SIC DEVICE MANUFACTURING USING ION IMPLANTATION: OPPORTUNITIES AND CHALLENGES

T. Erlbacher

Fraunhofer Institute for Integrated Systems and Device Technology IISB

2019-05-23

RESEARCH AND DEVELOPMENT FOR FUTURE SIC-MICROELECTRONICS

Content

- Motivation: Application pull and requirements for successful device design
- From modelling and design to device fabrication
 - Aluminum doping by ion implantation: Channeling and compensation
 - Ohmic contact formation on n⁺ and p⁺ contacts
 - Device fabrication results for VDMOS transistors and CMOS circuits
- SiC device concepts for future electronics using ion-implantation
 - High temperature electronics beyond silicon
 - Solid state circuit breakers for DC grids
 - Bipolar SiC devices

Content

Motivation: Application pull and requirements for successful device design

- From modelling and design to device fabrication
 - Aluminum doping by ion implantation: Channeling and compensation
 - Ohmic contact formation on n⁺ and p⁺ contacts
 - Device fabrication results for VDMOS transistors and CMOS circuits
- SiC device concepts for future electronics using ion-implantation
 - High temperature electronics beyond silicon
 - Solid state circuit breakers for DC grids
 - Bipolar SiC devices

Technology push from SiC power devices

- Reduction of static power losses beyond "state-of-the-art" (Silicon)
 - High critical electric field of WBG material

- *R_{DS,on}* of SiC VDMOS transistors similar/superior to Si IGBTs
- Unipolar instead of bipolar device operation

Application pull from power electronics

Exploitation of SiC device properties in power applications

Application pull from power electronics

Exploitation of SiC device properties in power applications

 \rightarrow "Bill of materials" and CAPEX/OPEX calculations define success for SiC

Application example: High voltage energy transmission

High voltage solid state transformers and HVDC transmission

- Benefits of DC-DC transmission
 - Low line losses (inductances and capacitances are not attenuated!)
- Cheap cables (no AC capable insulation!) DC line Underground cables feasible (regulations!) AC
 - Solid state transformers required

DC line

Modular multilevel converter for solid state transformers

- HVDC transmission: No single 380kV power switches available
 - Stacking of several power devices in series to obtain blocking voltage
 → Modular multilevel converter topology (commutation cells)

Total power losses: Sum of losses in each commutation cell

Today: Silicon IGBTs are used, e.g. San Franscisco "TransBay Cable"

High breakdown voltages enabling low power losses

- Benefit of lower static and dynamic losses using SiC devices at 1.2kV:
 - Less forward voltage drop compared to Si IGBT and faster switching

- But: Diminishing returns for device classes of 4500V and above
- Si IGBT remains "best-in-class" up to 6.5kV (Si voltage limit)
- \rightarrow High blocking voltage and low forward losses (conductivity modulation)

Application example: CMOS based electronics

"Operation under harsh environment" (from a Si CMOS point-of-view)

Content

- Motivation: Application pull and requirements for successful device design
- From modelling and design to device fabrication
 - Aluminum doping by ion implantation: Channeling and compensation
 - Ohmic contact formation on n⁺ and p⁺ contacts
 - Device fabrication results for VDMOS transistors and CMOS circuits
- SiC device concepts for future electronics using ion-implantation
 - High temperature electronics beyond silicon
 - Solid state circuit breakers for DC grids
 - Bipolar SiC devices

© Fraunhofer IISB T. Erlbacher, 08.11.2018

P-Doping in 4H-SiC: Ion Implantation and Annealing

- Fabrication of advanced SiC power devices
 - Ion implantation of Al
 - Annealing of SiC at 1750°C

SiC p-doping by ion implantation of Aluminum

- Aluminum is preferred dopant (lowest ionization energy)
- However, significant charge compensation is observed
 - Up to 90% of implanted ions may be compensated
 - → Knowledge of doping dependent Compensation rate manadatory

10¹⁶

10¹⁶

A III (Impl. at RT

10¹⁷

 N_{AI} (cm⁻³)

10¹⁸

Aluminum implantation in 4H-SiC: Compensation

- SiC p-doping by ion implantation of Aluminum
 - Aluminum is preferred dopant (lowest ionization energy)
 - However, significant charge compensation is observed
 - Up to 90% of implanted ions can be compensated
- Analysis of compensation by TLM patterns and DLTS
 - Formulation of defect model

Aluminum implantation in 4H-SiC: Compensation

- SiC p-doping by ion implantation of Aluminum
 - Aluminum is preferred dopant (lowest ionization energy)
 - However, significant charge compensation is observed
 - Up to 90% of implanted ions can be compensated
- Analysis of compensation by TLM patterns and DLTS
 - Formulation of defect model
 - Implementation in TCAD modelling
 - Calibration with electrical measurements

Kocher et al., ECSCRM 2018

Aluminum implantation in 4H-SiC: Channeling

- SiC p-doping by ion implantation of Aluminum
 - Significant channeling and lateral scattering occur
 - Modelling by Monte-Carlo simulation possible

Aluminum implantation in 4H-SiC: Channeling

- SiC p-doping by ion implantation of Aluminum
 - Significant channeling and lateral scattering occur
 - Modelling by Monte-Carlo simulation possible
 - Implementation and visualization: TCAD
 - Al Channeling up to 17 times beyond projected range

Aluminum implantation in 4H-SiC: TCAD modelling

- SiC p-doping by ion implantation of Aluminum
 - Understanding of physical effects enables efficient modelling
- Example: p-Well implantation for VDMOS transistors
 - Significant deviation from initial expectations
 - Impact on device performance
 - Device resistance
 - Breakdown voltage
 - Threshold voltage
 - Modelling without these effects is not efficient!

Aluminum implantation in 4H-SiC: TCAD modelling

- SiC p-doping by ion implantation of Aluminum
 - Understanding of physical effects enables efficient modelling

Aluminum implantation in 4H-SiC: TCAD modelling

- SiC p-doping by ion implantation of Aluminum
 - Understanding of physical effects enables efficient modelling

Advanced device characterization method

- Investigation of doping profiles
 - SIMS (But: requires calibration samples)
 - Optical profiling using bevel grinding and thermal oxidation
 - Oxidation rate depends on doping concentration

Kocher et. al, ECSCRM 2018

🗾 Fraunhofer

Advanced device characterization method

- Investigation of doping profiles
 - SIMS (But: requires calibration samples)
 - Optical profiling using bevel grinding and thermal oxidation
 - Method also applicable to 3D patterns (e.g. VDMOS):

Kocher et. al, ECSCRM 2018

Content

Motivation: Application pull and requirements for successful device design

From modelling and design to device fabrication

- Aluminum doping by ion implantation: Channeling and compensation
- Ohmic contact formation on n⁺ and p⁺ contacts
- Device fabrication results for VDMOS transistors and CMOS circuits
- SiC device concepts for future electronics using ion-implantation
 - High temperature electronics beyond silicon
 - Solid state circuit breakers for DC grids
 - Bipolar SiC devices

© Fraunhofer IISB T. Erlbacher, 08.11.2018

Ohmic contact formation

Improvements of ohmic contact fabrication technology

- Development of Ni and Ti based contact processes
- Identification of reaction steps
- Optimization of processing
 - Al-content in Ti / Ni
 - Optimized RTP conditions
 - Laser annealing

Reduction of specific contact resistance for n- and p-doped regions at IISB

Ohmic contact formation

Self-aligned and "Ni-SALICIDE" fabrication technologies

- Comparison of fabrication technologies
 - Based on process developed at KTH

Ohmic contact formation

Self-aligned and "Ni-SALICIDE" fabrication technologies

- Comparison of fabrication technologies
 - Evaluation using TLM test patterns

Both fabrication technologies are applicable depending on requirements

Content

Motivation: Application pull and requirements for successful device design

From modelling and design to device fabrication

- Aluminum doping by ion implantation: Channeling and compensation
- Ohmic contact formation on n⁺ and p⁺ contacts
- Device fabrication results for VDMOS transistors and CMOS circuits
- SiC device concepts for future electronics using ion-implantation
 - High temperature electronics beyond silicon
 - Solid state circuit breakers for DC grids
 - Bipolar SiC devices

© Fraunhofer IISB T. Erlbacher, 08.11.2018

Device fabrication results

Improvements of design, modelling and fabrication technologies allow for realization of competitive SiC power devices, e.g. 900V voltage class

Breakdown voltage > 1100V

On-resistance < $100m\Omega$ ($9m\Omega$ cm²)

Threshold voltage: 1.6V

Yield > 40% @ 10mm²

Device fabrication results

Improvements of design, modelling and fabrication technologies allow for realization of competitive SiC power devices

Breakdown voltage > 3800V

Threshold voltage: 3.0V

On-resistance: $32m\Omega cm^2$

Yield > 10% (Epitaxy defects)

Sledziewski et al., ECSCRM 2018

Content

- Motivation: Application pull and requirements for successful device design
- From modelling and design to device fabrication
 - Aluminum doping by ion implantation: Channeling and compensation
 - Ohmic contact formation on n⁺ and p⁺ contacts
 - Device fabrication results for VDMOS transistors and CMOS circuits
- SiC device concepts for future electronics using ion-implantation
 - High temperature electronics beyond silicon
 - Solid state circuit breakers for DC grids
 - Bipolar SiC devices

© Fraunhofer IISB T. Erlbacher, 08.11.2018

High temperature electronics beyond Silicon

- SiC MOS devices can be operated beyond 300°C
 - Development of SiC Power MOSFET technology allows for CMOS circuits
 - Silicon development went the other way!

- High temperature circuits using "SiC power technology"
 - High temperature sensing
 - Signal amplification and conditioning
- Challenge: Optimization of pMOS transistors

High temperature electronics beyond Silicon

- "Triple-well" SiC CMOS 1P1M technology
 - NMOS and PMOS transistors fabricated by ion implantation
 - Polygate process, 1Pt/Ti metal
 - Ohmic contact formation using NiAl and RTP
 - NMOS V_{Th}: 1.5V
 - PMOS V_{Th}: 7.0V, contact resistance!
 - \rightarrow There is still more work to do!

High temperature electronics beyond Silicon

- Physical SPICE modelling for fast CMOS technology prototyping
 - Characterization of primitive devices (not IVs)
 - Extraction of physical and geometrical parameters
 - E.g. Interface state density, channel length
 - Modelling of device performance and comparison
 - SPICE Optimization:
 Fast BSIM model based on physical models

Interface Trap Density

High voltage integrated circuits beyond Silicon

- Combination of CMOS and power device technology: Smart Power ICs
 - RESURF LDMOS: Another concept inspired from silicon technology

Weisse et al., ECSCRM 2018

High voltage integrated circuits beyond Silicon

- Combination of CMOS and power device technology: Smart Power ICs
 - RESURF LDMOS: Another concept inspired from silicon technology

- 1200V SiC LDMOS will outperform silicon
 - → Charge balance is required (compare Al compensation)!

Weisse et al., ECSCRM 2018

Content

- Motivation: Application pull and requirements for successful device design
- From modelling and design to device fabrication
 - Aluminum doping by ion implantation: Channeling and compensation
 - Ohmic contact formation on n⁺ and p⁺ contacts
 - Device fabrication results for VDMOS transistors and CMOS circuits
- SiC device concepts for future electronics using ion-implantation
 - High temperature electronics beyond silicon
 - Solid state circuit breakers for DC grids
 - Bipolar SiC devices

Solid state circuit breakers for DC grids

- Over-current protection in energy transmission grids
 - Circuit protection faster than mechanical breakers

Robust and reliable solution desired

Solid state circuit breakers for DC grids

- Over-current protection in energy transmission grids
 - Normally-on device favorable (no external voltage bias required)
 - Monolithic integration (high integration density): Thyristor-dual
 - Self-triggering solution (fail-safe)

Huerner et al., ECSCRM 2016

Content

- Motivation: Application pull and requirements for successful device design
- From modelling and design to device fabrication
 - Aluminum doping by ion implantation: Channeling and compensation
 - Ohmic contact formation on n⁺ and p⁺ contacts
 - Device fabrication results for VDMOS transistors and CMOS circuits

SiC device concepts for future electronics using ion-implantation

- High temperature electronics beyond silicon
- Solid state circuit breakers for DC grids
- Bipolar SiC devices

Insulated Gate Bipolar transistors

- Benefit of lower static losses 10kV+ SiC bipolar devices
 - Diffusion voltage in 4H-SiC: \approx 3V \rightarrow No direct competition to Si IGBTs
 - But high voltage power switches suitable for "Beyond Silicon"
 - Reduction of circuit complexity (see multi-level converters)
 - Challenge: Minority carrier lifetime!

Substrate technology: p- and n-doped drift regions

- Low resistance and high quality of available n⁺-substrates
 - Development of p-IGBTs is "straight-forward", but...
 - Low channel mobility in pMOS (n-well)
 - Higher defect density in p-doped SiC
 - → Weaker conductivity modulation using p-IGBT
 - Lightly doped p-epitaxy layers are difficult to grow (background doping)
- Implementation of n-IGBT suffers from lack of availability of mature p⁺-substrates and high substrate resistance
 - How to solve p+-substrate issue?

Insulated Gate Bipolar transistors

- State-of-the-art in n-IGBTs R&D: 15kV devices
 - Carrier lifetime in drift region: 10µs
 - Thickness of drift region: 150µm
 - Junction termination: 800µm wide

Promising forward and blocking properties

Fukada et al., Trans. Electron Dev. 62 (2015)

Substrate technology: p- and n-doped drift regions

Device preparation of n-doped SiC with p-emitter

Backgrinding (Si-Side MOS)

Erlbacher et al., ICAE 2017

Example: Etched 100m wafer w/ Taiko ring (IISB)

Advantage: Use "standard" DMOS processing technology/sequencing

Content

- Motivation: Application pull and requirements for successful device design
- From modelling and design to device fabrication
 - Aluminum doping by ion implantation: Channeling and compensation
 - Ohmic contact formation on n⁺ and p⁺ contacts
 - Device fabrication results for VDMOS transistors and CMOS circuits
- SiC device concepts for future electronics using ion-implantation
 - High temperature electronics beyond silicon
 - Solid state circuit breakers for DC grids
 - Bipolar SiC devices

Conclusion

- SiC technology is matured and physical understanding is fostered
 - Modelling is catching up \rightarrow Reduction of development effort
 - Additional investigations into carrier lifetime improvement desirable
- SiC technology established implementation of silicon device concepts
 - CMOS, IGBTs generally: Concepts valid in Silicon technology
- SiC Bipolar devices are feasible for energy conversion applications
 - SiC IGBT in multi-level converter topologies (solid state transformer)
 - Medium voltage grid circuit breakers
- Reduction of semiconductor area (CAPEX) and power losses (OPEX) possible
 → Innovation!

Prototype fabrication at Fraunhofer IISB: Access to P-Fab

- 150mm SiC pilot line
 - Based on 200mm silicon CMOS line
 - Fabrication of SiC-devices qualified (ISO 9001) processing environment

Thank you for Your attention!

The work shown was supported by

- The Korean NRF under the Global Research Development Center (GRDC) in the POSTECH-Fraunhofer IISB Joint Research
- The German Research Foundation (DFG, project ER755/1-1)
- The European Commission under grant number 604075 (SPEED)