
HUMAN PROCESSOR MODELLING LANGUAGE (HPML):
ESTIMATE WORKING MEMORY LOAD TROUGH INTERACTION

Jürgen Geisler, Christoph Scheben

Fraunhofer-Institut für Informations- und Datenverarbeitung - IITB,
Fraunhoferstr. 1, 76131 Karlsruhe, Germany

{juergen.geisler, christoph.scheben}@iitb.fraunhofer.de

Abstract: To operate machines over their user interface may cause high load on human’s
working memory. This load can decrease performance in the working task significantly if
this task is a cognitive challenging one, e. g. diagnosis. With the »Human Processor
Modelling Language« (HPML) the interaction activity can be modelled with a directed
graph. From such models a condensed indicator value for working memory load can be
estimated. Thus different user interface solutions can get compared with respect to their
relative demand on working memory resources. Copyright © 2007 IFAC

Keywords: human factors, human-machine interface, human perception, mental
workload, memory interference, short-term memory

1. INTRODUCTION

»Reduce working memory load« recommends the last
one of Shneiderman’s eight golden rules for a well
designed user interface (Shneiderman and Plaisant,
2005). Shneiderman argued, that »limitation of
human information processing in short-term memory
requires that displays be kept simple, multiple page
displays be consolidated, window-motion frequency
be reduced, and sufficient training time be allotted
for codes, mnemonics, and sequences of actions«.
These are more or less qualitative rules that are
certainly well applicable by an experienced user
interface designer. But engineers with a more shallow
experience in the field of human-machine interaction
who are nevertheless frequently requested to finish
the technical design of their machines with a user-
friendly skin often feel uncomfortable by applying
such thumb rules without measurable dimensions.

Indeed the design of user interfaces is still closer to
art than to science due to the lack of a clear
understanding of the human brain on the one hand,
and the great variety and adaptivity of human
behaviour on the other. But even when there are no
quantitative rules to derive a perfect user interface
from a given task, and a given task split between
human and machine, a quantitative comparison
between various user interface solutions should be
attainable. From the point of view of cognition the
crucial resource is the humans working memory
(short: WM). Following the well established »Model
Human Processor« (MHP) from Card, et al. (1983)
the working memory is that part of our memory
where cognitive activity is located. Physical stimuli
from the sense organs do activate meaningful clusters
of entities in our long term memory, known as so
called »chunks« that build the content of the working
memory. One can say that the working memory is
»the memory at work«.

Card, et al. (1983) derived the well known GOMS
Model (Goals, Operators, Methods, Selection Rules)
from the Model Human Processor. GOMS is widely
used as a method to describe the effort that has to be
taken from humans while conducting interaction
tasks. GOMS is strong in predicting the time
consumption. The time consumed from mere
interaction steps is certainly an important measure to
separate well suited from poorly suited user
interfaces. But the losses of chunks in WM through
overload seem also critical. This effect is not so well
modelled, neither on the basic GOMS nor its
successors like NGOMSL (Natural GOMS Language)
(Kieras, 1988) or CPM-GOMS (John and Gray,
1995). One reason may be that, for less trivial tasks it
is nearly impossible to determine, what information
entities on the user interface are stored as one chunk
by a certain individual. Another reason might be a
different interpretation about the life cycle of chunks
in the WM that is depicted in fig. 1 with a very
simplified example. The WM is represented with four
memory cells, each storing one chunk. Every
cognitive step may load (retain) one »fresh« chunk
into the WM and/or it may recall one. Following
Card, et al. (1983, p. 393) every recalled chunk leaves
its cell in WM and therefore decreases WM load (left
side in fig. 1). Geisler (2006) argues that this would
be comparable to a forgetting step. But forgetting can
only take place by decay over time or by
displacement over the capacity border. It can never be
the result of a conscious step (even if e. g. NGOMSL
defines a FORGET operator (Kieras, 1994)). If this is
true, there must be a throughput of chunks like
depicted on the right hand side of fig. 1. The chunk C
e. g. will not vanish from WM after its recall in step 3
and therefore push chunk A over the capacity limit
with operation 5.

1

Sequence of
cognitive operations

2

3

4

5

6

1

With forgetting
after recall

(Card et al., 1983)

A

B

C

A

B A

AB

D

B

A

A

1
A

B

C

A

B A

CB

D

AB

CB A

A? D CB

Without forgetting
after recall

(Geisler, 2006)

1 2 3 4 1 2 3 4

Assumed capacity
limit of WM

Storage cells in working memory
(each cell can store one chunk)

Retain a chunk into WM

Recall a chunk from WM

Fig. 1. Throughput of chunks in working memory at a
simplified example (explanation see above).

If we assume that operation 1 in fig. 1 might be a
cognitive step in a diagnosis task (e. g. to fix the
source of a machine failure) and operations 2 to 5 are
cognitive steps to interact with a diagnosis support
tool, and operation 6 returns to the diagnosis, then in
the left hand case of fig. 1 the last chunk A of the
diagnosis should easily be recallable whereas it would
be lost in the right hand case. So if the interpretation
of Geisler (2006) comes closer to reality than that one
of Card, et al. (1983) the throughput of chunks in the
WM by interaction steps integrated into cognitive
working tasks may have a higher critical effect on
humans working performance. A closer look into the
interaction process seems to be necessary.

2. THE HPML APPROACH

Our approach named »Human Processor Modeling
Language« or short HPML is based on the three
processors of the Model Human Processor from Card,
et al. (1983): the perceptual processor that translates
stimuli from the sense organs into a physical
representation in the sensory image stores, the
cognitive processors, that interprets them as chunks
and generates new chunks in the working memory
with correspondence to the long-term memory and
finally the motor processor that uses certain chunks to
initialize muscle activity. A HPML model is drawn
as a directed graph with the processor steps as nodes
and directed edges between them. Fig. 2 shows the
basic scheme of HPML.

Perceptual step

Cognitive step

Cognitive step

Motor step

Legende:

Simple transition (possibly parallel exits)

Exit after ›YES‹-decision (only cognitive step)
Exit after ›NO‹-decision (only cognitive step)

Only sequential in time, no direct influence

Inner cycle possible

NOYES

Fig. 2. Basic scheme for an HPML graph from
Geisler (2006).

The steps of the cognitive processor can be tied
together not only with a simple transition. If a
cognitive step meets a decision, this will be indicated
by special arrows dependent of the result of the
decision: ›yes‹ or ›no‹. Thus one can build a kind of
flowchart from the HPML elements. A special
symbol is the black wedge on the bottom of cognitive
and motor steps. It indicates that there are sequences
of steps possible that will not be modeled in an
explicit manner.

Fig. 3 gives a simple example for an HPML model.
The working task shall be the visual search for a
certain target, here symbolized as an airplane
silhouette. Fig. 4 shows a sequence of steps from the
flow chart model of fig. 3, stringed on a thread with
the respective activity inside the WM. At the
beginning the observer’s perceptual processor writes
the pattern just focused with the eyes as a chunk into
the first cell of the WM. Then the cognitive processor
takes this chunk and compares it with the prestored
pattern of the target (aircraft silhouette). In this case
the answer to the question »is this the target« is NO!
And this NO is a new chunk, produced from the
cognitive step (indicated here by the arrowhead from
the two framed chunks into cell 1). In case of NO the
next cognitive step will be to plan the following spot
to fix on the screen. Therefore the also prestored
chunk for the just focused position is used and results
in a chunk for the change of visual fixation, indicated
by the arrow in the circle. This chunk is finally used
by the motor processor to execute the eye movement.

If we continue this thread with the assumption, that
the target would not be found over a long period, the
chunk for the target pattern, which can be seen as the
representative of the search task in the WM, will not
be displaced over the 6th cell. And this is still inside
the working memories capacity limit of 7 ± 2 chunks
(Card, et. al., 1983). Additionally this chunk will be
refreshed by its use from the cognitive steps and
therefore won’t decay over time.

Fix spot on
screen image

Plan change
of fixation

Execute change
of fixation

Mark the target

BEGIN

END

Is this the target?

Ì Ó

T
Ò ñ

Fig. 3. Simple HPML model for a visual search.

:

working memory cells
1 32 4 5 6 7

 :

Ì :

ÌNo! :

ÌR

Fix spot on
screen image

Plan change
of fixation

Execute change
of fixation

BEGIN

Is this the target?

No!

: ÌR No!

new chunk
from perception

new chunk
from cognition

Fig. 4. Some subsequent steps on a thread and their
interaction with the working memory.

The situation changes from the moment on some
operations have to be carried out on the system, e. g.
adjustment of brightness. This kind of task shall be
called »auxiliary task«. Fig. 5 shows the case if the
target cannot be found because lets say the picture on
the screen is too dark. The rhomb symbol for the
auxiliary task is a placeholder for the HPML model of
the distinctive system operation. And this model does
not only depend on the nature of the auxiliary task. It
depends heavily from the interaction technique
available on the human-machine interface. Fig. 6
shows the model for stepwise brightness adjustment
by speech input. Coming from the working task the
user first forms the necessary command mentally with
a cognitive step (think: »Brighter«). As indicated by
the black wedge on the bottom, this may take more
than one cognitive step. As soon as the word is
selected mentally, the motor processor initiates
speaking.

*) e. g.: brightness, contrast, colour, zoom

Fix spot on
screen image

BEGIN

Is this the target?

Adjust the system*

...

Working task

Auxiliary task

Fig. 5. Interrupt by an auxiliary task.

The now again perceived screen image (no fixation
change is necessary!) is then cognitively checked
whether the brightness did really change. If it did, we
can move to the initializing step in the working task
(here: »Is this the target?«). This is symbolized by a
dashed border. If the pattern on the screen can again
not be identified as the target, and the image is still to
dark, the adjustment cycle starts from the beginning.

The model for speech input seems rather simple if we
compare it with that one for brightness adjustment
with a virtual slider on our graphical user interfaces.
The respective model is depicted with fig. 7. Because
it is to complex to be displayed here in full detail only
the coarse structure in four blocks shall be explained.
For further details see (Geisler, 2006).

Image still
too dark? Is there the target?

Is max. brightness
reached?

Did brightness
really change?

Speak »brighter«

From working task

Perceive image 12

Think »brighter«

Back to rest of
working task END

Fig. 6. HPML model for a stepwise brightness
adjustment by speech input (modif. from Geisler
(2006)).

Block C)
Perform
adjustment

Block B) Look back to
search image

Block D) Finish
adjustment

Block A) Fix slider with
eyes, mouse and cursor

1

2

3

4

5

6 END

Fig. 7. HPML model for brightness adjustment with a
GUI slider (modif. from Geisler (2006)).

The interaction cycle starts with block A, where the
navigation of the mouse cursor to the slider grip is
modeled. Watch, that the eyes have to be busy for
this, and move their fixation away from the working
task image. Once the slider is gripped by holding
down the mouse button, the eyes have to move back
to the image. This is modeled in block B. Now, with
the eyes again on the possible target, the adjustment is
carried out by dragging the mouse (block C), and with
block D it will be finished.

The difference in complexity between speech and
slider input is obvious. The more perceptual and
cognitive steps we need between two recalls of the
target chunk for mere system interaction, the higher is
the probability that this chunk is thrown out of the
working memory because of the additional chunks
needed for interaction. This may cost only a few
recall steps if the target pattern is persistent in long
term memory. But it will be catastrophic for the
working task if the pattern is volatile, e. g. because it
was first acquired shortly before the adjustment
becomes necessary. In this case it would get
completely lost. If we presume that the complexity of
the HPML model for a certain interaction has some
relation to the working task performance by
displacing the target chunk possibly out of the WM
we ask to what degree the speech interaction is better
than the one with the slider. And if we have the
choice between several interaction techniques: could
we bring them into an order with respect to their
effect on working memory load? One simple idea is
just to count the perceptual and cognitive nodes in the
graph between the entrance from the working task,

and the next opportunity, the target chunk is used
again. But simple counting would not be sufficient
because there are cycles inside the graph caused by
the yes/no decisions of some cognitive steps. Through
such cycles a node can be touched more than once,
causing a farther displacement of the target chunk. In
order to consider this effect, every perceptual and
cognitive node in the model will be counted with one
plus the number of cycles, that it is part of. This
number shall be called the cycle complexity of a node.
The cognitive step »think ›brighter‹ « in fig. 6 has
e. g. the cycle complexity 2: It is part of the cycle
and of its own inner cycle, indicated by the wedge.
The sum of the cycle complexities of each relevant
node in the graph shall be regarded as an indicator for
the working memory load of the interaction sequence
which is modeled with this graph (see Geisler, 2006).
This indicator value shall be called B*.

The suitability of such a model-based WM load
indicator was confirmed with a simple experiment
(see Geisler, 2006). Test persons got presented a
target pattern for a very short moment (20 ms), and
instantly after that they got displayed a complex
search image wherein they had to recognize the
target. This search image was visible only for 10 s,
and became very quickly brighter or darker during
that time. The test persons had to adjust brightness in
parallel to the visual search. If the person found the
target during those ten seconds or could at least
remember it afterwards, the value QE for the quality
of recall was counted with 1, otherwise with 0. Fig. 8
shows the result for five test persons with 24 trials for
each. The mean QE is drawn as a function of the cycle
complexity B* predicted from the HMPL models for
the respective interaction techniques used during the
trial. Even if the values for single test persons scatter
around the mean values, the linear regression shows
that there is sufficient correlation to take B* as a
coarse model-based indicator for the decrease in
working task performance by working memory
overload through interaction.

Standard deviation of
the linear regression

+

+

+

+

+

+
+

+

++
+

+

+

+

+

+

++

+

+

0,78

1,0

0 13 31 40 54

0,68

0,96

B*

+: Value for single
 test person

Q E

Linear regression

Outlayer

Speech

Keyboard

Virt. slider

Image centered

Interaction techniques
(values for mean test person)

Fig. 8. Experimental result for the recall quality QE as
function of the WM load indicator B* from the
HMPL model (modif. from Geisler (2006)).

4. TOOL-BASED MODEL COMPOSING, AND
COMPUTING OF CYCLE COMPLEXITY

Modelling languages like HPML are hardly usable in
practice, if one has no assisting software tool for
modelling and analysis. Such a tool should

1. offer an efficient way for composing models,
2. visualise the model in an adequate manner,
3. prevent and repair syntax errors automatically as

far as possible or at least report them to the user,
4. and perform calculations on the model or retrieve

information from the model.

In case of the modelling language HPML the HPML-
Editor (fig. 9) is a tool, which satisfies these require-
ments. Besides providing an easy to use user interface
it checks the syntax, and is able to derive the memory
load indicator automatically from the HPML model
by calculating the models cycle complexity.

In the following we want to take a closer look on the
formal definition of the HPM Language, and describe
a way for checking HPML models. Afterwards we
will focus on the calculation of the cycle complexity
of a HPML model, and draw a connection between
the cycle complexity and the working memory load.

Fig. 9. User interface of the HPML Editor.

4.1 The Syntax of the HPM Language

Before we are able to check HPML models, we need
to define the syntax of the HPM Language formally
(in (Geisler, 2006) the definition is informal).

Definition (HPML model): A HPML model is a
simple connected directed graph G = (V, E, I) with
nodes V, edges E and a mapping I : E → V x V,
which subjects the following conditions:
1. V consists of a start node s, a finite number of

MHP processors and at least one end node.
2. E is a finite set of connections, where a connec-

tion is an element of

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

3. I associates the edges of E with their source
nodes, and their target nodes such that the re-
quirements of fig. 10 are met.

4. For all v∈V there is a path from s to v.
5. For all v∈V there is a path from v to an end

node.
6. For all cognitive processor nodes c in V the fol-

lowing conditions hold:
6.1. If there exists an edge e of type 2 or 5 with

I(e) = (c, x) for some x, then there exists
exactly one edge e’ of type 3 or 6 such that
I(e’) = (c, y) for some y.

6.2. If there exists an edge e of type 3 or 6 with
I(e) = (c, x) for some x, then there exists
exactly one edge e’ of type 2 or 5 such that
I(e’) = (c, y) for some y.

Definition (HPM Language): The HPM Language is
defined as the set of all HPML models.

start end motor cogn. perc.
start -- -- -- -- --
end -- -- type 1 type 1, 2, 3 type 1
motor -- -- -- type 1, 2, 3 type 4
cogn. type 1 -- -- type 1, 2, 3 type 1
perc. type 1 -- type 4 type 4, 5, 6 --

source nodestarget
nodes

Fig. 10. Allowed associations for the different types

of connections.

Because the HPML Editor ensures that I is defined in
the right way, the syntax check can be reduced to the
following points:

1. Check, if there is exactly one start node s in the
model.

2. Check, if there is a path from s to every (other)
node.

3. Check, if there is a path from every node to an
end node.

4. Check, if every cognitive processor node holds
condition 6. of the definition.

These four conditions can be checked easily by an al-
gorithm: 1. can be checked directly by logging every
insertion and deletion of start nodes, 2. and 3. can be
checked by depth-first search and 4. can be checked
in the way the definition implies.

4.2 Computing the cycle complexity

Before drawing a connection between the working
memory load, and the cycle complexity, let’s define
the term »cycle complexity« formally:

Definition (nCycles(v)): nCycles(v) is defined as the
number of simple cycles in G, which contain v.

Definition (cycle complexity): The cycle complexity
is defined as

∑
∈Vv

nCycles(v) 1.

Thus, the cycle complexity is an indicator for the
»complexity« of a HPML model. Like mentioned
above, we can derive the indicator B* for the working
memory load by summating 1 for each MHP pro-
cessor in V to the cycle complexity, and additional 1
for every inner cycle symbol (the wedge symbol) on a
MHP processor. Thus, the problem of deriving B* can
therefore be reduced to the problem of calculating
nCycles(v).

Unfortunately, calculating nCycles(v) is NP-hard
(Valiant, 1979). On the other hand, there are al-
gorithms which are able to enumerate all simple
cycles C of a Graph G in O((|V|+|E|)·(|C|+1)), e. g. the
algorithm of Tarjan (1973). (Note, that a graph may
contain an exponential number of simple cycles.) The
algorithm of Tarjan can be used to calculate the cycle
complexity of a HPML model in the following way:

calculateCycleComplexity(graph G)
C = enumerateAllSimpleCycles(G)
n = 0
nodeMap = ∅
for all v∈V

nodeMap.put(v, 0)
for all cycles c∈C

for all v∈c
n = n + 1
x = nodeMap.get(v) + 1
nodeMap.put(v, x)

return (n, nodeMap)

This algorithm does not only calculate the cycle com-
plexity of a graph G = (V, E, I) in O((|V|·|C|) +
(|V|+|E|)·(|C|+1)) = O((|V|+|E|)·(|C|+1)), it also calcu-
lates nCycles(v) for all v∈V. Because HPML models
normally don’t contain very big numbers of simple
cycles (especially normally no exponential number of
simple cycles), calculating the cycle complexity is no
serious problem in practise.

4. CONCLUSION

With the HPML on the basis of (Geisler, 2006) a
graphical language was defined to model human
activity as sequence of perceptual, cognitive and
motor steps according to the Model Human Processor
from Card, et al. (1983). Under the assumption that
perceptual as well as cognitive processor steps cause
activity in the working memory, the working memory
load with chunks should be analog to the frequency of
processor activations. While this frequency cannot be
predicted for a single human due to individual
differences, especially in chunking, it is possible to
order the models of different interaction designs for
the same task with respect to their working memory
1 This definition may be misleading in terms of graph
theory, because a simple cycle c is counted length(c) times.

load by comparing the so called cycle complexities of
the model graphs. This cycle complexity can be taken
as an indicator for working memory load. In (Geisler,
2006) it was shown, that this measure is suitable for
the prediction of the ability to recall a chunk that has
to be retained over a more or less long period of
perceptual/cognitive activity.

To compute the cycle complexity of a directed graph
is an NP-hard problem but can be solved analytically
for a moderate number of cycles. This should cause
no problem, because models of human-machine
interaction with an incomputable high complexity are
just for this reason not suited at all.

With the HPML-Editor one can not only design
HPML models easily and syntactically correct but
also directly compute their cycle complexity. So user
interface designers get assistance in evaluating and
improving their designs with respect to WM load
model-based, without time consuming user trials.
Nevertheless further theoretical advances and
experiments are necessary to develop HPML to a
more than only coarse approach.

REFERENCES

Card, S., Moran, T., Newell, A. (1983). The
Psychology of Human-Computer Interaction.
Erlenbaum, Hillsdale, N. J.

Geisler, J. (2006)2. Leistung des Menschen am
Bildschirmarbeitsplatz: Das Kurzzeitgedächtnis
als Schranke menschlicher Belastbarkeit in der
Konkurrenz von Arbeitsaufgabe und
Systembedienung. Universitätsverlag Karlsruhe

John, B. E. and Gray, W. D. (1995). CPM-GOMS:
An Analysis Method for Tasks With Parallel
Activities. In: Human Factors in Computing
Systems (CHI 1995). ACM, New York, 393 - 394

Kieras, D.E. (1988). Towards a practical GOMS
model methodology for user interface design. In:
M. Helander (Ed.), Handbook of human-com-
puter interaction. Elsevier, Amsterdam, 67-85

Kieras, D. (1994). A Guide to GOMS Task Analysis.
University of Michigan: Technical Report,
Spring 1994

Shneiderman, B., Plaisant, C. (2005). Designing the
User Interface: Strategies for Effective Human-
Computer Interaction. Fourth Edition. Addison-
Wesley.

Tarjan, Robert (1973). Enumeration of the elementary
circuits of a directed graph. In: SIAM Journal on
Computing Vol. 2 Issue 3, 211-216. SIAM, USA.

Valiant, Leslie G. (1979). The Complexity of
Enumeration and Reliability Problems. In: SIAM
Journal on Computing Volume 8 Issue 3,
410-421. SIAM, USA.

2 »Human performance at computer screens: short-term
memory limits human's capacity in the competition of
working task and system operation« (English edition in
preparation)

