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Technology push from SiC power devices

® Reduction of static power losses beyond “state-of-the-art” (Silicon)

High critical electric field of WBG material

T T T T T T TTTT T
100 1000 10000
Breakdown voltage in V

Rps on ©f SIC VDMOS transistors similar/superior to Si IGBTs

Unipolar instead of bipolar device operation
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Application pull from power electronics

B Exploitation of SiC device properties in power applications

Reduce
Reduction of device area
RDS,on
Reduce
y cooling

Less static
power losses

Higher switching
frequency
Chip temperature

decreases

Higher
RDS,on

Less heat
dissipation

More dynamic
power losses

Chip temperature increases
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Application pull from power electronics

B Exploitation of SiC device properties in power applications
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+ Reduced dynamic Higher system
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- "Bill of materials” and CAPEX/OPEX calculations define success for SiC
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Application example: High voltage energy transmission

®m High voltage solid state transformers and HVDC transmission

Benefits of DC-DC transmission

Low line losses (inductances and capacitances are not attenuated!)

Cheap cables (no AC capable insulation!)

Underground cables feasible (regulations!)

Solid state transformers required

Fraunhofer

11ISB
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Modular multilevel converter for solid state transformers

B HVDC transmission: No single 380kV power switches available
Stacking of several power devices in series to obtain blocking voltage

- Modular multilevel converter topology (commutation cells)

as

m e B mae s l
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[
—
[

Today: Silicon IGBTs are used, e.g. San Franscisco “TransBay Cable”
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2

Current density in A/lcm

High breakdown voltages enabling low power losses

M Benefit of lower static and dynamic losses using SiC devices at 1.2kV:
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Less forward voltage drop compared to Si IGBT and faster switching
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But: Diminishing returns for device classes of 4500V and above

Si IGBT remains “best-in-class” up to 6.5kV (Si voltage limit)

- High blocking voltage and low forward losses (conductivity modulation)
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Application example: CMOS based electronics

B “Operation under harsh environment” (from a Si CMOS point-of-view)

Energy T Oil & Gas Industrial Aircraft
Industries Exploration  Gas Turbines Engines

Automotive Power
Engines Electronics

Required
Sensing
Temperatures
r *Pressure *Pressure *Pressure *Pressure
Desired
Bt *Temperature <Temperature <Temperature <Temperature
& *H,S *Hydrocarbon *Flamespeed *Flame speed
Measurands . : : :
«Strain *Strain * Acceleration <« Acceleration

*Pressure Integrated
*Temperature Gatedriver:
*Flame speed e Current
0, * Temperature

Harsh Environment Sensor Cluster, University of California, San Diego

* High switching
frequencies

+ reliabilty
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P-Doping in 4H-SIC: lon Implantation and Annealing

M Fabrication of advanced SiC power devices
lon implantation of Al

Annealing of SiC at 1750°C

B SiC p-doping by ion implantation of Aluminum Weisse et al., ECSCRM 2018
: - AT (Impl. at HT
Aluminum is preferred dopant 10 AL (e i) L=
(lowest ionization energy) I| w AT (impl. at HT) Pte~
) . A 1 (0 ATIL (Impl. at RT) P y
However, significant charge e | m Am(mp.atrn) O W o~
compensation is observed = s - ;/ L
: £ ] O
Up to 90% of implanted 3 % | &
. Z g Er ¥ g@
ions may be compensated @q‘; ’ L &&F
. | »” olo
- Knowledge of doping dependent 1 el ” , B
Compensation rate manadatory 10 10" 10"
-3
N, (cm™)
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Aluminum implantation in 4H-SIC: Compensation

B SiC p-doping by ion implantation of Aluminum

Aluminum is preferred dopant (lowest ionization energy)

However, significant charge compensation is observed

Up to 90% of implanted ions can be compensated

®  Analysis of compensation by
TLM patterns and DLTS

Formulation of defect
model

E

C
------------------------ Epeio> N
h\ ‘ionized and Defect = *"Comp

not deionizable into E,,

de-/ionizable into E,,
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Aluminum implantation in 4H-SIC: Compensation

B SiC p-doping by ion implantation of Aluminum
Aluminum is preferred dopant (lowest ionization energy)
However, significant charge compensation is observed

Up to 90% of implanted ions can be compensated

Kocher et al., ECSCRM 2018

. . . E‘
Analysis of compensation by = 100, Temperatore 300K
TLM patterns and DLTS Z a0l O-ui o
—— D‘ ""-‘
=] -~
Formulation of defect E oo o9
model s Y
Implementation i E 4 L
mplementation in = .
i S por--Fit | oo ke
TCAD modelling ; 20; o Literature|
] . i ) 1 O  This work
Calibration with electrical “’é 0 o7 10 10
measurements 8

implanted Al concentration N, [em™]
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Aluminum implantation in 4H-SIC: Channeling

B SiC p-doping by ion implantation of Aluminum
Significant channeling and lateral scattering occur

Modelling by Monte-Carlo

simulation possible Pichler et al., ECSCRM 2018
10% . .
1 MC crystalline
10" X —— MC amorphous -

1014_

N\
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Aluminum implantation in 4H-SIC: Channeling

B SiC p-doping by ion implantation of Aluminum
Significant channeling and lateral scattering occur

Modelling by Monte-Carlo
simulation possible Pichler et al., ECSCRM 2018

Implementation and
visualization: TCAD

Al Channeling up to
17 times beyond
projected range

I,‘:II-
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Aluminum implantation in 4H-SIC: TCAD modelling

B SiC p-doping by ion implantation of Aluminum

Understanding of physical effects enables efficient modelling

B Example: p-Well implantation for VDMOS transistors

]

Significant deviation from

T ) Initial design
initial expectations

Impact on device performance

0.5

Device resistance

Breakdown voltage : | . hann ey
Threshold voltage - sasseots
e
Modelling without these s
effects is not efficient! [y
= =0.5 o 0.5 |
X (pm]
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Aluminum implantation in 4H-SIC: TCAD modelling

B SiC p-doping by ion implantation of Aluminum

Understanding of physical effects enables efficient modelling
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Aluminum implantation in 4H-SIC: TCAD modelling

B SiC p-doping by ion implantation of Aluminum

W Understanding of physical effects enables efficient modelling

Buettner et al., ApplePies 2018
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Advanced device characterization method

B Investigation of doping profiles
“  SIMS (But: requires calibration samples)

@ Optical profiling using bevel grinding and thermal oxidation

“ Oxidation rate depends on doping concentration
Kocher et. al, ECSCRM 2018

sample Al19
" ' - Al (SIMS)
51075 : - Al (TCAD)
E. 1013_; ¢ (o= N (epi layer)
s ] : ;
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Advanced device characterization method

B Investigation of doping profiles
“  SIMS (But: requires calibration samples)
@ Optical profiling using bevel grinding and thermal oxidation

@ Method also applicable to 3D patterns (e.g. VDMOS):
Kocher et. al, ECSCRM 2018

sample “device” -
‘grinded surfé{ce afte’a_‘ oxid_atio_n__
bevel angle: 0°11’ -'

a2 650 nm.
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Ohmic contact formation

B Improvements of ohmic contact fabrication technology

Development of Ni and Ti based
contact processes

Identification of reaction steps

Optimization of processing
Al-content in Ti / Ni
Optimized RTP conditions

Laser annealing

Kocher et al., ECSCRM 2018
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Ohmic contact formation

m Self-aligned and “Ni-SALICIDE"” fabrication technologies

Comparison of fabrication technologies

Based on process developed at KTH

A: Self-aligned process

for ohmic contacts on SiC
(lift-off)

START SPLIT Metallization
50 nm NiAl2.6%

— —
Lithography on Dry etching of
thick TEOS contact via
| I
— _— — e

Piranha cleaning
(resist removal)

B: SALICIDE process

Lift-off (NMP)
| I

Metallization
50 nm NiAl2.6%

| | | . | |
- - - R

process reliability issues

First silicidation
at 500 °C

Backside 50 nm NiAl2.6%
RTP at 980 °C

Piranha cleaning
(metal removal)

>

for ohmic contacts on SiC
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Ohmic contact formation

m Self-aligned and “Ni-SALICIDE"” fabrication technologies

Comparison of fabrication technologies

Evaluation using TLM test patterns Sledziewski et al., ECSCRM 2018
30+ ) ) 2 . ;
1 —— A: self-aligned (lift-off) / 1 —— A: self-aligned (lift-off) V
201 ——B: Ni-SALICIDE | — B: Ni-SALICIDE
” { TLM: d = 30 ym 2 14 TLM: d = 30 ym
£ 10'; n+ contact £  |p+ contact
3 -10: p, = 0.016 mQem® 5 p, = 6.578 mQem®
p_ = 0.084 mQcm’ O 4] p_ = 0.417 mQcm’
-20 :
30 50 nm NiAI2.6% ) ) 50 nm NiAI2.6%
-10 -5 0 5 10 -10 -5 0 5 10
Voltage (V) Voltage (V)

Both fabrication technologies are applicable depending on requirements
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Device fabrication results

B Improvements of design, modelling and fabrication technologies allow for
realization of competitive SiC power devices, e.g. 900V voltage class
Breakdown voltage > 1100V On-resistance < 100mQ (9MQcm?2)
Threshold voltage: 1.6V Yield > 40% @ 10mm?
GRDC Project 2018
1.2 —e— Before processing 1,0
—e— After processing 4

1,0 1 ® o '/
Z / '/ E0,8 ./
="0,81 a e < /
o / o/ C 0,6 - - _e-o-2-"%
o / o ! el
S 0,61 2 A 5 ¢ %
s/ -/' Soal [
£ y o cb [
© 041 o © S’
© / o © //.

024 # ./o 0,2 ¥

./ 4
[ s
oo+~-—AH —"—— —— — 0.0 panee® e —————
0,0 0,1 0,2 0,3 0 5 10 15 20 25

drain voltage [V]

gate voltage [V]

27

\

~ Fraunhofer

11ISB



Device fabrication results

Improvements of design, modelling and fabrication technologies allow for
realization of competitive SiC power devices

Drain-Source Current, |, (mA)

Breakdown voltage > 3800V

Threshold voltage: 3.0V

—
o

[V, =0V a)
0.8+

06l |33KV/50A

' SiC MOSFET

0.4

0.2+

0.0 LA LN L L L

o 1 2 3 4

Drain-Source Voltage, V. (kV)

On-resistance: 32mQcm?
Yield > 10% (Epitaxy defects)

Sledziewski et al., ECSCRM 2018
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High temperature electronics beyond Silicon

B SiC MOS devices can be operated beyond 300°C
Development of SiC Power MOSFET technology allows for CMOS circuits

Silicon development went the other way!

meta”iz‘ftion gateoxide field oxide n-doped polysilicon

channel implantation (D= 2:102cm2) | p-well (N, = 5-10¢cm3)

n-type epitaxial layer (N, = 5-:101°cm3
4H-SiC substrate

High temperature circuits using “SiC power technology”
High temperature sensing
Signal amplification and conditioning

Challenge: Optimization of pMOS transistors

\
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High temperature electronics beyond Silicon

m “Triple-well” SiC CMOS 1P1M technology
NMOS and PMOS transistors fabricated by ion implantation
Polygate process, 1Pt/Ti metal
Ohmic contact formation using NiAl and RTP
NMOS V;,: 1.5V
PMOS V,: 7.0V, contact resistance!

- There is still more work to do!

\

31 ~ Fraunhofer

11ISB



High temperature electronics beyond Silicon

®m Physical SPICE modelling for fast CMOS technology prototyping

Characterization of primitive devices (not 1Vs)

Extraction of physical and geometrical parameters

Interface Trap Density

o Subthreshold
= = Model

o Hall-Measurments

E.g. Interface state density, channel length 3 £% {
T 54 315::;
Modelling of device performance and comparison z ~ || ) |
SPICE Optimization: :
Fast BSIM model based on physical models e
00 05 10 15 20 25 30
Energie E-EC in eV
=
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High voltage integrated circuits beyond Silicon

B Combination of CMOS and power device technology: Smart Power ICs

® RESURF LDMOS: Another concept inspired from silicon technology

Weisse et al., ECSCRM 2018
Field Plate

Gate Field Oxide

L =20 uml ;’.
5um ,0
=1um &
L 2
'/' $
L 2
oee® *
3
———————————————————— ¢ oo
0.0 11 \12 13 V14
Scheme of a lateral RESURF n-LDMOS transistor. 10 10 10 10
Dose (cm™)
_——
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High voltage integrated circuits beyond Silicon

B Combination of CMOS and power device technology: Smart Power ICs

RESURF LDMOS: Another concept inspired from silicon technology

Gate rdeldPlate .15 ide

Drain (n")

Sopfce (N )} RESURF region

P)  p-well/
Channel 9 pm
p-type Epitaxy

Depletion region

Scheme of a lateral RESURF n-LDMOS transistor.

Weisse et al., ECSCRM 2018
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5] vV L
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5 -
- B
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104 v S .
1 L
| | LI Tt I
0.65 0.85 1.05 1.25

V., (kV)

1200V SiC LDMOS will outperform silicon
- Charge balance is required (compare Al compensation)!
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Solid state circuit breakers for DC grids

B Over-current protection in energy transmission grids

Circuit protection faster than mechanical breakers

Robust and reliable solution desired

36
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Solid state circuit breakers for DC grids

B Over-current protection in energy transmission grids

Normally-on device favorable (no external voltage bias required)

Monolithic integration (high integration density): Thyristor-dual

Self-triggering solution (fail-safe)

——
=B Voltage, V

T B T T

T
BD

. >
Kathode Anode 8=
O__DI Y Ls fS l A | DE | o >£ _‘\ Turn-Off Voltage, V. i
p-JEET n-JFET gp Breakover-Current-
Cell Pitch = 20um " Density, J, -
o
[oP] .
G l g Breakover-
% p],d,nac, OC}J - Voltage, V
L, =2um : 1 .
Ohmic Interlayer i g r Spec‘On-Resmtance, I-DS, ON \
S
(] L
Drain-Source-Current-Density, J ¢ in (A)
Huerner et al., ECSCRM 2016
Drain
—
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Insulated Gate Bipolar transistors

B Benefit of lower static losses 10kV+ SiC bipolar devices

Diffusion voltage in 4H-SiC: = 3V - No direct competition to Si IGBTs

But high voltage power switches suitable for “Beyond Silicon”

Reduction of circuit complexity (see multi-level converters)

Challenge: Minority carrier lifetime!

/
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Substrate technology: p- and n-doped drift regions

® Low resistance and high quality of available n*-substrates
Development of p-IGBTs is “straight-forward”, but...
Low channel mobility in pMOS (n-well)
Higher defect density in p-doped SiC

- Weaker conductivity modulation Cathode poly gate
using p-1GBT

Lightly doped p-epitaxy layers are

difficult to grow (background doping) owol | St | oSt | nwe
"-shield
B Implementation of n-IGBT suffers from p-doped drift layer
lack of availability of mature p*-substrates ] "-doped field-sto
p -doped emitter

and high substrate resistance
. p"-doped contact
How to solve p+-substrate issue?

Anode

\
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Insulated Gate Bipolar transistors

B State-of-the-art in n-IGBTs R&D: 15kV devices

Carrier lifetime in drift region: 10us
Thickness of drift region: 150pm
Junction termination: 800pm wide

Promising forward and blocking properties

Fukada et al.,
Trans. Electron Dev. 62 (2015)

%0 25V 5
45 4 400
hp ] i 4 16.5kV
35 { 300 &~ 3
<30 1205 <
S 25 2
0 4 200 — w
20 Y Re
15 150 = 1
10 100 0 )
5 50
n u _1 '] ' ']
0 0 5000 10000 15000 20000
Vee (V)
=
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Substrate technology: p- and n-doped drift regions

B Device preparation of n-doped SiC with p-emitter
Backgrinding (Si-Side MQOS)

Erlbacher et al., ICAE 2017

Cathode poly gate

CSL Si-face
p-well p-well
"-shield -shie /
p-doped emitter region

C-face
p -doped contact region
Example: Etched 100m wafer
Anod . .
noce w/ Taiko ring (I1SB)

Advantage: Use “standard” DMOS processing technology/sequencing

\
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Conclusion

®m SiC technology is matured and physical understanding is fostered
Modelling is catching up > Reduction of development effort

Additional investigations into carrier lifetime improvement desirable

B SiC technology established — implementation of silicon device concepts

CMOS, IGBTs — generally: Concepts valid in Silicon technology

M SiCBipolar devices are feasible for energy conversion applications
SiC IGBT in multi-level converter topologies (solid state transformer)

Medium voltage grid circuit breakers

M Reduction of semiconductor area (CAPEX) and power losses (OPEX) possible

- Innovation!
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Prototype fabrication at Fraunhofer IISB: Access to P-Fab

B 150mm SiC pilot line
w Based on 200mm silicon CMOS line

" Fabrication of SiC-devices qualified (ISO 9001) processing environment

®

@ qualityaustria
SYSTEM CERTIFIED

1SO 9001:2008 No.16300/0
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