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Abstract: To operate machines over their user interface may cause high load on human’s 
working memory. This load can decrease performance in the working task significantly if 
this  task is  a  cognitive  challenging one,  e.  g.  diagnosis.  With the »Human  Processor 
Modelling Language« (HPML) the interaction activity can be modelled with a directed 
graph. From such models a condensed indicator value for working memory load can be 
estimated. Thus different user interface solutions can get compared with respect to their 
relative demand on working memory resources. Copyright © 2007 IFAC
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1. INTRODUCTION

»Reduce working memory load« recommends the last 
one of  Shneiderman’s  eight  golden  rules for  a well 
designed  user  interface  (Shneiderman  and  Plaisant, 
2005).  Shneiderman  argued,  that  »limitation  of  
human information processing in short-term memory  
requires that displays be kept simple, multiple page 
displays  be  consolidated,  window-motion  frequency  
be reduced,  and sufficient  training time be allotted  
for  codes,  mnemonics,  and  sequences  of  actions«. 
These  are  more  or  less  qualitative  rules  that  are 
certainly  well  applicable  by  an  experienced  user 
interface designer. But engineers with a more shallow 
experience in the field of human-machine interaction 
who are  nevertheless  frequently  requested  to  finish 
the technical  design  of  their  machines  with a  user-
friendly  skin  often  feel  uncomfortable  by  applying 
such thumb rules without measurable dimensions. 

Indeed the design of user interfaces is still closer to 
art  than  to  science  due  to  the  lack  of  a  clear 
understanding of the human brain on the one hand, 
and  the  great  variety  and  adaptivity  of  human 
behaviour on the other. But even when there are no 
quantitative  rules  to  derive  a  perfect  user  interface 
from a  given  task,  and  a  given  task  split  between 
human  and  machine,  a  quantitative  comparison 
between  various  user  interface  solutions  should  be 
attainable.  From the point  of  view of cognition the 
crucial  resource  is  the  humans  working  memory 
(short: WM). Following the well established »Model 
Human Processor« (MHP) from Card,  et  al. (1983) 
the  working  memory  is  that  part  of  our  memory 
where cognitive activity is  located.  Physical  stimuli 
from the sense organs do activate meaningful clusters 
of  entities  in  our  long  term memory,  known as  so 
called »chunks« that build the content of the working 
memory.  One can  say that  the working  memory is 
»the memory at work«.

Card,  et  al. (1983) derived  the well  known GOMS 
Model (Goals, Operators, Methods, Selection Rules) 
from the Model Human Processor. GOMS is widely 
used as a method to describe the effort that has to be 
taken  from  humans  while  conducting  interaction 
tasks.  GOMS  is  strong  in  predicting  the  time 
consumption.  The  time  consumed  from  mere 
interaction steps is certainly an important measure to 
separate  well  suited  from  poorly  suited  user 
interfaces. But the losses of chunks in WM through 
overload seem also critical. This effect is not so well 
modelled,  neither  on  the  basic  GOMS  nor  its 
successors like NGOMSL (Natural GOMS Language) 
(Kieras,  1988)  or  CPM-GOMS  (John  and  Gray, 
1995). One reason may be that, for less trivial tasks it 
is nearly impossible to determine, what information 
entities on the user interface are stored as  one chunk 
by a certain  individual.  Another  reason  might  be a 
different interpretation about the life cycle of chunks 
in  the  WM  that  is  depicted  in  fig.  1  with  a  very 
simplified example. The WM is represented with four 
memory  cells,  each  storing  one  chunk.  Every 
cognitive  step may load (retain)  one »fresh« chunk 
into  the  WM  and/or  it  may  recall  one.  Following 
Card, et al. (1983, p. 393) every recalled chunk leaves 
its cell in WM and therefore decreases WM load (left 
side in fig. 1). Geisler (2006) argues that this would 
be comparable to a forgetting step. But forgetting can 
only  take  place  by  decay  over  time  or  by 
displacement over the capacity border. It can never be 
the result of a conscious step (even if e. g. NGOMSL 
defines a FORGET operator (Kieras, 1994)). If this is 
true,  there  must  be  a  throughput  of  chunks  like 
depicted on the right hand side of fig. 1. The chunk C 
e. g. will not vanish from WM after its recall in step 3 
and therefore  push chunk  A over  the capacity  limit 
with operation 5.
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Fig. 1. Throughput of chunks in working memory at a 
simplified example (explanation see above).

If  we assume that operation  1 in fig.  1 might be a 
cognitive  step  in  a  diagnosis task  (e.  g.  to  fix  the 
source of a machine failure) and operations 2 to 5 are 
cognitive  steps  to  interact with a  diagnosis  support 
tool, and operation 6 returns to the diagnosis, then in 
the left  hand case of fig.  1 the last  chunk  A of the 
diagnosis should easily be recallable whereas it would 
be lost in the right hand case. So if the interpretation 
of Geisler (2006) comes closer to reality than that one 
of Card, et al. (1983) the throughput of chunks in the 
WM  by  interaction  steps  integrated  into  cognitive 
working  tasks  may have  a  higher  critical  effect  on 
humans working performance. A closer look into the 
interaction process seems to be necessary.

2. THE HPML APPROACH

Our  approach  named  »Human  Processor  Modeling 
Language«  or  short  HPML  is  based  on  the  three 
processors of the Model Human Processor from Card, 
et al. (1983): the perceptual processor that translates 
stimuli  from  the  sense  organs  into  a  physical 
representation  in  the  sensory  image  stores,  the 
cognitive processors,  that  interprets  them as chunks 
and  generates  new chunks  in  the  working  memory 
with  correspondence  to  the  long-term  memory  and 
finally the motor processor that uses certain chunks to 
initialize muscle activity.  A HPML model is drawn 
as a directed graph with the processor steps as nodes 
and directed edges between them. Fig.  2 shows the 
basic scheme of HPML. 

Perceptual step

Cognitive step

Cognitive step

Motor step

Legende:

Simple transition (possibly parallel exits)

Exit after ›YES‹-decision (only cognitive step)
Exit after ›NO‹-decision (only cognitive step)

Only sequential in time, no direct influence

Inner cycle possible

NOYES

Fig.  2.  Basic  scheme  for  an  HPML  graph  from 
Geisler (2006).

The  steps  of  the  cognitive  processor  can  be  tied 
together  not  only  with  a  simple  transition.  If  a 
cognitive step meets a decision, this will be indicated 
by  special  arrows  dependent  of  the  result  of  the 
decision: ›yes‹ or ›no‹. Thus one can build a kind of 
flowchart  from  the  HPML  elements.  A  special 
symbol is the black wedge on the bottom of cognitive 
and motor steps. It indicates that there are sequences 
of  steps  possible  that  will  not  be  modeled  in  an 
explicit manner. 

Fig. 3 gives a simple example for an HPML model. 
The  working  task  shall  be  the  visual  search  for  a 
certain  target,  here  symbolized  as  an  airplane 
silhouette. Fig. 4 shows a sequence of steps from the 
flow chart model of fig. 3, stringed on a thread with 
the  respective  activity  inside  the  WM.  At  the 
beginning the observer’s perceptual processor writes 
the pattern just focused with the eyes as a chunk into 
the first cell of the WM. Then the cognitive processor 
takes this chunk and compares it  with the prestored 
pattern of the target (aircraft silhouette). In this case 
the answer to the question »is this the target« is NO! 
And  this  NO  is  a  new  chunk,  produced  from  the 
cognitive step (indicated here by the arrowhead from 
the two framed chunks into cell 1). In case of NO the 
next cognitive step will be to plan the following spot 
to  fix  on  the  screen.  Therefore  the  also  prestored 
chunk for the just focused position is used and results 
in a chunk for the change of visual fixation, indicated 
by the arrow in the circle. This chunk is finally used 
by the motor processor to execute the eye movement.

If we continue this thread with the assumption, that 
the target would not be found over a long period, the 
chunk for the target pattern, which can be seen as the 
representative of the search task in the WM, will not 
be displaced over the 6th cell. And this is still inside 
the working memories capacity limit of 7 ± 2 chunks 
(Card,  et. al., 1983). Additionally this chunk will be 
refreshed  by  its  use  from  the  cognitive  steps  and 
therefore won’t decay over time.
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Fig. 3. Simple HPML model for a visual search.
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Fig. 4. Some subsequent steps on a thread and their 
interaction with the working memory.

The  situation  changes  from  the  moment  on  some 
operations have to be carried out on the system, e. g. 
adjustment of brightness.  This kind of task shall be 
called »auxiliary task«.  Fig. 5 shows the case if the 
target cannot be found because lets say the picture on 
the  screen  is  too  dark.  The  rhomb symbol  for  the 
auxiliary task is a placeholder for the HPML model of 
the distinctive system operation. And this model does 
not only depend on the nature of the auxiliary task. It 
depends  heavily  from  the  interaction  technique 
available  on  the  human-machine  interface.  Fig.  6 
shows the model for stepwise brightness adjustment 
by speech input. Coming from the working task the 
user first forms the necessary command mentally with 
a cognitive step (think: »Brighter«).  As indicated by 
the black wedge on the bottom, this may take more 
than  one  cognitive  step.  As  soon  as  the  word  is 
selected  mentally,  the  motor  processor  initiates 
speaking. 

*) e. g.: brightness, contrast, colour, zoom

Fix spot on
screen image

BEGIN

Is this the target?



Adjust the system*

...

Working task

Auxiliary task

Fig. 5. Interrupt by an auxiliary task.

The now again perceived screen image (no fixation 
change  is  necessary!)  is  then  cognitively  checked 
whether the brightness did really change. If it did, we 
can move to the initializing step in the working task 
(here: »Is this the target?«). This is symbolized by a 
dashed border. If the pattern on the screen can again 
not be identified as the target, and the image is still to 
dark, the adjustment cycle starts from the beginning. 

The model for speech input seems rather simple if we 
compare  it  with  that  one  for  brightness  adjustment 
with a virtual slider on our graphical user interfaces. 
The respective model is depicted with fig. 7. Because 
it is to complex to be displayed here in full detail only 
the coarse structure in four blocks shall be explained. 
For further details see (Geisler, 2006). 

Image still
too dark? Is there the target?

Is max. brightness
reached?

Did brightness
really change?

Speak »brighter«

From working task

Perceive image 12

Think »brighter«

Back to rest of
working task END

Fig.  6.  HPML  model  for  a  stepwise  brightness 
adjustment by speech input (modif. from Geisler 
(2006)).
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Fig. 7. HPML model for brightness adjustment with a 
GUI slider (modif. from Geisler (2006)).

The interaction cycle starts with block A, where the 
navigation of the mouse cursor  to the slider  grip is 
modeled.  Watch,  that  the eyes  have  to be busy for 
this, and move their fixation away from the working 
task  image.  Once  the  slider  is  gripped  by  holding 
down the mouse button, the eyes have to move back 
to the image. This is modeled in block B. Now, with 
the eyes again on the possible target, the adjustment is 
carried out by dragging the mouse (block C), and with 
block D it will be finished.

The  difference  in  complexity  between  speech  and 
slider  input  is  obvious.  The  more  perceptual  and 
cognitive steps we need between two recalls  of the 
target chunk for mere system interaction, the higher is 
the probability that  this chunk is  thrown out of  the 
working  memory  because  of  the  additional  chunks 
needed  for  interaction.  This  may  cost  only  a  few 
recall steps if the target pattern is persistent in long 
term  memory.  But  it  will  be  catastrophic  for  the 
working task if the pattern is volatile, e. g. because it 
was  first  acquired  shortly  before  the  adjustment 
becomes  necessary.  In  this  case  it  would  get 
completely lost. If we presume that the complexity of 
the HPML model for a certain interaction has some 
relation  to  the  working  task  performance  by 
displacing the target  chunk possibly out of the WM 
we ask to what degree the speech interaction is better 
than  the  one  with  the  slider.  And  if  we  have  the 
choice between several interaction techniques: could 
we  bring  them  into  an  order  with  respect  to  their 
effect on working memory load? One simple idea is 
just to count the perceptual and cognitive nodes in the 
graph  between the entrance  from the working  task, 

and  the  next  opportunity,  the  target  chunk  is  used 
again.  But  simple  counting would not  be sufficient 
because there are cycles inside the graph caused by 
the yes/no decisions of some cognitive steps. Through 
such cycles a node can be touched more than once, 
causing a farther displacement of the target chunk. In 
order  to  consider  this  effect,  every  perceptual  and 
cognitive node in the model will be counted with one 
plus  the  number  of  cycles,  that  it  is  part  of.  This 
number shall be called the cycle complexity of a node. 
The cognitive step »think  ›brighter‹  « in  fig.  6 has 
e. g. the cycle complexity 2: It is part of the cycle  
and of its own inner cycle,  indicated by the wedge. 
The sum of the cycle complexities of each relevant 
node in the graph shall be regarded as an indicator for 
the working memory load of the interaction sequence 
which is modeled with this graph (see Geisler, 2006). 
This indicator value shall be called B*. 

The  suitability  of  such  a  model-based  WM  load 
indicator  was  confirmed  with  a  simple  experiment 
(see  Geisler,  2006).  Test  persons  got  presented  a 
target pattern for a very short moment (20 ms), and 
instantly  after  that  they  got  displayed  a  complex 
search  image  wherein  they  had  to  recognize  the 
target. This search image was visible only for 10 s, 
and  became  very  quickly  brighter  or  darker  during 
that time. The test persons had to adjust brightness in 
parallel to the visual search. If  the person found the 
target  during  those  ten  seconds  or  could  at  least 
remember it afterwards, the value  QE for the quality 
of recall was counted with 1, otherwise with 0. Fig. 8 
shows the result for five test persons with 24 trials for 
each. The mean QE is drawn as a function of the cycle 
complexity B* predicted from the HMPL models for 
the respective interaction techniques used during the 
trial. Even if the values for single test persons scatter 
around the mean values, the linear regression shows 
that  there  is  sufficient  correlation  to  take  B* as  a 
coarse  model-based  indicator  for  the  decrease  in 
working  task  performance  by  working  memory 
overload through interaction.
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Fig. 8. Experimental result for the recall quality QE as 
function of the WM load indicator  B* from the 
HMPL model (modif. from Geisler (2006)).

   



4. TOOL-BASED MODEL COMPOSING, AND 
COMPUTING OF CYCLE COMPLEXITY

Modelling languages like HPML are hardly usable in 
practice,  if  one  has  no  assisting  software  tool  for 
modelling and analysis. Such a tool should

1. offer an efficient way for composing models,
2. visualise the model in an adequate manner,
3. prevent and repair syntax errors automatically as 

far as possible or at least report them to the user,
4. and perform calculations on the model or retrieve 

information from the model.

In case of the modelling language HPML the HPML-
Editor (fig. 9) is a tool, which satisfies these require-
ments. Besides providing an easy to use user interface 
it checks the syntax, and is able to derive the memory 
load indicator automatically from the HPML model 
by calculating the models cycle complexity.

In the following we want to take a closer look on the 
formal definition of the HPM Language, and describe 
a  way for  checking  HPML models.  Afterwards  we 
will focus on the calculation of the cycle complexity 
of a HPML model, and draw a connection between 
the cycle complexity and the working memory load.

Fig. 9. User interface of the HPML Editor.

4.1 The Syntax of the HPM Language

Before we are able to check HPML models, we need 
to define the syntax of the HPM Language formally 
(in (Geisler, 2006) the definition is informal).

Definition  (HPML  model):  A  HPML  model  is  a  
simple connected directed graph G = (V, E, I) with  
nodes V, edges  E and a mapping I :  E  → V x V, 
which subjects the following conditions:
1. V consists of a start node s, a finite number of  

MHP processors and at least one end node.
2. E is a finite set of connections, where a connec-

tion is an element of

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

3. I  associates  the  edges  of  E  with  their  source  
nodes,  and their target  nodes such that  the re-
quirements of  fig. 10 are met. 

4. For all v∈V there is a path from s to v.
5. For all  v∈V there is  a  path from v to  an end 

node.
6. For all cognitive processor nodes c in V the fol-

lowing conditions hold:
6.1.  If there exists an edge e of type 2 or 5 with  

I(e) = (c, x) for some x, then  there exists  
exactly one edge e’ of type 3 or 6 such that  
I(e’) = (c, y) for some y. 

6.2. If there exists an edge e of type 3 or 6 with  
I(e) = (c, x) for some x, then  there exists  
exactly one edge e’ of type 2 or 5 such that  
I(e’) = (c, y) for some y.

Definition (HPM Language):  The HPM Language is  
defined as the set of all HPML models.

start end motor cogn. perc.
start  --  --  --  --  --
end  --  -- type 1 type 1, 2, 3 type 1
motor  --  --  -- type 1, 2, 3 type 4
cogn. type 1  --  -- type 1, 2, 3 type 1
perc. type 1  -- type 4 type 4, 5, 6  --

source nodestarget 
nodes

 
Fig. 10. Allowed associations for the different types 

of connections.

Because the HPML Editor ensures that I is defined in 
the right way, the syntax check can be reduced to the 
following points:

1. Check, if there is exactly one start node s in the 
model.

2. Check, if there is a path from s to every (other) 
node.

3. Check, if there is a path from every node to an 
end node.

4. Check,  if  every cognitive processor  node holds 
condition 6. of the definition.

 
These four conditions can be checked easily by an al-
gorithm: 1. can be checked directly by logging every 
insertion and deletion of start nodes, 2. and 3. can be 
checked by depth-first search and 4. can be checked 
in the way the definition implies.

4.2 Computing the cycle complexity

Before  drawing  a  connection  between  the  working 
memory load, and the cycle complexity,  let’s define 
the term »cycle complexity« formally:

Definition (nCycles(v)):  nCycles(v) is defined as the  
number of simple cycles in G, which contain v.

Definition (cycle complexity): The cycle complexity  
is defined as

   



∑
∈Vv

nCycles(v)  1.

Thus,  the  cycle  complexity  is  an  indicator  for  the 
»complexity«  of  a  HPML  model.  Like  mentioned 
above, we can derive the indicator B* for the working 
memory  load  by  summating  1  for  each  MHP pro-
cessor in V to the cycle complexity, and additional 1 
for every inner cycle symbol (the wedge symbol) on a 
MHP processor. Thus, the problem of deriving B* can 
therefore  be  reduced  to  the  problem of  calculating 
nCycles(v).

Unfortunately,  calculating  nCycles(v)  is  NP-hard 
(Valiant,  1979).  On  the  other  hand,  there  are  al-
gorithms  which  are  able  to  enumerate  all  simple 
cycles C of a Graph G in O((|V|+|E|)·(|C|+1)), e. g. the 
algorithm of Tarjan (1973). (Note, that a graph may 
contain an exponential number of simple cycles.) The 
algorithm of Tarjan can be used to calculate the cycle 
complexity of a HPML model in the following way:

calculateCycleComplexity(graph G)
C = enumerateAllSimpleCycles(G)
n = 0
nodeMap = ∅ 
for all v∈V 

nodeMap.put(v, 0)
for all cycles c∈C

for all  v∈c
n = n + 1
x = nodeMap.get(v) + 1 
nodeMap.put(v, x)

return (n, nodeMap)

This algorithm does not only calculate the cycle com-
plexity  of  a  graph  G  =  (V,  E,  I)  in  O((|V|·|C|)  +
(|V|+|E|)·(|C|+1)) =  O((|V|+|E|)·(|C|+1)), it also calcu-
lates nCycles(v) for all  v∈V. Because HPML models 
normally don’t  contain very big numbers  of simple 
cycles (especially normally no exponential number of 
simple cycles), calculating the cycle complexity is no 
serious problem in practise. 

4. CONCLUSION

With  the  HPML on  the  basis  of  (Geisler,  2006)  a 
graphical  language  was  defined  to  model  human 
activity  as  sequence  of  perceptual,  cognitive  and 
motor steps according to the Model Human Processor 
from Card,  et al. (1983). Under the assumption that 
perceptual as well as cognitive processor steps cause 
activity in the working memory, the working memory 
load with chunks should be analog to the frequency of 
processor activations. While this frequency cannot be 
predicted  for  a  single  human  due  to  individual 
differences,  especially in chunking,  it  is  possible  to 
order the models of different  interaction designs for 
the same task with respect to their working memory 
1 This definition may be misleading in terms of graph 
theory, because a simple cycle c is counted length(c) times.

load by comparing the so called cycle complexities of 
the model graphs. This cycle complexity can be taken 
as an indicator for working memory load. In (Geisler, 
2006) it was shown, that this measure is suitable for 
the prediction of the ability to recall a chunk that has 
to  be  retained  over  a  more  or  less  long  period  of 
perceptual/cognitive activity. 

To compute the cycle complexity of a directed graph 
is an NP-hard problem but can be solved analytically 
for a moderate number of cycles. This should cause 
no  problem,  because  models  of  human-machine 
interaction with an incomputable high complexity are 
just for this reason not suited at all. 

With  the  HPML-Editor  one  can  not  only  design 
HPML  models  easily  and  syntactically  correct  but 
also directly compute their cycle complexity. So user 
interface  designers  get  assistance  in  evaluating  and 
improving  their  designs  with  respect  to  WM  load 
model-based,  without  time  consuming  user  trials. 
Nevertheless  further  theoretical  advances  and 
experiments  are  necessary  to  develop  HPML  to  a 
more than only coarse approach.
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