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Abstract—Electronics for automotive systems are characterized
by an increasing complexity and a more and more tighter
interaction between analog, digital hard- and software. They
consist of a huge portion of embedded software, which executes
on large (regarding the number of devices) digital subsystems and
controlling and assisting analog devices. Furthermore, automotive
electronics deeply interacts with the non-electronic environment.
Due to this increasing complexity of automotive electronic devices
the verification becomes more and more challenging. Today,
existing verification methodologies are mostly focused on pure
digital devices and are completely decoupled from analog veri-
fication. Additionally, the existing methodologies tend to focus
on implementation level verification. They do not meet the
requirements of state of the art automotive applications.

Based on the powerful 3-uple (Universal Verification Method-
ology (UVM) principles, SystemC, SystemC AMS extensions), this
paper shows how the principles of the new UVM methodology can
be soundly enhanced to offer to the test designer a flexible frame-
work for the virtual prototyping of multi-discipline testbenches
that supports both digital and Analog Mixed-Signal (AMS) at the
architectural level. The paper clearly details the architecture of
the reusable verification IPs and the synchronization mechanisms
used to simultaneously manage test at a high level of abstraction
(test sequences) and communicate with the AMS DUT at the pin
level. The presented techniques are applied to two operational
case study, a full-fledged programmable filter testbench, and
then applied to a smart power supply module on an automotive
Electronic Control Unit.

I. INTRODUCTION

Virtual prototyping [1] is one of the major achievements
of the past ten years. With certain success, semi-conductors
companies have worked on effective solutions to model their
products at the architectural level of abstraction, enabling
early embedded software development. At the same time,
the virtual platforms have followed More Than Moore laws.
Today, manufactured products are heterogeneous in nature, for
they integrate on the same die digital, analog, RF and multi-
physics components.

The verification and validation of such integrated hetero-
geneous systems have become a real challenge today for
semiconductor companies, fab-less design houses and system

developers as their intrinsic complexity keeps growing: more
embedded functions per µm2 and behavior heterogeneity re-
sulting from the combination of AMS/RF domains with the
digital hardware and software domains [2].

In practice, the main issue is to dramatically improve the
design efficiency and quality of such complex systems, by
developing methods and tools that can tackle the design
challenges in the next generations of technologies, taking into
account the heterogeneous integration of different functions. It
is now the time for system verification, that covers simulation-
based system analysis before tape-out and system validation,
which focuses on the analysis of the physical implementation
using test & measurement equipment as soon as silicon
is available, by defining an unified system-level verification
methodology for heterogeneous products, by specifying an
efficient reuse strategy for verification IP, across and inside
companies for different product generations, and by defining
a clear path from verification IP to validation IP, to bridge the
gap between verification and validation [3].

There is actually a need for a unified system-level verifica-
tion kit that could bring new methods, language extensions
and tools dedicated to heterogeneous systems to continu-
ously prove the architectural integrity and system specification
throughout the whole product creation process. In order to
verify and validate the architecture and specification of these
systems, an end-to-end verification approach is required, based
on the creation of an “executable specification” that includes
the essential verification components and IP necessary to
describe stimuli, test-benches, analysis algorithms, etc.

Additionally this verification kit must follow or extend
known standards: new modeling methods for SystemC-based
[4] verification, interoperability of tools and reuse techniques
using IP-XACT [5], and using a common programming in-
terface to test and measurement equipment through the OVM
[6], AVM [7] or UVM [8] standards.

The paper is organized as follows. Section II describes the
related work in the areas of methodologies and verification
tools. Section III gives an overview of the Virtual Prototyping,



Verification and Validation Framework for Automotive. The
UVM-SystemC concepts are introduced in Section IV. In
Section V we apply our framework to a programmable filter
test case, and then to a smart power supply module on an
automotive Electronic Control Unit. The simulation results
are shown in Section VI. Finally, Section VII draws some
conclusions and future directions.

II. STATE OF THE ART

As shown in Fig.1, various verification methodologies for
digital systems have been developed and promoted by EDA
vendors over the last decade, evolving towards UVM as part
of an industry supported standardization effort in Accellera.
The industry-recognized Universal Verification Methodology
(UVM) [8] support design and verification engineers with an
open-source class library to create verification components and
models for digital test-benches. A standardized methodology
which allows reuse and portability of Verification IP based
on this approach. This verification methodology will become
language and tool independent, supporting the creation of
Verification IP in SystemVerilog [9], SystemC [4] and e [10].
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Fig. 1. Evolution of Verification Methodologies

However, all these initiatives do not fully comply with the
methods defined in the UVM standard, primarily because they
are built on the former AVM [7], OVM [6], VMM [11],
technologies, were consolidation into a single standard resulted
in major changes. As a consequence, the user has to deal
with the incompatibilities related to simulation semantics and
language constructs. Especially the move from OVM to UVM
significantly changed the way how components deal with
the phasing mechanism and how the end-of-test is managed.
To avoid legacy concepts and constructs in modern test
benches, migration to UVM standard compatible implemen-
tations should be encouraged. Furthermore, SystemC as the
currently preferred language standard for system level design,
needs to be extended with advanced verification concepts.

Besides, Virtual Prototyping (VP) technique has been stud-
ied and implemented in recent years in engineering design [1],
[12], these recent developments have considerable potential.
With the goal of replacing physical prototypes, VP has a
great potential to improve the current product development
process. A lot of development for utilizing VP is being realized
by automotive and aerospace companies. For example, in
[13], they investigate the steps needed to apply virtual reality

(VR) for virtual prototyping (VP) to verify assembly and
maintenance processes.

III. 3VFA FRAMEWORK
(VIRTUAL PROTOTYPING, VERIFICATION AND VALIDATION

FRAMEWORK FOR AUTOMOTIVE)

The proposed virtual prototyping, verification and validation
framework for multidiscipline automotive designs is detailed
in Fig. 2. It is entirely based on the SystemC C1 [4], its
analog mixed-signal extensions called SystemC-AMS C2
[14], and the new verification library UVM-SystemC C3 .
In 3VFA, SystemC is used to model and simulate the dig-
ital parts of the Design Under Test (DUT), such as the
processors and their associated caches, the memory banks,
the interconnect networks, I/O peripherals and controllers,
etc. SystemC-AMS is built on top of SystemC and proposes
additional constructs which introduce new execution semantics
(synchronized data-flow, multiple models of computation) and
system-level methodologies to design and verify mixed-signal
systems. UVM-SystemC, based on the standardized UVM
library and extended for AMS, introduces a true reusable
system-level verification methodology that can address soft-
ware, digital hardware and AMS hardware altogether.

A. High Level Modeling of Digital System (SystemC)

SystemC is a set of C++ classes which provide an event-
driven simulation interface that enables a designer to simulate
concurrent processes typically found in microelectronics. It is
a Electronic System-Level (ESL) modeling language used for
system-level modeling, architectural exploration, performance
modeling, software development, and functional verification.
SystemC supports many models of computation, from synthe-
sizable RTL to transaction-level modeling (TLM) [15]. From a
pragmatic viewpoint, a SystemC module is an inherited C++
class that contains input and output ports (declared as data
members) and one or several SC METHOD or SC THREAD
that actually represent as a process the behavior of the
module. SC METHODs represent an elegant way to describe
simple sequential and autonomous digital algorithms, while
SC THREADs, with the ability to insert wait() statements,
allow to stop and resume a process in order to soundly
synchronize with other processes. To provide a good trade-
off between speed and accuracy, SystemC designers can use
specific kinds of modeling like Communicating Synchronous
Finite State Machines [16] to represent digital behavior as a
set of synchronized SC METHODs. Eventually, the SystemC
models of RAM 4© can be powerful enough to actually load
the contents of a binary file, and hence feed the processors
with appropriate instructions and data. In 3VFA structure, the
well-known GNU GCC tool chain can be used to generate
the code that will be used both in simulation and physical
prototype 5©.

B. High level Modeling of Mixed System (SystemC-AMS)

The SystemC AMS [17] extensions are built on top of the
SystemC language standard and define additional language
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Fig. 2. The proposed virtual prototyping, verification and validation framework for automotive

constructs, which introduce new execution semantics and
system-level modeling methodologies to design and verify
mixed-signal systems. The SystemC AMS extensions provide
a framework for functional modeling [18], integration verifi-
cation, and virtual prototyping of Embedded Analog / Mixed-
Signal Systems. This language allows to create discrete-time
and continuous-time models at different levels of abstraction.
The SystemC AMS extensions provide three different models
of computation: Timed Data Flow (TDF), Linear Signal Flow
(LSF), and Electrical Linear Networks (ELN). For the AMS
models 6©, such as, amplifier, regulator, the Timed Data Flow
model of computation is used. TDF is a discrete-time modeling
style, which considers data as signals sampled in time. These
signals are tagged at discrete points in time and carry discrete
or continuous values. Besides, TDF can be used with great
efficiency to model complex non-conservative behaviors.

C. Managing Verification Complexity (UVM-SystemC)

UVM-SystemC is the adaptation of the SystemVerilog stan-
dard methodology to SystemC for verifying integrated circuit
designs. The UVM-SystemC C++ class library brings much
automation to SystemC such as the generation of reusable
sequences and powerful means to configure testbenches and
exchange stimuli between components. Its main objective is
to provide a formalized and structured test infrastructure and
reduce time and complexity associated with DUT verification
and validation.

The centerpiece of a UVM scenario is the mixed-signal

DUT 7© which is composed of digital and AMS parts, some of
them eventually executing software. The DUT is connected to
the rest of the testbench by means of the interface mechanism
8© proposed by SystemC that brings huge modularity and

effectiveness. The interfaces are connected either to UVM
driver ports (uvm driver, that actually stimulate the DUT)
9© or monitor ports (uvm monitor, that actually get and

accumulate samples coming from the outputs of the DUT)
10©. UVM defines an appropriate request/response protocol
to manage the transfers between the sequencer 11© and the
driver. The 3-uple (sequencer, driver, monitor) represents a
uvm agent 12©. UVM defines an uvm environment as a col-
lection of consistent uvm agents (i.e. acting in a coordinated
manner and linked to a specific part/functionality of the DUT
interface). UVM defines the virtual sequencer object 14© which
is responsible for managing and scheduling the collection of
sequences that feed the sequencer of each UVM component.
As such, a virtual sequence constitutes a timed test scenario,
that can be compiled and stored in a virtual sequence library
15©. The scoreboard is based on the “subscriber” design pattern
to efficiently collect the data from the various sources. UVM
has also been conceived to take full advantage of C++ in order
to provide the testbench designer with a very reusable and
convenient way to replace components or agents with other
and hence switch smoothly from verification to validation
while keeping intact the scheduling and the sequencing of the
functional test vectors.

Fig. 3 illustrates the top-down decomposition of test se-
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quence stimuli in UVM, as well as the bottom-up reconstruc-
tion of performance indicators for verification. More precisely:

1) The top-down refined stimuli generation :
• Virtual sequence level: The virtual sequences are

extracted from a scenario database and propagated
to the testbench.

• Sequence level: The global virtual sequencer dis-
patches the appropriate sequence to the correspond-
ing UVC component. The sequence is decomposed
in sequence items that are managed by the local
agent sequencer.

• Signal level: The driver sends accurate stimuli/sam-
ples to the DUT digital and AMS ports.

2) The bottom-up performances indicators reconstruction :
• Signal level: The monitor receives and accumulates

the output signal level vectors/samples.
• Analysis level: The UVM monitor contains util-

ity functions that can be used to perform several
analyses on the collected signal waveforms and to
compute system performances.

• Result level: The scoreboard performs end-to-end
checking by comparing the golden model reference
performance specifications with the extracted per-
formances.

We will detail the basic concepts and features of UVM-
SystemC in the following sections.

IV. UVM-SYSTEMC CONCEPTS OVERVIEW

UVM-SystemC, developed by NXP, defines all the fea-
tures to create a standard verification environment. It takes
advantage of the most prominent technologies used in efficient
SystemC-based virtual prototyping such as interface configu-
ration mechanism, transaction-level modeling and AMS exten-
sions for heterogeneous modeling. At present, UVM-SystemC
is still under development and contributed to Accellera for
further standardization.

In the following, we elaborate the essential UVM concepts
in several parts, to create a structured, modular, configurable
and reusable verification environment.

A. UVM-SystemC basic elements
1) agent: The cornerstone of UVM is the agent. It can be

seen as a convenient mean to receive sequential requests

and convert them into low-level data exchanged with
the DUT. If the UVM agent is active, it may contain a
driver and a monitor working under the control of the
corresponding sequencer. If it is inactive, an uvm agent
may just contain a uvm monitor without sequencer and
driver.
Additionally, an agent may contain some analysis func-
tions for coverage and checking, and some configuration
capabilities. Agent can eventually be configured as mas-
ter or slave according to the way they are configured.

2) sequencer: The sequencer works according to a pull
semantics, i.e. it reacts to the orders given by the driver
and offers the service of getting and delivering the next
high-level test sequence item/transaction to the driver.

3) driver: In the UVM methodology, roles are clearly iden-
tified. The driver is responsible for creating and driving
the physical signals to drive the DUT. For this purpose,
the driver repeatedly requests transactions, encapsulated
in a sequence, via the sequencer, and translates these to
one or more physical signal(s).
More precisely, the purpose of driver is to handle the
conversion of high-level transactions into bit-accurate
(for digital) or analog signal samples (for AMS) that
physically (i.e. at the electrical pin level) drive the DUT.
For instance, a driver controls the read/write signal, data
bus and address bus for a period of clocks signal to
execute a read transfer.

4) monitor: The monitor is a passive element that only
captures the DUT signals. It extracts signal information
from the interface and translates this information to
abstract transactions. It will distribute this transaction to
all connected elements for e.g. coverage collection and
checking. The connection between the monitor and the
DUT is established by using a dedicated channel, which
is made available via the configuration mechanism.

5) virtual sequencer: A virtual sequencer is used in the
stimulus generation process to allow a virtual sequence
to be distributed across multiple sequencers within sev-
eral agents.

6) sequence item: Sequence items or transactions belong
to a sequence. Sequences are part of the upper sce-
nario layer which define streams of transactions. The
properties (or attributes) of a transaction are captured
in a sequence item. Sequences are not part of the
design hierarchy, but are mapped onto one or more
sequencers. We will see later that sequences can eventu-
ally be layered, hierarchical or virtual, and may contain
multiple sequences or sequence items. Sequences and
transactions can be configured via the factory. High-
level sequences are generally directly attached to the
sequencer of each active UVC but the management of
these sequences can also be delegated to a higher level,
hence allowing the synchronization of UVCs by a kind
of testbench conductor.

7) scoreboard: The role of the scoreboard is to determine
whether the DUT operates correctly or not. It takes



two streams of transactions as input and compare the
expected and collected performances indicators values
with relational operators. For a thorough purpose of
detailed verification, it is necessary to compare the
actual performances computed by the monitor with
the expected ones, coming from the user specifications
or from a golden model. In the digital world, these
comparisons are performed with simple equality tests.
In the AMS world, comparisons always involve more
subtle inequality tests.

B. Configuration mechanism and the Factory

UVM-SystemC provides a configuration mechanism and the
factory pattern, both of these mechanisms make a convenient
and effective way for reusing the existing verification, entire
components or test in difference test case.

Indeed, the power of UVM comes from its very effi-
cient configuration mechanism (13© in Fig. 2) that allows to
propagate or retrieve hierarchically any information (value,
configuration, filename, UVM components, etc) to any object
of the built UVM hierarchy, and this configuration mechanism
combined with the factory design pattern to dynamically
instantiate or override UVM components make it powerful.

The configuration mechanism provides access to a cen-
tralized database where type specific information can be
stored and retrieved. The configuration and resource classes
(uvm resource db and uvm config db) provides a typed
interface for object-centric configuration and resource facility.

The factory pattern is an well known object-oriented design
pattern, this factory mechanism is used to create UVM ob-
jects and components. Use of the factory mechanism allows
dynamically configurable component hierarchies and object
substitutions without having to modify their code and without
breaking encapsulation. It can provide the solutions to deal
with the requirements, such as: replace the base UVM com-
ponent which is deep in the hierarchy of your environment, add
one more UVM component to the current UVM component
list so that from the verification environment can work for
another test case.

C. UVM-SystemC Phases

In order to have a consistent testbench execution flow, the
UVM-SystemC uses phases to order the major steps that take
place during simulation. There are three groups of phases,
which are executed in the following order:

1) Pre-run phases (build phase, connect phase): The
build phase is executed at the start of the UVM
testbench simulation and their overall purpose is to
construct, configure the testbench component hierarchy.
During the build phase UVM components are indi-
rectly constructed using the factory pattern. The con-
nect phase is used to interconnect all the components.

2) Run-time phase (run phase): The testbench stimulus
is generated and executed during the run-time phases
which follow the build phases. In run phase and run-
time phases, we execute the test scenarios by performing

the configuration of the DUT and applying primary test
stimulus to DUT.
All UVM components using the run-time schedule are
synchronized with respect to the pre-defined phases in
the schedule.

3) Post-run phases (extract phase, check phase, re-
port phase and final phase): where the results of the
test case are collected and reported. The 4 post-run
phases are used to post-precess the results after the
execution of the test scenario of the DUT.

D. AMS extension

To correctly handle the AMS signals found in heterogeneous
designs, the original digital UVM drivers and monitors have
been substantially modified to support the Timed Data Flow
(TDF) Model of Computation of SystemC-AMS. Next to the
drivers and monitors required for digital verification, specific
TDF analog drivers and monitors are added to the AMS UVCs,
that allow to generate or monitor discrete time sampled value
waveforms. The connections of the TDF drivers and monitors
with the AMS-DUT form a TDF cluster that operates with
its own cluster period, that is different from the driver period
handling high level sequences.

E. Synchronization
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Fig. 4. (a). UVM AMS driver component, it is composed of a
SystemC TLM adaptor and a SystemC AMS TDF driver (b). Pipelined
synchronization method.

Virtual sequences, sequences, and sampled signals represent
the actual data sent to or received from the DUT at different
time scales. To correctly synchronize the UVCs involved in
the testbench and the DUT, it is necessary to synchronize the
related SystemC and SystemC-AMS. In Fig. 4(a), a UVM
AMS driver component consists of two modules. The first
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component is a SystemC TLM adaptor component. A process
of this component reads the timestamps of the transactions and
writes (schedules) the data of the transaction in the second
delta cycle, one resolution time step before the timestamp of
the transaction. This guarantees, that the data will be read at
the correct time by the TDF module, since SystemC-AMS
reads event driven SystemC signals always at the first delta
cycle of the current time.

This pipelined synchronization method is presented in
Fig. 4(b). Between each sequence item, the sequencer/driver
waits for a period T0. The monitoring thread waits for the same
period, so that the emission of stimuli and the reconstruction
of performance indicators are kept synchronous at any time
during the simulation, for the scoreboarding comparisons to
make sense. Once a new sequence item has been propagated
to the driver (at the very beginning of the sequence item
period), the corresponding TDF driver module uses the high-
level stimuli signal description to generate the TDF stimuli
for the DUT. For instance, if the sequence item defines a new
operating frequency for the wave generator, the corresponding
TDF processing function reacts immediately (i.e. within a TDF
period indicated by the TDF cluster timestep) and generates
the appropriate low-level samples. The sequence item high-
level information data remain valid during the whole T0
period. At the very end of the T0 period, all the TDF stimuli
samples corresponding to a given sequence item have been
sent to the DUT, and all the monitored values coming from
the DUT have been aggregated in order to compute the

values of the performance indicators. When scheduled, the
thread associated to the monitor gains direct access to these
performance values, that will remain valid for the next T0
period.

V. CASE STUDY

A. Programmable filter

In order to validate the framework, a verification test case
has been achieved at the first step. The selected use case is an
SPI-Controlled programmable filter, that is composed of two
parts, as shown in Fig. 5. The first part is the Analog Mixed
Signal (AMS) filter D1 , and the second part is a digital SPI
slave controller D2 .

The filter DUT is written in SystemC and its AMS ex-
tensions. There are two power supply inputs v plus and
v minus, two differential inputs named p in and m in, and
two differential outputs p out and m out. The behavior of the
filter is controlled by a 4-bit word cmd in. The two MSB
bits of cmd in control the filter mode that can either be
ideal (mode 00), one-pole (mode 01) and two-poles (mode
10). The two LSB bits of cmd in define the amplification
factor, from x1 (00) to x1000 (11). The SPI slave controller
is written in SystemC and has a genuine SPI interface, with a
complementary reset input named reset n, a chip select input
named cs n the clock input named sclk and the 8-bit command
data are shifted in using the mosi input.

In order to verify the DUT with UVM-SystemC (AMS), it
has to be connected to 4 entities: a power supply generator, a



function generator, an SPI driver that generates SPI-compliant
commands and an analyzer in order to visualize and interpret
the signals produced by the DUT filter. For the interpretation
of the output signals to make sense, the input signals must
also be monitored and managed by the analyzer, to compute
the output gain of the programmable filter.

The 4 entities are implemented as AMS UVCs. The pow-
ersupply uvc U3 , wavefunc uvc U1 and spi uvc U4
contain only active agents and the wave uvc U2 contains
only passive agent.

Connections between UVCs and the DUT follow the in-
terface configuration mechanism provided by UVM-SystemC.
In this case, there are 4 interfaces related to the 4 UVCs.
powersupply if F3 , wavefunc if F1 , wave if F2 are
TDF signal interfaces and spi if F4 is a digital signal
interface.

During the SystemC-AMS simulation, the 4 UVCs, the TDF
drivers and monitors are carefully synchronized, following the
synchronization rules of the previous section. That way, the
sequence items are extracted from the sequence with a slow
(sequence item) period that remains compatible with the fast
TDF cluster execution period. Similarly, the UVM monitor
operates at the same slow rhythm and periodically asks the
TDF monitor to give the last values of performances indicators.

The scoreboard SB is responsible for comparing the
expected performances of the programmable filter, which are
managed by the wavefunc uvc, with the evaluated perfor-
mances that are computed after a thorough analysis of the
TDF samples coming from the filter and taken care of by
the wave monitor. The expected gain is directly part of the
wavefunc sequence item, and the collected gain is calculated
by the wave monitor. This is where the uvm analysis port
in the wavefunc sequencer and in the wave monitor come into
action, as means to propagate the values to be compared to
the scoreboard.

In our case, a virtual sequence consists in setting the pow-
ersupply, resetting and writing a SPI command, and providing
a frequency test request to generate a series of TDF samples
with a specific operating frequency.

The 4 UVCs and the scoreboard are instantiated in a
UVM testbench. The testbench also connect the expected
performances from the wavefunc uvc and the observed per-
formances from the wave uvc to the scoreboard.

The test instantiates the testbench and defines the virtual
sequence. The virtual sequence is initiated and terminated in
the test. The top-level (e.g sc main()) contains the DUT-AMS
and the test. The interfaces to which the DUT can be connected
are stored in the configuration database, and can be used by
the UVCs to connect to the DUT in the top-level after a simple
retrieve operation in the database.

B. Automotive use case - Smart power supply module

The selected use case from Continental Automotive France
for this experimentation is a smart power supply module
extracted from an automotive Electronic Control Unit (ECU)
of an engine management system. It is implemented in an
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Fig. 6. ASIC design, test, verification & validation process.

ASIC including voltage regulator block providing several
supply voltages in addition to internal and external reset
chain for the complete ECU. The ECU is controlled by
an SPI communication interface. Additionally, it embeds a
complex state machine as digital circuitry for safety moni-
toring purpose, connected via the same SPI interface to the
main controller. The ASIC serves as the DUT to be verified
by the UVM methodology. It is written in SystemC-AMS,
abstracting the gate level implementation and being functional
and approximately timed for both digital and analog domain.
Moreover, the DUT as tape-out silicon shall be validated
in laboratory test environment controlled by LabVIEW [19]
software. The simulation and test stimuli shall be unified in
order to generate the equivalent test patterns and to compare
both tests results. This strong requirement induces additional
constraints on the UVM testbench through the implementation
of its verification components.

To follow the targeted methodology as defined in the Fig. 6,
the DUT verification starts by implementing a simulation test-
bench using the UVM-SystemC class libraries. The UVC is
defined according to the DUT behavior, in order to be reused
across several design verification. As shown in Fig. 7, the
test-bench is organized in 4 UVCs agents. First the driver
of AMS-UVC(1) is controlling the TDF input signal of the
power voltage regulation (battery, key and main relay voltage)
and its monitor is recording the regulated voltage outputs (5V,
3.3V, 1.3V.. etc) and the inputs voltage values. Another AMS-
UVC(2) is setting / resetting the digital reset inputs and is
recording the reset out and in pins. It is coupled with AMS-
UVC1 to monitor the internal supply of the ASIC built in
the voltage regulation block. A digital UVC(3) used for SPI
communication is driving and monitoring the question and
answer of the DUT SPI interface. The voltage regulation and
digital reset blocks use SPI only for configuration, therefore
are loosely coupled. Finally, an AMS-UVC(4) component is
driving TDF mixed signals and logical control inputs, record-
ing the inputs and monitoring logical outputs, which are in
charge of deactivation of safety critical hardware component.
The monitoring unit block is controlled by its input/output
and SPI command interface. Therefore they are strongly
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Fig. 7. The implementation of the amplifier voltage regulator to the
3VFA architecture

coupled. The coupling of UVC component is controlled by
synchronizing the stimuli time stamp.

Each UVC implements a sequencer controlling its local time
and performing TLM time stamped data transaction, while
the signal timed control is ensured by the driver. The time
stamp data transaction is read by the sequencer from a text
file. Multiple data can be passed on the transaction for an
identical time step depending on the UVC. The start of the
sequencer of UVC component is controlled by the top level
virtual sequencer. It gives the reference synchronization time
t0 and decides the UVC executed mode according to the test
sequence: in parallel or in sequential. Each UVC component
will be fully configurable depending of the stimuli defined in
the text file. The scoreboard collects all recorded transaction
of the UVCs and builds a log file including data and time
stamp to allow later post processing verification.

The reuse of the test scenario for functional validation of
the tape-out ASIC is guaranteed by the reuse of the UVM
command files. As they contain the stimuli configuration with
data and time stamp, the LabVIEW software will interpret
them thanks to the test sequencer decoder built in LabVIEW
blocks. The computer and equipment latency for controlling
the input analog physical and the SPI communication are taken
into consideration during the writing of the stimuli sequence.
The influence of latency for the output and in particular
during the recording phase will not be visible, thanks to time
resynchronization on input data also recorded. The verification
of the trace results is planned to be performed off line by post-
processing of the log trace comparison. Thanks to the same
transcript format between simulation and test, the simulation

scoreboard improvement or evolution can then be reused on
trace generated by the equipment.

VI. SIMULATION RESULTS

A. Programmable filter

Fig. 8 presents a simulation snapshot of the programmable
filter, obtained after the application of a test scenario in
the designed within the UVM-SystemC (AMS) environment.
The snapshot is composed of four parts. The first part SPI
commands respect a sort of timescale, while the second part
powersupply, the third input/output DUT waveforms and fourth
parts performance indicators use a much bigger timescale. The
SPI configuration orders sent once for all at the very beginning
of the simulation.

The snapshot shows that the two differential powersupplies
are set to +5V / -5V, after a period of ramp-up. The results
show that the consequences of the ramp-up cause the satura-
tion of output DUT signals at the first period of the simulation.

The SPI commands show clk, reset, cs(chip select), and
mosi respectively. In the run phase method of UVM, a serial
clk signal is generated for the SPI slave controller. The reset
signal performs SPI reset on the DUT at the very beginning on
the simulation. When the cs signal is asserted, the mosi signal
writes 8-bit data to the interface SPI on the clock falling edge.
In the example, the SPI writes an SPI command=0x9 to the
DUT, telling it switch to mode 2 (10, the upper two bits of the
4 bits 0x9=0b00001001 command) with amplification factor
x10 (01, the lower two bits of the 4 bits 0x9=0b00001001
command). Then we send the analog test samples to the DUT.

To test the programmable filter, the virtual sequence de-
fined in the testbench contains a row of logarithmically
spaced points between decades minimum(7000Hz) and max-
imum(35000Hz) frequency and provides 7 different transac-
tions for the wavefunc driver, each of which with a specific
operation frequency. fc (cut-off frequency) is 20000Hz. The
input/output DUT shows the frequency response of the filter,
the attenuation of the signals in case of too high frequency is
clearly visible. The performances indicator (Gain) is shown in
the last section in Fig. 8. Another type of simulation results
are mentioned in the following table. It corresponds to the
comparison coming from the scoreboard.

#Sequence item starts
Frequency = 9262.47Hz

#1.6 ms: test.tb.scoreboard
Gain = 9.46642dB successfully matched ( > 8dB)

#Sequence item stops

B. Automotive use case

The simulation of the DUT, allows verifying the ASIC
functional requirements. Thanks to the simulation trace, as
visible on a general overview of Fig. 9, we can simulate
power up and power down sequence of the ASIC and validate
specific requirement on delay and latency of the output voltage
regulation during these critical phases (not detailed and visible
here). Another example, is the verification of the regulation
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Fig. 8. Simulation results, from top to bottom, they are SPI commands, powersupply, input/output DUT and performance indicators (Gain)
respectively.

functional performance during stabilized phase (+- 5%) as for
the 3.3V (Vdd3 pin in green) still stable even if input VBD
(VBD VDR pin in purple) fluctuates within the defined range.
This is not visible in this trace, as zoom and extra trace shall
be performed to force the VBD range out of the component
limit.

Fig. 9. Extract of simulation.

Moreover, for the equipment control and stimuli generation
operating with LabVIEW, we are now able to regenerate the
same functional scenario. As depicted on Fig. 10, we have
slowed down the power-up time to make visible trace and
adapt the voltage transient phase to equipment performance.
The pattern is verified on a standard oscilloscope, showing that
voltage sequence is correctly applied.

The integration of the SPI communication interface has also
been implemented and verified. The equipment, controlled
to interface the hardware, is made by a standard USB/SPI
interface card from National Instrument.

Fig. 10. LabVIEW piloted power supply.

VII. CONCLUSION

In this paper we presented a virtual prototyping, verification
and validation framework for automotive using SystemC,
SystemC-AMS and UVM-SystemC. We use SystemC for
digital parts of modulation and simulation, SystemC-AMS
for system-level design of mixed-signal systems, and UVM-
SystemC for establishing a standard and reusable system-level
verification environment. The combination of these three lan-
guages provide a unified, structured, configurable and modular
testbench for automotive design.

We applied our framework to a smart power supply module
on an automotive Electronic Control Unit for engine manage-
ment, and successfully achieved the first step of integration
of an amplifier voltage regulator. The next step will be the
completion of the whole case study design.
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