

Inspections and Pair Programming – competing
or complementary?
Experiences from an Expert eWorkshop

Authors:
Ralf Carbon

Marcus Ciolkowski
Christian Denger

Mikael Lindvall
Forrest Shull
Patricia Costa

Dieter Rombach

Victor Basili

IESE-Report No. 029.05/E
Version 1.0
May 4, 2005

A publication by Fraunhofer IESE

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Sauerwiesen 6
67661 Kaiserslautern

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Abstract

The common goal of the two practices Pair Programming and Inspections is to
produce high quality software. Even though they have a common goal, their
approaches are different, and they are typically used in different situations. Pair
programming is typically applied as a part of agile development methodologies,
such as Extreme Programming, whereas Inspections are often applied in plan-
driven or CMM-based methodologies. In order to gain a better understanding
of these two practices and their strengths and weaknesses, we facilitated an
expert eWorkshop. Our goals were to compare the two practices as well as to
understand in which situations the two practices can be best applied. Our
eWorkshop discussion highlighted several differences in the benefits that can
be expected from the practices (along dimensions such as objectivity of review
and achievable level of quality), indicating that the practices can be considered
complementary in order to achieve the full range of effects.

Keywords: Pair Programming, Inspections, eWorkshop, Experience, Visek

Copyright © Fraunhofer IESE 2005 v

Table of Contents

1 Introduction 1

2 Setting the Stage for Discussion 3

3 Effect on Quality 5

4 Third Party Perspective 6

5 Feedback Cycle 7

6 Using practices in foreign home grounds 8
6.1 Applying Inspections in an agile context 8
6.2 Applying Pair Programming in a CMM context 9

7 Conclusions 10

References 12

Appendix: Definitions 14
Side bar: Pair Programming 14
Side bar: Software Inspections 14

Copyright © Fraunhofer IESE 2005 vii

Introduction

1 Introduction

Software developers striving to develop high quality software typically apply dif-
ferent practices to remove defects. Knowing that it is more expensive to re-
move defects late in the life cycle, a common approach is to detect defects as
early as possible. There are several practices that detect defects early, theoreti-
cally leaving software developers with the need to pick the most efficient prac-
tice, or combinations of practices, for the task at hand. In practice, however,
the environment in which they perform their work has a strong influence on
the selection of the practice to be used. Inspections have, for example, been
the natural choice in order to detect defects in plan-driven or CMM-oriented
software development environments. Pair programming is more common in ag-
ile environments and form parts of agile methodologies such as eXtreme
Programming (XP).

Although in many ways dissimilar, both practices, Pair Programming and In-
spections, have the common goal of producing high quality software with
minimal defects, through structured collaboration among developers and re-
viewers. Inspections and Pair Programming are both able to detect defects
early, but in which environments and to what software development tasks are
they best applied? And: In what ways are they complementary, and how can
they be combined in order to maximize their defect detection capabilities?
Questions like these cannot be satisfactorily answered until we can characterize
these practices and their effects. For a more detailed definition of the tech-
niques, please refer to the Appendix and the sources referenced there.

Performing such characterizations based on empirical observation is one of our
research goals. Evidence from actual use of these and other practices forms
part of our experience base with the goal of helping software developers select
and tailor software processes for the current task at hand. Defect detection has
long been a major component of our research and is one of the reasons why
we strive to gain a better understanding of the common and different charac-
teristics of Pair Programming and Inspections in their capacity to detect defects.

While each of the two practices is relatively well understood, we felt there was
a lack of a systematic characterization of their respective strengths and weak-
nesses. Such characterization is hard, takes time and requires feedback from
many different experts. This paper is just the first step of that characterization.

Copyright © Fraunhofer IESE 2005 1

Introduction

In order to start the work on characterizing these practices, the Center for Em-
pirically Based Software Engineering (CeBASE) in the U.S.1 and the Virtual
Software Engineering Competence Center (Visek) in Germany2 collaborated to
conduct a joint eWorkshop [2].

An eWorkshop is a means for discussing a specific topic via the world wide
web. It allows people at different locations to exchange ideas and arguments in
a virtual meeting room. The discussants need nothing more than a web
browser to participate. Thus, this form of a discussion is an inexpensive and ef-
ficient way of capturing and synthesizing new knowledge from a group of ex-
perts. To obtain meaningful results, an eWorkshop requires a thorough prepa-
ration to focus and to direct the discussion. After their invitation the partici-
pants’ input to the discussion is requested through a pre-meeting question-
naire. The organizers analyse this pre-meeting information in order to prepare
the concrete issues to be discussed in the virtual meeting. A summary of the
pre-meeting information is distributed to the participants to allow individual
preparation. To ensure the discussion goes smoothly and yields information of
value, a number of support roles are required: The moderator has the responsi-
bility to monitor and focus the discussion. The moderator can call for a vote in
order to measure consensus regarding a specific issue. The moderator is sup-
ported by a lead discussant who steers the discussion by proposing the issues to
be discussed next. The scribe summarizes and displays the results online during
the discussion. After the online discussion the eWorkshop is analyzed. The ana-
lysts scrutinize the chat log and the scribe’s summary to extract knowledge
from the discussion. This web-based chat application has been successfully ap-
plied to discuss other topics in the past [13].

Tom Gilb characterized well the overall goals of the discussion when he stated:
“My position is that they (Inspections and Pair Programming) are two different
and complementary practices. We need to understand their costs and benefits
quantitatively, and their best practice modes.” We cannot agree more because
if we can gain this understanding, we would be able to bridge the gap be-
tween the agile and the CMM communities and make use of the best practices
of each methodology to achieve the joint goal: high quality software by balanc-
ing traditional and agile methodologies.

In order to achieve this, we were happy to have the input of a very lively set of
over twenty participants from five different countries and six different time
zones

1 www.CeBASE.org
2 www.Visek.de

Copyright © Fraunhofer IESE 2005 2

Setting the Stage for Discussion

2 Setting the Stage for Discussion

Many associate Pair Programming and Inspections with the coding phase of a
project. While this is not necessarily true, we still decided to view Pair Pro-
gramming as a coding activity and compare it to solo programming and Inspec-
tions.

We focused the discussion on the home grounds for the two practices. The
term “home ground” is often used to characterize the application context for
which a specific software development approach is best suited. According to
Barry Boehm and Richard Turner, the home ground of a development approach
is “a set of conditions under which it is most likely to succeed” [5][6]. Applica-
tion, management, technical, and personnel characteristics define the home
ground of a software development approach [5]. Boehm and Turner describe
two possible home grounds: The agile home ground (primary goals are rapid
value and responding to change) and the plan-driven or CMM-based home
ground (primary goals are predictability, stability, and high assurance). Specific
development practices, such as Pair Programming or Inspections can be as-
signed to a specific home ground: Pair Programming is assigned to the home
ground of agile development approaches and Inspections to the home ground
of CMM-based approaches. However, this may limit the applicability of differ-
ent practices, as they may have strengths that can be of use even if they are
applied in a context different from their home ground. Therefore, we also
wanted to elicit experiences about the benefits of applying one or the other
practice in “foreign” home grounds, for instance, applying Pair Programming in
plan-driven approaches, or applying Inspections in agile development.

To elicit relevant experiences about the strengths and weaknesses of Pair Pro-
gramming and Inspections, we proposed a set of initial attributes for the com-
parison (like quality and cost) and asked participants to propose others of im-
portance based on their experiences. In this paper, we focus on three of the at-
tributes that were shown during the discussion to best illustrate features of the
use of both practices outside their traditional home ground. These attributes
are: effect on quality (i.e., number of defects remaining in the system after us-
ing one of the practices), third party perspective (i.e., the ease of incorporating
additional perspectives, resulting in more objectivity), and the feedback-cycle
(i.e., period of time from appearance of a defect to its removal).

The following table summarizes the main points of discussion with respect to
these attributes. The main outcome of the inspection with respect to the con-
structs is then outlined in detail in the following section.

Copyright © Fraunhofer IESE 2005 3

Setting the Stage for Discussion

Table 1: Summary of the discussion by comparison attribute

Attribute Discussion results
Effect on quality • Both practices have one common goal: producing

higher quality products
• Both techniques reduce number of defects that

slip to the next phase
• More empirical evidence needed on the benefits

of pair programming
Third party per-
spective

• Important benefit of Inspections is having a third
party perspective

• Enables a focus on those aspects that might have
the highest impact on quality

• Pair Programming lacks a third party perspective
• Collective code ownership and rotation of devel-

opment teams are hypothesized to overcome this
lack in Pair Programming

Feedback cycle • The shorter the feedback cycle the better
• Pair Programming has a very short feedback cycle

as defects are immediately detected
• Inspections have a longer feedback cycle, as the

product under inspection needs to be in a some-
how stable state

The full results of the eWorkshop related to all of the attributes discussed can
be found in the online summary of the eWorkshop3.

3 http://www.cebase.org/www/Resources/eWorkshops/PP-insp-summary.html

Copyright © Fraunhofer IESE 2005 4

Effect on Quality

3 Effect on Quality

During the discussion, the experts agreed that one basic commonality of Pair
Programming and Inspections is their common goal: producing higher quality
products. The discussion about quality was centered around the number of de-
fects that might slip through later development phases to field use when In-
spections or Pair Programming are applied. In this context, the participants dis-
cussed which practice could achieve a higher defect reduction. The pre-meeting
feedback and the discussion seems to indicate that with Inspections it is possi-
ble to achieve a very high level of quality (i.e., low rates of defect slippage), al-
though at high cost, but with Pair Programming it is possible to achieve a lower
quality at less cost. Bernhard Rumpe stated that the reason for this is “that if
people are pairing 100%, then pairing is at its limit. The resulting defect rate
cannot be reduced through further pairing alone—but through additional In-
spections, as they are done post-construction.” However, the participants
agreed (this was confirmed by a vote – 18 out of 18 respondents agreed) that
the benefits of Inspections, especially with respect to reduced defect slippage
are well documented. In contrast, even though Pair Programming is hypothe-
sized to lead to lower defect slippage, this is not yet well documented.

Other definitions of quality besides defect slippage were also discussed. For ex-
ample, Erik Arisholm mentioned an experiment that indicates that applying Pair
Programming leads to better maintainable code. For more detail, the interested
reader may refer to the full summary.

Copyright © Fraunhofer IESE 2005 5

Third Party Perspective

4 Third Party Perspective

A second important point of comparison between the two practices is the
question of third party perspective. The third party perspective is an additional
view on the document under Inspection; that is, people who are not directly re-
lated to the construction of the code under Inspection provide additional feed-
back on the code. The pre-meeting feedback indicated that a perceived
strength of Inspections is that they can be more objective because they provide
a third-party perspective.

The assumption behind having a third party perspective is that it increases the
defect detection potential as you get a “fresh” mind checking the quality. Karl
Wiegers summarized this by saying “When you are too close to a work prod-
uct, you tend to believe it’s correct and to trust all the assumptions you made;
external reviewers are less biased, albeit less knowledgeable about the specific
work product.” Another issue regarding third party perspectives is that it is pos-
sible to choose those perspectives that might have the highest impact on the
quality. Barry Boehm said that “one advantage of Inspections is that you can
work on multiple qualities. Perspective-based Inspections enable artifacts to be
reviewed by experts in safety, usability, performance.”

There was some agreement among the participants that Pair Programming it-
self lacks the external third party perspective. There was a broad discussion on
other agile practices that help to compensate this lack of external perspectives.
Two of the experts stated that some of the benefits of outside, objective, or fo-
cused reviewers can be achieved via pair rotation and collective code owner-
ship. There was some discussion on how serious this lack of objectivity is in Pair
Programming. Barry Boehm felt that without allowing the involvement of mul-
tiple quality viewpoints, converging on system requirements is likely to be prob-
lematic: “From a stakeholder win-win perspective, just getting two people to
determine the correctness of requirements is very risky, as it excludes success-
critical stakeholders from the process.” Again, other participants agreed but
said that this is exactly the reason why Pair Programming should always be im-
plemented with more than one pair on the team, collective code ownership,
and the rotation of people through work pairs/groups.

Copyright © Fraunhofer IESE 2005 6

Feedback Cycle

5 Feedback Cycle

A third point that was discussed with respect to achievable quality is the feed-
back cycle of Pair Programming and Inspections. The feedback cycle is the
amount of time between committing a defect during the software develop-
ment process and detecting and removing that defect. All discussants agreed
that a short feedback cycle is most valuable for software development. Most of
the experts agreed that the extremely short feedback cycle of Pair Programming
is a clear advantage of that practice compared to Inspections where the feed-
back cycle is longer. Some experts mentioned that the feedback of Pair Pro-
gramming has a greater “present value.” That is, its feedback cycle is supposed
to be more cost effective as the defect is corrected as soon as it enters the sys-
tem, or is even prevented; thus, it cannot cause follow-up defects. In contrast,
Inspections have to wait until the product that is to be inspected is somehow in
a stable state. Several participants also felt that “if people think the work prod-
uct is done, they can be psychologically resistant to making changes suggested
by Inspection.” This indicates that a short feedback cycle may have more ad-
vantages than just early defect removal.

The experts discussed whether it is possible to overcome or at least to minimize
the drawbacks of Inspections resulting from a longer feedback cycle. Two par-
ticipants stated that Inspections should be performed iteratively; that is, the In-
spection should start as soon as some parts of the work product under Inspec-
tion are available. Karl Wiegers stated that “a good heuristic is to start Inspec-
tions as soon as 10% of the document is available, rather than waiting until the
whole document is done at which point it may be more costly to repair all the
defects.”

Copyright © Fraunhofer IESE 2005 7

Using practices in foreign home
grounds

6 Using practices in foreign home grounds

Based on the strengths and weaknesses of the two practices, we present the
results of the eWorkshop discussion regarding the usage of the practices in the
respective other home ground; that is, we identify under which circumstances it
might be valuable to apply Inspections in an agile project, and in which cases it
may be valuable to apply Pair Programming in a CMM context. In the table be-
low, the main statements of the experts with respect to this question are sum-
marized

Table 2: Using techniques in foreign home grounds

Context Statements
Inspections in an agile
context

• Involvement of various perspectives bene-
ficial to overcome

• Inspections should be used in agile context
when high quality is desired, i.e. the sys-
tem is safety critical

Pair Programming in an
CMMI context

• Short feedback cycle of Pair Programming
might be beneficial

• Usage of Pair Programming should be
driven by level of quality, experience of
developers and the application domain

6.1 Applying Inspections in an agile context

During the pre-meeting and the eWorkshop, the experts were asked to con-
sider the following scenario: “Assume you are applying XP on a project, includ-
ing Pair Programming and other practices. The team lead wants to schedule a
code Inspection of a key module before the delivery date of an important in-
crement, but many of the developers feel that Inspections are always redundant
if they are using Pair Programming. Whose side would you be on?” With this
scenario the experts discussed particular circumstances that would change the
relevance of extra Inspections in an agile context.

There was a controversial discussion about the defect detection potential and
the level of quality that can be achieved with Pair Programming. Inspections can
add a third party perspective and therefore can help detect defects missed by
Pair Programming. However, some experts stated that if domain experts per-
form Pair Programming correctly, there should be no need for an extra Inspec-

Copyright © Fraunhofer IESE 2005 8

Using practices in foreign home
grounds

tion. In contrast, most of the experts agreed that there might be special cases
when it is valuable to perform extra Inspections after Pair Programming. The
decision whether to do so depends on the desired level of quality of the prod-
uct. William Krebs said he feels “that neither Pair Programming, nor unit test-
ing, nor formal Inspections catch 100% of the errors.” Thus, a combination of
the different practices may help to further reduce the chance of still having an
error in a document. Most of the experts agreed that especially key modules
and critical aspects of the system should be inspected additionally to have a
higher quality guarantee. Barry Boehm stated that the decision whether to ap-
ply extra Inspections depends on the risk exposure of having defects in the de-
livered product. If the risk exposure due to unfound defects is high, doing the
Inspection is worthwhile although it may not always be. Thus, some experts
agreed that the development of safety critical systems with agile methods is an
application area where extra Inspections may particularly be needed.

6.2 Applying Pair Programming in a CMM context

To focus the discussion of CMM-based home grounds, the participants used
the following scenario: “Assume you are developing software following a plan
driven approach that includes Inspections on different documents. The team
lead wants to substitute solo programming and code Inspections with Pair Pro-
gramming. Under which circumstances would you find this appropriate?”

Including the pre-meeting results and the eWorkshop discussion, most of the
participants agreed that the decision to substitute solo programming and In-
spections with Pair Programming should be driven by factors such as the de-
sired level of quality, the application domain, and the experience of the devel-
opers. One expert stated that by applying Pair Programming, only a specific
level of quality can be reached which cannot be expanded without using addi-
tional activities such as Inspections. Another suggestion was to substitute solo
programming and Inspections with Pair Programming, but only in the case of
low complexity modules. If we develop in the domain of safety-critical or de-
pendable systems, a substitution of solo programming and Inspections with Pair
Programming does not seem to be appropriate. Furthermore, the experience of
the developers should be taken into account. Only if the developers are experi-
enced, can solo programming and Inspections be substituted with Pair Pro-
gramming.

One strength of Pair Programming mentioned in Section 3 is its short feedback-
cycle; that is, defects do not stay in a software system for a long time. Thus, we
reach a certain level of quality in a shorter period of time compared to applying
solo programming and Inspections, because Inspections have to wait until a
product is somehow stable to be applied, as Bernhard Rumpe mentioned. Thus,
if time to market is more important than quality, this may be one reason to
substitute solo programming and Inspections with Pair Programming.

Copyright © Fraunhofer IESE 2005 9

Conclusions

7 Conclusions

Inspections and Pair Programming are practices that share a common goal of
increasing quality, although they are otherwise very different in nature. Thus,
one important research goal is to characterize the different practices and to
identify in what situations they are best applied. In this paper, we presented the
results of an eWorkshop that represents a first step in answering this question.

The comparison was centered around effect on quality, the value of a third
party perspective, and their impact on the feedback cycle. With respect to ef-
fect on quality, the participants agreed that both practices help to reduce the
number of defects that slip into the next phase, but that we need more evi-
dence for Pair Programming. With respect to third party perspective, the par-
ticipants agreed that Inspections might be more objective because they explic-
itly involve a third party. In Pair Programming, the code is the subject of in-
depth examination by only two people at a time. Neither pair rotation nor col-
lective ownership fully compensates the lack of third party perspectives. The
short feedback cycle was identified as a strength of Pair Programming, as de-
fects are prevented or detected early. Inspections have to wait until the product
is somehow stable; that is, defects may stay longer in the system.

One outcome of the eWorkshop is that all participants agree that it may make
sense to combine the practices under certain conditions. For example, in the
case of developing safety critical systems or the need for high quality end-
products Inspections may be valuable to apply in agile home grounds, as their
effectiveness and the possibility to involve various perspectives may help com-
pensate for some shortcomings of Pair Programming. On the other hand, the
short feedback cycle of Pair Programming may add value in CMMI-based home
grounds, especially when the developed system is of lower complexity and the
developers have a high domain experience.

In addition, during the pre-meeting feedback and the discussion, the partici-
pants raised several research questions that should be addressed in the future.
For example, we need more information about the impact of the techniques on
correctness, reliability, maintainability, etc. Furthermore, we would like to know
what quality level can be reached with which practice, and which of the prac-
tices is useful for which type of defect, and for which type of documents.

All in all, the application of Pair Programming and Inspections in each other’s
respective home ground seems to be valuable under specific circumstances.
More research is needed to develop a detailed understanding of the two prac-
tices to be able to find a trade-off between them in a concrete development

Copyright © Fraunhofer IESE 2005 10

Conclusions

context. The goal should be to define a process that gives explicit guidance on
when to apply which practice, taking into account the desired level of quality,
costs, benefits, criticality, and complexity of modules as well as the risks of a
software failure after delivery.

Acknowledgements

We would like to thank all the participants of the eWorkshop for their valuable
contributions, in alphabetical order: Scott Ambler, Erik Arisholm, Victor Basili,
Barry Boehm, Winsor Brown, Tom Gilb, Philip Johnson, Bill Krebs, Oliver
Laitenberger, Filippo Lanubile, John Manzo, Frank Maurer, Steve McConnell,
Dieter Rombach, Bernhard Rumpe, Barbara Russo, Gunjan Sharman, Alberto
Sillitti, Karl Wiegers, Laurie Williams. This work is sponsored by ViSEK (funded
by the German Federal Ministry of Education and Research under grant
01ISA02) and CeBASE (funded by the National Science Foundation under grant
CCR0086078).

Copyright © Fraunhofer IESE 2005 11

References

References

[1] Basili, Victor R.; Evolving and Packaging Reading Techniques; Journal of
Systems and Software 38 (1); 1997.

[2] Basili, V., Tesoriero, R., Costa, P., Lindvall, M., Rus, I., Shull, F., Zelkowitz,
M.: Building an Experience Base for Software Engineering: A report on
the first CeBASE eWorkshop. PROFES 2001, pp 110-125.

[3] Fagan; Michael E.; Design and Code Inspections to Reduce Errors in Pro-
gram Development; IBM System Journal, 15 (3); 1976.

[4] Beck, K.: Extreme Programming Explained - Embrace Change. Addison
Wesley, Reading, Massachusetts, 2000.

[5] Boehm, B., Turner, R.: Balancing Agility and Discipline – A Guide for the
Perplexed. Addison Wesley, 2003.

[6] Boehm, B.; Turner, R.: Balancing your Organization’s Agility and Disci-
pline, XP/Agile Universe 2003, LNCS 2753, pp. 1-8, 2003.

[7] Cockburn, A., Williams, L.: The Costs and Benefits of Pair Programming.
In Extreme Programming Explained, Addison-Wesley, pp. 223-243, 2001.

[8] Constantine, L.L.: Constantine on Peopleware. Yourdon Press, Englewood
Cliffs, N.J., 1995.

[9] Fagan; Michael E.; Design and Code Inspections to Reduce Errors in Pro-
gram Development; IBM System Journal, 15 (3); 1976.

[10] Gilb, Thomas; Graham, Dorothy; Software Inspections; Addison-Wesley
Publishing Company; 1993.

[11] Laitenberger, Oliver; Cost-effective Detection of Software Defects through
Perspective-based Inspections; PhD Thesis in Experimental Software Engi-
neering; Fraunhofer IRB Verlag; 2000.

[12] Laitenberger, O., DeBaud, J: .An Encompassing Life-Cycle Centric Survey
of Software Inspection, Journal of Systems and Software, 50 (1), 2000.

[13] Lindvall, M.; Basili, V.; Boehm, B.; Costa P.; Dangle K.; Shull, F.; Tesori-
ero, R.; Williams, L.; Zelkowitz, M.: Empirical Findings in Agile Methods,
Proceedings of XP/Agile Universe 2002, pp. 197-207.

Copyright © Fraunhofer IESE 2005 12

References

[14] Strauss, S.H.; Ebenau, R. G.; Software Inspection Process; McGraw Hill
Systems Design&Implementation Series; 1993.

[15] Travassos, H. Guilherme; Shull, Forrest; Fredericks Michael; Basili, Victor;
Detecting Defects in Object Oriented Designs: Using Reading Techniques
to Improve Software Quality; In the Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA); Denver, Colorado; 1999.

[16] Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening
the Case for Pair Programming. IEEE Software, July/August 2000.

[17] Wiegers, Karl: Peer Reviews in Software – A practical Guide, Addison-
Wesley, 2002.

Copyright © Fraunhofer IESE 2005 13

Appendix: Definitions

Appendix: Definitions

Side bar: Pair Programming

One item of discussion in our eWorkshop was Pair Programming and its
strengths and weaknesses. In Pair Programming, two programmers are working
together, side by side, sharing one computer [16][7]. One of them takes the
role of the driver who operates the keyboard and the mouse and writes the
code. The other one, the observer, watches the driver’s actions, tries to find er-
rors and plans ahead; that is, he continuously reads through the code written
by the driver and checks its quality. After a certain time the developers switch
the roles, or the teams can rotate, which means new pairs are composed. Pair
rotation aims at distributing knowledge in a software development team.
Pair Programming has been described several times in the last decades as an al-
ternative to solo programming [8]. With the rise of agile software development
Pair Programming gained in importance because it enforces quick feedback.
Pair Programming is a key practice in several agile development approaches, for
instance, Extreme Programming (XP) [4]. Pair Programming is a means of ana-
lyzing, designing, implementing, and testing a software system [16]. In this dis-
cussion, we focus on Pair Programming as an implementation practice to com-
pare it to the combination of solo programming and code Inspections.

Side bar: Software Inspections

Software Inspections are an industrial-strength quality assurance technique that
is widely used in many industrial domains. The Inspection approach was first
published by Fagan [9]. Fagan Inspections were focused on detecting defects in
code documents. During the last decades, the Inspection approach was tailored
to other software engineering artifacts; for example, to requirements docu-
ments, test cases, and design documents [10][17][11][14][15][1]. The benefits
of Inspections, especially their effectiveness and efficiency in reducing defects,
are well documented in many empirical studies [12].
In this discussion, we focus on code Inspections to better compare it with Pair
Programming. Thus, in our context, Inspections are defined as a static verifica-
tion technique of code documents, where a set of inspectors reads a code
document to ensure that certain quality criteria are fulfilled. Inspections are per-
formed according to a defined process and follow the principle of getting many
eyes on a document; that is, people with relevant technical knowledge verify its
quality.

Copyright © Fraunhofer IESE 2005 14

Document Information

Title: Inspections and Pair Pro-
gramming – competing or
complementary?
Experiences from an Expert
eWorkshop

Date: May 4, 2005
Report: IESE-029.05/E
Status: Final
Distribution: Public

Copyright 2005, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

	�
	Introduction
	Setting the Stage for Discussion
	Effect on Quality
	Third Party Perspective
	Feedback Cycle
	Using practices in foreign home grounds
	Conclusions
	References
	Appendix: Definitions
	Document Information

