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Abstract—Vehicular positioning technologies enable a broad
range of applications and services such as navigation systems,
driver assistance systems and self-driving vehicles. However,
Global Navigation Satellite Systems (GNSS) do not work in
enclosed areas such as parking garages. For these scenarios, a
wide range of indoor positioning technologies are available inside
the vehicle (internal) and based on infrastructure (external).

Based on our previous work, we use off-the-shelf network video
cameras to detect the position of moving vehicles within the park-
ing garage in multiple non-overlapping camera views. Towards
the goal of using this system as positioning source for vehicles,
detected positions need to be transmitted to the communication
endpoint in the correct vehicle. The key problem thereby is the
association of the externally-observed position to the endpoint in
the corresponding vehicle. State-of-the-art tracking-by-detection
techniques can differentiate multiple camera-detected vehicles
but the generated tracks are anonymous and cannot inherently
be associated to the corresponding vehicle.

To bridge this gap, we present a tracking-by-identification
solution which analyzes vehicle movement patterns by multiple
vehicle sensor modalities and compares them with camera-
detected tracks to identify the track with the best correlation.
The presented approach is based on Kalman Filters and suitable
for real-time operation. Test results show that a correct and
robust association between endpoints and camera-detected tracks
is achieved and that occurring identity switches can be resolved.

I. INTRODUCTION

From navigation systems over driver assistance systems
to self-driving vehicles, accurate positioning systems have
become indispensable to modern vehicles. Common internal
positioning systems use GNSS [1] to determine the absolute
position of the vehicle. However, these systems have the
disadvantage that they are inoperative in enclosed areas. In
reality driving does not only stop in front of buildings but
often continues into parking garages, tunnels, etc. Especially in
urban areas an increasing number of multi-story car parks have
been built. In order to provide a seamless integration between
outdoor and indoor operation of the existing applications,
additional indoor positioning systems are necessary.

From client-based SLAM [2], [3] over wireless positioning
systems [4], [5] to vision based systems [6], [7], a wide range
of technologies provide solutions for this task. Especially

vision based systems represent a promising technology due
to the favorable combination of accuracy, processing rate and
system cost. These systems achieve sufficient accuracies in
narrowly-spaced buildings and offer low system cost due to
the ubiquity of cameras. However, one of the key problems of
external vision based systems is the missing identity informa-
tion from the detected vehicles in the camera images and thus
difficult association of determined positions to the wireless
endpoints in the vehicles.

Tracking targets detected across multiple non-overlapping
camera views is a common challenge in computer vision which
has been thoroughly investigated and many different solutions
have been proposed [8]. Most of the approaches are based on
the concept of detection-by-tracking [9], [10] which enables to
differentiate multiple moving targets based on spatiotemporal
information. However, if several targets come close to each
other and disperse, identity switches are likely to occur which
are not resolvable by these methods. Moreover, the tracked
targets cannot be identified, i.e. they are anonymous.

Another class of algorithms is often called tracking-by-
detection [11] as appearance-based information is incorpo-
rated. These methods are more complex but have the advantage
that identity switches can be detected and resolved. In most
cases the tracked targets are still anonymous since they can
be differentiated according to their appearance but it is not
possible to obtain a unique identification of the tracked target.

The third class of tracking methods is the so called tracking-
by-identification [12] which combines the anonymous camera-
based tracks with other positioning systems which include
strong identity information, such as client-side positioning
systems. Our approach falls into this category of tracking-by-
identification techniques: We present a concept for the associ-
ation of anonymous camera-detected tracks to communication
endpoints in vehicles equipped with multiple sensor modali-
ties. To this end, multiple track correlation metrics are defined
which enable the comparison of camera-detected tracks and
vehicle sensor modalities (e.g. odometry sensors, WiFi infor-
mation, etc.). These metrics consider the vehicle’s movement
pattern (e.g. acceleration, speed, rotation etc.) which can be



compared with global movement patterns recorded by the
cameras to find the track which constitutes the best match.

Based on our previous work [13], it is possible to reliably
detect moving vehicles and to track them across multiple non-
overlapping camera views in the context of parking garages.
The central goal is to create a camera-based indoor localization
system for vehicles which seamlessly takes over when GPS is
unavailable. To achieve this goal, the externally-observed po-
sitions needs to be transferred to the communication endpoint
in the corresponding vehicle. The proposed approach enables
the identification of the camera track with the best correlation
to the vehicle’s sensor modalities. By creating an association
between endpoint and the identified track, only appropriate
camera-detected positions are forwarded to the endpoint.

The paper is organized as follows. In Section 2 related
approaches are presented. The system overview of all compo-
nents is provided in Section 3. In Section 4, the methodology
is provided, that represents the essential building blocks for
the system. Section 5 contains the experimental evaluation in
a realistic scenario. The paper closes with a conclusion and
future outlook in Section 6.

II. RELATED LITERATURE

This work can be considered as extension of the eValet [13]
project which is an indoor micro-navigation system for park-
ing garages based on off-the-shelf network cameras. In this
project, infrastructure-based cameras are utilized to determine
the global position of moving vehicles. Additionally, indoor
maps of the parking garage are provided as well as information
about free parking lots.

Another project [14] employs infrastructure-based LIDAR
scanners inside carparks in order to enable autonomous self-
driving vehicles. The laser scanners fulfills the same task as the
cameras in the eValet project which is the external detection
and positioning of objects within the parking garage. However,
laser scanners are more expensive and more limited in the
quantity of provided information compared to cameras.

A camera-based detection and tracking system for tunnels
is proposed in [15]. The goal is to reliably keep track of
vehicles even under harsh operational conditions such as low
illumination and a high density of vehicles. A subset of
detected vehicle features is provided to the tracking algorithm
which represents a tracking-by-detection approach.

Although infrastructure cameras are widely-deployed in
public parking areas (e.g. surveillance cameras), there are
relatively few attempts in using these cameras as positioning
system for vehicles. In the case of pedestrians however, an
external camera-based positioning system is presented in [12].
In this system, infrastructure cameras are used to detect
multiple persons which are equipped with a Ultra-Wide-Band
(UWB) radio positioning system. A tracking-by-identification
approach is used to reliably track the individual persons and
to maintain their identity and resolve identity switches.

To the best of our knowledge, there is no comparable ap-
proach utilizing multiple vehicular sensor modalities for iden-
tifying tracked targets across multiple non-overlapping camera

views. Moreover, the utilization of commercial cameras to
perform seamless indoor-positioning for vehicles in parking
garages represents a unprecedented application scenario.

III. SYSTEM OVERVIEW

The infrastructure side of our camera-based positioning
system is partitioned into three software components as shown
in Fig. 1: The Detection Module, the Tracking Module and
the Identification Module. Vehicles are also equipped with a
software component, our so called InCarPlatform which can
be considered as positioning client and sensor information
provider to the positioning system.
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Fig. 1. FMC diagram of the system.
A detailed explanation of each component and their inter-
action is provided subsequently:

A. Detection Module

We utilize customary monocular network cameras to mon-
itor the lanes within the car park. For this purpose, each
camera’s video stream is analyzed by a dedicated software
agent. Our so called Lane Monitoring Worker (LMW). Once
a LMW detects a vehicle, the software calculates the geo-
position (latitude, longitude and elevation) of the vehicle and
sends it to the Detection Module (DM) which takes over
the management of the LMW and provides the geo-position
information to the Tracking Module (TM).



The detection is implemented in a three stage approach.
During the first stage, a combined motion detection and
classification algorithm locates all moving vehicles within the
camera field of view. During the next step, features of the
detected vehicles are extracted and matched to features of
already known ones to recognize new vehicles in the camera
view. In this way, the vehicles are tracked from their entrance
in the camera-observed area until they leave. Based on the
relative distance of the vehicle to the camera and the a priori
knowledge of the mounting location of the camera the geo-
position of each vehicle is calculated and sent to the DM in
the last stage.

During this three step process, each LMW works indepen-
dently and delivers the information to the DM which forwards
it directly to the Tracking Module.

B. Tracking Module

The task of this component is the aggregation of individual
camera-detected positions to tracks. Incoming camera-detected
positions from the DM are combined into tracks according to
spatiotemporal information, thus representing a detection-by-
tracking approach. Thus, a track consists of a series of camera-
detected points and a TID (track identifier). Furthermore,
tracks are managed dynamically, i.e. new tracks can be created
and outdated tracks can be removed after a certain timeout.
Ideally, a single track should represent a single camera-
detected target. Also, the TM has the task of filtering clutter,
e.g. due to misdetections. In contrast to the local tracking in
image space performed by the DM, the tracking performed by
the TM is referred to as global tracking as it takes place in
object space and includes all camera views.

C. Identification Module

This component is in the main scope of this paper perform-
ing the identification of anonymous camera-detected vehicle
tracks based on multiple sensor modalities in the vehicle,
thus representing a tracking-by-identification approach. The
identified tracks are associated to the communication endpoint
in the corresponding vehicle, which enables the transmission
of the correct externally-observed positions towards the goal
of serving as positioning source for the vehicle.

In order to use the infrastructure camera positioning service,
vehicles register at the /M which then sends camera-detected
positions to the appropriate registered endpoint. In order to
check if a camera-detected position belongs to a registered
vehicle, multiple sensor modalities of the vehicle are utilized
to reconstruct its movement pattern. In other words, the IM
forwards each incoming camera-detected position to corre-
sponding vehicle endpoints based on the correlation of the
vehicle’s sensor modalities.

D. In-car Platform

This software component is deployed inside of the vehicle
and represents a positioning client which registers at the IM.
Sensor modalities from the vehicle are provided to the IM,
which in turn performs an identification of the corresponding

camera-detected track and transmits the correct positions.
Usually a computer integrated in the vehicle or a smartphone
is suitable to run the in-car platform software component. The
communication to the infrastructure components is established
using wireless communication interfaces, e.g. 802.11 WiFi
[16]. Additionally, a user interface is provided for displaying
indoor maps and providing navigation services.

IV. METHODOLOGY

In the following, the main building blocks are provided in
order to achieve the proposed vehicular positioning system
based on external infrastructure cameras.

A. Camera Detection and Position Estimation

The detection of moving vehicles within the camera views
is the objective of the DM. As mentioned forgoing, we use a
three stage approach to detect and localize moving vehicles
within the car park:

1) Vehicle Detection: First of all, the video stream is
analyzed for moving objects to limit the subsequent object
detection to this regions. For this purpose, we make use of an
existing motion template algorithm implementation based on
the work of G. Branski and J. Davis [17] which uses a Motion
History Image (MHI) [18] to detect and track movements.

The MHI are updated in each processing cycle one time.
During this update, all motions older than approximately 0.5s
(=fps/2 frames) were deleted and the motions in the MHI were
segmented into regions of interests (ROI). Additionally, we
pre-filter the resulting list of ROIs in advance of the following
object detection by rejecting all elements whose dimensions
are smaller than 10% of the whole image size to reduce the
computational time. Adjacent or overlapping segments are also
being bound together.

As Fig. 2 illustrates, the motion detection provides region
of interests (Fig. 2, dashed rectangle) and the objects direction
of movement (Fig. 2, dashed arrow).

Fig. 2. Detected driving vehicles with root points.

Detecting objects in static images is a common challenge
and accordingly a well investigated area of the computer



vision. For example, C.P. Papageorgiou and T. Poggio demon-
strate successfully in [19] that the known approaches from
other domains can be transferred to detect vehicles.

For our solution, we use a cascade of boosted haar-like
feature classifier. This approach was proposed for the first time
by P. Viola and M. Jones [20] and has been improved by R.
Lienhart and J. Maydt [21]. We trained our classifier with
approximately 3500 positive and negative training images,
taken in a prototypical equipped parking garage.

As figure 2 illustrates, the motion and object detection in
this stage provides a bounding box of the detected vehicles
(see figure 2, rectangle).

2) Local Tracking: After the moving object in the region
of interest was classified as a vehicle, the local identification
process starts. For this purpose, Speeded Up Robust Features
(SUREF) [22] of each vehicle are extracted and mathematically
transformed into feature descriptors to make them comparable.
Each identified vehicle holds a set of these descriptors.

In each frame where a moving object is detected the
computed descriptors are compared to the set of already
known ones using the so called Brute Force Matcher. It
tries to find the nearest neighbors of all descriptors from
the current frame to the known descriptor set [23]. If there
are enough of these nearest neighbor matches the object is
reidentified. Otherwise, it was an unknown/new vehicle and
will be added to the list of known objects.

3) Position Determination: The relative distance between
vehicles and camera will be determined based on interpolation
of distances from a coarse rectangular grid laid out in the
viewable of each camera with known distances between grid
points and to the camera.
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Fig. 3. Geometrical principle for interpolation of grid coordinates in the
non-Cartesian camera view. Grid is overly distorted for better visualization.

A grid is oriented parallel to the midline of a one-way
lane in the parking garage and orthogonal to it. Points are
placed with a distance of 0.5m orthogonal to the midline of a
lane, and with 1m distance parallel to the midline, usually
covering distances of 4m to 20m from the camera in the

direction parallel to the midline of a lane. The coordinates
of the rectangular grid are non-Cartesian in the camera view.
The interpolation algorithm is based on the assumption that
geodesics in the camera view are still lines, though. The
interpolation is done by computing the intersection points
between two lines of two opposing edges for each cube in the
grid and translating angles into relative distances as shown in
Fig. 3. This yields precise distances also for points outside the
grid, particularly in the direction orthogonal to the midline.

B. Global Tracking

The global tracking of all vehicles in object space span-
ning all camera views is the objective of the TM. For each
vehicle, the tracking is based on a 5-tuple of state variables
X = (x,y,v,%,w) consisting of spatial positions of the
vehicle (z,y) in UTM coordinates, its heading angle 1, its
speed in tangential direction v and the differential change w
of the heading angle ¥. We assume a non-linear evolution of
the state variables from one time step to the next given by
equation (1).

x + v Atsin(y)
y + v At cos(y)
a(z,y,v,),w) = v (1)
v+ Atw
w

Each of the state variables corresponds to an observed variable
taken from odometry or camera measurements.

The dynamics of these state variables are modeled within
the Bayesian filtering framework which under assumption of
gaussian noises yields the equations (2) and (3).

a(Xg+1) = a(Xg) + ek, e ~ N(0,Qr) (2)
Yir1 = Hppr1 Xi1 + Met1 M1 ~ N0, Riy1)  (3)

The covariances (), Rj of the gaussians are diagonal. The
relation between observed variables Y and the state variables
in X in equation (3) is linear with gaussian noise 7 and
a diagonal matrix H with O/l-entries. Zero entries in the
diagonal of H mask measurements which are not observed at
the current time step. We use extended Kalman filtering [24]
to resolve the nonlinearity with respect to position coordinates
x,y in equation (1). Since the relationship in equation (3)
between observed and state variables is still a linear one,
the difference to a conventional Kalman filter is the usage
of the linearized update Ay as given in equation (5) for the
predicted covariance estimate matrix P ; from equation (7).
Alternatives are unscented Kalman filtering [25] and Monte
Carlo methods [26].

1 0 Atsin(¢p) wvAtcos(yp) 0
oa 0 1 Atcos(yp) —vAtsin(y) 0
Se =00 1 0 0| @
0 0 0 1 At
0 0 0 0 1
Ay = Ga ) &)



For the sake of completeness, the remaining KF equations
are provided: A priori state estimate (6) and covariance esti-
mate (7), Kalman Innovation (8), Kalman Gain (9), a posteriori
state estimate (10) and covariance estimate (11).

X, =a(Xp_1) (6)

Py = ApPy1 AL + Qx @)

Ny =Y, — H X, 3

Ky = P, H (Hy Py HY + Ry,) ™! 9)
Xy, = X + KNy (10)

Py = (I - KpHy)Po (11)

For each detected track one generalized Kalman filter will
be created. A heuristic is used to create Kalman filters from
outlier detections by the cameras if a number of detections are
found to be close to each other within a certain time frame
and distance but far from all existing Kalman filter predictions.
Similarly Kalman filters will be deleted once they are not
supported by data for a certain time window.

C. Tracking-by-identification Approach

This component represents the main scope of this paper
which resides in the /M. Multiple sensor modalities are utilized
from each registered vehicle in order to compare its movement
pattern to the camera-detected tracks and find the one with best
correlation. Thus, several track correlation metrics are defined
which indicate the correlation of camera-detected tracks and
sensor modalities. Fig. 4 illustrates the methodology: For each
registered vehicle, a Track Identification instance is created
which contains one tracking filter for each camera track.

Camera tracks are sorted
according to correlation to
sensor modalities:

Filter 1 highest correlation
Filter N lowest correlation

Track Identification

Tracking-by-identification

N camera tracks

»- Tracking filter 1 Forward po§|t|on
L ] to endpoint

> Tracking filter 2
» Tracking filter N

A 4 A

Sensor modalities
provided by
registered vehicle

Fig. 4. Overview about tracking-by-identification methodology.

The tracking filters are sorted according to their correlation
to the sensor modalities of the vehicle, i.e. the first track
has the highest and the last track the lowest correlation
respectively. Hence, the first track is considered belong to
the registered vehicle. Consequently, only incoming camera-
detected positions to the first track are forwarded to the actual

registered endpoint whereas incoming positions to other tracks
are disregarded.

1) Tracking filter: The tracking filter is an EKF as described
in Section IV-B. A separate tracking filter is used for each
camera-detected track.

2) Suitable Sensor Modalities: The fundamental idea is to
use vehicle sensor modalities which measure the movement
and position of the vehicle in order to derive metrics to achieve
a comparison with the camera-detected tracks. Basically, a
classification into absolute and relative sensor modalities is
sensible. Absolute sensor modalities can be derived from
sensors measuring position and driving direction of the vehicle
(e.g. WiFi positioning and magnetic compass resp.). Relative
sensor modalities on the other hand, can be acquired from
sensors measuring the velocity or angular velocity of the
vehicle (e.g. wheel speed sensor and wheel angle sensor resp.).

3) Track Correlation Metrics: In the following, several
metrics are defined to assess the correlation of camera-detected
tracks to absolute and relative sensor modalities respectively.
Absolute sensor modalities provide position or heading infor-
mation for the vehicle which can be compared to the current
position and heading of all camera-detected tracks. In terms
of position, the Euclidean distance between the vehicle’s self-
position (xs k.ys,k) (e.g. obtained by WiFi positioning) and
the current externally-observed position of each camera track
(z,yx) at each time step k yields metric M3:

Ms = V/Crk"ISk)24’(yk"y&k)2

In order to improve the accuracy and robustness of the
vehicle’s self-position estimation, two additional state vari-
ables are added to the EKF state transition matrix in (1):
xs = x5 + vAtsin(¢) and ys = ys + vAtcos(y). Hence,
incoming measurements of the self-position (e.g. WiFi posi-
tioning) are assigned to xs and ys. In the following, the a
posteriori state estimate of x and y, at time step & is referred
to as Kalman-filtered self-position (T, k,Ys f,k)-

Consequently, metric M, is defined as the Euclidean dis-
tance between the Kalman-filtered self-position (zs¢ ,Ys k)
and the camera-detected position (zg,yx):

My = \/(xk — Tsf k) + (Yr = Ysrk)?

In terms of the heading 1), the absolute value of the angle
difference between a measured heading inside the vehicle v j
and camera-observed heading 1y is considered as metric Ms5:

Ms = Y — Vs (14)

In this case, the lowest correlation occurs for two vehicles
which are driving in opposite directions i.e. having an angle
difference of 180 degrees.

For relative sensor modalities, track correlation metrics are
derived by utilizing internal properties of the tracking filter, i.e.
the Kalman Innovation Ny = N}, from (8). Ny j represents
the difference between measurements and predictions for each
state variable and thus reflects the correlation between the rel-
ative sensor modalities (e.g. speed, wheel angle) and camera-

12)

13)




detections. However, N; j is not suitable for deriving track
correlation metrics because it is prone to variations of noise in
different camera detection areas. For instance, areas with good
lighting conditions and thus highly accurate camera detections
might always have the best correlation regardless of the real
track identity. To overcome this limitation, the smoothed state
estimate of the KF X}, = X , is fed into a second KF which
has near-zero measurement covariance matrix Ry, thus the
state estimate Xo j, instantly converges to X ;. Hence, the
Kalman Innovation at the second KF results in:

Noj = Hp X — Hie Xy ), (15)

Ns j, can be simplified: Assuming that X3, = Xy = X1
and considering (10), X = X + KNy 1, is substituted into
(15) obtaining:

No = Hp KNy (16)

Hence, track correlation metrics are derived from N, . By
performing an averaging over the last D values, the movement
of the vehicle over a certain time period is considered. The
number of values D depends on the KF update interval ATy,
and on the averaging time interval AT, :

ATqug
ATy
Hence, the metrics M; and M5 are defined as follows:

D= (17)

k
1
M = - | Z NZ,.+N3, (18)
i=k—D
1 k
My = 5 }_;D |Na oy i (19)

Assuming ATy = 100ms and AT,,, = 5000ms, then
D =50 i.e. M; and M5 comprise 50 values.

A simplified illustration of the track correlation metrics is
shown in Fig. 5. For relative sensor modalities, measurements
and predictions are compared, thus Ny is expressed by its
components, c.f. (16): Noz 1 = 2 — ., Noyr = Yk — Yy,
and N3 y 1 = 9 — 1, . In comparison to the metrics Ms, M,
and M5 derived from absolute sensor modalities, M7 and M
are also based on the Euclidean distance and angle difference
resp. The essential difference is that the average aberration of
incoming camera-detected positions to the KF a priori estimate
is evaluated, instead of absolute aberrations.

D. In-car Platform

The intention of the In-car Platform is to provide an indoor
car park navigation system that resembles GPS navigation
systems for the public road network [13]. For this purpose
precise positioning is required, which is available through the
external camera-based positioning system.

For the connection between the infrastructure and the vehi-
cles, customer WiFi based on the 802.11g standard [16] is
used. For communication over 802.11g WiFi a proprietary
protocol is used. The In-car Platform opens a TCP socket,
registers at the /M by accessing a registration webpage where
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Fig. 5. Identification metrics M7 and M2 based on relative sensor modalities
(top) and M3 and M, based on absolute sensor modalities (bottom).
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Fig. 6. FMC diagram of the in-car platform.

the number of the open TCP port is submitted. Subsequently,
the IM establishes a TCP connection to the In-car Platform
which is used to provide vehicular sensor modality data (e.g.
WiFi positioning, odometry). In turn, the In-car Platform re-
ceives position data from the /M once the vehicle is recognized
in the camera views and the correct track is assigned.

The in-car platform consists of several components referred
to as bundles, as can be seen in Fig. 6. The Java-based OSGi
[27] framework has been selected as platform because it offers
advanced modularization capabilities.

The Communication & Positioning bundle is intended for
connections to external components and for the management



of positions. On the one hand, sensor modalities from the
vehicle are accessed. Received Signal Strength (RSS) mea-
surements for a WiFi positioning technique and odometric
sensor data are acquired from the WiFi adaptor and CAN
bus respectively. Given a set of RSS measurements, a WiFi
position is estimated based on the approach presented in
[28]. On the other hand, communication with the /M on the
infrastructure side is performed, in order to provide sensor
modalities and receive positioning data.

The Communication & Positioning bundle forwards the
positioning data to the Navigation bundle. The latter provides a
turn-by-turn navigation that directs the driver to a free parking
lot. Thereby it makes use of the Routing bundle which has a
database with the way network of parking garages that the
driver uses regularly. Moreover, for unknown parking garages
it retrieves map data from an appropriate server.

Last but not least, a HMI represents the connection to the
driver for displaying map and navigation instructions.

V. EVALUATION

For our project, we have a common company parking garage
equipped with both network cameras to observe the lanes and
a WiFi infrastructure. The test site within the parking garage
has a total area of around 2800m? and includes an overall lane
length of appr. 350m. The road layout has two long straight
roads with three joints, as shown in figures of Table V-B.

The lanes are monitored by six network cameras (AXIS
Q1604). The cameras provide an MJPEG encoded video
stream with 12802720px and 24 fps. The illumination within
the camera monitored area differs between 40z and 240lz.
The WiFi infrastructure consists of nine APs (TP-Link TL-
WAO90IND with OpenWRT OS) evenly distributed to provide
car-to-infrastructure communication and WiFi positioning.

Evaluation results for the utilized sensor modalities, the
temporal behavior of all data flows and the tracking-by-
identification approach are provided subsequently.

A. Sensors

A dynamic WiFi-positioning system [28] has been imple-
mented in the parking garage, which has an accuracy of 10m
in 90% of all estimations. In the current implementation,
about every 2.5s a new position is estimated. The position
is estimated at the vehicle and transmitted to the /M via WiFi.

As described in detail in [13], we are able to provide a
higher positioning accuracy in comparison to standard GPS
[29] with our camera-based indoor positioning system. As de-
scribed in Section V-B, we can ensure a positioning update rate
of more than 10H z due to several improvements compared to
the system in [13].

Odometric data (e.g. vehicle speed and wheel angle) can be
accessed at the CAN bus at modern vehicles which use these
information for a wide range of driver assistance applications.
Recent Field Operational Tests (FOT) for V2X applications
[30] demonstrate the utilization of odometric sensor data. In
our experiments, a Smart Fortwo has been used (see Fig. 2)

providing odometric data over a CAN bus adaptor which is
transmitted to the /M via WiFi.

B. Temporal Behavior

According to [31], we developed a testing tool to measure
the capture-to-LMW delay, i.e. the time that elapses from
capture to provision of the images to the LMWs. The LMW
is implemented in C++ and uses the computer vision library
OpenCV (v2.4.5). The following delay measurements were
performed on a notebook with an Intel(R) Core(TM) i7
(2860QM 2.5GHz) and 16GB of RAM on Ubuntu 12.04
LTS (64 bit) operating system. For MJPEG coded video
streams, we measured a median delay of approximately
128ms. The minimum delay was 89.39ms and the maximum
delay 185.89ms. In addition to the capture-to-LMW delay,
the LMW requires between 6ms and 48ms to process an
incoming frame until it can provide some information to the
DM. In the first case, there are no changes within the image
stream. In the second case, the LMW have to classify multiple
movable objects within the camera observed area. The overall
delay from image capturing to the provision of positioning
information to the 7M is between appr. 100ms and appr.
240ms.

The TM&IM is implemented as Java Tomcat web appli-
cation and its performance measured using the Java profiler
VisualVM (v1.3.5). For the experimental scenarios in the
following section, CPU and memory utilization are analyzed.
The experiments are conducted on a desktop PC with an
Intel(R) Core(TM)2 Duo CPU (E6750 2.66GHz) and 3 GB
of RAM on Windows 7 (32bit) OS with Java JDK v1.7.0-
21. The profiler results show a maximum CPU and heap
memory utilization of 55% and 110MB respectively. Peaks in
CPU utilization coincide with garbage collector (GC) activity
thus an adjustment of the GC in productive applications is
advisable. The TM &IM processing delay, i.e. the time between
receiving a position detection from the DM until forwarding
it to the In-Car Platform, is less than 10ms in 98% of all test
cases.

On the In-Car Platform, the Network Time Protocol (NTP)
[32] is used to achieve synchronous clocks with the infrastruc-
ture. The highest delay variation on the vehicle side is caused
by the WiFi channel. For 97% of all transmission between
infrastructure and vehicle (and vice versa) the delay is below
40ms. The average delay is approx. 23ms and the maximum
delay reaches 850ms, mainly due to handoffs between APs.

Last but not least, the Detection to Endpoint delay is deter-
mined, i.e. the complete time period from image acquisition
in the camera until reception of the detected position in
the vehicle endpoint. The minimum, maximum and average
Detection To Endpoint delay is 42ms, 998ms and 150ms
resp. The high maximum delay occurrs only in very few cases
and can be attributed mainly to the WiFi transmission delay.
By applying dead reckoning at the In-Car Platform, received
positions can be advanced according to the current vehicle
speed and direction, in order to mitigate the positioning error
caused by the Detection to Endpoint delay.



Track | Vehicle speed | Duration | Trail
Z | 30.45mis | 245
E 2.3 ..3.0 m/s 14 s
F 2.6 .. 3.6 m/s 16 s
G 0.0 .. 3.0 m/s 21 s
TABLE I

OVERVIEW TEST SCENARIOS.

C. Tracking-by-identification Approach

We have developed a testing framework which enables the
replay of recorded log files into the /M implementation in real-
time. This framework is referred to as Simulated Vehicle, as
it behaves like an actual vehicle, i.e. performing registration,
providing sensor data and camera-detected positions. More-
over, multiple camera tracks can be replayed simultaneously.
The advantage of this approach is that no modifications
are required to the production system and that the dynamic
behavior for complex scenarios can be evaluated realistically.

Table V-B shows four different camera-detected tracks
with a track ID, vehicle speed, total duration and a small
image showing the travelled path of the respective vehicle.
These tracks represent vehicles driving on different paths with
varying speeds and are used as input data for the testing
framework, in order to simulate realistic scenarios. In the
following experiments, track Z represents the correct camera
track corresponding to the registered vehicle, whereas tracks
E, F and G belong to other vehicles. Moreover, recorded data
from WiFi positioning (absolute) and odometric (relative) ve-
hicular sensor modalities correlating to track Z is provided to
the /M. Consequently, the ground truth is known as vehicular
sensor modalities and track Z are correlated.

As decision criterion for track identification, the metrics
M, M> and M, are taken into consideration: A specific track
is identified if at least two out of the three metrics indicate
the best correlation for this track compared to all currently
available tracks. A metric shows the best correlation for a
specific track, if it has the lowest value of distance (M7, My)
or angle (M>). To assess the track identification performance,
the following metrics are defined: Given a total time period
when the correct track is identified AT, and one with incorrect
identification AT}, the correct track identification rate is
defined as p = ﬁTng. Moreover, the maximum duration
of incorrect track assignment AT pq, is defined as the
maximum time interval of incorrect track identification.

In the following, several experiments are presented where
the track correlation metrics are evaluated by applying the

previously introduced testing concept.

Fig. 7 shows the results of Experiment 3 illustrating the
setup for a scenario with four vehicles: The registered vehicle
corresponds to track Z which is denoted as C and the three
other vehicles (tracks E, F, G) as F1, F2 and F3 respectively.

The resulting cumulative distributions for metrics My, Ms
and M, (Fig. 7, top) show the strongest correlation for
the correct track C which converges faster compared to the
uncorrelated tracks F1, F2 and F3. Also, the timeline (Fig. 7,
bottom) illustrates that each metric identifies track C for the
majority of time steps. Interestingly, the combined metric (M,
My My) shows overall better results than each individual
metric as the metrics appear to have complementary properties.
Only once, for a time period of less than one second, the
track F1 is incorrectly identified. Moreover, during the time
period from 11.5s to 12.5s, the combined metric does not
yield a clear result in terms of track identification as each
metric identifies a different track (F3,C,F1). If this uncertainty
period is considered as error, then p results in 93.11% and
AT} mae is 0.82s. However, it is possible to not consider this
period as error as the correct track C was correctly identified
before. Thus, in similar uncertain situations, the best strategy
is to keep the previous association until the metrics become
consistent. In this case, p is 97.39% and AT} 4. 0.61s.

Another scenario is presented in Experiment 1: An over-
taking situation with two vehicles simulated by using camera
track G (denoted as D) in combination with track Z (denoted
as C). Track C has a higher vehicle speed than track D and
both tracks are on the same path but track D starts with an
offset, hence the overtaking maneuver occurs. Even though
some metrics show a partially incorrect track identification,
the combined metric almost always provides the correct result.
Thus, p is 99.13% and AT e is 0.089s.

Experiment 2 is identical to Experiment 1 with one ex-
ception: At the time of 7s after starting the experiment, the
track identifiers of both tracks are swapped which constitutes
an identity switch. Thus, it is important to consider that the
camera track C is only the correct track for the first 7s of
the experiment, until the identity switch occurs. After that,
for the remaining 16s, track D corresponds to the registered
vehicle and its sensor modalities. Fig. 8 shows the timeline
chart where the identity switch is explicitly marked, i.e. it
is also incorporated in the calculation of the correct track
identification rate p. It takes approx. 2s to detect and to
resolve the identity switch based on the combined metrics.
Consequently, p is 90.91% and AT ;40 is 2.03s.

A summary of all conducted experiments is provided in
Table V-C. All scenarios exhibit a correct track identification
rate p between 90% and 100%. Even for the particularly
challenging Experiment 2 with the occurring identity switch,
a p of 90.91% is achieved and it takes 2.03s to detect and
recover from the identity switch. Last but not least, a complex
scenario with four vehicles is presented in Experiment 3
which demonstrates the viability of the methodology and the
applicability of the track identification metrics on multiple
camera tracks.
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Fig. 7. Experiment 3 with four vehicles, cumulative track correlation metrics (top) and identified tracks per metric timeline (bottom).
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Fig. 8. Experiment 2 with two vehicles in overtaking scenario and ID switch, identified tracks per metric timeline.
Exp. number Description p AT} max
1 Overtaking scenario of two vehicles 99.13% 0.09s
2 Overtaking scenario of two vehicles with identity switch 90.91% 2.03s
3A Complex scenario with four vehicles on different partially crossing paths | 93.10% 0.82s
3B Same as 3 A, but without considering “uncertainty” period as error 97.39% 0.61s

TABLE I
SUMMARY OF EXPERIMENTAL RESULTS.

VI. SUMMARY AND OUTLOOK in turn continuously provides measurements of multiple sensor
modalities. Additionally, the registered endpoints are posi-
tioning clients that receive their corresponding, externally-

observed position via a wireless communication channel.

The presented tracking-by-identification methodology per-
forms the identification of anonymous camera-detected vehicle
tracks based on multiple sensor modalities provided by the
vehicle. The identified tracks are associated to the registered
communication endpoint in the corresponding vehicle which

In order to identify the anonymous camera tracks, track
correlation metrics based on absolute and relative sensor



modalities are introduced: Relative sensor modalities describe
the movement pattern of the vehicle (e.g. odometric data)
and absolute sensor modalities provide information about the
absolute states of the vehicle (e.g. WiFi positioning). Based on
the defined track correlation metrics, a detailed experimental
evaluation has been conducted resulting in correct track iden-
tification rates of at least 90% for the investigated scenarios.
Additionally, in one of the test scenarios, an identity switch of
two camera tracks is simulated which is successfully detected
and resolved within approx. 2s. Hence, the experimental
results confirm the viability and robustness of the proposed
tracking-by-identification approach.

In terms of future work, further experiments with additional
sensor modalities in the vehicle can be conducted, towards
the goal of complementing the existing metrics and achieving
an even more robust overall track identification. To this end,
different methods of combining the individual track correlation
metrics need to be explored, in order to derive a combined
metric which yields an optimal correct track correlation rate
for a set of common test scenarios.

Another research direction is the integration of the
proposed methodology with other existing positioning
systems. Especially the integration with state-of-the-art
smartphones could be beneficial in several aspects: On the
one hand, smartphone sensors can be utilized as sensor
modalities for the tracking-by-identification module. On the
other hand, the smartphone can act as positioning client
receiving the highly accurate camera-detected positions.
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