2.1 The Gaussian Switch Model

As justified previously, Gaussian distributions are used to model the colour values of

each pixel. The most obvious approach would be a batch method where the n last pic-

tures are saved and then for each pixel and channel the best fitting normal distribution

is calculated for the given data. However, this is extremely resource demanding, where-

fore we use running gaussians instead. This method just updates the old Gaussians with

the values from the newest frame and does not compute the distributions over the n last

data points from scratch every time. Thereby, the algorithm gives the new pixel val-

ues automatically a higher weight than old values and thus even improves the results

in comparison to the batch method because the newer samples usually carry more in-

formation about the current background. To be exact: for every Gaussian, the mean μ
and variance σ2 have to be computed. The mean is initiated with the pixel value taken

from the first frame of the video stream and the variance is set to a predefined value.

Afterwards, they are updated in the following way

μt+1 = α μt +(1−α) vt , (1)

(σt+1)2 = α σt +(1−α)(μt − vt)2. (2)

The variable α is the update rate and vt is the pixel value taken from the t-th frame. With

these formulas, the Gaussian distribution of a background pixel can be approximated

very efficiently.

Nevertheless, one problem is that the model becomes erroneously when a fore-

ground object is visible because it starts to model the foreground object and not the

background. To cope with this problem another Gaussian is introduced, the Background

Gaussian N (μbg,(σbg)2), which is updated after the segmentation process and only if

the corresponding pixel is classified as background. This results in a more stable back-

ground model as the corruptions from foreground objects are minimized. Nonetheless,

there is an inherent problem with this because the model now only accepts values which

agree with the current model and acts like a self fullfilling prophecy. One issue are

foreground objects already visible in the first frame. At the beginning the model will

assume them as background and afterwards will never include the real background into

the model because the real background will be classified as foreground. Foreground ob-

jects that become background, e.g. a car that parks, will also never get included into the

background model for the same reasons. To eliminate these errors a second Gaussian,

the Overall Gaussian N (μog,(σog)2), is introduced, which will be updated with every

new frame.
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If a foreground object was visible but immoble for a long period of time, it should

be included into the background. Such events result in an Overall Gaussian with a small

variance and a mean which is different from the Background Gaussian mean. If such

an incident is detected, the Background Gaussian is set to the values of the Overall

Gaussian, so that the Object gets included into the background model. This model is

applied to every pixel and every channel seperately and later a voting algorithm is used

to unify the results and get a definite label for each pixel.

To make the best use of the color information, a special color space is used, which

normalises the different intensities in respect to the illumination [14]. Let R, G and B
be the given values for a single pixel in the standard RGB color space, then these will

be transformed into the three new image channels

I = R+B+G,

R̃ = R/I,

B̃ = B/I.

Afterwards the intensity I is scaled to the range [0,1]. The color information stored

in R̃ and B̃ are normalised with the intensity and will thus not be altered by small or

medium changes in the lightning conditions. This can be used to prevent the detection

of shadows as foreground. However, if the shadow is very strong the color information

may be completely lost in the image and this approach will fail.

At the end a thresholding is applied at each channel seperately. The statistical ap-

proach allows to get an adaptive threshold for each pixel and channel. If the variance in

the statistical background model is low (high) the noise level at the corresponding pixel

and videoframe can also be expected to be low (high). Hence, the variance can be used

as an threshold. If pR is the new value for the red-channel of a pixel, the thresholding

inequality is given by:

(pR −μbg
R )2 < max(β · (σbg

R )2,0.001). (3)

The maximum is used because the variance could approach near zero values, especially

since only matching values are included into the Background Gaussian. The parameter

β can control the range of values which are still classified as “matching the model”.

To derive a decision for a pixel as a whole a voting procedure is chosen. If equation

(3) is satisfied for at least two of the three channels, the pixel is marked as background,

otherwise as foreground. Thereby, the color information can overrule the brightness in-

formation and hence shadows should not be detected as foreground. At the end of this

process a pixelwise foreground-background segregation is derived only from the tem-

poral information of the video.

2.2 N2Cut

To incorporate spatial information into this segmentation we evaluated two different

methods. The first is based on the NCut. In this approach the image is transformed

into a graph with a von Neumann Neighborhood to evaluate the best cut. To create an
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adequate spatial model the weights of the edges in this graph have to be chosen very

carefully. We defined the weight of the edge between the nodes i and j (depicted as wi j)

by the Manhattan distance of the corresponding color values.

wi j = |ri − r j|+ |gi −g j|+ |bi −b j| (4)

The use of this quite simple metric reduces the computational complexity of building

the model. Nonetheless, the weights are accurate enough to build reliable spatial models

which produce good segmentation results.

Graphs like these have been used many times in segmentation algorithms [21]. In

most cases, an energy function is defined on the graph to evaluate a specific segmen-

tation. This transforms the image segregation problem into a well-known minimization

task. In the literature, there are different approaches for this, one example is [22], who

use the cut-value as an energy function. A more elaborated energy function is NCut.

It maximizes the association in the different regions while minimizing the cut between

them [18, 23].

Approaches using NCut usually provide better results but finding the optimal solu-

tion is an NP-hard problem [23] which makes approximative methods necessary for the

optimization step (e.g. spectral graph theory). Given a weighted graph G= (V,E,w) and

a partition A ∪̇ B =V the NCut for that partition (segmentation) is defined as follows:

Ncut(A,B) =
Cut(A,B)
Assoc(A)

+
Cut(A,B)
Assoc(B)

(5)

with the standard Cut(A,B) and Assoc(A) terminologies.

Assoc(A) = ∑
i∈A, j∈V

wi j (6)

Cut(A,B) = ∑
i∈A, j∈B

wi j (7)

This energy function is well suited for the evaluation of segmentations in single images

but not for videos. There it can occur that the scene is completely free of foreground

objects. These cases cannot be mapped by NCut as an 100% background segmentation

would result in a division by zero. Therefore, this energy function inherently works

with the false assumption that there are always foreground objects visible. Furthermore,

NCut also favors segmentations with roughly equal amounts of fore- and background. If

there is only a small amount of foreground, the corresponding association will attain a

very small value and hence one of the summands in equation 5 will become very large.

This prevents segmentations with only minor foreground or background areas.

These problems can be adressed with a modified normalized cut [20] which has no

bias for any specific amount of foreground:

N2cut(A,B) =
Cut(A,B)
nAssoc(A)

+
Cut(A,B)
nAssoc(B)

, (8)

nAssoc(A) =
Assoc(A)+1

∑i∈A, j∈V,∃ei j 1+1
. (9)
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In equation 9 the association is normalized by dividing by the number of edges con-

tributing to the association. Consequently, the new association is the average edge value

which is not dependent on the size of the set. The addition of one to the denominator and

numerator of the fraction in equation 9 prevents the divisions by zero for empty sets.

An obvious extension to this seems to be the normalisation of Cut(A) in the same way,

but this is not reasonable. It would remove the favor of cuts that are short and would

hence result in very long cuts zigzagging through the image. This would not reflect the

smoothness of natural images.

The N2Cut is based on the spatial information in one single image only. To get

meaningful segmentations the temporal information derived form the GSM Background

Subtraction have to be added. This is done by taking the GSM segmentation as a starting

point for the N2Cut optimization. Based on this a local optimization process is run and

produces the final segmentation. It is important that the optimization algorithm is only

local and may get stuck in local minima because this ensures that the basic structure

of the segmentation is derived from the temporal information (GSM) and the N2Cut

optimization only makes it spatially coherent.

2.3 Markov Random Fields

Another way to add spatial information to the GSM results are Markov Random Fields

(MRF). To achieve this the MRF described in [19] is used. It models the spatial relations

between single pixels and hence forces the segmentation to be locally coherent.

The most important part of a MRF is the neighborhood system. We use a generalized

Moore Neighborhood because it assures the homogeneity of the MRF and also can eas-

ily be changed in size. In the generalized Moore Neighborhood, the neighborhood for a

pixel is defined by a square which is centered at that pixel and which can vary in size.

The number of different combinations of neighbouring pixels (cliques) will increase

radically with the size of the square. The input data, probabilities of being background

or foreground for each pixel, is derived from the GSM Background Subtraction.

After constructing the MRF model of the spatial relations of the image, the most

likely state (segmentation) of that model has to be computed. This maximum a poste-

riori (MAP) is very difficult to compute and can only be approximated for a problem

of reasonable size. First a cost function is needed which can evaluate the different seg-

mentations based on the MRF model. This function consists of two parts, one part

measures how good the segmentation matches the GSM result. Basically, the smaller

wi, the higher is the penalty for labeling the pixel i as foreground. The second part of

that function evaluates the spatial coherence of the segmentation. As our assumption is

that natural images are smooth, neighbouring pixels should have the same label. If this

is violated, there will be a penalty to the cost function.

This cost function is then converted to a factor graph and optimized with a loopy

max-product Belief Propagation algorithm. Although this will only approximate the

MAP, it can still take a long time and requires a lot of memory to do so. This is due to the

fact that the amount of cliques increases so drastically with the size of the neighborhood.

To reduce this effect we decided to simplify the model and only take one clique size

(the largest cliques) into account. Also, the spatial component of the energy function

was kept as simple as possible to further reduce the computational load. It returns zero
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if all neighbours of the pixel have the same label and one if at least one neighbour

has a different label. These simplifications allowed us to build and optimize the MRF

model on an 1920× 1080 image in around one minute. Without them it would have

been infeasible to do so in less than a week.

3 Results

To evaluate these algorithms we tested them first on the popular but old wallflower

dataset. The results can be seen in Table 1 and show that our methods perform quite

well in air and that N2Cut clearly outperforms the Markov Random Fields there. Ad-

ditionally to the accuracy increase, the optimization of the N2Cut is also 2 orders of

magnitude faster and can be done in real time.

For the evaluation in underwater environments no data sets are freely available at

the moment. Hence, we took some underwater videos ourselves with a Go Pro Hero

3 and manually created some ground truth data for them. Two frames of these videos

and the corresponding segmentations can be seen in Fig. 1. To measure the accuracy of

these segmentations we use the F1-Score and Matthews Correlation Coefficient [24].

They are a better indicator of the quality of segmentations than the simple amount of

wrongly classified pixels (which is the standard measure for the Wallflower dataset and

was also used here for comparison reasons), especially when the amount of foreground

is very small. The reason for this is that, the weight of foreground and background

pixels changes according to the amount of foregound visible in the image.

In both pictures the N2Cut performs substantially worse than the MRF algorithm

(see Table 2). In the right image even the GSM Background Subtraction without any

spatial model is better. This behaviour is quite constant in all the underwater videos we

took, although not as strong as in these two selected examples. The reason for this is that

the MRF approach smoothes the segmenation just based on the background subtraction

result as opposed to the N2Cut which alligns the segmentation to the nearest edges in

the image. However, this allignment fails in underwater images because the blurring

impedes any clear edges. This behavior is enhanced by the often low color disparity

between fishes and the background, which enables them to hide from enemies. In the

end, instead of aligning the segmentation to the edges the N2Cut often degenerates

foreground objects to simple rectangles because there are no clear edges to which the

object can be alligned to. All in all, MRF is better suited as a spatial model in underwater

situation if real-time capability is not an issue.

4 Future Work

In the future, we want to use some underwater image enhancement algorithms (mainly

deblurring and color correction methods) on the images before the segmentation process

starts. We hope that these will allow the N2Cut to perform better and will give the same

accuracy and speed advantages in underwater circumstances as it does achieve for air

images.
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Algorithm Errors
Single Gaussian [7] 35133

Mixture of Gaussian (MoG) [8] 27053

Kernel Density Estimation [10] 26450

MoG with PSO [25] 13916

MoG in improved HLS Color Space [9] 9739

MoG with MRF [17] 3808

Gaussian Switch Model (GSM) [this paper] 9718

GSM with MRF [this paper] 7169

GSM with N2Cut [this paper] 5064

Table 1. The results of different algorithms on the Wallflower [11] data set.

GSM GSM + MRF GSM + N2cut

Left Image F1-Score: 0.990687 0.991428 0.982705

MCC: 0.852013 0.879739 0.796699

Right Image F1-Score: 0.995831 0.996647 0.996094

MCC: 0.424601 0.540039 0.43656

Table 2. The F1-Score and Matthews Correlation Coefficient for the different segmentations in

Fig. 1.
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